

Received 29 October 2018 Accepted 29 November 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; proton transfer; lomefloxacin; hydrogen-bonded network.

CCDC reference: 1025160

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (*RS*)-4-(3-carboxy-1-ethyl-6,8difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 3-carboxy-5-fluorobenzoate

Sheng Feng,^a Gui-Liang Zhu,^a Jia-Jia Sun,^a Chen Chen^b and Zhi-Hui Zhang^{b*}

^aSchool of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China, and ^bJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, University, Changzhou 213164, People's Republic of China. *Correspondence e-mail: zhangzh@cczu.edu.cn

In the title organic salt, $C_{17}H_{20}F_2N_3O_3^{+}C_8H_4FO_4^{-}$, proton transfer leads to one protonated lomefloxacin molecule (HLf⁺) and one 3-carboxy-5-fluorobenzoate (5-F-Hip⁻) anion in the asymmetric unit. The HLf⁺ cation is bent, with a dihedral angle of 38.3 (1)° between the quinoline ring and the piperazinium moiety. In the crystal, two kinds of N-H···O and O-H···O hydrogen-bonded chains cross-link each other to produce a three-dimensional network structure that is additionally stabilized by weak C-H···O and C-H···F hydrogen bonds, as well as π - π interactions. The methyl group attached to the piperazinium ring is disordered over two sets of sites [refined ratio: 0.645 (5):0.335 (5)], indicating the presence of both enantiomers of the cation in the structure.

1. Chemical context

Lomefloxacin [Lf; systematic name: (RS)-4-(3-carboxy-1ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazine] belongs to the fluoroquinolones that represent an important family of highly effective broad-spectrum antibacterial agents (Ross & Riley, 1990; Reddy et al., 2011; Huang et al., 2013). Lomefloxacin is very useful for the treatment of a variety of infections, although its therapeutic action as a drug is limited due to poor aqueous solubility $(1.03 \text{ mg ml}^{-1}, \text{Ross})$ & Riley, 1990). Using salts of lomefloxacin may overcome this problem. Several binary and ternary salts of lomefloxacin have been reported with supramolecular arrangements of the cationic and anionic moieties, such as the terephthalate (Zhou et al., 2006), isophthalate (Zhang et al., 2015), picrate (Jasinski et al., 2011) or hydrochloride (Holstein et al., 2012). However, the number of compounds related to solubility improvement is rather limited (Zhang et al., 2015).

In this context, we have used 3-carboxy-5-fluorobenzoic acid (5-F-H₂ip) for a proton-transfer reaction, and report here synthesis and crystal structure of the produced salt $(HLf)^+ \cdot (5-F-Hip^-)$, (I).

OPEN 👌 ACCESS

Figure 1

Molecular structures of the cation and anion in the title salt. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

The structures of the molecular entities of (I) are displayed in Fig. 1. Unlike other lomefloxacin salts (Zhang *et al.*, 2015), the title compound reveals no guest solvents residing in the crystal structure. In the asymmetric unit, there is one HLf⁺ cation and one 5-F-Hip⁻ anion, *i.e.* only one proton has been transferred from the free acid. Within the HLf⁺ moiety, a non-planar conformation of the molecule is formed with a dihedral angle of 38.3 (1)° between the aromatic ring plane and the piperazinium ring (the latter exhibits a chair conformation). An intramolecular *S*(6) hydrogen-bonding pattern (Etter *et al.*, 1990) is found between the carboxylic group and the carbonyl O atom (O2–H2···O1; Table 1). The 5-F-Hip⁻ anion is nearly planar (r.m.s. deviation = 0.132 Å), with the highest deviation of 0.2645 (13) Å for the carboxylate O6 atom.

Table 1Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O5-H5\cdots O7^{i}$	0.82	1.75	2.557 (2)	167
$O2-H2\cdots O1$	0.82	1.78	2.535 (3)	153
$N1-H1B\cdots O7^{ii}$	0.89	2.48	3.046 (2)	122
$N1-H1B\cdots O6^{ii}$	0.89	1.91	2.790 (2)	170
$N1-H1A\cdots O3^{iii}$	0.89	1.94	2.811(2)	165
$C21 - H21 \cdots O4^{iv}$	0.93	2.61	3.534 (3)	173
C17−H17C···F1	0.96	2.45	2.985 (3)	115
$C17 - H17B \cdot \cdot \cdot F3^{v}$	0.96	2.53	3.380 (3)	148
$C16-H16B\cdots F1^{v}$	0.97	2.48	3.394 (3)	157
C16−H16B···F1	0.97	2.16	2.682 (2)	112
$C16-H16A\cdots O6^{vi}$	0.97	2.35	3.287 (3)	162
$C14-H14\cdots O6^{vi}$	0.93	2.59	3.448 (3)	154
$C4-H4A\cdots O4^{v}$	0.97	2.60	3.274 (3)	127
$C2-H2B\cdots F2$	0.97	2.30	2.883 (2)	118
$C2-H2A\cdots F3$	0.97	2.57	3.078 (2)	113

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x, y, z + 1; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) -x, -y, -z + 1; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

3. Supramolecular features

In the crystal structure, N1-H1A···O3ⁱⁱⁱ interactions between the amino function of the piperazinium moiety and the nonprotonated O atom of the carboxylic group of a neighboring HLf⁺ cation result in a head-to-tail chain motif with descriptor C(13). Adjacent 5-F-Hip⁻ moieties also form a head-to-tail chain, based on a C(8) pattern, involving O5-H5···O7ⁱ bonds between the carboxylic acid function and the carboxylate function. The two kinds of chains interlink with each other through N1-H1B···O6ⁱⁱ interactions between the second H atom of the amino group of the cation and one of the carboxylate O atoms of the anion to form a three-dimensional network structure. Within this array (Fig. 2), additional weak C-H···O and C-H···F interactions are present (Table 1) as additional stabilization forces, along with π - π interactions between fluoroquinolone benzene rings of the cations and and

Figure 2

A perspective view of (I) showing the $N-H\cdots O$ and $O-H\cdots O$ hydrogen-bonding interactions (dotted lines) between the two kinds of chains. 'Acidic' chains, *i.e.* chains involving only the anion, are shown in red for clarity.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{17}H_{20}F_2N_3O_3^+ \cdot C_8H_4FO_4^-$
M _r	535.47
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.4324 (12), 16.5656 (19), 14.0448 (17)
β (°)	100.707 (3)
$V(A^3)$	2384.9 (5)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.13
Crystal size (mm)	$0.22 \times 0.20 \times 0.16$
•	
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2010)
T_{\min}, T_{\max}	0.970, 0.980
No. of measured, independent and	16570, 6292, 4335
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.711
Deferencet	
Remember $D[E^2 > 2\pi(E^2)] = D(E^2)$	0.054 0.161 0.08
K[T > 20(T)], WK(T), S	0.034, 0.101, 0.98
No. of renerators	6292 259
No. of parameters	JJO
n -atom treatment $(a, b, -3)$	n-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-1})$	0.29, -0.28

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

phenyl rings of the anions with a centroid-to-centroid separation of 3.7895 (12) Å.

4. Database survey

Two crystal structures (Zhang et al., 2015) based on lomefloxacin and isophthalic acid have been reported in the CSD (Verson 5.39; Groom et al., 2016) viz. CURKAD [4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 3-carboxybenzoate hydrate] and CURKIL [4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate isophthalic acid methanol solvate monohydrate]. Both CURKAD and the title compound are proton-transfer compounds from isophthalic acids to the piperazine NH groups. In the structure of CURKIL, the isophthalic acid moiety remains protonated, and co-crystallized barbituric acid is the proton donor in this case. With respect to the supramolecular networks in these structures, the contribution of the extra fluorine atom in (I) leads to additional hydrogen bonds of the type $C-H \cdots F$.

5. Synthesis and crystallization

A methanol solution (6 ml) of 5-fluoroisophthalic acid (5-F- H_2ip ; 20 mg, 0.1 mmol) was mixed with a slurry of lome-

floxacin (Lf) (35 mg, 0.1 mmol) in 5 ml water under stirring. The mixture was exposed to ultrasound for *ca* 20 min, and was then filtered and left to slowly evaporate. Colourless block-like single crystals suitable for X-ray analysis were obtained after several weeks. Yield: 65% (35 mg, based on Lf). Analysis calculated for C₂₅H₂₄F₃N₃O₇: C, 56.08; H, 4.52; N, 7.85%. Found: C, 56.06; H, 4.50; N, 7.82%. FT–IR (KBr pellet, cm⁻¹): 3431b, 3070 (*w*), 2475 (*w*), 1718 (*s*), 1620 (*vs*, 1539 (*m*), 1456 (*s*), 1371 (*m*), 1275 (*s*), 1090 (*m*), 959 (*m*), 901 (*w*), 766 (*m*), 689 (*m*), 521 (*w*).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C were placed geometrically and refined in a riding model: C-H = 0.96-0.98 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl). All O-bound and N-bound H atoms were initially found in difference electron-density maps, and then refined using a riding model [O-H = 0.82 Å and N-H = 0.89 Å; $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)]$. The methyl group bound to the piperazinium ring is disordered over two positions with occupancies of 0.645 (5) and 0.355 (5).

Funding information

We acknowledge financial support from Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (grant No. BM2012110).

References

- Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Holstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520–2531.
- Huang, X. F., Zhang, Z. H., Zhang, Q. Q., Wang, L. Z., He, M. Y., Chen, Q., Song, G. Q., Wei, L., Wang, F. & Du, M. (2013). *CrystEngComm*, **15**, 6090–6100.
- Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, 0483–0484.
- Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). *J. Pharm. Sci.* 100, 3160–3176.
- Ross, D. L. & Riley, C. M. (1990). Int. J. Pharm. 63, 237-250.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). *Acta Cryst.* B**71**, 437–446.
- Zhou, T., Zhao, L. & Guo, J. X. (2006). Z. Kristallogr. New Cryst. Struct. 221, 495–496.

supporting information

Acta Cryst. (2019). E75, 68-70 [https://doi.org/10.1107/S2056989018016961]

Crystal structure of (*RS*)-4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 3-carboxy-5-fluorobenzoate

Sheng Feng, Gui-Liang Zhu, Jia-Jia Sun, Chen Chen and Zhi-Hui Zhang

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(*RS*)-4-(3-Carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 3-carboxy-5-fluorobenzoate

Crystal data

 $C_{17}H_{20}F_2N_3O_3^+ \cdot C_8H_4FO_4^ M_r = 535.47$ Monoclinic, $P2_1/n$ a = 10.4324 (12) Å b = 16.5656 (19) Å c = 14.0448 (17) Å $\beta = 100.707$ (3)° V = 2384.9 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2010) $T_{\min} = 0.970, T_{\max} = 0.980$ 16570 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.161$ S = 0.986292 reflections 358 parameters 0 restraints F(000) = 1112 $D_x = 1.491 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5522 reflections $\theta = 2.2-29.9^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.22 \times 0.20 \times 0.16 \text{ mm}$

6292 independent reflections 4335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 30.4^\circ, \ \theta_{min} = 1.9^\circ$ $h = -14 \rightarrow 14$ $k = -23 \rightarrow 21$ $l = -19 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.085P)^2 + 0.686P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C2	0.2703 (2)	0.12846 (10)	0.77391 (12)	0.0390 (4)	
H2A	0.1793	0.1429	0.7531	0.047*	
H2B	0.3232	0.1710	0.7536	0.047*	
C3	0.21645 (19)	-0.01366 (11)	0.75432 (12)	0.0385 (4)	
H3A	0.2383	-0.0636	0.7249	0.046*	
H3B	0.1251	-0.0021	0.7299	0.046*	
C4	0.23908 (19)	-0.02326 (11)	0.86352 (12)	0.0391 (4)	
H4A	0.1800	-0.0637	0.8804	0.047*	
H4B	0.3277	-0.0416	0.8868	0.047*	
C1	0.30073 (19)	0.12083 (11)	0.88315 (12)	0.0398 (4)	0.645 (5)
H1	0.3925	0.1055	0.9030	0.048*	0.645 (5)
C5	0.2784 (4)	0.1988 (2)	0.9320 (2)	0.0587 (11)	0.645 (5)
H5A	0.2890	0.1903	1.0006	0.088*	0.645 (5)
H5B	0.1915	0.2177	0.9074	0.088*	0.645 (5)
H5C	0.3403	0.2383	0.9191	0.088*	0.645 (5)
C1′	0.30073 (19)	0.12083 (11)	0.88315 (12)	0.0398 (4)	0.355 (5)
H1′	0.2728	0.1712	0.9098	0.048*	0.355 (5)
C5′	0.4401 (7)	0.1112 (5)	0.9223 (4)	0.064 (2)	0.355 (5)
H5′1	0.4858	0.1593	0.9101	0.096*	0.355 (5)
H5′2	0.4734	0.0660	0.8917	0.096*	0.355 (5)
H5′3	0.4525	0.1020	0.9909	0.096*	0.355 (5)
C6	0.32692 (16)	0.05742 (10)	0.63571 (11)	0.0314 (3)	
C7	0.25702 (16)	0.02250 (11)	0.55222 (12)	0.0348 (4)	
C8	0.29167 (16)	0.02851 (11)	0.46031 (11)	0.0360 (4)	
C9	0.39760 (17)	0.07840 (11)	0.45220 (12)	0.0375 (4)	
C10	0.46920 (18)	0.11506 (11)	0.53468 (13)	0.0378 (4)	
H10	0.5396	0.1481	0.5295	0.045*	
C11	0.43600 (17)	0.10242 (11)	0.62229 (12)	0.0354 (4)	
C12	0.4354 (2)	0.09342 (13)	0.35878 (13)	0.0468 (5)	
C13	0.3573 (2)	0.05467 (14)	0.27828 (13)	0.0511 (5)	
C14	0.2580 (2)	0.00583 (15)	0.29119 (13)	0.0533 (6)	
H14	0.2103	-0.0191	0.2366	0.064*	
C15	0.3820 (3)	0.06630 (18)	0.17808 (15)	0.0690 (8)	
C16	0.12118 (19)	-0.07161 (18)	0.37829 (15)	0.0621 (7)	
H16A	0.0763	-0.0816	0.3124	0.075*	
H16B	0.0576	-0.0514	0.4148	0.075*	
C17	0.1759 (2)	-0.14920 (18)	0.4221 (2)	0.0711 (8)	
H17A	0.2399	-0.1692	0.3869	0.107*	
H17B	0.1070	-0.1880	0.4192	0.107*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17C	0.2161	-0.1403	0.4885	0.107*
C18	0.15025 (16)	0.22254 (10)	0.33449 (12)	0.0331 (4)
C19	0.25938 (16)	0.27147 (10)	0.33760 (12)	0.0331 (4)
H19	0.2883	0.2841	0.2806	0.040*
C20	0.32544 (16)	0.30154 (10)	0.42577 (11)	0.0325 (3)
C21	0.28309 (17)	0.28192 (11)	0.51078 (12)	0.0352 (4)
H21	0.3271	0.3008	0.5703	0.042*
C22	0.17472 (17)	0.23394 (12)	0.50507 (12)	0.0389 (4)
C23	0.10696 (17)	0.20350 (11)	0.41930 (12)	0.0374 (4)
H23	0.0340	0.1710	0.4182	0.045*
C24	0.07378 (18)	0.18979 (11)	0.24192 (13)	0.0398 (4)
C25	0.44349 (18)	0.35535 (11)	0.43029 (12)	0.0390 (4)
F1	0.14586 (10)	-0.01682 (8)	0.56051 (8)	0.0542 (3)
F2	0.51182 (11)	0.13417 (7)	0.70199 (8)	0.0502 (3)
F3	0.13353 (12)	0.21463 (9)	0.58853 (8)	0.0600 (4)
N1	0.21749 (14)	0.05481 (9)	0.91112 (10)	0.0366 (3)
H1A	0.2354	0.0485	0.9751	0.044*
H1B	0.1339	0.0688	0.8945	0.044*
N2	0.29693 (15)	0.05198 (8)	0.72827 (10)	0.0349 (3)
N3	0.22256 (15)	-0.00954 (12)	0.37700 (10)	0.0466 (4)
01	0.52996 (17)	0.13801 (11)	0.35126 (11)	0.0634 (4)
O2	0.4753 (2)	0.11777 (15)	0.16934 (12)	0.0864 (6)
H2	0.5061	0.1367	0.2226	0.130*
O3	0.3194 (2)	0.03032 (14)	0.10876 (11)	0.0906 (7)
O4	-0.03217 (17)	0.16034 (13)	0.23770 (11)	0.0770 (6)
05	0.13137 (13)	0.19749 (9)	0.16727 (9)	0.0483 (3)
Н5	0.0852	0.1778	0.1192	0.073*
O6	0.46630 (13)	0.38375 (9)	0.35255 (9)	0.0500 (4)
07	0.51218 (16)	0.36907 (10)	0.51142 (10)	0.0619 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0599 (11)	0.0327 (9)	0.0257 (8)	0.0003 (8)	0.0111 (8)	-0.0032 (7)
C3	0.0511 (10)	0.0366 (9)	0.0280 (8)	-0.0052 (8)	0.0074 (7)	-0.0045 (7)
C4	0.0526 (10)	0.0355 (9)	0.0297 (8)	0.0002 (8)	0.0089 (7)	0.0023 (7)
C1	0.0533 (10)	0.0421 (10)	0.0244 (8)	-0.0045 (8)	0.0079 (7)	-0.0076 (7)
C5	0.087 (3)	0.052 (2)	0.0429 (18)	-0.0161 (17)	0.0286 (17)	-0.0244 (15)
C1′	0.0533 (10)	0.0421 (10)	0.0244 (8)	-0.0045 (8)	0.0079 (7)	-0.0076 (7)
C5′	0.066 (4)	0.091 (5)	0.033 (3)	-0.029 (4)	0.006 (3)	0.000 (3)
C6	0.0390 (8)	0.0346 (8)	0.0204 (7)	0.0060 (7)	0.0047 (6)	-0.0019 (6)
C7	0.0321 (8)	0.0470 (10)	0.0252 (8)	0.0041 (7)	0.0050 (6)	-0.0063 (7)
C8	0.0358 (8)	0.0502 (10)	0.0201 (7)	0.0152 (7)	0.0005 (6)	-0.0052 (7)
C9	0.0411 (9)	0.0482 (10)	0.0240 (8)	0.0183 (8)	0.0084 (7)	0.0030 (7)
C10	0.0411 (9)	0.0401 (9)	0.0337 (9)	0.0066 (7)	0.0111 (7)	0.0017 (7)
C11	0.0418 (9)	0.0362 (9)	0.0262 (8)	0.0040 (7)	0.0011 (7)	-0.0031 (7)
C12	0.0539 (11)	0.0578 (12)	0.0312 (9)	0.0269 (10)	0.0143 (8)	0.0094 (8)
C13	0.0613 (12)	0.0703 (14)	0.0233 (8)	0.0313 (11)	0.0119 (8)	0.0059 (8)

supporting information

C14	0.0551 (12)	0.0824 (15)	0.0194 (8)	0.0299 (11)	-0.0009 (8)	-0.0088 (9)
C15	0.0890 (18)	0.0935 (19)	0.0263 (10)	0.0476 (16)	0.0155 (11)	0.0118 (11)
C16	0.0340 (10)	0.113 (2)	0.0366 (10)	0.0000 (11)	0.0000 (8)	-0.0361 (12)
C17	0.0545 (13)	0.0898 (19)	0.0727 (16)	-0.0240 (13)	0.0213 (12)	-0.0368 (15)
C18	0.0350 (8)	0.0344 (8)	0.0284 (8)	0.0011 (7)	0.0014 (7)	0.0012 (6)
C19	0.0377 (8)	0.0372 (9)	0.0236 (7)	0.0006 (7)	0.0036 (6)	0.0052 (6)
C20	0.0367 (8)	0.0331 (8)	0.0262 (8)	0.0031 (7)	0.0016 (6)	0.0046 (6)
C21	0.0406 (9)	0.0405 (9)	0.0225 (7)	0.0050 (7)	0.0010 (6)	0.0017 (6)
C22	0.0399 (9)	0.0517 (11)	0.0261 (8)	0.0057 (8)	0.0091 (7)	0.0082 (7)
C23	0.0345 (8)	0.0428 (10)	0.0344 (9)	0.0006 (7)	0.0054 (7)	0.0068 (7)
C24	0.0452 (10)	0.0417 (10)	0.0307 (8)	-0.0073 (8)	0.0023 (7)	0.0016 (7)
C25	0.0415 (9)	0.0446 (10)	0.0271 (8)	-0.0048 (8)	-0.0038 (7)	0.0082 (7)
F1	0.0424 (6)	0.0885 (9)	0.0324 (6)	-0.0148 (6)	0.0091 (5)	-0.0211 (6)
F2	0.0567 (7)	0.0588 (7)	0.0332 (6)	-0.0169 (5)	0.0034 (5)	-0.0103 (5)
F3	0.0566 (7)	0.0962 (10)	0.0305 (6)	-0.0063 (7)	0.0170 (5)	0.0108 (6)
N1	0.0432 (8)	0.0460 (8)	0.0210 (6)	0.0023 (6)	0.0072 (6)	-0.0016 (6)
N2	0.0506 (8)	0.0330 (7)	0.0219 (6)	-0.0036 (6)	0.0087 (6)	-0.0057 (5)
N3	0.0396 (8)	0.0754 (12)	0.0227 (7)	0.0143 (8)	0.0002 (6)	-0.0126 (7)
01	0.0681 (10)	0.0823 (11)	0.0460 (8)	0.0089 (9)	0.0270 (8)	0.0126 (8)
O2	0.1021 (15)	0.1232 (18)	0.0419 (9)	0.0267 (13)	0.0340 (10)	0.0196 (10)
O3	0.1254 (16)	0.1244 (17)	0.0205 (7)	0.0381 (14)	0.0098 (9)	0.0027 (9)
O4	0.0699 (10)	0.1159 (15)	0.0427 (8)	-0.0525 (11)	0.0038 (8)	-0.0062 (9)
O5	0.0497 (8)	0.0640 (9)	0.0298 (6)	-0.0099 (6)	0.0036 (6)	-0.0103 (6)
O6	0.0497 (8)	0.0677 (9)	0.0292 (6)	-0.0176 (7)	-0.0014 (6)	0.0136 (6)
O7	0.0681 (9)	0.0778 (11)	0.0312 (7)	-0.0309 (8)	-0.0134 (7)	0.0147 (7)

Geometric parameters (Å, °)

C2—N2	1.469 (2)	C12—O1	1.252 (3)
C2—C1	1.513 (2)	C12—C13	1.419 (3)
C2—C1′	1.513 (2)	C13—C14	1.353 (3)
C2—H2A	0.9700	C13—C15	1.490 (3)
C2—H2B	0.9700	C14—N3	1.349 (2)
C3—N2	1.461 (2)	C14—H14	0.9300
C3—C4	1.516 (2)	C15—O3	1.222 (4)
С3—НЗА	0.9700	C15—O2	1.317 (4)
С3—Н3В	0.9700	C16—N3	1.478 (3)
C4—N1	1.492 (2)	C16—C17	1.492 (4)
C4—H4A	0.9700	C16—H16A	0.9700
C4—H4B	0.9700	C16—H16B	0.9700
C1—N1	1.494 (2)	C17—H17A	0.9600
C1—C5	1.501 (3)	C17—H17B	0.9600
C1—H1	0.9800	C17—H17C	0.9600
C5—H5A	0.9600	C18—C23	1.386 (2)
С5—Н5В	0.9600	C18—C19	1.392 (2)
С5—Н5С	0.9600	C18—C24	1.495 (2)
C1′—C5′	1.465 (7)	C19—C20	1.393 (2)
C1'—N1	1.494 (2)	C19—H19	0.9300

C1'—H1'	0.9800	C20—C21	1.386 (2)
C5'—H5'1	0.9600	C20—C25	1.512 (2)
C5'—H5'2	0.9600	C21—C22	1.372 (3)
С5′—Н5′3	0.9600	C21—H21	0.9300
C6—C7	1.387 (2)	C22—F3	1.3594 (19)
C6—N2	1 395 (2)	C^{22} C^{23}	1 374 (3)
C6-C11	1.393(2) 1.402(2)	C23_H23	0.9300
C7F1	1.102(2) 1.354(2)	$C_{24} = 04$	1,200(2)
C7 - C8	1.357(2) 1.407(2)	$C_{24} = 0_{1}$	1.200(2) 1.308(2)
C^{*}	1.407(2) 1.402(3)	C25 07	1.300(2)
C_{0}^{8} N2	1.402(3)	C25_06	1.249(2)
$C_0 = C_1 O_0$	1.403(2) 1.205(2)	C25-00	1.232(2)
C_{9}	1.393 (3)		0.8900
C9—C12	1.460 (2)	NI—HIB	0.8900
	1.355 (2)	02—H2	0.8200
CI0—HI0	0.9300	05—H5	0.8200
C11—F2	1.351 (2)		
N2-C2-C1	110.44 (14)	01	121.66 (19)
N2—C2—C1′	110.44 (14)	C13—C12—C9	115.34 (19)
N2—C2—H2A	109.6	C14—C13—C12	120.31 (17)
C1—C2—H2A	109.6	C14—C13—C15	118.4 (2)
N2—C2—H2B	109.6	C12—C13—C15	121.3 (2)
C1—C2—H2B	109.6	N3—C14—C13	125.18 (19)
H2A—C2—H2B	108.1	N3—C14—H14	117.4
N2—C3—C4	110.04 (14)	C13—C14—H14	117.4
N2—C3—H3A	109.7	O3—C15—O2	122.4 (2)
С4—С3—НЗА	109.7	O3—C15—C13	122.0 (3)
N2—C3—H3B	109.7	O2—C15—C13	115.6 (2)
С4—С3—Н3В	109.7	N3—C16—C17	112.61 (17)
НЗА—СЗ—НЗВ	108.2	N3—C16—H16A	109.1
N1—C4—C3	110.75 (14)	C17—C16—H16A	109.1
N1—C4—H4A	109.5	N3—C16—H16B	109.1
C3—C4—H4A	109.5	C17—C16—H16B	109.1
N1—C4—H4B	109.5	H16A—C16—H16B	107.8
C3—C4—H4B	109.5	С16—С17—Н17А	109.5
H4A—C4—H4B	108.1	C16—C17—H17B	109.5
N1-C1-C5	111 26 (18)	H17A—C17—H17B	109.5
N1-C1-C2	107 76 (14)	C_{16} C_{17} H_{17} C_{17}	109.5
C_{5} C_{1} C_{2}	1117(2)	H17A - C17 - H17C	109.5
N1-C1-H1	108 7	H17B-C17-H17C	109.5
C5 C1 H1	108.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.05 (15)
$C_2 = C_1 = H_1$	108.7	$C_{23} = C_{13} = C_{13}$	120.05(15)
$C_1 = C_5 = H_5 \Lambda$	100.7	$C_{10} = C_{10} = C_{24}$	117.27(13) 122.67(15)
C1 = C5 = H5P	109.5	$C_{12} = C_{10} = C_{24}$	122.07(13) 120.20(15)
	107.3	$C_{10} = C_{19} = C_{20}$	120.20(13)
$\begin{array}{cccc} \Pi J \Lambda - \bigcup J - \Pi J D \\ \Gamma J & \Gamma J & \Gamma J \\ \Gamma & \Gamma J & \Gamma J \\ \Gamma & \Gamma & \Gamma & \Gamma \\ \Gamma & \Gamma & \Gamma & \Gamma \\ \Gamma & \Gamma &$	107.3	$C_{10} = C_{17} = - \Pi_{19}$	117.9
	109.5	C_{20} C_{19} C_{10} C_{10}	119.9
	109.5	$C_{21} = C_{20} = C_{12}$	119.84 (16)
нэв—Сэ—нэс	109.5	$C_{21} - C_{20} - C_{23}$	119.31 (13)

C5'—C1'—N1	114.0 (3)	C19—C20—C25	120.85 (14)
C5'—C1'—C2	113.4 (3)	C22—C21—C20	118.46 (16)
N1—C1′—C2	107.76 (14)	C22—C21—H21	120.8
C5'—C1'—H1'	107.1	C20—C21—H21	120.8
N1—C1′—H1′	107.1	F3—C22—C21	118.36 (16)
C2—C1′—H1′	107.1	F3—C22—C23	118.42 (16)
C1'—C5'—H5'1	109.5	C21—C22—C23	123.22 (15)
C1′—C5′—H5′2	109.5	C22—C23—C18	118.23 (16)
H5'1—C5'—H5'2	109.5	С22—С23—Н23	120.9
С1′—С5′—Н5′3	109.5	С18—С23—Н23	120.9
H5'1—C5'—H5'3	109.5	04—C24—O5	123.81 (17)
H5'2—C5'—H5'3	109.5	04-C24-C18	121.90 (17)
C7—C6—N2	125.94 (15)	05-024-018	114 29 (15)
C7-C6-C11	114 87 (14)	07-025-06	123.89(17)
N2-C6-C11	119 18 (14)	07-C25-C20	118.06 (15)
$F_1 = C_7 = C_6$	116 89 (14)	06-C25-C20	118.06 (15)
F1	118 88 (15)	C4 - N1 - C1'	110.00(12) 111.92(13)
C6-C7-C8	124 17 (16)	C4 N1 $C1$	111.92(13) 111.92(13)
$C_{0} - C_{8} - N_{3}$	119 17 (15)	C4—N1—H1A	109.2
$C_{2} C_{3} C_{4}$	117.20 (15)	$C_1 = N_1 = H_1 \Lambda$	109.2
$C_{2} = C_{3} = C_{7}$	117.20(13) 122.56(17)	$C_1 = N_1 = H_1R$	109.2
$\begin{array}{ccc} 10 & 0 & 0 \\ 10 & 0 & $	123.30(17) 110.86(15)	C_{1} N1 H1P	109.2
$C_{10} = C_{9} = C_{8}$	119.60 (13)	$CI = NI = \Pi ID$	109.2
C10 - C9 - C12	110.00(10) 121.40(17)	$\Pi A - N I - \Pi I B$	107.9
	121.49 (17)	C_{0} N2 C_{3}	121.34 (13)
	119.92 (17)	C_{0} N2 C_{2}	116.36 (13)
C11—C10—H10	120.0	C3—N2—C2	111.61 (13)
С9—С10—Н10	120.0	C14—N3—C8	118.45 (18)
F2-C11-C10	118.87 (16)	C14—N3—C16	117.24 (17)
F2—C11—C6	117.42 (14)	C8—N3—C16	124.05 (16)
C10—C11—C6	123.71 (16)	C15—O2—H2	109.5
O1—C12—C13	123.00 (18)	С24—О5—Н5	109.5
N2 C2 C4 N1	54 2 (2)	C18 C10 C20 C25	-170 48 (16)
$N_2 = C_3 = C_4 = N_1$	-50.2(2)	$C_{10} = C_{10} = C_{20} = C_{23}$	-1, 1, (2)
$N_2 = C_2 = C_1 = C_5$	-39.2(2)	C19 - C20 - C21 - C22	-1.1(3) 170 11 (16)
$N_2 = C_2 = C_1 = C_3$	178.3(2)	$C_{23} = C_{20} = C_{21} = C_{22}$	179.11 (10)
$N_2 - C_2 - C_1 - C_3$	50.2 (2)	$C_{20} = C_{21} = C_{22} = F_{3}$	1/9.80(13)
N2-C2-C1-N1	-39.2(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	0.8 (3)
$N_2 - C_0 - C_1 - F_1$	3.7 (3)	$F_3 = C_{22} = C_{23} = C_{18}$	-1/9.23 (16)
CII = C6 = C7 = FI	-1/5.55(15)	$C_{21} = C_{22} = C_{23} = C_{18}$	-0.2(3)
N2-C6-C7-C8	-1/9.0/ (16)	C19 - C18 - C23 - C22	-0.2 (3)
C11 - C6 - C7 - C8	1.7 (3)	C24—C18—C23—C22	-179.07 (16)
F1 - C7 - C8 - C9	171.85 (15)	C23—C18—C24—O4	12.6 (3)
C6—C7—C8—C9	-5.3 (3)	C19—C18—C24—O4	-166.2 (2)
F1—C7—C8—N3	-5.2 (3)	C23—C18—C24—O5	-168.50 (16)
C6—C7—C8—N3	177.68 (16)	C19—C18—C24—O5	12.6 (3)
N3—C8—C9—C10	-178.45 (15)	C21—C20—C25—O7	12.1 (3)
C7—C8—C9—C10	4.4 (2)	C19—C20—C25—O7	-167.74 (18)
N3—C8—C9—C12	1.7 (2)	C21—C20—C25—O6	-167.64 (17)

C7—C8—C9—C12	-175.47 (15)	C19—C20—C25—O6	12.5 (3)
C8—C9—C10—C11	-0.1 (3)	C3—C4—N1—C1′	-55.9 (2)
C12—C9—C10—C11	179.77 (16)	C3—C4—N1—C1	-55.9 (2)
C9—C10—C11—F2	175.67 (15)	C5'—C1'—N1—C4	-69.3 (3)
C9—C10—C11—C6	-3.9 (3)	C2—C1′—N1—C4	57.47 (19)
C7—C6—C11—F2	-176.49 (15)	C5—C1—N1—C4	-179.7 (2)
N2—C6—C11—F2	4.2 (2)	C2-C1-N1-C4	57.47 (19)
C7—C6—C11—C10	3.1 (3)	C7—C6—N2—C3	22.2 (3)
N2-C6-C11-C10	-176.24 (16)	C11—C6—N2—C3	-158.57 (16)
C10-C9-C12-O1	0.1 (3)	C7—C6—N2—C2	-119.34 (19)
C8—C9—C12—O1	179.95 (17)	C11—C6—N2—C2	59.9 (2)
C10-C9-C12-C13	-179.44 (16)	C4—C3—N2—C6	159.44 (15)
C8—C9—C12—C13	0.4 (2)	C4—C3—N2—C2	-57.40 (19)
O1—C12—C13—C14	178.65 (19)	C1—C2—N2—C6	-153.88 (15)
C9-C12-C13-C14	-1.8 (3)	C1′—C2—N2—C6	-153.88 (15)
O1—C12—C13—C15	-1.3 (3)	C1—C2—N2—C3	61.0 (2)
C9—C12—C13—C15	178.26 (17)	C1′—C2—N2—C3	61.0 (2)
C12—C13—C14—N3	1.2 (3)	C13—C14—N3—C8	1.0 (3)
C15—C13—C14—N3	-178.91 (19)	C13-C14-N3-C16	-173.3 (2)
C14—C13—C15—O3	-3.4 (3)	C9—C8—N3—C14	-2.4 (2)
C12—C13—C15—O3	176.5 (2)	C7—C8—N3—C14	174.54 (17)
C14—C13—C15—O2	176.5 (2)	C9—C8—N3—C16	171.48 (18)
C12—C13—C15—O2	-3.6 (3)	C7—C8—N3—C16	-11.6 (3)
C23—C18—C19—C20	-0.1 (3)	C17-C16-N3-C14	104.7 (2)
C24—C18—C19—C20	178.77 (16)	C17—C16—N3—C8	-69.3 (2)
C18—C19—C20—C21	0.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O5—H5…O7 ⁱ	0.82	1.75	2.557 (2)	167
O2—H2…O1	0.82	1.78	2.535 (3)	153
N1—H1 <i>B</i> ···O7 ⁱⁱ	0.89	2.48	3.046 (2)	122
N1—H1 <i>B</i> ···O6 ⁱⁱ	0.89	1.91	2.790 (2)	170
N1—H1A···O3 ⁱⁱⁱ	0.89	1.94	2.811 (2)	165
C21—H21····O4 ^{iv}	0.93	2.61	3.534 (3)	173
C17—H17C…F1	0.96	2.45	2.985 (3)	115
C17—H17 <i>B</i> ···F3 ^v	0.96	2.53	3.380 (3)	148
C16—H16 B ···F1 ^v	0.97	2.48	3.394 (3)	157
C16—H16B…F1	0.97	2.16	2.682 (2)	112
C16—H16 <i>A</i> ···O6 ^{vi}	0.97	2.35	3.287 (3)	162
C14—H14····O6 ^{vi}	0.93	2.59	3.448 (3)	154
C4—H4 A ···O4 ^v	0.97	2.60	3.274 (3)	127
C2—H2 <i>B</i> …F2	0.97	2.30	2.883 (2)	118
C2—H2A…F3	0.97	2.57	3.078 (2)	113

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x-1/2, -y+1/2, z+1/2; (iii) x, y, z+1; (iv) x+1/2, -y+1/2, z+1/2; (v) -x, -y, -z+1; (vi) -x+1/2, y-1/2, -z+1/2.