

Received 19 November 2018 Accepted 11 December 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; coordination polymers; dioxybenzoquinone; erbium(III); lanthanide

CCDC reference: 1884389

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of poly[[hexaaquatris(*u*-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)dierbium(III)] octadecahydrate]

Nutcha Ponjan,^a Kenika Kodchasanthong,^a Suwadee Jiajaroen^b and Kittipong Chainok^a*

^aMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand, and ^bDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand. *Correspondence e-mail: kc@tu.ac.th

The title lanthanide complex, $[Er_2(C_6H_2O_4)_3(H_2O_6)] \cdot 18H_2O$, is isostructural with its La, Gd, Yb and Lu analogues. The Er³⁺ ion, located on a threefold rotation axis, is nine-coordinated in a distorted tricapped trigonal-prismatic geometry, which is completed by six oxygen atoms from three dhbq²⁻ ligands and three oxygen atoms from coordinated water molecules. Each dhbq²⁻ ligand acts in a μ_2 -bis(bidentate) bridging mode to connect two Er³⁺ ions to form honeycomb (6,3) two-dimensional sheets extending in the *ab* plane, having an Er...Er separation of 8.7261 (2) Å. In the crystal, extensive O-H...Ohydrogen-bonding interactions involving the coordinated water molecules and the water molecules of crystallization, as well as the oxygen atoms of the $dhbq^{2-}$ ligands, generate an overall three-dimensional supramolecular network.

1. Chemical context

Over the past few decades, lanthanide-based coordination polymers (LnCPs) have attracted significant attention because their high photoluminescence efficiency and long luminescence lifetime in lighting and full-colour displays (Parker, 2000; Bünzli & Piguet, 2005; Cui et al., 2018). Besides transition metal ions, lanthanide ions feature high coordination numbers and flexible coordination geometries, which facilitate the formation of diverse extended structures. Since lanthanide(III) ions have a high affinity to hard donor atoms, ligands containing oxygen atoms such as carboxylic acids (Xu et al., 2016), phosphoric acids (Mao, 2007), calixarenes (Ovsyannikov et al., 2017) and β -diketones (Vigato et al., 2009) have been used extensively in the synthesis of new types of LnCPs. On the basis of the above considerations, we selected 2,5dihydroxy-1,4-benzoquinone (H₂dhbq) as the ligand to react with erbium(III) nitrate hexahydrate under solvothermal conditions to construct a new erbium(III)-based CP, [Er₂(dhbq)₃(H₂O)₆]·18H₂O, (I), which is isotypic with its La, Gd, Yb and Lu analogues (Abrahams et al., 2002). Herein, we report its structure.

2. Structural commentary

The asymmetric unit of (I) contains one third of an Er^{3+} ion, half of a dhbq²⁻ ligand, one coordinated water molecule and three water molecules of crystallization. The Er³⁺ ion is located on a threefold rotation axis, whereas the complete

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O3-H3A\cdotsO6^{i}$	0.83(1)	1.94 (1)	2,769 (3)	174 (3)
$O3-H3B\cdots O5^{ii}$	0.84(1)	1.94(1)	2.758 (3)	165 (3)
$O4-H4A\cdots O2^{iii}$	0.84(1)	1.92 (1)	2.738 (3)	167 (4)
$O4-H4B\cdots O4^{iv}$	0.84(1)	1.98 (1)	2.803 (3)	164 (4)
$O5-H5A\cdotsO1^{v}$	0.85(1)	2.09 (3)	2.870 (3)	153 (5)
$O5-H5B\cdots O6^{vi}$	0.84(1)	1.95 (1)	2.794 (3)	174 (5)
$O6-H6A\cdots O4^{vii}$	0.85(1)	1.88 (1)	2.725 (3)	174 (4)
$O6-H6B\cdots O5$	0.84 (1)	1.91 (1)	2.747 (3)	169 (5)

Symmetry codes: (i) $x - y + \frac{2}{3}, x + \frac{1}{3}, -z + \frac{2}{3}$; (ii) $-x + \frac{2}{3}, -y + \frac{1}{3}, -z + \frac{4}{3}$; (iii) -x + y + 1, -x + 1, z; (iv) $x - y + \frac{1}{3}, x - \frac{1}{3}, -z + \frac{2}{3}$; (v) -y + 1, x - y, z; (vi) y, -x + y, -z + 1; (vii) -x + 1, -y + 1, -z + 1.

dhbq²⁻ anion is generated by a crystallographic inversion center. As can be seen from Fig. 1, the Er^{3+} ion is nine-coordinated by six oxygen atoms from three different dhbq²⁻ ligands and three other oxygen atoms from three coordinated water molecules. The coordination polyhedron of the central Er³⁺ ion can best be described as having a distorted tricapped trigonal-prismatic geometry, as depicted in Fig. 2, in which the O-Er-O bond angles range from 65.01 (5) to 139.97 (7)°. The Er-O bond lengths in the title complex lie between 2.3577 (15) and 2.4567 (15) Å, mean 2.393 Å. The whole dhbq²⁻ anion is nearly planar: the r.m.s. deviation from the mean plane through all of the non-H atoms is 0.021 Å, with a maximum displacement from this plane of 0.033 (2) Å for atom C2. As can be seen from Fig. 3, the $dhbq^{2-}$ ligand acts in а μ_2 -bis-

(bidentate) bridging mode, connecting two Er^{3+} ions to form a honeycomb (6,3) sheet extending in the *ab* plane, having a $Er \cdots Er$ separation of 8.7261 (2) Å.

3. Supramolecular features

In the crystal, extensive $O-H\cdots O$ hydrogen-bonding interactions (Table 1) are observed between the oxygen atoms of the coordinated (O3) and lattice (O4 and O5) water molecules as well as between the water (O5 and O6) molecules of crystallization. Other $O-H\cdots O$ hydrogen-bonding interactions involve O6 and the dhbq²⁻ oxygen atom, and this

research communications

The molecular structure of the title complex, showing selected atom labels. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) 1 + y - x, 1 - x, z; (ii) 1 - y, x - y, z.

interaction further links neighbouring sheets into a threedimensional supramolecular structure (Fig. 4).

4. Database survey

A search of the Cambridge Structural Database (Version 5.39 update February 2018; Groom *et al.*, 2016) for complexes of

Figure 2

View of the distorted tricapped trigonal-prismatic geometry of the central Er^{III} ion in the title complex. Symmetry codes: (i) 1 + y - x, 1 - x, z; (ii) 1 - y, x - y, z.

research communications

Figure 3

View of the honeycomb (6,3) sheet extending normal to the *c*-axis direction.

dhbq²⁻ ligand gave 94 hits. They include the isotypic crystal structures (Abrahams *et al.*, 2002) with La (MIZXAU), Gd (MIZXEY), Yb (MIZXIC) and Lu (MIZXOI). In most cases, the dhbq²⁻ ligand acts in a μ_2 -bis(bidentate) bridging mode to the central metal ions. Comparing the mean Ln-O bond length and the unit-cell volume for the title complex with the La, Gd, Yb and Lu analogues (Abrahams *et al.*, 2002), the values decrease as the ionic radius of the Ln^{3+} ions decreases in the order La [La-O = 2.540 Å, V = 3289.3 (16) Å³] > Gd [Gd-O = 2.438 Å, V = 3162.7 (7) Å³] > Er [Er-O = 2.377 Å, V = 3087.1 (4) Å³] > Lu [Lu-O = 2.368 Å, V = 3074.2 (4) Å³], which is consistent with the lanthanide contraction effect.

Figure 4

View of the packing in the unit cell of the title complex along the c axis. Hydrogen-bonding interactions are shown as dashed lines.

Fable 2	
Experimental details.	
Crystal data	
Chemical formula	$[Er_2(C_6H_2O_4)_3(H_2O_6]\cdot 18H_2O$
Mr	1181.13
Crystal system, space group	Trigonal, R3
Temperature (K)	296
a, c (Å)	14.0947 (3), 18.0603 (5)
$V(A^3)$	3107.18 (13)
Ζ	3
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	4.13
Crystal size (mm)	$0.28 \times 0.22 \times 0.2$
Data collection	
Diffractometer	Bruker D8 QUEST CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.677, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32360, 2522, 2108
R _{int}	0.065
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.758
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.042, 1.08
No. of reflections	2522
No. of parameters	118
No. of restraints	8
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.67, -1.39

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

5. Synthesis and crystallization

A mixture of $Er(NO_3)_3 \cdot 6H_2O$ (46.2 mg, 0.1 mmol) and H_2dhbq (14.2 mg, 0.1 mmol) in distilled H_2O (4 ml) and DMF (1 ml) was placed in a 20 ml vial and stirred at room temperature for 10 min. The mixture was sealed tightly, placed in an oven and then heated to 358 K under autogenous pressure for 12 h. After the reactor was cooled to room temperature, block-shaped dark-red crystals were filtered off, washed with deionized H_2O and dried in air at room temperature. Yield: 57% based on Er^{III} source.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The carbon-bound H atoms were placed in geometrically calculated positions and refined as riding with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The hydrogen atoms of the water molecules were located from difference-Fourier maps but were refined with distance restraints of O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Thailand Research Fund (grant No. RSA5780056). NP acknowledges the NSTDA STEM Workforce (SCA-CO-2560–3565-TH).

References

- Abrahams, B. F., Coleiro, J., Ha, K., Hoskins, B. F., Orchard, S. D. & Robson, R. (2002). J. Chem. Soc. Dalton Trans. pp. 1586–1594.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.
- Cui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740–5785.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Mao, J.-G. (2007). Coord. Chem. Rev. 251, 1493-1520.
- Ovsyannikov, A., Solovieva, S., Antipin, I. & Ferlay, S. (2017). *Chem. Soc. Rev.* **352**, 151–186.
- Parker, D. (2000). Coord. Chem. Rev. 205, 109-130.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201.
- Xu, H., Cao, C.-S., Kang, X.-M. & Zhao, B. (2016). Dalton Trans. 45, 18003–18017.

supporting information

Acta Cryst. (2019). E75, 64-67 [https://doi.org/10.1107/S2056989018017516]

Crystal structure of poly[[hexaaquatris(µ-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)dierbium(III)] octadecahydrate]

Nutcha Ponjan, Kenika Kodchasanthong, Suwadee Jiajaroen and Kittipong Chainok

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Poly[[hexaaquatris(µ-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)dierbium(III)] octadecahydrate]

Crystal data

$[Er_2(C_6H_2O_4)_3(H_2O)_6]$ ·18H ₂ O
$M_r = 1181.13$
Trigonal, $R\overline{3}$
a = 14.0947 (3) Å
c = 18.0603 (5) Å
$V = 3107.18 (13) \text{ Å}^3$
Z = 3
F(000) = 1758

Data collection

Bruker D8 QUEST CMOS
diffractometer
Radiation source: microfocus sealed x-ray tube,
Incoatec Iµus
GraphiteDouble Bounce Multilayer Mirror
monochromator
Detector resolution: 10.5 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.042$ S = 1.082522 reflections 118 parameters 8 restraints Primary atom site location: dual $D_x = 1.894 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8655 reflections $\theta = 2.8-31.7^{\circ}$ $\mu = 4.13 \text{ mm}^{-1}$ T = 296 KHexagonal prism, dark red $0.28 \times 0.22 \times 0.2 \text{ mm}$

 $T_{\min} = 0.677, T_{\max} = 0.746$ 32360 measured reflections
2522 independent reflections
2108 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.065$ $\theta_{\text{max}} = 32.6^{\circ}, \theta_{\text{min}} = 2.8^{\circ}$ $h = -21 \rightarrow 21$ $k = -19 \rightarrow 21$ $l = -27 \rightarrow 27$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0042P)^2 + 10.2637P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

$\Delta \rho_{\rm max} = 1.67 \text{ e } \text{\AA}^{-3}$	
$\Delta \rho_{\rm min} = -1.39 \text{ e} \text{ Å}^{-3}$	

Extinction correction: SHELXL (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00020 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	l isotropic or e	quivalent isotrop	ic displacement	parameters	$(Å^2)$)
----------------------------------	------------------	-------------------	-----------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Er1	0.6667	0.3333	0.587213 (10)	0.01773 (5)
O1	0.65928 (12)	0.50374 (13)	0.58327 (9)	0.0236 (3)
O2	0.54678 (13)	0.33698 (13)	0.49769 (9)	0.0247 (3)
O3	0.54011 (16)	0.33067 (15)	0.67424 (11)	0.0355 (4)
H3A	0.557 (3)	0.3878 (16)	0.6975 (16)	0.055 (10)*
H3B	0.4856 (17)	0.2781 (17)	0.6941 (15)	0.046 (9)*
O4	0.7266 (2)	0.52214 (19)	0.37540 (12)	0.0455 (5)
H4A	0.736 (3)	0.494 (3)	0.4136 (13)	0.075 (13)*
H4B	0.6643 (16)	0.489 (3)	0.356 (2)	0.079 (14)*
05	0.29245 (18)	0.15371 (19)	0.57009 (14)	0.0452 (5)
H5A	0.354 (2)	0.167 (5)	0.587 (3)	0.15 (2)*
H5B	0.285 (4)	0.138 (4)	0.5247 (8)	0.103 (17)*
O6	0.18028 (19)	0.2663 (2)	0.57759 (14)	0.0470 (5)
H6A	0.213 (3)	0.3315 (15)	0.594 (2)	0.091 (16)*
H6B	0.222 (3)	0.240 (4)	0.576 (2)	0.104 (18)*
C1	0.58618 (18)	0.50816 (18)	0.54547 (12)	0.0212 (4)
C2	0.51755 (18)	0.40906 (18)	0.49646 (12)	0.0216 (4)
C3	0.43354 (19)	0.40401 (19)	0.45415 (13)	0.0256 (5)
H3	0.3902	0.3424	0.4255	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Er1	0.01570 (6)	0.01570 (6)	0.02179 (9)	0.00785 (3)	0.000	0.000
01	0.0218 (8)	0.0214 (8)	0.0293 (8)	0.0121 (7)	-0.0056 (6)	-0.0019 (6)
O2	0.0270 (8)	0.0222 (8)	0.0309 (8)	0.0168 (7)	-0.0069 (7)	-0.0050 (6)
03	0.0371 (11)	0.0239 (9)	0.0394 (11)	0.0106 (8)	0.0163 (8)	-0.0025 (8)
O4	0.0474 (13)	0.0517 (13)	0.0376 (12)	0.0249 (11)	-0.0043 (10)	0.0091 (10)
05	0.0335 (11)	0.0505 (13)	0.0505 (14)	0.0202 (10)	0.0094 (10)	0.0035 (11)
O6	0.0434 (13)	0.0436 (14)	0.0534 (14)	0.0212 (11)	0.0057 (10)	0.0082 (11)
C1	0.0202 (10)	0.0208 (10)	0.0221 (10)	0.0099 (9)	0.0003 (8)	0.0004 (8)
C2	0.0215 (10)	0.0217 (10)	0.0226 (10)	0.0115 (9)	0.0011 (8)	0.0015 (8)

supporting information

Geometric parameters (Å, ?) $FrI - 01^1$ 2.4567 (15) 04 - H4A 0.836 (10) $FrI - 01^1$ 2.4567 (15) 04 - H4B 0.845 (10) $FrI - 02^1$ 2.3578 (15) 05 - H5A 0.845 (10) $FrI - 02^2$ 2.3578 (15) 05 - H5B 0.844 (10) $FrI - 02$ 2.3578 (15) 05 - H5B 0.844 (10) $FrI - 03$ 2.3636 (18) 06 - H6B 0.843 (10) $FrI - 03^2$ 2.3637 (18) C1 - C2 1.523 (3) $O - C1$ 1.263 (3) C2 - C3 1.381 (3) $O - C2$ 1.273 (3) C3 - C1 [±] 1.398 (3) $OC1$ 1.99.17 (4) O3 - Er1 - O1 [±] 1.99.97 (6) $O1^{+}$ - Er1 - O1 119.917 (4) O3 - Er1 - O1 [±] 6.854 (6) $O = -Er1 - O1^{±}$ 19.917 (4) O3 - Er1 - O1 [±] 6.854 (6) $O = -Er1 - O1^{±}$ 6.501 (5) O3 - Er1 - O1 [±] 6.854 (6) $O = -Er1 - O1^{±}$ 6.501 (5) O3 - Er1 - O1 [±] 7.000 (6) $O = -Er1 - O1^{±}$ 6.501 (5)	C3	0.0259 (11)	0.0216 (11)	0.0318 (12)	0.0137 (10)	-0.0077 (9)	-0.0069 (9)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Geometric parameters (Å, °)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	01 ⁱ	2.4567 (15	5)	O3—H3B		0.836 (10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	01	2.4567 (15	5)	O4—H4A		0.838 (10)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	O1 ⁱⁱ	2.4567 (15	5)	O4—H4B		0.842 (10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	O2 ⁱⁱ	2.3578 (15	5)	05—H5A		0.845 (10)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	O2 ⁱ	2.3577 (15	5)	O5—H5B		0.844 (10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	02	2.3578 (15	5)	06—H6A		0.848 (10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	03	2.3636 (18	3)	O6—H6B		0.843 (10)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	O3 ⁱ	2.3636 (18	3)	C1—C2		1.523 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1—	O3 ⁱⁱ	2.3637 (18	3)	C1—C3 ⁱⁱⁱ		1.398 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-0	C1	1.263 (3)		С2—С3		1.381 (3)	
O3-H3A 0.831 (10) C3-H3 0.9300 O1'-Erl-O1 119.917 (4) O3-Erl-O1" 139.97 (6) O1"-Erl-O1 119.917 (4) O3-Erl-O1" 68.54 (6) O1"-Erl-O1 119.916 (4) O3"-Erl-O1" 68.54 (6) O2"-Erl-O1 65.01 (5) O3'-Erl-O1" 70.00 (6) O2"-Erl-O1 65.01 (5) O3'-Erl-O1" 70.00 (6) O2"-Erl-O1 65.01 (5) O3'-Erl-O3" 80.60 (8) O2"-Erl-O1 65.01 (5) O3'-Erl-O3" 80.60 (8) O2"-Erl-O1" 134.93 (5) O3'-Erl-O3" 80.60 (8) O2"-Erl-O1" 134.93 (5) C1-O1-Erl 119.88 (14) O2"-Erl-O1 134.93 (5) C2-O2-Erl 123.42 (14) O2"-Erl-O1 134.93 (5) Erl-O3-H3A 118 (2) O2"-Erl-O2 78.15 (6) H3A-O3-H3B 131 (2) O2"-Erl-O2 78.15 (6) H3A-O3-H3B 199 (3) O2"-Erl-O3" 134.96 (6) O1-C1-C2 15.88 (19) O2"-Erl-O3" 134.96 (6) O1-C1-C2 <td< td=""><td>02—0</td><td>22</td><td>1.273 (3)</td><td></td><td>C3—C1ⁱⁱⁱ</td><td></td><td>1.398 (3)</td></td<>	02—0	22	1.273 (3)		C3—C1 ⁱⁱⁱ		1.398 (3)	
01 ¹ —Er1—O1 119.917 (4) 03—Er1—O1 ¹¹ 139.97 (6) 01 ¹¹ —Er1—O1 119.917 (4) 03—Er1—O1 68.54 (6) 01 ¹¹ —Er1—O1 119.916 (4) 03 ¹¹ —Er1—O1 ¹¹ 68.54 (6) 02 ¹¹ —Er1—O1 65.01 (5) 03 ¹¹ —Er1—O1 ¹¹ 70.00 (6) 02 ¹¹ —Er1—O1 ¹¹ 65.01 (5) 03 ¹¹ —Er1—O1 ¹¹ 70.00 (6) 02 ¹¹ —Er1—O1 ¹¹ 65.01 (5) 03 ¹¹ —Er1—O3 ¹¹ 80.60 (8) 02 ¹¹ —Er1—O1 ¹¹ 65.01 (5) 03 ¹¹ —Er1—O3 ¹¹ 80.60 (8) 02 ¹¹ —Er1—O1 ¹¹ 134.93 (5) O1—Er1—O3 ¹¹ 80.60 (8) 02 ¹¹ —Er1—O1 ¹¹ 134.93 (5) C1—O1—Er1 119.88 (14) 02 ¹¹ —Er1—O1 ¹¹ 69.91 (5) C2—O2—Er1 123.42 (14) 02 ¹¹ —Er1—O1 ¹¹ 134.93 (5) Er1—O3—H3A 118 (2) 02 ¹¹ —Er1—O1 ¹¹ 134.93 (5) Er1—O3—H3B 109 (3) 02 ¹¹ —Er1—O2 78.15 (6) H3A—O3—H3B 109 (3) 02 ¹¹ —Er1—O2 78.15 (6) H4A—O4—H4B 117 (4) 02 ¹¹ —Er1—O3 ¹¹ 134.96 (6) O1—C1—C2 115.38 (19) 02 ¹¹ —Er1—O3 ¹¹ 134.96 (6) O1—C1—C2	03—ł	H3A	0.831 (10)		С3—Н3		0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 ⁱ —1	Er1—01	119 917 (4	l)	$O3$ —Er1— $O1^{ii}$		139.97 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 ⁱⁱ	$Fr1 = 01^{i}$	119.917 (4		03 - Er1 - 01		68 54 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 ⁱⁱ —	Er1 = 01	119.916 (4	f) L)	03^{ii} Fr1 01^{ii}		68 54 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02^{i}	$Er1 - O1^{i}$	65 01 (5)	.,	03^{i} Er1 01^{ii}		70.00(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02^{ii}	Er1-01	69.91 (5)		03^{i} Er1 01^{i}		68.54 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱⁱ —	$Er1 - O1^{ii}$	65.01 (5)		$03 - Er1 - 01^{i}$		70.00 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—F	Er1—01	65.01 (5)		03^{i} Er1 03^{ii}		80.60 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—F	$Er1-O1^{ii}$	134.93 (5)	, ,	$O3^{i}$ —Er1—O3		80.60 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱ —l	Er1—O1 ⁱⁱ	69.91 (5)		$03 - Er1 - 03^{ii}$		80.60 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱⁱ —	Er1—O1 ⁱ	134.93 (5)	, ,	C1—O1—Er1		119.88 (14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—E	Er1—O1 ⁱ	69.91 (5)		C2—O2—Er1		123.42 (14)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	02 ⁱ —l	Er1—O1	134.93 (5)]	Er1—O3—H3A		118 (2)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	02 ⁱ —l	Er1—O2 ⁱⁱ	78.15 (6)		Er1—O3—H3B		131 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱ —l	Er1—O2	78.15 (6)		H3A—O3—H3B		109 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱⁱ —	Er1—O2	78.15 (6)		H4A—O4—H4B		117 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱⁱ —	Er1—O3 ⁱⁱ	85.01 (7)]	H5A—O5—H5B		112 (5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—E	Er1—O3 ⁱⁱ	134.96 (6)	. 1	H6A—O6—H6B		112 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱ —l	Er1—O3 ⁱⁱ	138.45 (6)		01—C1—C2		115.38 (19)	
$02-Er1-03$ $85.01 (7)$ $C3^{iii}-C1-C2$ $119.92 (19)$ $02^{ii}-Er1-03$ $138.45 (6)$ $02-C2-C1$ $114.28 (19)$ $02^{ii}-Er1-03^{ii}$ $85.01 (7)$ $02-C2-C3$ $125.4 (2)$ $02^{ii}-Er1-03^{ii}$ $134.96 (6)$ $C3-C2-C1$ $120.26 (19)$ $02-Er1-03^{ii}$ $138.46 (6)$ $C1^{iii}-C3-H3$ 120.1 $03^{ii}-Er1-01^{ii}$ $139.97 (7)$ $C2-C3-C1^{iii}$ $119.8 (2)$ $03^{ii}-Er1-01$ $139.97 (6)$ $C2-C3-H3$ 120.1 $03^{ii}-Er1-01$ $70.00 (6)$ $20^{ii}-Er1-01-C1$ $96.59 (16)$ $Er1-01-C1-C2$ $-8.1 (2)$ $02^{ii}-Er1-02-C2$ $-86.3 (2)$ $Er1-02-C2-C1$ $13.9 (3)$ $02^{i}-Er1-02-C2$ $-166.47 (17)$	02 ⁱ —l	Er1—O3	134.96 (6)		01—C1—C3 ⁱⁱⁱ		124.7 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—E	Er1—O3	85.01 (7)		C3 ⁱⁱⁱ —C1—C2		119.92 (19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱⁱ —	Er1—O3	138.45 (6)		O2—C2—C1		114.28 (19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 ⁱ —l	Er1—O3 ⁱ	85.01 (7)		O2—C2—C3		125.4 (2)	
$02-Er1-O3^i$ $138.46 (6)$ $C1^{iii}-C3-H3$ 120.1 $03^{ii}-Er1-O1^i$ $139.97 (7)$ $C2-C3-C1^{iii}$ $119.8 (2)$ $03^i-Er1-O1$ $139.97 (6)$ $C2-C3-H3$ 120.1 $03^{ii}-Er1-O1$ $70.00 (6)$ 120.1 $Er1-O1-C1-C2$ $-8.1 (2)$ $02^{ii}-Er1-O1-C1$ $96.59 (16)$ $Er1-O1-C1-C3^{iii}$ $172.37 (18)$ $02^{ii}-Er1-O2-C2$ $-86.3 (2)$ $Er1-O2-C2-C1$ $13.9 (3)$ $02^{i}-Er1-O2-C2$ $-166.47 (17)$	O2 ⁱⁱ —	Er1—O3 ⁱ	134.96 (6)		C3—C2—C1		120.26 (19)	
$O3^{ii}$ —Er1—O1 ⁱ 139.97 (7) C2—C3—C1 ⁱⁱⁱ 119.8 (2) $O3^{i}$ —Er1—O1 139.97 (6) C2—C3—H3 120.1 $O3^{ii}$ —Er1—O1 70.00 (6) 120.1 120.1 Er1—O1—C1—C2 -8.1 (2) O2 ⁱⁱ —Er1—O1—C1 96.59 (16) Er1—O1—C1—C3 ⁱⁱⁱ 172.37 (18) O2 ⁱⁱ —Er1—O2—C2 -86.3 (2) Er1—O2—C2—C1 13.9 (3) O2 ⁱⁱ —Er1—O2—C2 -166.47 (17)	O2—E	Er1—O3 ⁱ	138.46 (6)		С1 ^{ііі} —С3—Н3		120.1	
$O3^{i}$ —Er1—O1139.97 (6)C2—C3—H3120.1 $O3^{ii}$ —Er1—O170.00 (6)70.00 (6)120.1Er1—O1—C1—C2-8.1 (2) $O2^{ii}$ —Er1—O1—C196.59 (16)Er1—O1—C1—C3^{iii}172.37 (18) $O2^{ii}$ —Er1—O2—C2-86.3 (2)Er1—O2—C2—C113.9 (3) $O2^{i}$ —Er1—O2—C2-166.47 (17)	O3 ⁱⁱ —	Er1—O1 ⁱ	139.97 (7)		C2—C3—C1 ⁱⁱⁱ		119.8 (2)	
$O3^{ii}$ —Er1—O1 70.00 (6) Er1—O1—C1—C2 -8.1 (2) $O2^{ii}$ —Er1—O1—C1 96.59 (16) Er1—O1—C1—C3^{iii} 172.37 (18) $O2^{ii}$ —Er1—O2—C2 -86.3 (2) Er1—O2—C2—C1 13.9 (3) $O2^{ii}$ —Er1—O2—C2 -166.47 (17)	03 ⁱ —l	Er1—O1	139.97 (6)		С2—С3—Н3		120.1	
$Er1-O1-C1-C2$ -8.1 (2) $O2^{ii}-Er1-O1-C1$ 96.59 (16) $Er1-O1-C1-C3^{iii}$ 172.37 (18) $O2^{ii}-Er1-O2-C2$ -86.3 (2) $Er1-O2-C2-C1$ 13.9 (3) $O2^{i}-Er1-O2-C2$ -166.47 (17)	O3 ⁱⁱ —	Er1—01	70.00 (6)					
$Er1-O1-C1-C3^{iii}$ $172.37(18)$ $O2^{ii}-Er1-O2-C2$ $-86.3(2)$ $Er1-O2-C2-C1$ $13.9(3)$ $O2^{i}-Er1-O2-C2$ $-166.47(17)$	Er1—	01—C1—C2	-8.1 (2)		O2 ⁱⁱ —Er1—O1—C	1	96.59 (16)	
$Er1-O2-C2-C1$ 13.9 (3) $O2^{i}-Er1-O2-C2$ -166.47 (17)	Er1—	01—C1—C3 ⁱⁱⁱ	172.37 (18	3)	$O2^{ii}$ —Er1— $O2$ —C2	2	-86.3 (2)	
	Er1—	02—C2—C1	13.9 (3)	,	O2 ⁱ —Er1—O2—C2	2	-166.47 (17)	

supporting information

Er1—O2—C2—C3	-167.71 (18)	O2—C2—C3—C1 ⁱⁱⁱ	-176.2 (2)	
O1 ⁱⁱ —Er1—O1—C1	139.76 (13)	$O3^{ii}$ —Er1—O1—C1	-171.43 (17)	
Ol ⁱ —Erl—Ol—Cl	-34.5 (2)	O3 ⁱ —Er1—O1—C1	-126.15 (16)	
O1 ⁱⁱ —Er1—O2—C2	-121.30 (16)	O3—Er1—O1—C1	-83.94 (16)	
O1—Er1—O2—C2	-13.10 (16)	$O3^{ii}$ —Er1—O2—C2	-15.9 (2)	
O1 ⁱ —Er1—O2—C2	126.04 (18)	O3—Er1—O2—C2	55.53 (17)	
O1—C1—C2—O2	-3.1 (3)	O3 ⁱ —Er1—O2—C2	125.30 (17)	
O1—C1—C2—C3	178.4 (2)	C1-C2-C3-C1 ⁱⁱⁱ	2.1 (4)	
O2 ⁱ —Er1—O1—C1	48.94 (18)	C3 ⁱⁱⁱ —C1—C2—O2	176.4 (2)	
O2—Er1—O1—C1	10.65 (15)	C3 ⁱⁱⁱ —C1—C2—C3	-2.1 (4)	

Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
03—H3 <i>A</i> ···O6 ^{iv}	0.83 (1)	1.94 (1)	2.769 (3)	174 (3)
$O3-H3B\cdots O5^{\vee}$	0.84 (1)	1.94 (1)	2.758 (3)	165 (3)
O4—H4 <i>A</i> ···O2 ⁱⁱ	0.84 (1)	1.92 (1)	2.738 (3)	167 (4)
$O4$ — $H4B$ ···· $O4^{vi}$	0.84 (1)	1.98 (1)	2.803 (3)	164 (4)
O5—H5A···O1 ⁱ	0.85 (1)	2.09 (3)	2.870 (3)	153 (5)
O5—H5 <i>B</i> ···O6 ^{vii}	0.84 (1)	1.95 (1)	2.794 (3)	174 (5)
O6—H6A····O4 ⁱⁱⁱ	0.85 (1)	1.88 (1)	2.725 (3)	174 (4)
O6—H6 <i>B</i> ···O5	0.84 (1)	1.91 (1)	2.747 (3)	169 (5)

Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -x+1, -y+1, -z+1; (iv) x-y+2/3, x+1/3, -z+4/3; (v) -x+2/3, -y+1/3, -z+4/3; (vi) x-y+1/3, x-1/3, -z+2/3; (vii) y, -x+y, -z+1.