

Received 20 November 2018 Accepted 11 December 2018

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; 1,2,4,5-tetrazine; hydrogen bond.

CCDC reference: 1884403

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 3,6-bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine

Kinga Wzgarda-Rai.^a* Agnieszka I. Rybarczyk-Pirek.^a Sławomir Woitulewski^b and Marcin Palusiak^a

^aGroup of Theoretical and Structural Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Łódź, Poland, and ^bDepartment of Theoretical Chemistry, University of Białystok, Ciołkowskiego, 1K, 15-245 Białystok, Poland. *Correspondence e-mail: kinga.raj@chemia.uni.lodz.pl

The structure of the title compound, $C_{12}H_{10}N_6$, at 100 K has monoclinic $(P2_1/n)$ symmetry. Crystals were obtained as a yellow solid by reduction of 3,6bis(pyridin-2-yl)-1,2,4,5-tetrazine. The structure displays intermolecular hydrogen bonding of the N-H···N type, ordering molecules into infinite ribbons extending along the [100] direction.

1. Chemical context

s-Tetrazines represent a class of heterocyclic compounds. The substitution of four nitrogen atoms in a six-membered benzene-like ring results in strong π -electron deficiency and concentration of negative charge on the heteroatoms. As a result of these properties, s-tetrazines are used in organic synthesis (Saracoglu, 2007; Šečkutė & Deveraj et al., 2013; Churakov et al., 2004) as well as bridging ligands in metal complexes (Kaim, 2002; Clavier & Audebert, 2010). Moreover, their derivatives are often among biologically active compounds (Saghatforoush et al., 2016) and play an important role in anti-inflammatory (Kamal et al., 2006), anticancer, antiviral drugs (Rao & Hu, 2006; Neunhoeffer et al., 1984) or as insecticidal products (Sauer et al., 1996; Brooker et al., 1987).

The title compound 3,6-bis(pyridin-2-yl)-1,4-dihydro-1.2,4,5-tetrazine (I) was obtained as a vellow solid by reduction of 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine (II) during its crystallization with 2-mercaptopyridine N-oxide (III) in ethanol solution (Fig. 1).

Figure 1

Molecular formulae of: 3,6-bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine (I), 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine (II) and 2-mercaptopyridine N-oxide (III).

ACCESS OPEN $\overline{\mathbf{O}}$

	• •	•
research	communicat	ions
i escui en	communeut	0115

Table 1			
Selected	torsion	angles	(°).

-			
N2-C3-N4-H4	164.1 (13)	C3-N2-N1-H1	-168.4(12)
C6-N5-N4-H4	-165.2 (14)	N5-C6-N1-H1	164.3 (13)

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\substack{\text{N4}-\text{H4}\cdots\text{N2}^{\text{i}}\\\text{N1}-\text{H1}\cdots\text{N5}^{\text{ii}}}$	0.89 (2)	2.56 (2)	3.3017 (16)	142.5 (17)
	0.880 (17)	2.415 (17)	3.1321 (16)	138.9 (15)

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group $P2_1/n$. The atomic labelling scheme is shown in Fig. 2. In (I), being a reduced form of (II), there are two hydrogen atoms at the 1 and 4 positions and two 2-pyridyl substituents at the 3 and 6 positions.

The C-C bond lengths are within the expected values known for aromatic systems (Allen *et al.*, 1987). However, there is a fluctuation of bond distances involving nitrogen atoms. The N-N bonds within the central (*A*) ring are of almost equal length, being 1.4285 (15) and 1.4306 (16) Å. The C6-N1 and C3-N4 [1.3953 (17) and 1.4051 (17) Å] bond lengths are longer than those for C6-N5 and C3-N2 [1.2848 (17) Å, 1.2809 (18) Å], respectively. This is the result of the protonation of the N1 and N4 atoms. The C-N bond lengths in the *B* and *C* rings are comparable within 3σ , varying from 1.3384 (18) Å to 1.3416 (17) Å.

The central tetrazine ring (A) shows a boat conformation with pseudo-symmetry mirror planes passing through bonds N2-C3 and N5-C6 [$\Delta C_s = 1.30 (16)^\circ$] and atoms N1, N4 [$\Delta C_s = 2.00 (14)^\circ$]. In this conformation, hydrogen atoms are located in the equatorial positions of the ring and the N-H bonds are directed to the bottom of the boat (compare torsion angles in Table 1). The planes of the aromatic pirydyl rings (B and C) are not to parallel to each other. The dihedral angles

Figure 2

Figure 3 The butterfly-like molecular conformation of (I).

Figure 4 $N-H \cdots N$ hydrogen bonds between rings of 1,2,4,5-tetrazine of adjacent molecules forming a chain of cyclic dimers.

between these rings and central tetrazine ring are 22.43 $(7)^{\circ}$ (*A* and *B*) and 25.71 (6)° (*A* and *C*). The dihedral angle between rings *B* and *C* is 27.13 $(7)^{\circ}$. The overall molecular structure could be recognized as a butterfly-like conformation as shown in Fig. 3.

3. Supramolecular features

The crystal packing of (I) is mainly determined by intermolecular hydrogen bonds of the N-H···N type (Table 2). Firstly, two similar hydrogen bonds (N1-H1···N5 and N4-H4···N2) between the 1,2,4,5-tetrazine rings of neighbouring molecules form a chain with an $R_2^2(6)$ ring motif (Etter *et al.*, 1990) (see Fig. 4). As a result, the molecules are ordered into infinite ribbons extending along the [100] direction. This

A view of the unit-cell packing, showing the ribbon-like arrangement of molecules. Short $C \cdots N$ and $C \cdots C$ intermolecular contacts between adjacent molecular ribbons are shown as dashed blue lines.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$C_{12}H_{10}N_6$
$M_{ m r}$	238.26
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	5.4603 (1), 12.7845 (3), 15.6474 (4)
β (°)	97.281 (2)
$V(Å^3)$	1083.49 (4)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.78
Crystal size (mm)	$0.11\times0.10\times0.08$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super-
	Nova, Dual, Cu at zero, Atlas
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.958, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8686, 2004, 1767
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.603
Deferencet	
Remember $P[E^2 > 2\pi(E^2)] = P(E^2) = C$	0.025 0.005 1.12
$K[F > 2\sigma(F)], WK(F), S$	0.035, 0.095, 1.12
No. of reflections	2004
No. of parameters	1/1 II stand to stad have mistance of
H-atom treatment	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.14, -0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

parallel arrangement of the ribbons is additionally stabilized by further interactions between adjacent molecules $[N5 \cdots C33(1 - x, 1 - y, 1 - z) = 3.2418$ (18) Å and $C34 \cdots C61(1 - x, 1 - y, 1 - z) = 3.3334$ (19) Å], as shown in Fig. 5.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.39, update of February 2018; Groom *et al.*, 2016) results in 76 derivatives of 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine, among them compound (II) (refcode JUMXAQ; Klein *et al.*, 1998), which is the oxidated form of (I). Even tought (II) crystallizes in the smae monoclinic space group as (I), its molecular and crystal structures show completely different features.

5. Synthesis and crystallization

Crystals suitable for X-ray measurements were obtained from a commercially available reagent (Aldrich Chemical Co.) and used without further purification. 0.5 mmol of 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine and 0.5 mmol of 2-mercaptopyridine *N*oxide (in a 1:1 molar ratio) were mixed in ethanol (4 ml). The resulting solution was warmed to 343 K and then kept at room temperature. Within two weeks, after slow evaporation of the solvent, two kinds of crystal were obtained in a crystallizer. X-ray studies confirmed that the pink crystals were of the known structure (II), while the yellow crystals were identified as being of a previously unreported structure, *i.e.* (I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms of aromatic rings were introduced in calculated positions with idealized geometry and constrained using a rigid body model with isotropic displacement parameters equal to 1.2 the equivalent displacement parameters of the parent atoms. The H atoms of the NH groups, in 1,2,4,5-tetrazine ring, were located in a difference Fourier map and freely refined.

Funding information

Funding for this research was provided by: Narodowe Centrum Nauki (grant No. 2015/19/B/ST4/01773); EFRD in Operational Programme Development of Eastern Poland 2007–2013, the Oxford Diffraction SuperNova DualSource diffractometer (award No. POPW.01.03.00-20-004/11).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Brooker, P. J., Parsons, J. H., Reid, J. & West, P. (1987). *Pestic. Sci.* 18, 179–190.
- Churakov, A. M. & Tartakovsky, V. A. (2004). Chem. Rev. 104, 2601–2616.
- Clavier, G. & Audebert, P. (2010). Chem. Rev. 110, 3299-3314.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kaim, W. (2002). Coord. Chem. Rev. 230, 127-139.
- Kamal, M. D., Hassan, A. G., Money, E., Hanan, A. M. & Bahira, H. (2006). Arch. Pharm. Chem. Life Sci. 339, 133.
- Klein, A., McInnes, E. J. L., Scheiring, T. & Zališ, S. (1998). Faraday Trans. 94, 2979–2984.
- Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 3, 1st ed , edited by A. R. Katritzky and C. W. Rees, p. 531. Oxford: Pergamon Press.
- Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.
- Rigaku OD (2015). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.
- Saghatforoush, L., Khoshtarkib, Z., Amani, V., Bakhtiari, A., Hakimi, M. & Keypour, H. (2016). J. Solid State Chem. 233, 311–319.
- Saracoglu, N. (2007). Tetrahedron, 63, 4199-4236.
- Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, 2nd ed., edited by A. J. Boulton, C. W. Rees and E. F. V. Scriven, pp. 901–955. Oxford: Pergamon.
- Šečkutė, J. & Devaraj, N. K. (2013). Curr. Opin. Chem. Biol. 17, 761– 767.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2019). E75, 86-88 [https://doi.org/10.1107/S205698901801753X]

Crystal structure of 3,6-bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine

Kinga Wzgarda-Raj, Agnieszka J. Rybarczyk-Pirek, Sławomir Wojtulewski and Marcin Palusiak

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *WinGX* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

3,6-Bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine

Crystal data

 $C_{12}H_{10}N_6$ $M_r = 238.26$ Monoclinic, $P2_1/n$ a = 5.4603 (1) Å b = 12.7845 (3) Å c = 15.6474 (4) Å $\beta = 97.281$ (2)° V = 1083.49 (4) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Detector resolution: 10.4052 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.095$ S = 1.122004 reflections 171 parameters 0 restraints F(000) = 496 $D_x = 1.461 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3734 reflections $\theta = 4.5-76.4^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.11 \times 0.10 \times 0.08 \text{ mm}$

 $T_{\min} = 0.958, T_{\max} = 1.000$ 8686 measured reflections 2004 independent reflections 1767 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 68.5^{\circ}, \theta_{\text{min}} = 4.5^{\circ}$ $h = -6 \rightarrow 6$ $k = -15 \rightarrow 14$ $l = -18 \rightarrow 17$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 0.2596P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N5	0.3304 (2)	0.59460 (9)	0.30162 (7)	0.0159 (3)
N1	0.7587 (2)	0.61063 (9)	0.30346 (7)	0.0167 (3)
N66	0.7195 (2)	0.45247 (9)	0.18218 (7)	0.0178 (3)
N4	0.3800 (2)	0.66133 (9)	0.37517 (7)	0.0162 (3)
N2	0.7969 (2)	0.61146 (9)	0.39548 (7)	0.0166 (3)
N36	0.4117 (2)	0.70258 (9)	0.54575 (7)	0.0196 (3)
C3	0.6017 (2)	0.63816 (10)	0.42759 (9)	0.0151 (3)
C31	0.6094 (2)	0.65389 (10)	0.52161 (8)	0.0159 (3)
C6	0.5274 (2)	0.57389 (10)	0.26787 (8)	0.0150 (3)
C61	0.5133 (2)	0.50651 (10)	0.19059 (8)	0.0153 (3)
C62	0.2981 (2)	0.49884 (11)	0.13279 (8)	0.0183 (3)
H62	0.1608	0.5397	0.1394	0.022*
C65	0.7096 (2)	0.38393 (10)	0.11717 (9)	0.0191 (3)
H65	0.8497	0.3444	0.1116	0.023*
C64	0.5020 (3)	0.36871 (11)	0.05778 (9)	0.0194 (3)
H64	0.5020	0.3195	0.0140	0.023*
C34	0.6135 (3)	0.69920 (11)	0.69170 (9)	0.0201 (3)
H34	0.6106	0.7167	0.7493	0.024*
C32	0.8134 (3)	0.62397 (11)	0.57895 (9)	0.0196 (3)
H32	0.9460	0.5895	0.5596	0.024*
C63	0.2943 (3)	0.42869 (11)	0.06517 (9)	0.0201 (3)
H63	0.1539	0.4219	0.0252	0.024*
C33	0.8137 (3)	0.64675 (11)	0.66537 (9)	0.0215 (3)
H33	0.9465	0.6272	0.7054	0.026*
C35	0.4179 (3)	0.72475 (11)	0.62978 (9)	0.0211 (3)
H35	0.2832	0.7593	0.6476	0.025*
H1	0.886 (3)	0.5796 (14)	0.2850 (11)	0.022 (4)*
H4	0.253 (4)	0.6611 (15)	0.4051 (13)	0.030 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N5	0.0158 (5)	0.0169 (5)	0.0144 (5)	0.0008 (4)	-0.0001 (4)	-0.0012 (4)
N1	0.0134 (5)	0.0221 (6)	0.0148 (5)	-0.0014 (5)	0.0020 (4)	-0.0020 (4)
N66	0.0154 (5)	0.0182 (6)	0.0198 (6)	0.0000 (4)	0.0025 (4)	-0.0009(4)
N4	0.0138 (5)	0.0196 (6)	0.0150 (6)	0.0025 (4)	0.0007 (4)	-0.0025 (4)
N2	0.0159 (5)	0.0191 (6)	0.0145 (5)	-0.0009 (4)	0.0003 (4)	-0.0013 (4)
N36	0.0174 (6)	0.0229 (6)	0.0181 (6)	0.0010 (4)	0.0009 (4)	-0.0024 (4)
C3	0.0138 (6)	0.0136 (6)	0.0173 (7)	-0.0002(5)	-0.0001 (5)	0.0003 (5)

supporting information

C31	0.0161 (6)	0.0144 (6)	0.0170 (7)	-0.0025 (5)	0.0015 (5)	0.0009 (5)
C6	0.0137 (6)	0.0149 (6)	0.0162 (6)	0.0006 (5)	0.0007 (5)	0.0022 (5)
C61	0.0151 (6)	0.0144 (6)	0.0166 (6)	-0.0010 (5)	0.0032 (5)	0.0015 (5)
C62	0.0153 (6)	0.0211 (7)	0.0185 (7)	0.0017 (5)	0.0018 (5)	0.0005 (5)
C65	0.0168 (6)	0.0175 (6)	0.0236 (7)	0.0007 (5)	0.0055 (5)	-0.0018 (5)
C64	0.0223 (7)	0.0183 (6)	0.0181 (7)	-0.0027 (5)	0.0049 (5)	-0.0025 (5)
C34	0.0253 (7)	0.0193 (7)	0.0155 (6)	-0.0053 (5)	0.0017 (5)	-0.0006 (5)
C32	0.0180 (7)	0.0204 (7)	0.0203 (7)	0.0013 (5)	0.0019 (5)	0.0023 (5)
C63	0.0175 (6)	0.0237 (7)	0.0183 (7)	-0.0024 (5)	-0.0005 (5)	0.0002 (5)
C33	0.0212 (7)	0.0231 (7)	0.0190 (7)	-0.0019 (5)	-0.0024 (5)	0.0038 (5)
C35	0.0209 (7)	0.0226 (7)	0.0202 (7)	0.0000 (5)	0.0040 (5)	-0.0033 (5)

Geometric parameters (Å, °)

N5—C6	1.2848 (17)	C61—C62	1.3926 (18)
N5—N4	1.4306 (16)	C62—C63	1.385 (2)
N1—C6	1.3953 (17)	С62—Н62	0.9300
N1—N2	1.4285 (15)	C65—C64	1.386 (2)
N1—H1	0.880 (19)	C65—H65	0.9300
N66—C65	1.3384 (18)	C64—C63	1.386 (2)
N66—C61	1.3416 (17)	C64—H64	0.9300
N4—C3	1.4051 (17)	C34—C35	1.387 (2)
N4—H4	0.88 (2)	C34—C33	1.389 (2)
N2—C3	1.2809 (18)	C34—H34	0.9300
N36—C35	1.3412 (18)	C32—C33	1.383 (2)
N36—C31	1.3415 (18)	С32—Н32	0.9300
C3—C31	1.4800 (18)	С63—Н63	0.9300
C31—C32	1.3922 (19)	С33—Н33	0.9300
C6—C61	1.4786 (18)	С35—Н35	0.9300
C6—N5—N4	111 75 (11)	C63—C62—H62	120.9
C6-N1-N2	114 45 (10)	C61 - C62 - H62	120.9
C6—N1—H1	114.45(10) 1154(12)	N66-C65-C64	120.9 123,53(12)
N2_N1_H1	113.4(12) 108 3 (12)	N66-C65-H65	118.2
C65 - N66 - C61	100.5(12) 117.28(12)	C64—C65—H65	118.2
C_{3} N4 N5	117.20 (12)	C65 - C64 - C63	118.36 (13)
C3N4H4	113.90(10) 111.4(13)	C65 - C64 - H64	120.8
N5—N4—H4	111.4(13) 110.1(13)	C63 - C64 - H64	120.8
$C3_N2_N1$	110.1(13) 112.02(11)	C_{35} C_{34} C_{33}	118 16 (13)
C_{35} N36 C_{31}	116.93 (12)	C35—C34—H34	120.9
N2_C3_N4	121 69 (12)	C_{33} C_{34} H_{34}	120.9
$N_2 = C_3 = C_3 I$	121.09(12) 120.37(12)	C_{33} C_{32} C_{31}	118.30(13)
N2 - C3 - C31 N4 - C3 - C31	120.37(12) 117.75(12)	C_{33} C_{32} C_{31} C_{33} C_{32} C_{32} C_{33} C	120.9
N36 C31 C32	117.75(12) 123.55(12)	C_{31} C_{32} H_{32}	120.9
N36-C31-C32	123.33(12) 114.85(12)	C62 - C63 - C64	119 26 (13)
C_{32} C_{31} C_{3}	117.03(12) 121.54(12)	C62 - C63 - C64	120 4
N5_C6_N1	121.34(12) 121.95(12)	C64_C63_H63	120.4
N5 C6 C61	121.95(12) 110.77(12)	C_{32} C_{32} C_{34}	110 21 (12)
103-00-001	117.//(12)	032-033-034	117.21 (13)

supporting information

N1—C6—C61	118.25 (11)	C32—C33—H33	120.4
N66—C61—C62	123.33 (12)	C34—C33—H33	120.4
N66—C61—C6	115.02 (11)	N36—C35—C34	123.82 (13)
C62—C61—C6	121.63 (12)	N36—C35—H35	118.1
C63—C62—C61	118.13 (12)	C34—C35—H35	118.1
N2—C3—N4—H4	164.1 (13)	C3—N2—N1—H1	-168.4 (12)
C6—N5—N4—H4	-165.2 (14)	N5—C6—N1—H1	164.3 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4…N2 ⁱ	0.89 (2)	2.56 (2)	3.3017 (16)	142.5 (17)
N1—H1…N5 ⁱⁱ	0.880 (17)	2.415 (17)	3.1321 (16)	138.9 (15)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.