COMMUNICATIONS

Received 9 November 2018
Accepted 3 December 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure; $\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ structure type; linear chain compound.

CCDC reference: 1882781

Supporting information: this article has supporting information at journals.iucr.org/e

Redetermination of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ from single-crystal X-ray data

Gohil S. Thakur, ${ }^{\mathrm{a} *}$ Hans Reuter, ${ }^{\mathrm{b}}$ Claudia Felser ${ }^{\mathrm{a}}$ and Martin Jansen ${ }^{\mathrm{a}, \mathrm{c}}$

${ }^{\mathbf{a}}$ Max Planck Institut for Chemical Physics of Solids, Nöthnitzer Stra β e 40, 01187, Dresden, Germany, ${ }^{\mathbf{b}}$ Institute for Chemistry of New Materials, University of Osnabrück, Barbarastrasse, 7, 49076 Osnabrück, Germany, and ${ }^{c}$ Max Planck Institut for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany. *Correspondence e-mail: gohil.thakur@cpfs.mpg.de

The crystal structure redetermination of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ structure has been described previously in at least three reports [WaselNielen \& Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209-213; Muller \& Roy (1971). Adv. Chem. Ser. 98, 28-38; Nagata et al. (2002). J. Alloys Compd. 346, 50-56], all based on powder X-ray diffraction data. The current structure refinement of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic $\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO_{4} plaquettes interspersed by $\mathrm{Sr}^{\mathrm{II}}$ atoms. A brief comparison of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ with the related $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure type is given.

1. Chemical context

Low-dimensional transition-metal oxides with chain structures have received attention since they can enable interesting physical phenomena such as spin $1 / 2$ antiferromagnetic Heisenberg coupling (Motoyama et al., 1996; Takigawa et al., 1996), superconductivity (Hiroi et al., 1993), ultrafast nonlinear optical response (Ogasawara et al., 2000) or even glucose sensing (El-Ads et al., 2016). The particularly relevant sub-family based on square-planar $M \mathrm{O}_{4}$ ($M=$ divalent metal) primary building units is dominated by oxidocuprates(II), while the chemistry of respective palladates(II), showing the same preference for a square-planar coordination by oxygen, is much less explored.
Here we address $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$, which has previously been obtained as a microcrystalline material (Wasel-Nielen \& Hoppe, 1970; Muller \& Roy, 1971; Nagata et al., 2002). Based on evaluations of powder X-ray diffractograms, $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ was identified as being isostructural with $\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ (Teske \& Müller-Buschbaum, 1969; Weller \& Lines, 1989) and $\mathrm{Sr}_{2} \mathrm{FeO}_{3}$ (Tassel et al., 2013). However, structural details derived from the given atomic parameters have only been reported with large uncertainties (Muller \& Roy, 1971; Nagata et al., 2002). Therefore, a redetermination of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ based on single crystal X-ray data seemed appropriate.

2. Structural commentary

The crystal structure of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ is essentially the same as determined previously (Wasel-Nielen \& Hoppe, 1970; Muller

Table 1
Comparison of lattice parameters and bond lengths (\AA) in $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ determined in different studies.

	1970 work a	1971 work b	2002 work	This work
a	3.977	3.97	3.985	$3.5342(2)$
b	3.53	3.544	3.539	$3.9822(3)$
c	12.82	12.84	12.847	$12.8414(8)$
$\mathrm{Pd}-\mathrm{O} 1(\times 2)$	2.08	2.045	2.068	$2.052(2)$
$\mathrm{Pd}-\mathrm{O} 2(\times 2)$	1.99	1.985	1.993	$1.9911(1)$
Sr -O1	2.45	2.504	2.467	$2.474(2)$
$\mathrm{Sr}-\mathrm{O} 1(\times 4)$	2.67	2.668	2.671	$2.6668(2)$
$\mathrm{Sr}-\mathrm{O} 2(\times 2)$	2.58	2.57	2.588	$2.5906(3)$

References: (a) Wasel-Nielen \& Hoppe (1970); (b) Muller \& Roy (1971); (c) Nagata et al. (2002).
\& Roy, 1971; Nagata et al., 2002). The lattice parameters (Table 1) are almost identical to those in the previous reports but with higher precision. The $\mathrm{Pd}^{\mathrm{II}}$ atom occupies the $2 d$ crystallographic sites with mmm site symmetry. We would like to point out that we chose a different cell setting as compared to all the previous reports, where the $\mathrm{Pd}^{\mathrm{II}}$ atom was chosen to be located at the cell origin (site $2 a ; 0,0,0$; hence the different site designations). The $\mathrm{Pd}^{\mathrm{II}}$ atom forms distorted PdO_{4} square planes, which are linked by sharing oxygen atoms in the transposition to form infinite chains extending along the b-axis direction as shown in Fig. 1. Corresponding to this connectivity pattern, the $\mathrm{Pd}-\mathrm{O}$ bond lengths are longer for the shared oxygen atoms, 2.052 (2) \AA, and shorter for the terminal ones, 1.9911 (2) \AA. The Sr atom is situated at the $4 j$ Wyckoff site having $m m 2$ site symmetry. It is seven-coordinate in a monocapped trigonal-prismatic fashion by oxygen with three different bond lengths (Table 1, Fig. 2). In addition to the square-planar first coordination of $\mathrm{Pd}^{\mathrm{II}}$ with oxygen, the second consists of eight $\mathrm{Sr}^{\mathrm{II}}$ atoms present at the corner of a cuboid with dimension $3.5342(2) \times 3.7887(2) \times 3.9822(3) \AA^{3}$ (Fig. 2). Of the two kinds of oxygen atoms, both surrounded by six metal ions that form distorted octahedra, O 1 is coordinated by one $\mathrm{Pd}^{\mathrm{II}}$ atom $\left[2.052\right.$ (2) \AA] and five $\mathrm{Sr}^{\mathrm{II}}$ atoms with one short $[2.474(2) \AA$ A 10 and four long distances $[2.6668(2) \AA]$ (Fig. 3). O 2 is connected to four equidistant $\mathrm{Sr}^{\mathrm{II}}[2.5906$ (3) \AA A $]$ and two $\mathrm{Pd}^{\mathrm{II}}$ atoms $[1.9911$ (2) \AA] (Fig. 3). In our current

Figure 1
Crystal structure of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ viewed along the a axis (left) and along the b axis (right).

Figure 2
Coordination around the $\mathrm{Sr}^{\mathrm{II}}$ (left) and $\mathrm{Pd}^{\mathrm{II}}$ atoms (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in \AA.
structure determination, much more precise values of the cell parameters along with the z parameters of Sr and O 1 have been determined, consequently, yielding very precise values for the bond lengths (see Table 1). The quality of the current refinement is also clearly reflected by better reliability factors (see Table 2) as compared to the previous refinements. The atomic arrangement described here is same as provided by Wasel-Nielen \& Hoppe (1970).

The structural features discussed above are closely related to those of the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ type of structure, which is regarded as the prototype structure for all the high T_{c} cuprates. $\mathrm{K}_{2} \mathrm{NiF}_{4}$ consists of layers of corner-shared NiF_{6} octahedra extending in the $a b$ plane. One can derive the $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ structure from the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure by systematically removing the bridging F atoms from the NiF_{6} octahedra lying in the a-axis direction (Fig. 4). This would reduce the dimensionality of the layer, resulting in linear chains of square planes connected by edges along only one direction.

3. Synthesis and crystallization

Millimeter-sized block-shaped crystals of dark-yellow colour with composition $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ as confirmed by SEM-EDS, were obtained from a mixture of different phases while attempting to synthesize $\mathrm{SrPd}_{3} \mathrm{O}_{4}$ using a KOH flux (Smallwood et al., 2000). SrCO_{3} and Pd metal powder were mixed in the molar ratio of $2: 3$, placed in an alumina crucible, and 15 grams of KOH pellets were added on top. The crucible was heated in a muffle furnace to 1023 K in 24 h with a 6 h dwell time. The

Figure 3
Coordination polyhedra of two types of oxygen atoms, O 1 (left) and O 2 (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in A.

Figure 4
Interconversion of the $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ and $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structures.
furnace was then cooled slowly to 873 K over 125 h after which it was switched off and allowed to cool naturally. The product was washed several times with water to remove the solidified flux and subsequently rinsed with ethanol.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Ads, E. H., Galal, A. \& Atta, N. F. (2016). RSC Adv. 6, 1618316196.

Hiroi, Z., Takano, M., Azuma, M. \& Takeda, Y. (1993). Nature, 364, 315-317.
Motoyama, N., Eisaki, H. \& Uchida, S. (1996). Phys. Rev. Lett. 76, 3212-3215.
Muller, O. \& Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.
Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. \& Samata, H. (2002). J. Alloys Compd, 346, 50-56.

Ogasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. \& KuwataGonokami, M. (2000). Phys. Rev. Lett. 85, 2204-2207.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$

$\min ^{\min }, T_{\max }$ observed $[I>2 \sigma(I)]$ reflections	$8304,178,176$
$R_{\text {int }}$	0.035
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.702
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.009,0.021,1.27$
No. of reflections	178
No. of parameters	16
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.43,-0.51$

Computer programs: APEX2 and, SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006).

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Smallwood, P. L., Smith, M. D. \& zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299-303.
Takigawa, M., Motoyama, N., Eisaki, H. \& Uchida, S. (1996). Phys. Rev. Lett. 76, 4612-4615.
Tassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. \& Kageyama, H. (2013). Inorg. Chem. 52, 60966102.

Teske, C. L. \& Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325-332.
Wasel-Nielen, H. D. \& Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.
Weller, M. T. \& Lines, D. R. (1989). J. Solid State Chem. 82, 21-29.

supporting information

Acta Cryst. (2019). E75, 30-32 [https://doi.org/10.1107/S2056989018017176]

Redetermination of $\mathrm{Sr}_{2} \mathrm{PdO}_{3}$ from single-crystal X-ray data

Gohil S. Thakur, Hans Reuter, Claudia Felser and Martin Jansen

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Distrontium palladium trioxide

Crystal data

$\mathrm{Sr}_{2} \mathrm{PdO}_{3}$
$M_{r}=329.64$
Orthorhombic, Immm
$a=3.5342$ (2) \AA
$b=3.9822(3) \AA$
$c=12.8414(8) \AA$
$V=180.73(2) \AA^{3}$
$Z=2$
$F(000)=292$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.062, T_{\max }=0.102$
8304 measured reflections
$D_{\mathrm{x}}=6.057 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1490 reflections
$\theta=3.2-29.9^{\circ}$
$\mu=34.15 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, yellow-brown
$0.18 \times 0.16 \times 0.12 \mathrm{~mm}$

178 independent reflections
176 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=29.9^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-5 \rightarrow 5$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.009$
$w R\left(F^{2}\right)=0.021$
$S=1.27$
178 reflections
16 parameters
0 restraints

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0092 P)^{2}+0.2817 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL-2014/7 } \\
& \quad(\text { Sheldrick, 2015), } \\
& \quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc} \mathrm{x}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.0059(5)
\end{aligned}
$$

Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pd1	0.5000	0.0000	0.5000	$0.00493(11)$
Sr1	0.5000	0.0000	$0.14752(2)$	$0.00656(11)$
O1	0.5000	0.0000	$0.34021(18)$	$0.0085(5)$
O2	0.5000	0.5000	0.5000	$0.0128(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.00765(19)$	$0.00396(17)$	$0.00320(18)$	0.000	0.000	0.000
Sr1	$0.00752(17)$	$0.00760(16)$	$0.00456(17)$	0.000	0.000	0.000
O1	$0.0117(13)$	$0.0101(12)$	$0.0037(11)$	0.000	0.000	0.000
O2	$0.021(2)$	$0.0035(15)$	$0.0134(18)$	0.000	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pd} 1-\mathrm{O} 2{ }^{\text {i }}$	1.9911 (1)	Sr1-O1 ${ }^{\text {ix }}$	2.6668 (2)
$\mathrm{Pd} 1-\mathrm{O} 2$	1.9911 (1)	Sr1-O1 ${ }^{\text {vii }}$	2.6668 (2)
$\mathrm{Pd} 1-\mathrm{O} 1$	2.052 (2)	$\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xi }}$	3.2674 (2)
$\mathrm{Pd} 1-\mathrm{Ol}^{\text {ii }}$	2.052 (2)	$\mathrm{Sr} 1-\mathrm{Pd1}{ }^{\text {xii }}$	3.2674 (2)
$\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {iii }}$	3.2674 (2)	Sr1—Pd1 ${ }^{\text {xiii }}$	3.2674 (2)
$\mathrm{Pd} 1-\mathrm{Sr1}{ }^{\text {iv }}$	3.2674 (2)	Sr1—Pd1 ${ }^{\text {xiv }}$	3.2674 (2)
$\mathrm{Pd} 1-\mathrm{Sr}^{\text {v }}$	3.2674 (2)	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	3.5342 (2)
$\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vi }}$	3.2674 (2)	$\mathrm{O} 1-\mathrm{Sr} 1^{\text {viii }}$	2.6668 (2)
$\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	3.2674 (2)	$\mathrm{O} 1-\mathrm{Sr} 1^{\text {iii }}$	2.6668 (2)
Pd1-Sr1 ${ }^{\text {viii }}$	3.2674 (2)	$\mathrm{O} 1-\mathrm{Sr} 1^{\text {vii }}$	2.6668 (2)
$\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {ix }}$	3.2674 (2)	$\mathrm{O} 1-\mathrm{Sr} 1^{\text {ix }}$	2.6668 (2)
$\mathrm{Pd} 1-\mathrm{Sr}^{\text {x }}$	3.2674 (2)	$\mathrm{O} 2 \ldots \mathrm{Pd} 1{ }^{\text {xvi }}$	1.9911 (1)
Sr1-O1	2.474 (2)	$\mathrm{O} 2-\mathrm{Sr} 1^{\mathrm{ix}}$	2.5906 (3)
$\mathrm{Sr} 1-\mathrm{O} 2^{\mathrm{xi}}$	2.5906 (3)	$\mathrm{O} 2-\mathrm{Sr}^{\text {iv }}$	2.5906 (3)
$\mathrm{Sr} 1-\mathrm{O} 2^{\text {xii }}$	2.5906 (3)	$\mathrm{O} 2-\mathrm{Sr} 1^{\text {viii }}$	2.5906 (3)
Sr1-O1 ${ }^{\text {viii }}$	2.6668 (2)	$\mathrm{O} 2-\mathrm{Sr} 1^{\text {vi }}$	2.5906 (3)
Sr1-O1 ${ }^{\text {iii }}$	2.6668 (2)		
$\mathrm{O} 2 \mathrm{i}-\mathrm{Pd} 1-\mathrm{O} 2$	180.0	$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {vii }}$	86.61 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Pd} 1-\mathrm{O} 1$	90.0	$\mathrm{O} 2{ }^{\text {xi}}-\mathrm{Srl}-\mathrm{O} 1^{\text {vii }}$	119.68 (4)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{O} 1$	90.0	$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {vii }}$	65.87 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pd} 1-\mathrm{O} 1^{\text {ii }}$	90.0	$\mathrm{O} 1^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {vii }}$	96.597 (9)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{Ol}^{\text {ii }}$	90.0	$\mathrm{O} 1^{\text {iiii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {vii }}$	83.000 (8)
$\mathrm{O} 1-\mathrm{Pd} 1-1^{\text {ii }}$	180.0	$\mathrm{O} 1^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {vii }}$	173.22 (10)

O 2 - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {iii }}$	52.455 (3)
O2-Pd1- $\mathrm{Sr}^{1{ }^{\text {iii }}}$	127.545 (3)
O1-Pd1- $\mathrm{Sr}^{1{ }^{\text {iii }}}$	54.565 (5)
O1 ${ }^{\text {ii }}$-Pd1— $\mathrm{Sr}^{\text {iii }}$	125.435 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {iv }}$	127.545 (3)
O2-Pd1- $\mathrm{Sr}^{\text {iv }}$	52.455 (3)
O1-Pd1- $\mathrm{Sr}^{1{ }^{\text {iv }}}$	125.435 (5)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {iv }}$	54.565 (5)
Sr1 ${ }^{\text {iii }}$-Pd1— $\mathrm{Sr}^{\text {iv }}$	180.0
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{Sr}^{\text {v }}$	52.455 (4)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{Sr}^{\text {v }}$	127.545 (3)
O1-Pd1- $\mathrm{Sr}^{\text {v }}$	125.435 (5)
$\mathrm{O} 1^{\text {ii- }} \mathrm{Pd} 1-\mathrm{Sr}^{\text {v }}$	54.565 (5)
$\mathrm{Sr} 1^{\text {iii }}$ - $\mathrm{Pd} 1-\mathrm{Sr1}{ }^{\text {v }}$	70.871 (10)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {v }}$	109.129 (10)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vi }}$	127.545 (3)
O2-Pd1- $\mathrm{Sr}^{\text {vi }}$	52.455 (4)
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vi }}$	125.435 (5)
O1 ${ }^{\text {ii }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vi }}$	54.565 (5)
Sr1 ${ }^{\text {iiii}}$-Pd1— $\mathrm{Sr}^{\text {vi }}$	114.520 (6)
$\mathrm{Sr}^{\text {iv }}-\mathrm{Pd} 1-\mathrm{Sr}^{\text {vi }}$	65.480 (6)
Sr1 ${ }^{\text {v }}$ - $\mathrm{Pd} 1-\mathrm{Sr1}{ }^{\text {vi }}$	75.090 (7)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	52.455 (3)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	127.545 (3)
O1—Pd1—Sr1 ${ }^{\text {vii }}$	54.565 (5)
O1iinPd1—Sr1 ${ }^{\text {vii }}$	125.435 (5)
$\mathrm{Sr} 1^{\text {iii] }} \mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	65.480 (5)
$\mathrm{Sr} 1^{\text {iv }}$ - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	114.520 (6)
Sr^{1} - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {vii }}$	104.910 (7)
Sr1 ${ }^{\text {vi}}-\mathrm{Pd} 1-\mathrm{Sr}^{\text {vii }}$	180.0
O2 ${ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	127.545 (3)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	52.455 (3)
O1-Pd1-Sr1 ${ }^{\text {viii }}$	54.565 (5)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	125.435 (5)
$\mathrm{Sr} 1^{\text {iii }}$ - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	109.129 (10)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	70.871 (10)
Sr1 ${ }^{\text {v }}$ - $\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	180.0
Sr1 ${ }^{\text {vi}}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	104.910 (7)
Sr1 ${ }^{\text {vii }} \mathrm{Pd} 1-\mathrm{Sr} 1^{\text {viii }}$	75.090 (7)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\mathrm{ix}}$	127.545 (4)
O2-Pd1-Sr1 ${ }^{\text {ix }}$	52.455 (3)
O1-Pd1- $\mathrm{Sr}^{1{ }^{\text {ix }}}$	54.565 (5)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {ix }}$	125.435 (5)
Sr1 ${ }^{\text {iii }}$-Pd1— $\mathrm{Sr}^{\text {ix }}$	75.090 (7)
	104.910 (7)
$\mathrm{Sr} 1^{\mathrm{v}}$-Pd1- $\mathrm{Sr}^{\text {ix }}$	114.520 (6)
$\mathrm{Sr}^{\text {vi }}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\text {ix }}$	70.871 (10)
Sr $1^{\text {vii }}$ - Pd 1 - $\mathrm{Sr}^{1 \mathrm{ix}}$	109.129 (10)

52.455 (3)
127.545 (3)
54.565 (5)
125.435 (5)
127.545 (3)
52.455 (3)
125.435 (5)
54.565 (5)
180.0
52.455 (4)
127.545 (3)
125.435 (5)
54.565 (5)
109.129 (10)
127.545 (3)
52.455 (4)
125.435 (5)
54.565 (5)
114.520 (6)
65.480 (6)
75.090 (7)
52.455 (3)
54.565 (5)
125.435 (5)
65.480 (5)
104.910 (7)
180.0
127.545 (3)
52.455 (3)
54.565 (5)
125.435 (5)
70.871 (10)
180.0
104.910 (7)
75.090 (7)
52.455 (3)
54.565 (5)
125.435 (5)
75.090 (7)
104.910 (7)
4.520 (6)
109.129 (10)

$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xi }}$	125.435 (5)
$\mathrm{O} 2^{\text {xi }}-\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xi }}$	37.546 (3)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xi }}$	86.845 (8)
$\mathrm{O} 1{ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xi }}$	147.95 (5)
O1ii- ${ }^{\text {iii }}$ Sr1—Pd1 ${ }^{\text {xi }}$	38.82 (5)
$\mathrm{O} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xi }}$	97.52 (3)
O1 ${ }^{\text {vii }}$-Sr1—Pd1 ${ }^{\text {xi }}$	86.43 (3)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xii }}$	125.435 (5)
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xii }}$	86.845 (8)
$\mathrm{O} 2^{\text {xii }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xii }}$	37.546 (3)
O1 ${ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xii }}$	97.52 (3)
O1iil-Sr1—Pd1 ${ }^{\text {xii }}$	86.43 (3)
$\mathrm{O} 1{ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xii }}$	147.95 (5)
O1 ${ }^{\text {vii }}$ - Sr1—Pd1 ${ }^{\text {xii }}$	38.82 (5)
Pd1 ${ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xii }}$	65.481 (6)
$\mathrm{O} 1-\mathrm{Sr} 1 — \mathrm{Pd1}{ }^{\text {xiii }}$	125.435 (5)
$\mathrm{O} 2{ }^{\text {xi }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xii }}$	86.845 (9)
$\mathrm{O} 2^{\text {xii }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xiii }}$	37.546 (3)
$\mathrm{O} 1^{\text {viii }} \mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiii }}$	38.82 (5)
O1 $1^{\text {iii }}$-Sr1—Pd1 ${ }^{\text {xiii }}$	147.95 (5)
$\mathrm{O} 1{ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiii }}$	86.43 (3)
$\mathrm{O} 1^{\text {vii }} \mathrm{Sr} 1$ — $\mathrm{Pd} 1{ }^{\text {xiii }}$	97.52 (3)
$\mathrm{Pd} 1{ }^{\text {xi }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xiii }}$	109.130 (10)
$\mathrm{Pd} 1{ }^{\text {xii }}$-Sr1—Pd1 ${ }^{\text {xiii }}$	75.091 (7)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xiv }}$	125.435 (5)
$\mathrm{O} 2{ }^{\text {xi }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiv }}$	37.546 (3)
$\mathrm{O} 2^{\text {xii }}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiv }}$	86.845 (8)
$\mathrm{O} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Pd} 1{ }^{\text {xiv }}$	86.43 (3)
$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Pd1} 1^{\text {xiv }}$	97.52 (3)
$\mathrm{O} 1{ }^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiv }}$	38.82 (5)
$\mathrm{O} 1^{\text {vii }} \mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiv }}$	147.95 (5)
$\mathrm{Pd} 1{ }^{\text {xi}}-\mathrm{Sr} 1-\mathrm{Pd} 1^{\text {xiv }}$	75.091 (7)
$\mathrm{Pd} 11^{\text {xii }} \mathrm{Sr} 1$ - Pd1 ${ }^{\text {xiv }}$	109.130 (10)
$\mathrm{Pd} 1{ }^{\text {xiii }} \mathrm{Sr} 1$ - Pd1 ${ }^{\text {xiv }}$	65.481 (6)
O1-Sr1-Sr1 ${ }^{\text {xv }}$	90.0
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xv }}$	133.011 (5)
$\mathrm{O} 2{ }^{\text {xii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	46.991 (5)
O1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	48.500 (3)
O1 $1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xv }}$	131.500 (4)
O1 ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xv }}$	131.500 (4)
O1 ${ }^{\text {vii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	48.500 (4)
$\mathrm{Pd} 1{ }^{\text {xi}}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xv }}$	122.741 (3)
$\mathrm{Pd} 1^{\text {xii }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {xv }}$	57.260 (3)
Pd1 ${ }^{\text {xiii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{xv}}$	57.260 (3)
$\mathrm{Pd} 1{ }^{\text {xiv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {xv }}$	122.741 (3)
$\mathrm{Pd} 1-\mathrm{O} 1-\mathrm{Sr} 1$	180.0
$\mathrm{Pd} 1-\mathrm{O} 1-\mathrm{Sr} 1^{\text {viii }}$	86.61 (5)
Sr1-O1-Sr1 ${ }^{\text {viii }}$	93.39 (5)

$\mathrm{Sr} 1^{\text {viii }} \mathrm{Pd} 1-\mathrm{Sr}^{\text {ix }}$	65.480 (6)	$\mathrm{Pd} 1-\mathrm{O} 1-\mathrm{Sr} 1^{\text {iii }}$	86.61 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{Sr}^{\text {x }}$	52.455 (3)	$\mathrm{Sr} 1-\mathrm{O} 1-\mathrm{Sr} 1^{\text {iii }}$	93.39 (5)
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{Sr}^{1}$	127.545 (3)	Sr1 ${ }^{\text {viii- }}$ O1-Sr1 ${ }^{\text {iii }}$	173.23 (10)
O1—Pd1-Sr1 ${ }^{\text {x }}$	125.435 (5)	Pd1-O1-Sr1 ${ }^{\text {vii }}$	86.61 (5)
$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\mathrm{x}}$	54.565 (5)	Sr1-O1-Sr1 ${ }^{\text {vii }}$	93.39 (5)
$\mathrm{Sr} 1^{\text {iii- }} \mathrm{Pd} 1-\mathrm{Sr}^{\mathrm{x}}$	104.910 (7)	Sr1 ${ }^{\text {viii }}-\mathrm{O} 1-\mathrm{Sr} 1^{\text {vii }}$	96.597 (9)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Pd} 1-\mathrm{Sr}^{\text {x }}$	75.090 (7)	$\mathrm{Sr}^{1{ }^{\text {iii }}-\mathrm{O} 1-\mathrm{Sr} 1^{\text {vii }}}$	83.001 (8)
Sr1 ${ }^{\mathrm{v}}-\mathrm{Pd} 1-\mathrm{Sr} 1^{\mathrm{x}}$	65.480 (5)	$\mathrm{Pd} 1-\mathrm{O} 1-\mathrm{Sr}^{1 \mathrm{ix}}$	86.61 (5)
$\mathrm{Sr} 1^{\text {vi}}-\mathrm{Pd} 1-\mathrm{Sr}^{\mathrm{x}}$	109.129 (10)	$\mathrm{Sr} 1-\mathrm{O} 1-\mathrm{Sr} 1^{\text {ix }}$	93.39 (5)
$\mathrm{Sr} 1^{\text {vii }}$-Pd1— $\mathrm{Sr}^{\text {x }}$	70.871 (10)	Sr1 ${ }^{\text {viii }}-\mathrm{O} 1-\mathrm{Sr}^{\text {ix }}$	83.001 (8)
$\mathrm{Sr} 1^{\text {viii- }} \mathrm{Pd} 1-\mathrm{Sr}^{\mathrm{x}}$	114.520 (6)	$\mathrm{Sr} 1^{\text {iii }}-\mathrm{O} 1-\mathrm{Sr} 1^{\text {ix }}$	96.597 (9)
$\mathrm{Sr} 1^{\text {ix }}-\mathrm{Pd} 1-\mathrm{Sr}^{1 \times}$	180.0	$\mathrm{Sr} 1^{\text {vii }}-\mathrm{O} 1-\mathrm{Sr} 1^{\text {ix }}$	173.23 (10)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 2^{\text {xi }}$	136.990 (5)	$\mathrm{Pd} 1{ }^{\text {xvi }}-\mathrm{O} 2-\mathrm{Pd} 1$	180.0
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 2{ }^{\text {xii }}$	136.990 (5)	$\mathrm{Pd} 1{ }^{\text {xvi }}-\mathrm{O} 2-\mathrm{Sr} 1^{\mathrm{ix}}$	90.0
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O} 2^{\text {xii }}$	86.020 (11)	$\mathrm{Pd} 1-\mathrm{O} 2-\mathrm{Sr}^{1{ }^{\text {ix }}}$	90.0
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {viii }}$	86.61 (5)	$\mathrm{Pd} 1{ }^{\text {xvi }}-\mathrm{O} 2-\mathrm{Sr} 1^{\text {iv }}$	90.0
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {viii }}$	119.68 (4)	$\mathrm{Pd} 1-\mathrm{O} 2-\mathrm{Sr}^{\text {iv }}$	90.0
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {viii }}$	65.87 (4)	$\mathrm{Sr} 1^{\mathrm{ix}}$ - $\mathrm{O} 2-\mathrm{Sr} 1^{\mathrm{iv}}$	180.0
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	86.61 (5)	$\mathrm{Pd} 1{ }^{\text {xvi }}$-O2- $\mathrm{Sr}^{\text {viii }}$	90.0
$\mathrm{O} 2{ }^{\mathrm{xi}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	65.87 (4)	$\mathrm{Pd} 1-\mathrm{O} 2-\mathrm{Sr}^{\text {viii }}$	90.0
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	119.68 (4)	$\mathrm{Sr} 1^{\mathrm{ix}}$-O2-- $\mathrm{Sr}^{\text {viii }}$	86.018 (11)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	173.22 (10)	$\mathrm{Sr}^{\text {iv }}$ - $\mathrm{O} 2-\mathrm{Sr} 1^{\text {viii }}$	93.982 (11)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	86.61 (5)	$\mathrm{Pd} 1{ }^{\text {xvi }}-\mathrm{O} 2-\mathrm{Sr}^{\text {vi }}$	90.0
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	65.87 (4)	$\mathrm{Pd} 1-\mathrm{O} 2-\mathrm{Sr}^{\text {vi }}$	90.0
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	119.68 (4)	$\mathrm{Sr} 1^{\mathrm{ix}}-\mathrm{O} 2-\mathrm{Sr} 1^{\text {vi }}$	93.982 (11)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	83.000 (8)	$\mathrm{Sr} 1^{\text {iv }}-\mathrm{O} 2-\mathrm{Sr} 1^{\text {vi }}$	86.018 (11)
$\mathrm{Ol}^{\text {iii- }}$ - $\mathrm{Sr} 1-\mathrm{Ol}^{\text {ix }}$	96.597 (9)	Sr1 ${ }^{\text {viii }}$-O2- $\mathrm{Sr}^{\text {vi }}$	180.0

[^0]
[^0]: Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1 / 2,-y-1 / 2,-z+1 / 2$; (iv) $x+1 / 2, y+1 / 2, z+1 / 2$; (v) $x-1 / 2, y-1 / 2, z+1 / 2$; (vi) $x-1 / 2, y+1 / 2, z+1 / 2$; (vii) $-x+3 / 2,-y-1 / 2,-z+1 / 2$; (viii) $-x+3 / 2,-y+1 / 2,-z+1 / 2$; (ix) $-x+1 / 2,-y+1 / 2,-z+1 / 2$; (x) $x+1 / 2, y-1 / 2, z+1 / 2$; (xi) $x-1 / 2, y-1 / 2, z-1 / 2$; (xii) $x+1 / 2$, $y-1 / 2, z-1 / 2$; (xiii) $x+1 / 2, y+1 / 2, z-1 / 2$; (xiv) $x-1 / 2, y+1 / 2, z-1 / 2$; (xv) $x+1, y, z$; (xvi) $x, y+1, z$.

