

Received 29 October 2018 Accepted 8 November 2018

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: lanthanum; aluminium; triphenylacetate; *π*-complex; coordination compound; crystal structure.

CCDC reference: 1877930

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of $bis(\mu_2$ -methoxy- $\kappa O:\kappa O$)hexamethylbis(μ_2 -triphenylacetato- $\kappa O:\kappa O'$)bis(μ_2 triphenylacetato- $\kappa^2 O, O':\kappa O$)dialuminiumdilanthanum toluene tetrasolvate

Alexander A. Vinogradov,^a Dmitrii M. Roitershtein,^{a,b} Mikhail E. Minyaev,^a* Konstantin A. Lyssenko^c and Ilya E. Nifant'ev^{a,d}

 ^aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, ^bN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, ^cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991, Moscow, Russian Federation, and ^dChemistry Department, M.V. Lomonosov Moscow State, University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation.
 *Correspondence e-mail: mminyaev@mail.ru

The title compound, $[Al_2La_2(C_{20}H_{15}O_2)_4(CH_3)_6(CH_3O)_2]\cdot4CH_3C_6H_5$ or $[\{La(Ph_3CCOO)_2(Me_3AIOMe)\}_2]\cdot4CH_3C_6H_5$, was formed in a reaction between lanthanum tris(tetramethylaluminate) and triphenylacetic acid (1:1) with unintended partial oxidation. The triphenylacetate ligand exhibits $\mu_2 - \kappa^1 O \cdot \kappa^1 O'$ bridging and $\mu_2 - \kappa^2 O, O' \cdot \kappa^1 O$ semi-bridging coordination modes, forming a dimeric $La_2(\mu$ -OCO)_4 core. The semi-bridging triphenylacetate group provides additional bonding with an La^{3+} cation *via* the π -system of one of its phenyl rings. The trimethylmethoxyaluminate anion, which is coordinated to the La^{3+} cation by its O atom, displays a rather long $La - C_{Me}$ bond. Two toluene molecules are each disordered over two orientations about centres of symmetry with site occupancy factors of 0.5. The title compound represents the first example of an Ln^{III} complex containing both alkyl alkoxide aluminate and π -bounded arene fragments.

1. Chemical context

Heteroleptic tetraalkylaluminate complexes of rare-earth metals attract significant attention because of their intriguing role in the stereospecific polymerization of conjugated dienes (Anwander, 2002). Stereoregular elastomers obtained in the polymerization process of isoprene and butadiene are fundamentally important for the production of modern wear-resistant rubbers (Friebe *et al.*, 2006). It is assumed that this type of complex plays the key role in the formation of catalytically active species. Meanwhile, little is known about the structure of such complexes (Fischbach *et al.*, 2006*a*, and reference therein). The exceptionally high oxidative instability of aluminate complexes is one of the reasons for the lack of information on the structures of catalytically active hetero-leptic bimetallic Ln–Al complexes.

This report describes the product of unintentional oxidation of a carboxylate–aluminate La complex while reacting lanthanum tris(tetramethylaluminiumate) with the corresponding acid (Fig. 1). This reaction should have led initially to the heteroleptic triphenylacetate–tetramethylaluminate complex that is supposed to be a model of the active species in the catalyst system. The accidental partial oxidation resulted

Figure 1 Synthesis of [{La(Ph₃CCOO)₂Me₃AlOMe}₂]·4(CH₃C₆H₅).

in the formation of the triphenylacetate-trimethylmethoxylanthanum complex [{La(Ph₃CCOO)₂Me₃Alaluminate OMe_{2}].

2. Structural commentary

The asymmetric unit of the title compound consists of half of the dimeric complex $[{La(Ph_3CCOO)_2(Me_3AlOMe)}_2]$ (Fig. 2) located on an inversion centre, and three non-coordinating toluene molecules (not shown). Two of the toluene molecules are disordered over inversion centres, having 50% atomic site occupancies. The coordination polyhedron for the La³⁺ cation and its coordination number are rather difficult to determine. Two triphenylacetate ligands exhibit the μ_2 - $\kappa^1 O$: $\kappa^1 O'$ bridging coordination mode, but two other ligands display the μ_2 - $\kappa^2 O, O': \kappa^1 O'$ semi-bridging type (Figs. 2 and 3; Table 1). The complex has an $La_2(\mu$ -OCO)₄ core with an $La_1\cdots La_1^i$ distance of 4.0432 (4) Å [symmetry code: (i) -x, -y + 1, -z + 1). Unlike the bridging ligands, the semi-bridging triphenylacetates demonstrate additional La···C contacts with the carboxylic system (La1 \cdots C5, La1ⁱ \cdots C5ⁱ; Fig. 3; Table 1).

Table	1			
Selecte	ed	bond	lengths	(Å).

La1-O1	2.336 (3)	La1-C8 ⁱ	3.287 (4)
La1-O2	2.501 (3)	La1-C9 ⁱ	3.246 (4)
La1-O3	2.494 (3)	$La1-C10^{i}$	3.212 (4)
La1-O3 ⁱ	2.403 (2)	La1-C11 ⁱ	3.201 (4)
La1-O4	2.396 (3)	La1-C12 ⁱ	3.239 (4)
La1-O5 ⁱ	2.367 (3)	Al1-O1	1.819 (3)
La1-C2	3.042 (4)	Al1-C2	2.014 (4)
La1-C5	2.892 (4)	Al1-C3	1.990 (5)
La1-C7 ⁱ	3.318 (4)	Al1-C4	1.961 (4)

Symmetry code: (i) -x, -y + 1, -z + 1.

Figure 2

The molecular structure of the {La(Ph₃CCOO)₂(Me₃AlOMe)}₂ unit in the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and toluene solvent molecules are omitted for clarity. The La-O bonds are shown with thinner solid lines. The La-C interactions are not shown. Symmetry code: (i) -x, -y + 1, -z + 1.

The La³⁺ cation is also coordinated by the π -system of a phenyl ring of the semi-bridging carboxylate ligand (Fig. 3, atoms $C7^{i}$ -C12^{*i*}; Table 1). The interaction with the phenyl (Ph) group is close to symmetrical: the La...Ph_{centroid} distance is 2.938 (2) Å, the normal to the Ph-ring plane is 2.9353 (16) Å,

Figure 3

Metal-ligand interactions within the ${La(Ph_3CCOO)_2(Me_3AlOMe)}_2$ unit. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted, only Cipso atoms (labeled as Ph) are shown for non-coordinating phenyl groups for clarity. The Ln-C contacts are shown with thin dashed lines. Symmetry code: (i) -x, -y + 1, -z + 1.

 Table 2

 Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33–C38, C39–C44, C52–C57 and C19–C24 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C1-H1C\cdots Cg1^{i}$	0.98	2.69	3.425 (6)	132
$C17 - H17 \cdots Cg2$	0.95	2.71	3.485 (4)	139
$C21 - H21 \cdot \cdot \cdot \cdot Cg3^{ii}$	0.95	2.93	3.677 (8)	136
$C29-H29\cdots Cg4$	0.95	2.62	3.415 (4)	142
$C32-H32\cdots Cg2$	0.95	2.95	3.654 (5)	132
$C44-H44\cdots Cg1$	0.95	2.88	3.592 (5)	132

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

and the La···C_{Ph} bond lengths lie in the range 3.201 (4) to 3.318 (4) Å. Ten crystal structures exhibiting the interaction of La³⁺ with the π -system of an uncharged C₆ aromatic ring have been found in the Cambridge Structural Database (CSD, Version 5.39, February 2018 update; Groom *et al.*, 2016). The corresponding distances in these compounds vary from 2.93 to 3.27 Å for La···C_{Aryl} and from 2.61 to 2.87 Å for La···C_{Aryl} and La···C_{Ph} distances in the title compound are therefore the longest, which is likely caused by steric hindrance induced by the presence of many phenyl groups within the inner coordination sphere.

The trimethylmetoxyaluminate anions are coordinated to the La^{3+} cations *via* oxygen atoms (La1-O1, La1ⁱ-O1ⁱ), and exhibit a slightly distorted tetrahedral environment about the Al atoms, with an O1-Al1-C2 angle of 100.03 (17)° and with other O-Al-C and C-Al-C bond angles ranging from 108.32 (18) to 113.2 (2)°. The small value for the O1-Al1C2 angle is due to the additional coordination of the $[Al(CH_3)_3(OCH_3)]$ anion with La³⁺ by the C2 atom (Fig. 3). However, the La1–C2 bond length [3.042 (4) Å] is rather long compared to those of previously characterized compounds possessing the La– $[(\mu-Me)_2AlMe_2]$ fragment, which have La– C_{Me} distances lying in the range 2.66 to 2.98 Å with the average value of 2.76 Å (32 compounds with 128 crystallographically independent La– C_{Me-Al} distances retrieved from the CSD). The La1···Al1 distance [3.4481 (12) Å] is near to the upper boundary of the La–Al distance range in the aforementioned compounds (from 2.99 to 3.45 Å, with an average of 3.25 Å).

There is only one related compound having the La-[(Alkyl/Aryl)₃Al(OAlkyl/OAryl)] motif (CSD refcode MIMPED; Giesbrecht *et al.*, 2002) – {La(O-2,6-ⁱPr₂C₆H₃)[AlMe₂(μ -Me)(μ -O-2,6-ⁱPr₂C₆H₃)]₂}. The Al–O [1.864 (3), 1.848 (3) Å], La–O [2.387 (3), 2.367 (3) Å] and Al–C [2.040 (5), 2.053 (6) Å] bond lengths within the LaAl₂(μ -Me)₂(μ -OAryl)₂ fragment are similar to those found in the LaAl(μ -Me)(μ -OMe) fragment of the complex reported herein. However, the La1–C2 distance in the title compound (Table 1) is considerably longer (by 0.24-0.28 Å) than the corresponding La–C distances in MIMPED [2.800 (5), 2.759 (5) Å], presumably due to steric reasons.

In the studied compound, the La $-O_{Me}$ (La1-O1) bond is the shortest, compared to the other La-O bonds, which may be due to delocalization of negative charge on the carboxy oxygen atoms and/or steric repulsion of the bulky carboxylate anion.

3. Supramolecular features

Weak intra- and intermolecular interactions among complex molecules and non-coordinating toluene molecules are mainly represented by the C_{Ph} —H·· π type (Table 2). An interesting feature of the crystal packing is that the centres of all non-coordinating toluene molecules are located nearly in one plane parallel to the *ab* plane, separating 2D molecular layers of the complex (Fig. 4).

4. Database survey

The number of crystal structures for rare-earth compounds containing the Ln–C–Al fragment (CSD, Version 5.39, February 2018 update; Groom *et al.*, 2016) is nearly 250 (upon exclusion of duplicated structures). They are mainly repre-

Figure 4

A view along the b axis of the crystal packing of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted.

Table 3	
Experimental	details.

Crystal data	
Chemical formula	[Al ₂ La ₂ (CH ₃) ₆ (C ₂₀ H ₁₅ O ₂) ₄ -
	$(CH_3O)_2]\cdot 4C_7H_8$
M _r	2001.86
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.8404 (6), 14.2089 (6), 14.6084 (7)
α, β, γ (°)	73.198 (1), 81.968 (1), 63.523 (1)
$V(A^3)$	2461.54 (19)
Z	1
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.93
Crystal size (mm)	$0.43 \times 0.17 \times 0.14$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.713, 0.848
No. of measured, independent and	30779, 13082, 10174
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.065
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.682
Pafinament	
$P[F^2 > 2\pi(F^2)] = P(F^2) S$	0.040 0.111 1.01
$K[r \ge 20(r)], WK(r), S$	12082
No. of peremeters	506
No. of parameters	390
I atom traatmont	L dom noromotors constrained
$\Lambda = \Lambda = (-\lambda^{-3})$	n-atom parameters constrained
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ (e \ A^{-})$	1.25, -1.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2015) and publCIF (Westrip, 2010).

sented by 147 tetramethylaluminates with Ln-[(μ_2 -Me)₂AlMe₂] (127 structures), Ln-[(μ_2 -Me)AlMe₂(μ_2 -Me)]-Ln (11 structures) and Ln- $[(\mu_2-Me)AlMe_3]$ (9 structures) fragments and by 16 tetraethylaluminate complexes. This number also includes 18 structures of Ln-[(Alkyl/Aryl)₃Al(OAlkyl/ OAryl) compounds possessing the following structural motifs: $[(\mu_2-Me)(\mu_2-OCH_2^{t}Bu)AlMe_2]$ (AVOYOA, AVOYUG, Occhipinti et al., 2011; GEQMOF, GEQMUL, Fischbach et al., 2006b), $[(\mu_2-Me)(\mu_2-O'Bu)AlMe_2]$ (POJNAD, Biagini et al., 1994; WAPYIV, WAPYOB, Evans et al., 1993a; WEHHAS, Evans et al., 1993b), $[(\mu_2-Me)(\mu_2-O^iPr)AlMe_2]$ (VOLMUF, Liu *et al.*, 2005), $[(\mu_2-Me)(\mu_2-O-2,6-Ph_2C_6H_3)AlMe_2]$ (TULCAF, Korobkov & Gambarotta, 2009), $[(\mu_2-Me)(\mu_2-O 2,6^{-l}Pr_2C_6H_3$ (LUQZOM, Fischbach *et al.*, 2003; MIMPED, Giesbrecht et al., 2002; MOQYOG, Gordon et al., 2002; PETMUX, Fischbach *et al.*, 2006*c*), $[(\mu_2-Et)(\mu_2-O 2,6^{-i}Pr_2C_6H_3$ AlEt₂] (MIMPIH, Giesbrecht *et al.*, 2002; ROCHOH, Sommerfeldt et al., 2008), $[(\mu_2-Me)(\mu_2-O-$ 2,6-^tBu₂-4-MeC₆H₂)AlMe₂] (ROCGOG, Sommerfeldt et al., 2008), $[(\kappa^2 O, O' - MeOCH_2CH_2O)AlMe_3]$ (GIZWAN, Evans et al., 1998). MIMPED is the only La structure among them. A related structure with the $\{(\mu_2-Me)[\mu_2-\kappa O:\kappa^2 O,O'-(O'Bu)_3-$ 3SiO]AlMe₂} motif (BEQXUR, Fischbach et al., 2004) might be also mentioned.

Crystal structures of lanthanide(III) compounds having an η^6 -coordinated uncharged arene system have become

numerous over the last two decades, resulting in the description of over 150 crystal structures (see the CSD). Ten structures of such La(III) π -complexes are known: EZIPIM (Giesbrecht et al., 2004), MALXOM (Deacon et al., 2000), POKCAU (Gerber et al., 2008), RILBIZ, RILBUL (Hamidi et al., 2013), ROMQUG (Filatov et al., 2009), SOJHAB, SOJHEF, SOJHIJ (Filatov et al., 2008), ZIDSOV (Butcher et al., 1995). Crystallographic data for these complexes were used to compare structural parameters of the title compound in the Structural Commentary section. Known crystal structures of rare-earth triphenylacetate complexes are also not numerous, and their number is limited to 16 recent crystal peroxide bis(triphenylacetate) structures: complexes QEHBOX, QEHBUD, QEHCEO (Roitershtein et al., 2017), mono- and binuclear tris(triphenylacetate) complexes EPUNIO (Minyaev et al., 2016), RIKRIO, RIKRUA, RIKSAH, RIKSEL (Roitershtein et al., 2013), tetrakis(triphenylacetate) complexes and their adducts RIKQUZ, RIKRAG, RIKREK, RIKRIO (Roitershtein et al., 2013), triphenylacetate-tetraethylaluminate compounds RIJVIR, RIJVOX (Roitershtein et al., 2013) and heptanuclear polyligand complexes UVETAR, UVETEV (Sharples et al., 2011). The triphenylacetate ligand exhibits terminal κO and $\kappa^2 O, O'$, bridging μ - $\kappa O, \kappa O'$, and semi-bridging μ - $\kappa O, \kappa^2 O, O'$ (the latter is only for the four ate complexes) coordination modes.

Up to date, no complex has been reported that has both an η^6 -coordinated arene ligand and the mixed-ligand alkyl-alkoxide aluminate anion.

5. Synthesis and crystallization

Synthetic operations were carried out under a purified argon atmosphere. Toluene was distilled from sodium/benzophenone ketyl, hexane was distilled from Na/K alloy. Triphenylacetic acid was purified by azeotrope removal of water from its toluene solution with a Dean–Stark trap, followed by crystallization from a cold saturated solution and then by vacuum drying. The complex La(AlMe₄)₃ was prepared according to the literature procedure (Zimmermann *et al.*, 2007).

A solution of Ph_3CCOOH (0.144 g, 0.50 mmol) in toluene (20 ml) was added to a stirred solution of $La(AlMe_4)_3$ (0.196 g, 0.49 mmol) in toluene (10 ml), producing a suspension, which was stirred overnight at room temperature. The precipitate was removed by decantation and the solution was concentrated to a volume of 10 ml. Slow and careful layering of hexane (40 ml) on the top of the residual solution resulted in the formation of an inseparable compound mixture and a few colourless crystals suitable for X-ray single crystal diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atom were positioned geometrically (C-H = 0.95 Å for aromatic, 0.98 Å for methyl H atoms) and refined as riding atoms with $U_{\rm iso}({\rm H})$ = $1.5U_{eq}(C)$ for methyl or $1.2U_{eq}(C)$ for aromatic H atoms. A rotating group model was applied for methyl groups. Three reflections (100, 010, 001) were affected by the beam stop, and were therefore omitted from the refinement. Two non-coordinating toluene molecules disordered over inversion centres with occupancy factors of 0.5 were modelled by fitting the phenyl rings to regular hexagons, by constraining the C_{ipso} – C_{Me} bond distances to 1.52 (1) Å, and by using equal anisotropic displacement parameters for atoms C52, C53, C54, C55, C60, C62 and C65.

Funding information

Funding for this research was provided by: the Russian Science Foundation (grant No. 17-13-01357) and the TIPS RAS State Plan.

References

- Anwander, R. (2002). In *Applied Homogeneous Catalysis with Organometallic Compounds*, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.
- Biagini, P., Lugli, G., Abis, L. & Millini, R. (1994). J. Organomet. Chem. 474, C16-C18.
- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Clark, D. L., Grumbine, S. K., Vincent-Hollis, R. L., Scott, B. L. & Watkin, J. G. (1995). *Inorg. Chem.* 34, 5468–5476.
- Deacon, G. B., Feng, T., Forsyth, C. M., Gitlits, A., Hockless, D. C. R., Shen, Q., Skelton, B. W. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 961–966.
- Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993*a*). J. Am. Chem. Soc. **115**, 5084–5092.
- Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993b). J. Organomet. Chem. 462, 141–148.
- Evans, W. J., Greci, M. A. & Ziller, J. W. (1998). *Inorg. Chem.* 37, 5221–5226.
- Filatov, A. S., Gifford, S. N., Kumar, D. K. & Petrukhina, M. A. (2009). Acta Cryst. E65, m286-m287.
- Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116–122.
- Fischbach, A., Herdtweck, E. & Anwander, R. (2006b). *Inorg. Chim. Acta*, **359**, 4855–4864.
- Fischbach, A., Herdtweck, E., Anwander, R., Eickerling, G. & Scherer, W. (2003). Organometallics, 22, 499–509.

- Fischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W. & Anwander, R. (2004). Angew. Chem. Int. Ed. 43, 2234–2239.
- Fischbach, A., Meermann, C., Eickerling, G., Scherer, W. & Anwander, R. (2006c). *Macromolecules*, **39**, 6811–6816.
- Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006a). Organometallics, 25, 1626–1642.
- Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1– 154.
- Gerber, L. C. H., Le Roux, E., Törnroos, K. W. & Anwander, R. (2008). *Chem. Eur. J.* 14, 9555–9564.
- Giesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). *Eur. J. Inorg. Chem.* pp. 723–731.
- Giesbrecht, G. R., Gordon, J. C., Clark, D. L., Hay, P. J., Scott, B. L. & Tait, C. D. (2004). J. Am. Chem. Soc. 126, 6387–6401.
- Gordon, J. C., Giesbrecht, G. R., Brady, J. T., Clark, D. L., Keogh, D. W., Scott, B. L. & Watkin, J. G. (2002). *Organometallics*, **21**, 127– 131.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hamidi, S., Jende, L. N., Dietrich, H. M., Maichle-Mössmer, C., Törnroos, K. W., Deacon, G. B., Junk, P. C. & Anwander, R. (2013). Organometallics, 32, 1209–1223.
- Korobkov, I. & Gambarotta, S. (2009). Organometallics, 28, 4009– 4019.
- Liu, S., Wei, P., Wang, Y., Santillan-Jimenez, E., Bakus, R. C. II & Atwood, D. A. (2005). *Main Group Chem.* **4**, 3–10.
- Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Lyssenko, K. A., Ananyev, I. V. & Nifant'ev, I. E. (2016). Acta Cryst. C72, 578– 584.
- Occhipinti, G., Meermann, C., Dietrich, H. M., Litlabø, R., Auras, F., Törnroos, K. W., Maichle-Mössmer, C., Jensen, V. R. & Anwander, R. (2011). J. Am. Chem. Soc. 133, 6323–6337.
- Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A. & Nifant'ev, I. E. (2017). *Inorg. Chem. Commun.* 84, 225–228.
- Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, **32**, 1272–1286.
- Sharples, J. W., Zheng, Y.-Z., Tuna, F., McInnes, E. J. L. & Collison, D. (2011). Chem. Commun. 47, 7650–7652.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sommerfeldt, H.-M., Meermann, C., Törnroos, K. W. & Anwander, R. (2008). *Inorg. Chem.* **47**, 4696–4705.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zimmermann, M., Frøystein, N. Å., Fischbach, A., Sirsch, P., Dietrich, H. M., Törnroos, K. W., Herdtweck, E. & Anwander, R. (2007). *Chem. Eur. J.* 13, 8784–8800.

Acta Cryst. (2018). E74, 1790-1794 [https://doi.org/10.1107/S2056989018015876]

Crystal structure of bis(μ_2 -methanolato- κO : κO)hexamethylbis(μ_2 -triphenylacetato- κO : $\kappa O'$)bis(μ_2 -triphenylacetato- $\kappa^2 O$,O': κO)dialuminiumdilanthanum toluene tetrasolvate

Alexander A. Vinogradov, Dmitrii M. Roitershtein, Mikhail E. Minyaev, Konstantin A. Lyssenko and Ilya E. Nifant¹ev

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

Bis(μ_2 -methanolato- κO : κO)hexamethylbis(μ_2 -triphenylacetato- κO : $\kappa O'$)bis(μ_2 -triphenylacetato- $\kappa^2 O$,O': κO)dialuminiumdilanthanum toluene tetrasolvate

Crystal data

$[Al_2La_2(CH_3)_6(C_{20}H_{15}O_2)_4(CH_3O)_2] \cdot 4C_7H_8$	Z = 1
$M_r = 2001.86$	F(000) = 1032
Triclinic, P1	$D_{\rm x} = 1.350 {\rm ~Mg} {\rm ~m}^{-3}$
a = 13.8404 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 14.2089 (6) Å	Cell parameters from 4587 reflections
c = 14.6084 (7) Å	$\theta = 2.5 - 27.3^{\circ}$
$\alpha = 73.198 (1)^{\circ}$	$\mu = 0.93 \text{ mm}^{-1}$
$\beta = 81.968 \ (1)^{\circ}$	T = 100 K
$\gamma = 63.523 (1)^{\circ}$	Block, colorless
V = 2461.54 (19) Å ³	$0.43\times0.17\times0.14~mm$
Data collection	
Bruker APEXII CCD	30779 measured reflections
diffractometer	13082 independent reflections

diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.713, T_{\max} = 0.848$ 30779 measured reflections 13082 independent reflections 10174 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 29.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -18 \rightarrow 18$ $k = -19 \rightarrow 19$ $l = -19 \rightarrow 19$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wP(F^2) = 0.111$	neighbouring sites
S = 1.01	H-atom parameters constrained
13082 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0491P)^2]$
596 parameters	where $P = (F_o^2 + 2F_o^2)/3$
2 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.25 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -1.36 \text{ e } \text{Å}^{-3}$

Special details

Experimental. moisture and air sensitive

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lal	-0.03227 (2)	0.49487 (2)	0.37122 (2)	0.01306 (6)	
Al1	-0.12529 (11)	0.40803 (10)	0.21948 (9)	0.0286 (3)	
01	-0.0005 (2)	0.3834 (3)	0.2697 (2)	0.0386 (7)	
C1	0.0953 (4)	0.3005 (4)	0.2479 (4)	0.0524 (14)	
H1A	0.088611	0.290505	0.185791	0.079*	
H1B	0.109110	0.232657	0.297403	0.079*	
H1C	0.155252	0.320192	0.245107	0.079*	
C2	-0.2300 (4)	0.5359 (3)	0.2694 (3)	0.0336 (10)	
H2A	-0.300473	0.565883	0.239855	0.050*	
H2B	-0.203033	0.591960	0.253632	0.050*	
H2C	-0.237368	0.512220	0.338947	0.050*	
C3	-0.1116 (4)	0.4476 (4)	0.0776 (3)	0.0460 (12)	
H3A	-0.097311	0.384953	0.053500	0.069*	
H3B	-0.051864	0.468840	0.059015	0.069*	
H3C	-0.178880	0.508554	0.050371	0.069*	
C4	-0.1619 (4)	0.2840 (4)	0.2695 (3)	0.0406 (11)	
H4A	-0.110910	0.223099	0.243557	0.061*	
H4B	-0.235322	0.304856	0.250611	0.061*	
H4C	-0.157613	0.261936	0.339463	0.061*	
O2	-0.1140 (2)	0.3706 (2)	0.46652 (19)	0.0320 (7)	
03	-0.0402 (2)	0.4255 (2)	0.54830 (18)	0.0232 (6)	
C5	-0.0957 (3)	0.3754 (3)	0.5459 (3)	0.0214 (8)	
C6	-0.1398 (3)	0.3264 (3)	0.6418 (3)	0.0220 (8)	
C7	-0.0810(3)	0.3348 (3)	0.7189 (3)	0.0234 (8)	

C8	0.0289 (3)	0.2683 (3)	0.7329 (3)	0.0271 (8)
H8	0.064082	0.213330	0.699308	0.033*
C9	0.0885 (4)	0.2798 (3)	0.7944 (3)	0.0307 (9)
Н9	0.163386	0.233326	0.802589	0.037*
C10	0.0381 (4)	0.3596 (4)	0.8438 (3)	0.0340 (10)
H10	0.077959	0.367317	0.886831	0.041*
C11	-0.0703 (4)	0.4277 (4)	0.8303 (3)	0.0325 (10)
H11	-0.104716	0.482567	0.864064	0.039*
C12	-0.1300(3)	0.4167 (3)	0.7672 (3)	0.0279 (9)
H12	-0.204174	0.465268	0.757361	0.033*
C13	-0.2633(3)	0.3918 (3)	0.6482 (3)	0.0233 (8)
C14	-0.3158(3)	0.3660 (4)	0.7337(3)	0.0342(10)
H14	-0.275619	0.309338	0.785860	0.041*
C15	-0.4279(4)	0.307550 0.4235(4)	0.7427(3)	0.0391(11)
H15	-0.463027	0.406832	0.801646	0.047*
C16	-0.4875(4)	0.400052 0.5041 (4)	0.6668 (4)	0.047
H16	-0 563524	0.542101	0.673235	0.046*
C17	-0.4364(3)	0.542101 0.5202(3)	0.075255	0.040
H17	-0.477381	0.5292 (5)	0.529442	0.0340 (10)
C18	-0.3253(3)	0.337019	0.529442	0.041
U19	-0.3233(3) -0.201035	0.4737 (3)	0.5721(3)	0.0284 (9)
П18 С10	-0.291033	0.491008	0.515002	0.034
C19 C20	-0.1180(3)	0.2070(3)	0.0307(3)	0.0249(8)
C20	-0.0899 (4)	0.1297 (3)	0.7579(5)	0.0328 (10)
H20	-0.078929	0.14864/	0.791600	0.039*
C21	-0.07/2 (4)	0.024/(4)	0.7475(4)	0.0424 (11)
H21	-0.059311	-0.026807	0.807948	0.051*
C22	-0.0904 (4)	-0.0056 (4)	0.6695 (4)	0.0415 (12)
H22	-0.078727	-0.078289	0.675550	0.050*
C23	-0.1208 (3)	0.0713 (3)	0.5833 (3)	0.0340 (10)
H23	-0.131851	0.051784	0.530019	0.041*
C24	-0.1355 (3)	0.1779 (3)	0.5732 (3)	0.0276 (9)
H24	-0.157055	0.230159	0.513513	0.033*
O4	-0.1812 (2)	0.6313 (2)	0.43281 (18)	0.0240 (6)
05	-0.1427 (2)	0.6352 (2)	0.57488 (19)	0.0263 (6)
C25	-0.2039 (3)	0.6717 (3)	0.5035 (3)	0.0227 (8)
C26	-0.3096 (3)	0.7777 (3)	0.5032 (3)	0.0227 (8)
C27	-0.2810 (3)	0.8697 (3)	0.4371 (3)	0.0231 (8)
C28	-0.1853 (3)	0.8743 (3)	0.4508 (3)	0.0301 (9)
H28	-0.137299	0.820458	0.499793	0.036*
C29	-0.1600 (3)	0.9568 (3)	0.3933 (3)	0.0337 (10)
H29	-0.093985	0.957802	0.402696	0.040*
C30	-0.2283 (4)	1.0370 (4)	0.3232 (3)	0.0368 (10)
H30	-0.210354	1.093329	0.284112	0.044*
C31	-0.3234 (4)	1.0339 (4)	0.3106 (3)	0.0382 (11)
H31	-0.371889	1.089322	0.262629	0.046*
C32	-0.3499 (3)	0.9516 (3)	0.3667 (3)	0.0304 (9)
H32	-0.416150	0.951342	0.356674	0.037*
C33	-0.3352 (3)	0.7907 (3)	0.6049 (3)	0.0257 (8)

C34	-0.3485 (3)	0.8825 (3)	0.6307 (3)	0.0314 (9)	
H34	-0.339816	0.940681	0.584050	0.038*	
C35	-0.3746 (4)	0.8894 (4)	0.7256 (4)	0.0437 (12)	
H35	-0.383374	0.952358	0.742752	0.052*	
C36	-0.3876 (4)	0.8057 (4)	0.7943 (3)	0.0447 (12)	
H36	-0.404321	0.810532	0.858570	0.054*	
C37	-0.3762(3)	0.7144 (4)	0.7688 (3)	0.0382 (11)	
H37	-0.386189	0.656965	0.815430	0.046*	
C38	-0.3502(3)	0.7074 (4)	0.6750 (3)	0.0311 (9)	
H38	-0.342435	0.644566	0.658109	0.037*	
C39	-0.4077(3)	0.7783(3)	0.4627(3)	0.0229 (8)	
C40	-0.4009(3)	0.7506 (3)	0.3772(3)	0.0223(8)	
H40	-0.334014	0.729044	0.343230	0.0237 (0)	
C41	-0.4902(3)	0.729044 0.7541(3)	0.3408(3)	0.0300 (9)	
U41	-0.482883	0.732093	0.283689	0.036*	
C_{42}	-0.5896(3)	0.732093	0.285089	0.0316 (9)	
U42	-0.650606	0.7893 (3)	0.361070	0.0310 (9)	
П42 С42	-0.030090	0.792100	0.3010/9	0.038°	
C45	-0.5981(3)	0.8199 (4)	0.4090 (3)	0.0334 (10)	
H43	-0.666067	0.844944	0.501464	0.040^{*}	
C44	-0.5089 (3)	0.8148 (3)	0.5072 (3)	0.0287 (9)	
H44	-0.516858	0.836590	0.564489	0.034*	
C45	0.3342 (4)	-0.0048 (5)	1.0374 (4)	0.0480 (13)	
C46	0.3902 (4)	-0.0087 (5)	0.9511 (4)	0.0585 (15)	
H46	0.427274	-0.076125	0.934371	0.070*	
C47	0.3928 (5)	0.0844 (6)	0.8891 (5)	0.074 (2)	
H47	0.430937	0.080655	0.829926	0.088*	
C48	0.3409 (6)	0.1817 (6)	0.9125 (5)	0.075 (2)	
H48	0.344572	0.245235	0.870865	0.090*	
C49	0.2825 (5)	0.1870 (5)	0.9978 (5)	0.0677 (19)	
H49	0.244438	0.254804	1.013625	0.081*	
C50	0.2794 (4)	0.0939 (5)	1.0599 (4)	0.0563 (15)	
H50	0.239503	0.098150	1.118164	0.068*	
C51	0.3334 (5)	-0.1067 (5)	1.1063 (4)	0.0719 (19)	
H51A	0.398951	-0.169935	1.096588	0.108*	
H51B	0.269827	-0.115018	1.094882	0.108*	
H51C	0.330958	-0.101436	1.172030	0.108*	
C52	1.0278 (10)	-0.0489 (11)	-0.0048 (11)	0.153 (5)	0.5
C53	1.0634 (11)	0.0326 (16)	-0.0286 (11)	0.153 (5)	0.5
H53	1.131932	0.020149	-0.058622	0.184*	0.5
C54	0.9986 (15)	0.1324 (13)	-0.0086(9)	0.153 (5)	0.5
H54	1.022959	0.188084	-0.024851	0.184*	0.5
C55	0.8983 (14)	0.1506 (8)	0.0354 (9)	0.153 (5)	0.5
H55	0.854108	0.218810	0.049064	0.184*	0.5
C56	0.8628 (8)	0.0691(11)	0.0592(7)	0.088(5)	0.5
H56	0 794229	0.081601	0.089209	0.106*	0.5
C57	0.9275(10)	-0.0306(9)	0.0391 (8)	0.066(4)	0.5
Н57	0.903200	-0.086335	0.055439	0.079*	0.5
C58	1 1043 (16)	-0.1507(13)	-0.0328(18)	0.075	0.5
0.50	1.1073 (10)	0.1507 (15)	0.0520 (10)	0.107 (15)	0.5

H58A	1.147324	-0.132880	-0.088484	0.251*	0.5	
H58B	1.063330	-0.184832	-0.048928	0.251*	0.5	
H58C	1.152284	-0.201064	0.020591	0.251*	0.5	
C59	0.4395 (9)	0.4875 (10)	-0.0082 (9)	0.088 (6)	0.5	
C60	0.3781 (7)	0.5983 (10)	-0.0446 (7)	0.153 (5)	0.5	
H60	0.308346	0.623626	-0.069200	0.184*	0.5	
C61	0.4186 (10)	0.6720 (8)	-0.0449 (8)	0.079 (4)	0.5	
H61	0.376605	0.747699	-0.069740	0.095*	0.5	
C62	0.5206 (11)	0.6349 (10)	-0.0089 (8)	0.153 (5)	0.5	
H62	0.548327	0.685295	-0.009072	0.184*	0.5	
C63	0.5821 (8)	0.5242 (11)	0.0275 (8)	0.134 (11)	0.5	
H63	0.651790	0.498818	0.052136	0.161*	0.5	
C64	0.5415 (9)	0.4504 (8)	0.0278 (8)	0.104 (7)	0.5	
H64	0.583532	0.374743	0.052676	0.125*	0.5	
C65	0.421 (2)	0.4005 (15)	-0.0297 (12)	0.153 (5)	0.5	
H65A	0.409788	0.418014	-0.098456	0.230*	0.5	
H65B	0.357617	0.395283	0.005788	0.230*	0.5	
H65C	0.484644	0.330811	-0.010675	0.230*	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.01304 (9)	0.01478 (10)	0.01329 (9)	-0.00636 (7)	-0.00039 (6)	-0.00557 (7)
Al1	0.0374 (7)	0.0314 (7)	0.0258 (6)	-0.0203 (6)	0.0014 (5)	-0.0117 (5)
01	0.0376 (18)	0.049 (2)	0.0400 (18)	-0.0229 (16)	0.0015 (14)	-0.0198 (15)
C1	0.052 (3)	0.047 (3)	0.067 (4)	-0.018 (3)	-0.012 (3)	-0.025 (3)
C2	0.047 (3)	0.027 (2)	0.029 (2)	-0.018 (2)	0.0001 (19)	-0.0075 (18)
C3	0.060 (3)	0.065 (3)	0.030 (2)	-0.038 (3)	-0.004 (2)	-0.016 (2)
C4	0.047 (3)	0.041 (3)	0.047 (3)	-0.028(2)	-0.005 (2)	-0.014 (2)
O2	0.0475 (18)	0.0466 (18)	0.0183 (14)	-0.0334 (16)	-0.0007 (13)	-0.0097 (13)
O3	0.0256 (14)	0.0203 (13)	0.0257 (14)	-0.0117 (11)	-0.0054 (11)	-0.0034 (11)
C5	0.0194 (18)	0.0199 (18)	0.025 (2)	-0.0081 (15)	0.0007 (15)	-0.0069 (15)
C6	0.0241 (19)	0.0241 (19)	0.0222 (19)	-0.0139 (16)	0.0003 (15)	-0.0067 (15)
C7	0.029 (2)	0.027 (2)	0.0189 (18)	-0.0185 (17)	-0.0003 (15)	-0.0031 (15)
C8	0.032 (2)	0.030 (2)	0.024 (2)	-0.0181 (18)	-0.0006 (16)	-0.0053 (16)
C9	0.037 (2)	0.034 (2)	0.027 (2)	-0.023 (2)	-0.0081 (18)	0.0000 (17)
C10	0.050 (3)	0.042 (3)	0.022 (2)	-0.032 (2)	-0.0093 (19)	-0.0013 (18)
C11	0.049 (3)	0.040 (3)	0.019 (2)	-0.027 (2)	0.0043 (18)	-0.0113 (18)
C12	0.036 (2)	0.031 (2)	0.023 (2)	-0.0203 (19)	0.0058 (17)	-0.0101 (17)
C13	0.026 (2)	0.027 (2)	0.025 (2)	-0.0165 (17)	0.0047 (16)	-0.0115 (16)
C14	0.031 (2)	0.033 (2)	0.035 (2)	-0.0144 (19)	0.0036 (19)	-0.0057 (19)
C15	0.036 (2)	0.043 (3)	0.041 (3)	-0.022 (2)	0.014 (2)	-0.012 (2)
C16	0.027 (2)	0.036 (3)	0.056 (3)	-0.014 (2)	0.003 (2)	-0.016 (2)
C17	0.031 (2)	0.029 (2)	0.044 (3)	-0.0140 (19)	-0.004 (2)	-0.0091 (19)
C18	0.029 (2)	0.032 (2)	0.027 (2)	-0.0155 (18)	0.0020 (17)	-0.0097 (17)
C19	0.0196 (19)	0.027 (2)	0.031 (2)	-0.0126 (16)	0.0006 (16)	-0.0089 (16)
C20	0.039 (2)	0.030 (2)	0.034 (2)	-0.021 (2)	-0.0053 (19)	-0.0018 (18)
C21	0.048 (3)	0.032 (3)	0.050 (3)	-0.024 (2)	-0.008(2)	0.001 (2)

C22	0.035(3)	0.024(2)	0.067(3)	-0.014(2)	-0.005(2)	-0.008(2)
C23	0.025(2)	0.030(2)	0.055(3)	-0.0130(18)	0.000(2)	-0.021(2)
C24	0.022(2)	0.026 (2)	0.038 (2)	-0.0117(17)	-0.0013(17)	-0.0103(17)
04	0.0219 (13)	0.0260 (14)	0.0255 (14)	-0.0085(11)	-0.0015(11)	-0.0110(11)
05	0.0196(13)	0.0295(15)	0.0269(15)	-0.0044(11)	-0.0029(11)	-0.0120(12)
C25	0.0205(19)	0.0220(19)	0.028 (2)	-0.0091(15)	0.0005(15)	-0.0101(16)
C26	0.0202(19)	0.0212(19)	0.020(2)	-0.0064(15)	-0.0023(15)	-0.0105(16)
C27	0.0201(18)	0.0227(19)	0.030(2)	-0.0083(15)	-0.0005(15)	-0.0125(16)
C28	0.022(2)	0.028(2)	0.043(3)	-0.0088(17)	-0.0016(18)	-0.0158(19)
C29	0.024(2)	0.034(2)	0.053(3)	-0.0145(19)	0.0061 (19)	-0.024(2)
C30	0.040(3)	0.031(2)	0.047(3)	-0.022(2)	0.010(2)	-0.015(2)
C31	0.040(3)	0.030(2)	0.046 (3)	-0.017(2)	-0.007(2)	-0.004(2)
C32	0.028(2)	0.027(2)	0.039(2)	-0.0135(18)	-0.0037(18)	-0.0078(18)
C33	0.0177(18)	0.033(2)	0.026 (2)	-0.0042(16)	-0.0031(15)	-0.0161(17)
C34	0.022 (2)	0.033(2)	0.038(2)	-0.0033(17)	-0.0048(17)	-0.0196(19)
C35	0.035 (3)	0.046 (3)	0.046 (3)	-0.003(2)	-0.007(2)	-0.028(2)
C36	0.035 (3)	0.065 (3)	0.031 (3)	-0.010(2)	0.002 (2)	-0.027(2)
C37	0.032(2)	0.050 (3)	0.026 (2)	-0.011(2)	-0.0008(18)	-0.011(2)
C38	0.027(2)	0.038 (2)	0.027(2)	-0.0113(19)	0.0001 (17)	-0.0112(18)
C39	0.0200 (18)	0.0205 (19)	0.027 (2)	-0.0074(15)	-0.0043(15)	-0.0049(15)
C40	0.0205 (19)	0.029 (2)	0.027 (2)	-0.0090(16)	-0.0006(16)	-0.0084(17)
C41	0.028 (2)	0.033 (2)	0.030 (2)	-0.0114 (18)	-0.0058(17)	-0.0111 (18)
C42	0.024 (2)	0.038 (2)	0.038 (2)	-0.0156 (19)	-0.0055 (18)	-0.0116 (19)
C43	0.019 (2)	0.038 (2)	0.044 (3)	-0.0092(18)	0.0008 (18)	-0.017(2)
C44	0.023 (2)	0.030 (2)	0.032 (2)	-0.0074 (17)	-0.0003 (17)	-0.0139 (18)
C45	0.035 (3)	0.063 (4)	0.046 (3)	-0.023 (3)	-0.008 (2)	-0.006 (3)
C46	0.043 (3)	0.071 (4)	0.052 (3)	-0.019 (3)	0.004 (3)	-0.012 (3)
C47	0.058 (4)	0.099 (6)	0.054 (4)	-0.043 (4)	-0.009(3)	0.014 (4)
C48	0.081 (5)	0.069 (5)	0.081 (5)	-0.047 (4)	-0.048 (4)	0.019 (4)
C49	0.069 (4)	0.054 (4)	0.081 (5)	-0.015 (3)	-0.043 (4)	-0.018 (3)
C50	0.048 (3)	0.074 (4)	0.050 (3)	-0.021 (3)	-0.014 (3)	-0.022 (3)
C51	0.071 (4)	0.081 (5)	0.064 (4)	-0.046 (4)	-0.012 (3)	0.010 (3)
C52	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C53	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C54	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C55	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C56	0.077 (10)	0.133 (15)	0.049 (8)	-0.037 (11)	-0.010 (7)	-0.023 (10)
C57	0.085 (9)	0.077 (9)	0.061 (8)	-0.075 (8)	-0.048 (7)	0.034 (6)
C58	0.19 (2)	0.063 (12)	0.20 (2)	0.052 (12)	-0.125 (19)	-0.094 (15)
C59	0.090 (12)	0.167 (18)	0.083 (12)	-0.115 (14)	0.040 (9)	-0.058 (12)
C60	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C61	0.072 (9)	0.066 (9)	0.099 (11)	-0.038 (8)	0.035 (8)	-0.023 (8)
C62	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)
C63	0.112 (15)	0.29 (3)	0.127 (16)	-0.16 (2)	0.072 (12)	-0.15 (2)
C64	0.095 (13)	0.22 (3)	0.046 (9)	-0.107 (16)	0.015 (7)	-0.042 (12)
C65	0.237 (14)	0.187 (12)	0.044 (5)	-0.111 (12)	-0.030 (6)	0.006 (6)

Geometric parameters (Å, °)

La1—O1	2.336 (3)	C27—C32	1.383 (5)	
La1—O2	2.501 (3)	C27—C28	1.400 (5)	
La1—O3	2.494 (3)	C28—C29	1.383 (6)	
La1—O3 ⁱ	2.403 (2)	C28—H28	0.9500	
La1—O4	2.396 (3)	C29—C30	1.370 (6)	
La1—O5 ⁱ	2.367 (3)	C29—H29	0.9500	
La1—C2	3.042 (4)	C30—C31	1.376 (6)	
Lal—C5	2.892 (4)	С30—Н30	0.9500	
La1—C7 ⁱ	3.318 (4)	C31—C32	1.385 (6)	
La1—C8 ⁱ	3.287 (4)	C31—H31	0.9500	
La1—C9 ⁱ	3.246 (4)	С32—Н32	0.9500	
La1—C10 ⁱ	3.212 (4)	C33—C34	1.388 (5)	
La1—C11 ⁱ	3.201 (4)	C33—C38	1.398 (6)	
La1—C12 ⁱ	3.239 (4)	C34—C35	1.403 (6)	
Al1-01	1.819 (3)	С34—Н34	0.9500	
All—C2	2.014 (4)	C35—C36	1.380 (7)	
All—C3	1.990 (5)	С35—Н35	0.9500	
All—C4	1.961 (4)	C36—C37	1.387 (7)	
La1—Al1	3.4481 (12)	С36—Н36	0.9500	
La1—La1 ⁱ	4.0432 (4)	C37—C38	1.388 (6)	
01—C1	1.398 (6)	С37—Н37	0.9500	
C1—H1A	0.9800	С38—Н38	0.9500	
C1—H1B	0.9800	C39—C40	1.394 (5)	
C1—H1C	0.9800	C39—C44	1.396 (5)	
C2—H2A	0.9800	C40—C41	1.388 (5)	
C2—H2B	0.9800	C40—H40	0.9500	
C2—H2C	0.9800	C41—C42	1.382 (6)	
С3—НЗА	0.9800	C41—H41	0.9500	
С3—Н3В	0.9800	C42—C43	1.378 (6)	
С3—Н3С	0.9800	C42—H42	0.9500	
C4—H4A	0.9800	C43—C44	1.385 (6)	
C4—H4B	0.9800	C43—H43	0.9500	
C4—H4C	0.9800	C44—H44	0.9500	
O2—C5	1.247 (4)	C45—C50	1.378 (8)	
O3—C5	1.269 (4)	C45—C46	1.387 (7)	
C5—C6	1.548 (5)	C45—C51	1.509 (7)	
C6—C7	1.538 (5)	C46—C47	1.383 (8)	
C6—C13	1.544 (5)	C46—H46	0.9500	
C6-C19	1.548 (5)	C47—C48	1.365 (9)	
С7—С8	1.394 (5)	C47—H47	0.9500	
C7—C12	1.397 (5)	C48—C49	1.389 (9)	
С8—С9	1.389 (5)	C48—H48	0.9500	
C8—H8	0.9500	C49—C50	1.385 (9)	
C9—C10	1.385 (6)	C49—H49	0.9500	
С9—Н9	0.9500	С50—Н50	0.9500	
C10-C11	1.379 (6)	C51—H51A	0.9800	

C10—H10	0.9500	C51—H51B	0.9800
C11—C12	1.403 (5)	C51—H51C	0.9800
C11—H11	0.9500	$C_{52} - C_{53}$	1 3900
C12—H12	0.9500	$C_{52} = C_{53}$	1 3900
C12 $C13$	1 394 (5)	C52 - C58	1.3960
C_{13} C_{18}	1.307 (5)	$C_{52} = C_{50}$	1.490 (8)
$C_{13}^{} C_{15}^{}$	1.397(5) 1.402(6)	C53 H53	0.0500
$C_{14} = C_{13}$	0.0500	C54 C55	1 2000
C_{14}	0.3300	C54 H54	0.0500
C15_U15	1.578 (0)	C55 C56	1 2000
	0.9300	C55_U55	1.3900
	1.376 (6)	C55—H55	0.9500
C16—H16	0.9500	C56—C57	1.3900
C17—C18	1.389 (6)	C56—H56	0.9500
C17—H17	0.9500	C57—H57	0.9500
C18—H18	0.9500	C58—H58A	0.9800
C19—C20	1.393 (6)	C58—H58B	0.9800
C19—C24	1.397 (5)	C58—H58C	0.9800
C20—C21	1.388 (6)	C59—C60	1.3900
C20—H20	0.9500	C59—C64	1.3900
C21—C22	1.389 (7)	C59—C65	1.489 (9)
C21—H21	0.9500	C60—C61	1.3900
C22—C23	1.379 (6)	C60—H60	0.9500
C22—H22	0.9500	C61—C62	1.3900
C23—C24	1.400 (5)	C61—H61	0.9500
С23—Н23	0.9500	C62—C63	1.3900
C24—H24	0.9500	C62—H62	0.9500
O4—C25	1.260 (4)	C63—C64	1.3900
O5—C25	1.271 (4)	С63—Н63	0.9500
C25—C26	1.563 (5)	C64—H64	0.9500
C26—C33	1.522 (5)	C65—H65A	0.9800
C26—C39	1.550 (5)	C65—H65B	0.9800
C26—C27	1.557 (5)	C65—H65C	0.9800
020 02,	1.007 (0)		0.9000
01-La1-05 ⁱ	82.41 (10)	С10—С9—Н9	120.2
O1—La1—O4	139.15 (10)	С8—С9—Н9	120.2
O5 ⁱ —La1—O4	135.39 (9)	C11—C10—C9	119.8 (4)
O1—La1—O3 ⁱ	147.59 (10)	C11—C10—H10	120.1
$O5^{i}$ —La1—O3 ⁱ	71.61 (9)	C9—C10—H10	120.1
O4—La1—O3 ⁱ	72.32 (9)	C10—C11—C12	120.6 (4)
01—La1—03	121.24 (10)	C10—C11—H11	119.7
0.5^{i} La1 -0.3	71.46 (9)	C12—C11—H11	119.7
04-La1-03	71.58 (9)	C7-C12-C11	120 3 (4)
03^{i} [a] -03	68 70 (10)	C7-C12-H12	119.8
01-La1-02	78 88 (10)	C11—C12—H12	119.8
05^{i} La1 02	91 47 (10)	C14-C13-C18	118 4 (4)
04 - 1a1 - 02	84 39 (9)	C14-C13-C6	118 1 (A)
$O_{3^{i}}$ I al O_{2}^{i}	119.83 (8)	C18-C13-C6	173 5 (3)
03 - La1 - 02	51 20 (8)	C_{13} C_{13} C_{14} C_{15}	123.3(3) 120.0(4)
-02	JI.47 (0)		120.0(7)

O1—La1—C5	101.05 (11)	C13—C14—H14	120.0
O5 ⁱ —La1—C5	82.20 (10)	C15—C14—H14	120.0
O4—La1—C5	75.29 (10)	C16—C15—C14	120.6 (4)
O3 ⁱ —La1—C5	94.40 (9)	C16—C15—H15	119.7
O3—La1—C5	25.94 (9)	C14—C15—H15	119.7
O2—La1—C5	25.44 (9)	C17—C16—C15	119.7 (4)
O1—La1—C2	64.73 (11)	C17—C16—H16	120.1
O5 ⁱ —La1—C2	144.59 (10)	C15—C16—H16	120.1
O4—La1—C2	74.60 (10)	C16—C17—C18	120.3 (4)
O3 ⁱ —La1—C2	143.78 (10)	С16—С17—Н17	119.9
O3—La1—C2	113.77 (10)	С18—С17—Н17	119.9
O2—La1—C2	70.40 (10)	C17—C18—C13	120.9 (4)
C5—La1—C2	91.12 (11)	C17—C18—H18	119.5
$01-La1-C11^{i}$	67.47 (11)	C13—C18—H18	119.5
$O5^{i}$ La1 $-C11^{i}$	89.35 (11)	C_{20} C_{19} C_{24}	118 4 (4)
$04-La1-C11^{i}$	117 69 (10)	C_{20} C_{19} C_{21}	120.8(3)
$O3^{i}$ La1 $C11^{i}$	92 66 (9)	C_{24} C_{19} C_{6}	120.0(3) 120.7(4)
$03-1a1-C11^{i}$	15640(10)	$C_{21} = C_{20} = C_{19}$	120.7(1) 120.9(4)
$02 - La1 - C11^{i}$	145.92 (9)	$C_{21} = C_{20} = H_{20}$	119.5
C_{5} L_{a1} C_{11}^{i}	166.69(10)	C_{19} C_{20} H_{20}	119.5
C_{2} Lat C_{11}^{i}	89.83 (11)	C_{20} C_{21} C_{22} C_{22} C_{21} C_{22}	120.6 (4)
$01 - 1 = 1 - C10^{i}$	73.06 (11)	C_{20} C_{21} C_{22}	119.7
O_{1}^{i} La1 C_{1}^{0}	114 19 (11)	$C_{20} = C_{21} = H_{21}$	119.7
$04 - 1 = 1 - C10^{i}$	97.09.(11)	$C_{22} = C_{21} = C_{121}$	119.7
O_{i}^{i} La1 C10 ⁱ	99.91 (9)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	120.5
$03 - La1 - C10^{i}$	165.67(10)	$C_{23} = C_{22} = H_{22}$	120.5
$O_2 = L_{a1} = C_{10}^{i}$	138 28 (0)	$C_{21} = C_{22} = 1122$	120.9
C_{2} La1 C_{10}^{i}	150.20(9) 160.05(11)	$C_{22} = C_{23} = C_{24}$	120.9 (4)
$C_{2} = L_{2} L_{1} = C_{10}^{i}$	60.02(11)	$C_{22} = C_{23} = H_{23}$	119.0
C_2 — La_1 — C_{10}	09.92(11)	$C_{24} = C_{23} = H_{23}$	119.0 120.2(4)
$C_{11} = C_{10}$	24.04 (11)	$C_{19} = C_{24} = C_{23}$	120.2 (4)
O_1 —La1—C12	30.34(10)	$C_{19} - C_{24} - H_{24}$	119.9
03 La1 $-C12^{i}$	75.20(10)	$C_{25} = C_{24} = H_{24}$	119.9
04—La1—C12 ²	(114.12(10))	$C_{23} = 04 = La1$	139.1(2)
$O_2 = La1 = C12^{i}$	122.01(9)	$C_{25} = 05 = C_{25}$	141.2(2)
$03 - La1 - C12^{\circ}$	132.01(9)	04 - 025 - 03	124.1(3)
$02-La1-C12^{\circ}$	101.48(10) 155.02(11)	04-025-026	119.0(3)
C_3 —La1— C_{12}	155.02 (11)	03-025-026	110.2(3)
C_2 — $La1$ — C_{12}	115.49(11) 25.1((10)	$C_{33} = C_{20} = C_{39}$	109.0(3)
$C11^{i}$ $La1 - C12^{i}$	25.16 (10)	$C_{33} = C_{26} = C_{27}$	111.5 (3)
$C10$ — $La1$ — $C12^{4}$	44.00 (11)	$C_{39} = C_{26} = C_{27}$	109.9 (3)
OI-LaI-C9'	96.80 (11)	$C_{33} = C_{26} = C_{25}$	109.0(3)
O_{2}^{-}	125.80 (10)	$C_{39} = C_{26} = C_{25}$	113.0 (3)
U4—La1—C9 ⁴	/4.39 (10)	$C_2/-C_26-C_25$	103.8 (3)
U_3 — La1 — U_9^{i}	85.65 (9)	$C_{22} = C_{21} = C_{22}$	11/.8(4)
U_3 —La1—C9 ⁴	141.16 (9)	$C_{32} - C_{27} - C_{26}$	122.1 (3)
U_2 —La1—C9 ⁴	141.89 (10)	$C_{28} - C_{27} - C_{26}$	120.0 (3)
$C5$ —Lal— $C9^{1}$	148.71 (11)	C29—C28—C27	120.4 (4)
$C2-La1-C9^{1}$	73.57 (10)	C29—C28—H28	119.8

C11 ⁱ —La1—C9 ⁱ	43.54 (11)	C27—C28—H28	119.8
C10 ⁱ —La1—C9 ⁱ	24.77 (11)	C30—C29—C28	121.3 (4)
C12 ⁱ —La1—C9 ⁱ	50.79 (11)	С30—С29—Н29	119.3
O1—La1—C8 ⁱ	115.26 (11)	С28—С29—Н29	119.3
O5 ⁱ —La1—C8 ⁱ	109.86 (10)	C29—C30—C31	118.4 (4)
O4—La1—C8 ⁱ	71.71 (10)	С29—С30—Н30	120.8
O3 ⁱ —La1—C8 ⁱ	59.29 (9)	С31—С30—Н30	120.8
O3—La1—C8 ⁱ	122.88 (9)	C30—C31—C32	121.2 (4)
Ω_{2} —La1—C8 ⁱ	155.27 (10)	C30—C31—H31	119.4
C_{5} La1 C_{8}^{i}	142 66 (10)	C_{32} C_{31} H_{31}	119.4
C_2 La1 C_3	96.47 (10)	C_{27} C_{32} C_{31}	120.8 (4)
C_{11i} La1 C_{8i}	50.47(10)	$C_{27} = C_{32} = C_{31}$	110.6
$C10^{i}$ Lo1 $C8^{i}$	30.24(11)	$C_{21} = C_{32} = H_{32}$	119.0
C10— $La1$ — $C8$	43.27 (10)	$C_{31} - C_{32} - C_{32}$	119.0
C_{12} $-L_{a1}$ $-C_{a}$	42.94 (10)	$C_{34} = C_{33} = C_{38}$	118.4 (4)
C_{9} —La1— C_{8}	24.55 (9)	$C_{34} = C_{33} = C_{26}$	123.0 (4)
$OI - LaI - C7^{i}$	110.09 (10)	$C_{38} = C_{33} = C_{26}$	118.0 (3)
OS^{1} —Lal—C/ ¹	85.71 (10)	C33—C34—C35	120.1 (4)
$O4$ —La1— $C7^{1}$	90.93 (9)	С33—С34—Н34	119.9
$O3^{1}$ —La1—C7 ¹	50.27 (9)	С35—С34—Н34	119.9
O3—La1—C7 ⁱ	118.89 (8)	C36—C35—C34	120.7 (4)
O2—La1—C7 ⁱ	170.08 (9)	С36—С35—Н35	119.6
C5—La1—C7 ⁱ	144.67 (10)	С34—С35—Н35	119.6
C2—La1—C7 ⁱ	116.78 (10)	C35—C36—C37	119.5 (4)
C11 ⁱ —La1—C7 ⁱ	43.70 (10)	С35—С36—Н36	120.2
$C10^{i}$ — $La1$ — $C7^{i}$	50.94 (10)	С37—С36—Н36	120.2
$C12^{i}$ — $La1$ — $C7^{i}$	24.56 (9)	C36—C37—C38	119.8 (5)
C9 ⁱ —La1—C7 ⁱ	43.50 (10)	С36—С37—Н37	120.1
C8 ⁱ —La1—C7 ⁱ	24.35 (9)	С38—С37—Н37	120.1
O1—La1—Al1	29.38 (8)	C37—C38—C33	121.3 (4)
O5 ⁱ —La1—Al1	110.37 (7)	С37—С38—Н38	119.3
04—La1—Al1	109.78 (6)	C33—C38—H38	119.3
$O3^{i}$ _La1_All	169.94 (6)	C40-C39-C44	117.2 (3)
O3-Ia1-A11	121 36 (6)	C40-C39-C26	121.8(3)
Ω^2 _La1_All	70.20(6)	$C_{44} = C_{39} = C_{26}$	121.0(3)
C_{2} Lat All	95 64 (8)	$C_{41} = C_{40} = C_{39}$	120.0(3)
C_2 La1 All	35.46 (8)	C_{41} C_{40} H_{40}	110 5
C_2 — La_1 — A_{11}	33.40(3)	$C_{41} = C_{40} = H_{40}$	119.5
C10i Lo1 All	77.02(7)	$C_{33} = C_{40} = 1140$	119.3
C10— $La1$ —All	(0.17(7))	C42 - C41 - C40	120.9 (4)
	102.05(7)	C42 - C41 - H41	119.0
C9-LaI-AII	8/.46 (/)	C40 - C41 - H41	119.6
C8 ¹ —La1—All	111.50 (7)	C43 - C42 - C41	118.6 (4)
C/i-Lal-All	119.68 (7)	C43—C42—H42	120.7
OI—Lal—Lal ¹	145.25 (8)	C41—C42—H42	120.7
O5 ¹ —Lal—Lal ¹	67.44 (6)	C42—C43—C44	120.8 (4)
O4—La1—La1 ¹	67.95 (6)	C42—C43—H43	119.6
O3 ⁱ —La1—La1 ⁱ	35.07 (6)	C44—C43—H43	119.6
O3—La1—La1 ⁱ	33.63 (6)	C43—C44—C39	121.4 (4)
O2—La1—La1 ⁱ	84.84 (6)	C43—C44—H44	119.3

C5—La1—La1 ⁱ	59.40 (7)	C39—C44—H44	119.3
C2—La1—La1 ⁱ	136.72 (8)	C50—C45—C46	118.9 (6)
C11 ⁱ —La1—La1 ⁱ	126.35 (7)	C50—C45—C51	120.2 (6)
C10 ⁱ —La1—La1 ⁱ	134.41 (7)	C46—C45—C51	120.9 (6)
C12 ⁱ —La1—La1 ⁱ	101.30(7)	C47—C46—C45	120.8 (6)
C9 ⁱ —La1—La1 ⁱ	114.49 (7)	C47—C46—H46	119.6
$C8^{i}$ —La1—La1 ⁱ	91.79 (7)	C45—C46—H46	119.6
$C7^{i}$ La1–La1 ⁱ	85 30 (6)	C48 - C47 - C46	120.3(7)
$A11 - La1 - La1^{i}$	154 99 (2)	C48—C47—H47	119.8
$\Omega_1 = \Lambda_{11} = C_4$	11177(18)	$C_{46} - C_{47} - H_{47}$	119.8
O1 A11 C3	108.32(18)	$C_{40} = C_{40}$	119.0
C_{4} A_{11} C_{3}	100.32(10) 113.2(2)	$C_{47} = C_{48} = C_{49}$	119.4 (0)
C_4 A_{11} C_2	113.2(2) 100.02(17)	$C_{4}^{-0} = C_{40}^{-1148} = 1148$	120.3
OI = AII = C2	100.05(17)	С49—С48—П48	120.5
C_4 All C_2	110.7(2)	$C_{50} = C_{49} = C_{48}$	120.4 (0)
C_3 —AII— C_2	112.0 (2)	C30-C49-H49	119.8
Ol—All—Lal	39.05 (10)	С48—С49—Н49	119.8
C4—Al1—La1	120.09 (15)	C45—C50—C49	120.2 (6)
C3—Al1—La1	124.87 (14)	С45—С50—Н50	119.9
C2—Al1—La1	61.19 (13)	С49—С50—Н50	119.9
C1—O1—Al1	118.0 (3)	C45—C51—H51A	109.5
C1—O1—La1	130.3 (3)	C45—C51—H51B	109.5
Al1—O1—La1	111.57 (15)	H51A—C51—H51B	109.5
O1—C1—H1A	109.5	C45—C51—H51C	109.5
O1—C1—H1B	109.5	H51A—C51—H51C	109.5
H1A—C1—H1B	109.5	H51B—C51—H51C	109.5
01—C1—H1C	109.5	C53—C52—C57	120.0
H1A—C1—H1C	109.5	C53—C52—C58	114.2 (15)
H1B—C1—H1C	109.5	C57—C52—C58	125.7 (15)
Al1—C2—La1	83.34 (15)	C54—C53—C52	120.0
A11—C2—H2A	109.5	С54—С53—Н53	120.0
La1—C2—H2A	166.5	С52—С53—Н53	120.0
A11 - C2 - H2B	109.5	$C_{55} - C_{54} - C_{53}$	120.0
I_{a1} C_{2} H_{2B}	60.7	$C_{55} - C_{54} - H_{54}$	120.0
$H_{2A} = C_2 + H_{2B}$	100 5	C53 C54 H54	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{55} = C_{54} = C_{54} = C_{54}$	120.0
$H_1 = C_2 = H_2 C_1$	109.5 69 5	$C_{54} = C_{55} = C_{50}$	120.0
$Lal = C_2 = H_2C$	100.5	С54—С55—Н55	120.0
H2A - C2 - H2C	109.5	С56—С55—П55	120.0
$H_2B = C_2 = H_2C$	109.5	$C_{55} = C_{56} = C_{57}$	120.0
All—C3—H3A	109.5	C35—C36—H36	120.0
All—C3—H3B	109.5	С57—С56—Н56	120.0
НЗА—СЗ—НЗВ	109.5	C56—C57—C52	120.0
All—C3—H3C	109.5	C56—C57—H57	120.0
НЗА—СЗ—НЗС	109.5	С52—С57—Н57	120.0
НЗВ—СЗ—НЗС	109.5	C52—C58—H58A	109.5
All—C4—H4A	109.5	C52—C58—H58B	109.5
Al1—C4—H4B	109.5	H58A—C58—H58B	109.5
H4A—C4—H4B	109.5	C52—C58—H58C	109.5
Al1—C4—H4C	109.5	H58A—C58—H58C	109.5

H4A—C4—H4C	109.5	H58B—C58—H58C	109.5
H4B—C4—H4C	109.5	C60—C59—C64	120.0
C5—O2—La1	95.0 (2)	C60—C59—C65	124.4 (10)
C5—O3—La1 ⁱ	152.7 (2)	C64—C59—C65	113.0 (12)
C5—O3—La1	94.8 (2)	C61—C60—C59	120.0
La1 ⁱ —O3—La1	111.30 (9)	С61—С60—Н60	120.0
O2—C5—O3	118.4 (3)	С59—С60—Н60	120.0
02	123.7 (3)	C60—C61—C62	120.0
03-C5-C6	117.8 (3)	С60—С61—Н61	120.0
02-C5-La1	59.51 (19)	C62—C61—H61	120.0
03-C5-La1	59 24 (19)	C_{63} — C_{62} — C_{61}	120.0
C6-C5-La1	172.3 (2)	C63—C62—H62	120.0
C7-C6-C13	1118(3)	C61 - C62 - H62	120.0
C7-C6-C5	104 6 (3)	C62 - C63 - C64	120.0
C_{13} C_{6} C_{5}	1100(3)	C62 - C63 - H63	120.0
C7-C6-C19	1122(3)	C64 - C63 - H63	120.0
C_{13} C_{6} C_{19}	1067(3)	C63 - C64 - C59	120.0
C_{5}	111.6(3)	C63 - C64 - H64	120.0
$C_{3} = C_{0} = C_{1}^{2}$	117.8(4)	C59 - C64 - H64	120.0
C_{8} C_{7} C_{6}	119.4 (3)	$C_{59} = C_{65} = H_{65A}$	109.5
C_{12} C_{7} C_{6}	117.4(3) 122.2(4)	C59—C65—H65B	109.5
$C_{12} = C_{7} = C_{0}$	122.2(4) 122.0(4)	H65A - C65 - H65B	109.5
C9-C8-H8	110.0	C59-C65-H65C	109.5
C7 C8 H8	119.0	H65A C65 H65C	109.5
$C_{10} = C_{0} = C_{0}$	119.0	H65R C65 H65C	109.5
010-09-08	119.5 (4)	1105B-C05-1105C	109.5
C4—A11—O1—C1	65.1 (4)	05 - C25 - C26 - C39	-142.5(3)
C3—Al1—O1—C1	-60.3 (4)	O4—C25—C26—C27	-77.6 (4)
C2—A11—O1—C1	-177.7 (4)	Q5—C25—C26—C27	98.5 (4)
La1 - A11 - O1 - C1	176.5 (4)	C33—C26—C27—C32	-108.6(4)
C4—Al1—O1—La1	-111.4(2)	C_{39} C_{26} C_{27} C_{32}	13.0 (5)
C_3 —Al1—O1—La1	123.2 (2)	C_{25} C_{26} C_{27} C_{32}	134.2 (4)
C_2 —Al1— O_1 —La1	5.8 (2)	C_{33} C_{26} C_{27} C_{28}	68.4 (4)
La1 - 02 - C5 - 03	-6.3(4)	C_{39} C_{26} C_{27} C_{28}	-170.0(3)
La1—O2—C5—C6	171.8 (3)	C25—C26—C27—C28	-48.8 (4)
$La1^{i} - O3 - C5 - O2$	169.6 (3)	C_{32} C_{27} C_{28} C_{29}	-1.8(6)
La1-03-C5-02	6.4 (4)	C26—C27—C28—C29	-179.0(4)
$La1^{i} - 03 - C5 - C6$	-8.6(7)	C_{27} C_{28} C_{29} C_{30}	1.3 (6)
La1—O3—C5—C6	-171.9(3)	C_{28} C_{29} C_{30} C_{31}	-0.1(7)
$La1^{i}$ —O3—C5—La1	163.3 (5)	C29—C30—C31—C32	-0.5(7)
02—C5—C6—C7	170.6 (4)	C_{28} — C_{27} — C_{32} — C_{31}	1.2 (6)
Q3—C5—C6—C7	-11.2(4)	C_{26} C_{27} C_{32} C_{31}	178.3 (4)
02	-69.2 (5)	C30—C31—C32—C27	-0.1 (7)
O3-C5-C6-C13	109.0 (4)	C39—C26—C33—C34	-112.0(4)
02	49.1 (5)	C27—C26—C33—C34	9.8 (5)
03-C5-C6-C19	-132.8 (3)	C25—C26—C33—C34	123.8 (4)
C13—C6—C7—C8	170.5 (3)	C39—C26—C33—C38	65.4 (4)
	\ /		\ /

C19—C6—C7—C8	50.7 (5)	C25—C26—C33—C38	-58.7 (4)
C13—C6—C7—C12	-18.2 (5)	C38—C33—C34—C35	1.0 (6)
C5—C6—C7—C12	100.9 (4)	C26—C33—C34—C35	178.4 (4)
C19—C6—C7—C12	-138.0 (4)	C33—C34—C35—C36	-0.1 (7)
C12—C7—C8—C9	1.7 (6)	C34—C35—C36—C37	-0.9 (7)
C6—C7—C8—C9	173.3 (3)	C35—C36—C37—C38	1.0 (7)
C7—C8—C9—C10	0.0 (6)	C36—C37—C38—C33	-0.1 (6)
C8—C9—C10—C11	-1.0 (6)	C34—C33—C38—C37	-0.9 (6)
C9—C10—C11—C12	0.2 (6)	C26—C33—C38—C37	-178.5 (4)
C8—C7—C12—C11	-2.4 (6)	C33—C26—C39—C40	-169.7 (4)
C6—C7—C12—C11	-173.8 (3)	C27—C26—C39—C40	67.6 (4)
C10—C11—C12—C7	1.5 (6)	C25—C26—C39—C40	-47.9 (5)
C7—C6—C13—C14	-58.2 (4)	C33—C26—C39—C44	15.3 (5)
C5—C6—C13—C14	-173.9 (3)	C27—C26—C39—C44	-107.4 (4)
C19—C6—C13—C14	64.8 (4)	C25—C26—C39—C44	137.1 (4)
C7—C6—C13—C18	123.4 (4)	C44—C39—C40—C41	-3.2 (6)
C5—C6—C13—C18	7.6 (5)	C26—C39—C40—C41	-178.4 (4)
C19—C6—C13—C18	-113.7 (4)	C39—C40—C41—C42	2.6 (6)
C18—C13—C14—C15	-1.6 (6)	C40—C41—C42—C43	-0.6 (6)
C6-C13-C14-C15	179.8 (4)	C41—C42—C43—C44	-0.6 (7)
C13—C14—C15—C16	1.6 (7)	C42—C43—C44—C39	-0.2 (7)
C14—C15—C16—C17	-0.8 (7)	C40—C39—C44—C43	2.1 (6)
C15—C16—C17—C18	0.1 (7)	C26—C39—C44—C43	177.3 (4)
C16—C17—C18—C13	-0.2 (6)	C50—C45—C46—C47	1.0 (8)
C14—C13—C18—C17	1.0 (6)	C51—C45—C46—C47	-178.5 (5)
C6-C13-C18-C17	179.4 (3)	C45—C46—C47—C48	0.6 (9)
C7—C6—C19—C20	24.5 (5)	C46—C47—C48—C49	-2.0 (9)
C13—C6—C19—C20	-98.2 (4)	C47—C48—C49—C50	1.8 (9)
C5—C6—C19—C20	141.6 (4)	C46—C45—C50—C49	-1.2 (8)
C7—C6—C19—C24	-160.1 (3)	C51—C45—C50—C49	178.3 (5)
C13—C6—C19—C24	77.2 (4)	C48—C49—C50—C45	-0.2 (8)
C5—C6—C19—C24	-43.1 (5)	C57—C52—C53—C54	0.0
C24—C19—C20—C21	0.7 (6)	C58—C52—C53—C54	178.4 (16)
C6—C19—C20—C21	176.1 (4)	C52—C53—C54—C55	0.0
C19—C20—C21—C22	1.5 (7)	C53—C54—C55—C56	0.0
C20—C21—C22—C23	-2.7 (7)	C54—C55—C56—C57	0.0
C21—C22—C23—C24	1.6 (7)	C55—C56—C57—C52	0.0
C20—C19—C24—C23	-1.7 (6)	C53—C52—C57—C56	0.0
C6—C19—C24—C23	-177.2 (3)	C58—C52—C57—C56	-178.3 (18)
C22—C23—C24—C19	0.5 (6)	C64—C59—C60—C61	0.0
La1—O4—C25—O5	-7.1 (6)	C65—C59—C60—C61	-160.7 (16)
La1-04-C25-C26	168.7 (2)	C59—C60—C61—C62	0.0
La1 ⁱ —O5—C25—O4	6.7 (7)	C60—C61—C62—C63	0.0
La1 ⁱ —O5—C25—C26	-169.3 (3)	C61—C62—C63—C64	0.0
O4—C25—C26—C33	163.5 (3)	C62—C63—C64—C59	0.0

O5—C25—C26—C33	-20.4 (5)	C60—C59—C64—C63	0.0
O4—C25—C26—C39	41.4 (5)	C65—C59—C64—C63	162.8 (13)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33-C38, C39-C44, C52-C57 and C19-C24 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$C1$ —H1 C ······ $Cg1^i$	0.98	2.69	3.425 (6)	132
C17—H17·····Cg2	0.95	2.71	3.485 (4)	139
C21—H21·····Cg3 ⁱⁱ	0.95	2.93	3.677 (8)	136
C29—H29······Cg4	0.95	2.62	3.415 (4)	142
C32—H32·····Cg2	0.95	2.95	3.654 (5)	132
C44—H44Cg1	0.95	2.88	3.592 (5)	132

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1.