

Received 5 November 2018 Accepted 7 November 2018

Edited by P. McArdle, National University of Ireland, Ireland

Keywords: oxalate; hydrogen bonding; ammonium cations; crystal structure.

CCDC references: 1877733; 1877732; 1877731

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Hydrogen-bonding chain and dimer motifs in pyridinium and morpholinium hydrogen oxalate salts

David Z. T. Mulrooney, Eimear C. Madden, Rhona F. Lonergan, Valentyna D. Slyusarchuk, Helge Müller-Bunz and Tony D. Keene*

School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. *Correspondence e-mail: tony.keene@ucd.ie

We present here three compounds consisting of pyridinium or morpholinium hydrogen oxalates, each displaying different hydrogen-bonding motifs, resulting in chains for 4-(dimethylamino)pyridinium hydrogen oxalate 0.22-hydrate, $C_7H_{11}N_2^+ \cdot C_2HO_4^- \cdot 0.22H_2O$ (1), dimers for 4-*tert*-butylpyridinium hydrogen oxalate, $C_9H_{14}N^+ \cdot C_2HO_4^-$ (2), and chains for morpholinium hydrogen oxalate, $C_4H_{10}NO^+ \cdot C_2HO_4^-$ (3).

1. Chemical context

Oxalate is a common ligand in coordination chemistry, utilized for its ability to chelate and bridge metal ions to form complexes and coordination polymers (Decurtins, 1999). Its ability to facilitate strong magnetic interactions and stability under differing synthetic conditions makes it a ligand of choice for the rational design of magnetic materials (Pilkington & Decurtins, 2003). As the simplest dicarboxylic acid, it can also be found in differing states of deprotonation, providing a range of hydrogen-bonding motifs. Oxalate also has the unusual property of containing a C-C bond with a bond order of slightly less than one, resulting in the carboxylate moieties taking a perpendicular orientation in gas phase calculations (Herbert & Ortiz, 2000). While this structure is the most energetically favourable, the difference in energy between the 90° and 0° torsion angles is slight and is often overridden in hydrogen-bonded structures. Ammonium hydrogen oxalate salts are often useful precursors in the formation of transition metal complexes (Keene et al., 2003) and coordination polymers (Keene et al., 2004). Our research group has an interest in these precursors as part of our investigations into molecular magnets (Keene, et al. 2010), not only for their usefulness in this role, but for the complex hydrogen-bonded structures that often arise on crystallization. Previous work from our group has focused on the structure of discrete oxalate dianions and drawn correlations between torsion angles, bond lengths and the crystal packing (Keene et al., 2012).

2. Structural commentary

Compound 1 crystallizes in the triclinic space group $P\overline{1}$. The asymmetric unit of 1 (Fig. 1) consists of two 4-dimethylaminopyridinium cations, two hydrogen oxalate anions and a partial-occupancy water molecule [44.3 (4)% occupancy]. The two hydrogen oxalate anions show markedly different structures with the C21–C22 moiety displaying almost perpendicular O–C–C–O torsion angles of -82.784 (9) and -81.855 (10)° while C41–C42 is closer to planar with torsion angles of -13.267 (11) and -12.915 (10)°. The C–C bonds (Table 1) are consistent with other oxalate anions being 1.5276 (18) Å for C21–C22 and 1.5527 (18) Å for C41–C42.

Compound 2 crystallizes in the monoclinic space group $P2_1/c$. The asymmetric unit of 2 (Fig. 2) consists of two 4-*t*-butylpyridinium cations and two hydrogen oxalate anions.

Figure 1

Asymmetric unit of **1**. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Asymmetric unit of **2**. Displacement ellipsoids are drawn at the 50% probability level.

Table 1	
Selected geometric parameters (Å, $^{\circ}$) for (1).	

0	1 ()	, , ,	
C21-O23	1.2639 (16)	C22-O28	1.196 (2)
C21-O24	1.2310 (17)	C22-O27	1.2976 (19)
C21-C22	1.5276 (18)	C41-C42	1.5527 (18)
O24-C21-O23	126.89 (13)	O46-C41-O45	127.39 (13)
O28-C22-O27	125.39 (14)	O43-C42-O44	122.19 (12)

Both of the hydrogen oxalate moieties are nearly planar with torsion angles of $1.39 (13)^{\circ}$ and $1.58 (15)^{\circ}$ for C11–C15 and $1.93 (14)^{\circ}$ and $2.73 (15)^{\circ}$ for C13–C23.

Compound **3** crystallizes in the monoclinic space group $P2_1/c$. The asymmetric unit of **3** (Fig. 3) consists of one morpholinium cation and one hydrogen oxalate anion. The hydrogen oxalate moiety is near to planar with torsion angles of -11.3 (2) and -12.0 (2)°.

3. Supramolecular features

Each of the salts displays a hydrogen-bonded network, building the three-dimensional structure of the crystal (Fig. 4). In compound **1**, every oxygen atom of the hydrogen oxalates and water groups takes part in hydrogen bonds (Table 2). Extensive $C-H\cdots O$ interactions and $\pi-\pi$ stacking $[Cg1\cdots Cg1(2 - x, -y, 2 - z) = 3.6418$ (8) Å and $Cg2\cdots Cg2(2 - x, 1 - y, 1 - z) = 3.6535$ (9) Å; Cg1 and Cg2are the centroids of the N11/C12–C16 and N31/C32–C36 rings, respectively] complete the intermolecular interactions. The hydrogen oxalate moieties form a hydrogen-bonded chain along the [110] direction.

In compound 2, the hydrogen oxalate moieties form hydrogen-bonded pairs (Table 3) with a four-membered ring formed at the centre of the pair. The opposite sides of the oxalates form a bifurcated hydrogen bond to the 4-t-butylpyridinium groups, generating a supramolecular tecton. These are then built into the three-dimensional structure through $C-H\cdots O$ interactions. The presence of the t-butyl groups suppresses $\pi-\pi$ stacking due to steric interference with no obvious $C-H\cdots\pi$ interactions present.

Asymmetric unit of **3**. Displacement ellipsoids are drawn at the 50% probability level.

research communications

Figure 4

Hydrogen bonding in hydrogen oxalate groups: (a) chain formed in compound $\mathbf{1}$, (b) hydrogen-bonded dimer tecton in compound $\mathbf{2}$ and (c) chain formed in compound $\mathbf{3}$. [Please include the cell axes]

In compound 3, the hydrogen oxalates form a chain along the *a*-axis direction. These chains form the core of the structure with hydrogen bonds (Table 4) coming from the morpholinium along with $C-H\cdots O$ interactions that form the three-dimensional structure.

4. Database survey

Hydrogen-bonding motifs in hydrogen oxalate compounds often tend towards chain formation. Different chain types are formed depending on the conformation of the hydroxyl group, *i.e.* whether the O–H bond is *cis* or *trans* to the C–C bond. In compound 3, the hydrogen oxalate is the trans conformer and produces a chain along the *a*-axis direction and is comparable to compounds reported in the Cambridge Structural Database (CSD version 5.39, updated August 2018, Groom et al., 2016), such as ACOQER (Mora et al., 2017) and FOMBIU (Traut-Johnstone et al., 2014). The hydrogen oxalates in compound 2 are in the cis conformation and form a hydrogen-bonded pair, as seen in a small handful of structures: the combination of this pair-wise interaction with a birfurcated hydrogen bond to a pyridinium cation is also seen in EZECOC (Androš et al., 2011; Chen et al. 2012,), GULQOV (Thomas et al., 2015; Suresh et al., 2015), LOFMAW (Hu et al., 2014), YEPBAX (Said et al., 2006), YINVUO (Martin et al., 2013) and XEJRIQ (Edwards & Schafer, 2017). The chain type in 1 is not seen in any hydrogen oxalate compounds in the CSD.

5. Synthesis and crystallization

Compound 1 was synthesized by adding a solution of 4-dimethylaminopyridine (1.0 mmol, 122 mg) in water (10 ml) and oxalic acid dihydrate (126 mg, 1.0 mmol) in water (10 ml). The resultant solution was left to evaporate to a white powder and

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O27−H27···O45	0.84	1.72	2.553 (2)	171
$O44 - H44 \cdots O23^{i}$	0.84	1.84	2.645 (2)	160
N31-H31···O45	0.88	1.87	2.672 (2)	151
$N11-H11\cdots O23$	0.88	1.87	2.749 (2)	174

Symmetry code: (i) x - 1, y + 1, z.

Table 3				
Hydrogen-bond geometry	(Å.	°)	for 2	

	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
2.22	2.702(2)	116
1.89	2.621(2)	144
1.95	2.667(2)	143
2.17	2.665 (2)	117
1.80	2.635 (2)	159
1.84	2.691 (2)	162
	2.22 1.89 1.95 2.17 1.80 1.84	11 11 12 11 2.22 2.702 (2) 1.89 2.621 (2) 1.95 2.667 (2) 2.17 2.665 (2) 1.80 2.635 (2) 1.84 2.691 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, °) for 3.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O23 - H23 \cdots O26^{i}$ $N11 - H11A \cdots O26^{ii}$ $N11 - H11B \cdots O25^{iii}$	0.84 0.91 0.91	1.75 2.06 1.92	2.587 (2) 2.879 (2) 2.773 (2)	173 149 156
Symmetry codes: ($-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.	(i) $x + 1, y$, z; (ii)	-x+1, -y+1,	-z + 1; (iii)

was then recrystallized from hot acetonitrile to give colourless crystals suitable for single-crystal X-ray diffraction.

The synthesis of compound **2** was achieved by addition of anhydrous oxalic acid (900 mg, 10 mmol) in distilled water (10 ml) to a non-miscible mixture of 4-*t*-butylpyridine (1.465ml, 10 mmol) and distilled water (10 ml) to give a homogenous solution. This was left to evaporate over five days and the white product recrystallized from hot methanol.

Compound **3** was synthesized by adding a solution of oxalic acid dihydrate (1271 mg, 10 mmol) in water (10 ml) to a solution of morpholine (862 μ l, 871 mg, 10 mmol) in water (10 ml) and leaving the resultant solution to evaporate until crystals had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. In all cases, the proton of the hydrogen oxalate was placed according to C–O bond lengths (O–H = 0.84 Å). All other H atoms were positioned geometrically (N–H = 0.88, O–H = 0.97, C–H = 0.95– 0.98 Å) and refined as riding with $U_{iso}(H) = kU_{eq}(parent$ atom) where k = 1.2 for all C–H and N–H groups and 1.5 for Cmethyl, Ohydroxy and Owater.

The occupancy of the water molecule in compound 1 was allowed to refine freely to 0.443 (4). Attempts to split the O27/

Table 5Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_7H_{11}N_2^+ C_2HO_4^- 0.22H_2O$	$C_9H_{14}N^+ \cdot C_2HO_4^-$	$C_4H_{10}NO^+ \cdot C_2HO_4^-$
Mr	216.21	225.24	177.16
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	101	101	100
a, b, c (Å)	7.5241 (3), 8.2898 (3), 18.7359 (6)	9.7043 (1), 20.6128 (2), 11.3649 (2)	5.6867 (3), 12.2465 (8), 12.0831 (6)
α, β, γ (°)	89.738 (3), 79.626 (3), 64.741 (4)	90, 95.301 (1), 90	90, 113.150 (4), 90
$V(\dot{A}^3)$	1036.17 (7)	2263.63 (5)	773.73 (8)
Z	4	8	4
Radiation type	Cu Ka	Cu <i>Kα</i>	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.95	0.84	0.13
Crystal size (mm)	$0.22 \times 0.12 \times 0.12$	$0.23 \times 0.21 \times 0.15$	$0.12\times0.08\times0.06$
Data collection			
Diffractometer	Rigaku SuperNova, Dual, Cu at zero, Atlas	Rigaku SuperNova, Dual, Cu at zero, Atlas	Nonius Kappa CCD
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)	Multi-scan (SORTAV; Blessing, 1997)
T_{\min}, T_{\max}	0.857, 0.918	0.875, 0.914	0.887, 1.175
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12774, 4321, 3792	23245, 4749, 4309	6288, 1769, 1390
R _{int}	0.024	0.026	0.075
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.631	0.632	0.652
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.102, 1.03	0.032, 0.086, 1.03	0.042, 0.110, 1.05
No. of reflections	4321	4749	1769
No. of parameters	290	298	111
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.64, -0.61	0.30, -0.20	0.29, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2017), DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998), SHELXT (Sheldrick, 2015a), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

O28 carboxylate in 1 were unsuccessful, leading to a poorquality refinement. Attempts to locate extra symmetry in compound 2 were unsuccessful, despite superficially appearing to have an inversion centre between the 4-tbpy moieties and between the hydrogen oxalate moieties.

References

- Androš, L., Planinić, P. & Jurić, M. (2011). Acta Cryst. C67, o337o340.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Chen, X., Han, S. & Wang, R. (2012). CrystEngComm, 14, 6400-6403.
- Decurtins, S. (1999). Philos. Trans. Roy. Soc. Lond. A, 357, 3025–3040.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Edwards, P. M. & Schafer, L. L. (2017). Org. Lett. 19, 5720-5723.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Herbert, J. M. & Ortiz, J. V. (2000). J. Phys. Chem. A, 104, 11786– 11795.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hu, Y., Gniado, K., Erxleben, A. & McArdle, P. (2014). Cryst. Growth Des. 14, 803–813.
- Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133.

- Keene, T. D., Hursthouse, M. B. & Price, D. J. (2012). *CrystEngComm*, **14**, 116–123.
- Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). *Eur. J. Inorg. Chem.* pp. 1007–1013.
- Keene, T. D., Zimmermann, I., Neels, A., Sereda, O., Hauser, J., Bonin, M., Hursthouse, M. B., Price, D. J. & Decurtins, S. (2010). *Dalton Trans.* 39, 4937–4950.
- Martin, F. A., Pop, M. M., Borodi, G., Filip, X. & Kacso, I. (2013). Cryst. Growth Des. 13, 4295–4304.
- Mora, A. J., Belandria, L. M., Delgado, G. E., Seijas, L. E., Lunar, A. & Almeida, R. (2017). *Acta Cryst.* B73, 968–980.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
- Pilkington, M. & Decurtins, S. (2003). Oxalate-Based 2D and 3D Magnets. In Magnetism: Molecules to Materials II edited by J. S. Miller & M. Drillon. Weinheim: Wiley-VCH.
- Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.
- Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). *Cryst. Growth Des.* **15**,
- 3498–3510. Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Guru Row, T. N. (2015). *Cryst. Growth Des.* **15**, 2110–2118.
- Traut-Johnstone, T., Kriel, F. H., Hewer, R. & Williams, D. B. G. (2014). Acta Cryst. C70, 1121–1124.

Acta Cryst. (2018). E74, 1804-1807 [https://doi.org/10.1107/S2056989018015827]

Hydrogen-bonding chain and dimer motifs in pyridinium and morpholinium hydrogen oxalate salts

David Z. T. Mulrooney, Eimear C. Madden, Rhona F. Lonergan, Valentyna D. Slyusarchuk, Helge Müller-Bunz and Tony D. Keene

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2017) for (1), (2); *DENZO* (Otwinowski & Minor, 1997) for (3). Cell refinement: *CrysAlis PRO* (Rigaku OD, 2017) for (1), (2); *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998) for (3). Data reduction: *CrysAlis PRO* (Rigaku OD, 2017) for (1), (2); *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998) for (3). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); *SHELXS97* (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015b) for (1); *SHELXL2018* (Sheldrick, 2015b) for (2); *SHELXL2014* (Sheldrick, 2015b) for (3). For all structures, molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009):

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1)

Crystal data

$C_7H_{11}N_2^+ \cdot C_2HO_4^- \cdot 0.22H_2O$	Z = 4
$M_r = 216.21$	F(000) = 457
Triclinic, P1	$D_{\rm x} = 1.386 {\rm Mg} {\rm m}^{-3}$
a = 7.5241 (3) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 8.2898 (3) Å	Cell parameters from 6456 reflections
c = 18.7359 (6) Å	$\theta = 4.8 - 76.7^{\circ}$
$\alpha = 89.738 (3)^{\circ}$	$\mu = 0.95 \mathrm{~mm^{-1}}$
$\beta = 79.626 (3)^{\circ}$	T = 101 K
$\gamma = 64.741 \ (4)^{\circ}$	Block, colourless
V = 1036.17 (7) Å ³	$0.22 \times 0.12 \times 0.12 \text{ mm}$

Data collection

Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.3196 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) $T_{\min} = 0.857, T_{\max} = 0.918$ 12774 measured reflections 4321 independent reflections 3792 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 76.8^{\circ}, \theta_{min} = 4.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 10$ $l = -23 \rightarrow 23$ Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.4606P]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.102$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.03	$\Delta \rho_{\rm max} = 0.64$ e Å ⁻³
4321 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
290 parameters	Extinction correction: SHELXL2017
0 restraints	(Sheldrick, 2015b),
Primary atom site location: dual	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Hydrogen site location: mixed	Extinction coefficient: 0.0050 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C21	0.63947 (19)	0.24757 (17)	0.81649 (7)	0.0209 (3)	
O23	0.81556 (15)	0.12920 (14)	0.79288 (5)	0.0291 (2)	
O24	0.53451 (15)	0.26088 (13)	0.87673 (5)	0.0291 (2)	
C22	0.5487 (2)	0.38424 (19)	0.76292 (7)	0.0252 (3)	
O28	0.4407 (3)	0.3678 (3)	0.72680 (10)	0.0782 (6)	
O27	0.6027 (2)	0.51364 (15)	0.76121 (7)	0.0423 (3)	
H27	0.543889	0.587961	0.732904	0.063*	
C41	0.31016 (19)	0.88186 (18)	0.69597 (7)	0.0221 (3)	
C42	0.2033 (2)	1.00318 (18)	0.63889 (7)	0.0229 (3)	
O43	0.28018 (16)	0.97891 (14)	0.57487 (5)	0.0304 (2)	
O44	0.02609 (15)	1.13493 (14)	0.66442 (5)	0.0287 (2)	
H44	-0.013467	1.120732	0.707824	0.043*	
O45	0.46062 (17)	0.73901 (14)	0.66943 (6)	0.0362 (3)	
O46	0.24268 (16)	0.93378 (15)	0.76030 (5)	0.0334 (3)	
N31	0.64826 (18)	0.59063 (16)	0.53471 (7)	0.0265 (3)	
H31	0.559425	0.667206	0.570245	0.032*	
C32	0.7864 (2)	0.43279 (19)	0.55026 (7)	0.0255 (3)	
H32	0.785917	0.406403	0.599668	0.031*	
C33	0.9265 (2)	0.31050 (18)	0.49705 (7)	0.0230 (3)	
H33	1.022104	0.200326	0.509378	0.028*	
C34	0.9289 (2)	0.34848 (17)	0.42281 (7)	0.0218 (3)	
C35	0.7797 (2)	0.51610 (18)	0.40884 (7)	0.0247 (3)	
H35	0.773915	0.547156	0.360160	0.030*	
C36	0.6455 (2)	0.63162 (19)	0.46511 (8)	0.0266 (3)	
H36	0.547814	0.743611	0.455160	0.032*	
N37	1.06573 (19)	0.23242 (16)	0.36900 (6)	0.0265 (3)	
C38	1.2241 (2)	0.0656 (2)	0.38514 (8)	0.0308 (3)	
H38A	1.306530	-0.004623	0.339489	0.046*	
H38B	1.163647	-0.003441	0.414125	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H38C	1.308285	0.093268	0.412603	0.046*	
C39	1.0741 (3)	0.2804 (2)	0.29357 (8)	0.0346 (3)	
H39A	1.177294	0.178370	0.261209	0.052*	
H39B	1.106919	0.382807	0.288657	0.052*	
H39C	0.943665	0.312091	0.280341	0.052*	
N11	0.93551 (19)	-0.08918 (16)	0.90258 (6)	0.0271 (3)	
H11	0.905583	-0.023294	0.865684	0.033*	
C12	1.1096 (2)	-0.23848 (19)	0.89417 (8)	0.0279 (3)	
H12	1.198139	-0.271263	0.848133	0.034*	
C13	1.1617 (2)	-0.34363 (18)	0.95003 (8)	0.0253 (3)	
H13	1.284904	-0.448706	0.942505	0.030*	
C14	1.0325 (2)	-0.29652 (18)	1.01939 (7)	0.0232 (3)	
C15	0.8495 (2)	-0.13857 (18)	1.02576 (8)	0.0262 (3)	
H15	0.756700	-0.101448	1.070848	0.031*	
C16	0.8072 (2)	-0.04046 (18)	0.96725 (8)	0.0269 (3)	
H16	0.684523	0.064542	0.972233	0.032*	
N17	1.07977 (18)	-0.39505 (16)	1.07586 (7)	0.0262 (3)	
C18	1.2723 (2)	-0.5515 (2)	1.06937 (9)	0.0313 (3)	
H18A	1.380322	-0.513174	1.062420	0.047*	
H18B	1.291850	-0.631894	1.027518	0.047*	
H18C	1.273973	-0.614446	1.113826	0.047*	
C19	0.9438 (2)	-0.3446 (2)	1.14685 (8)	0.0323 (3)	
H19A	0.815307	-0.342245	1.141889	0.048*	
H19B	0.922145	-0.225643	1.165034	0.048*	
H19C	1.002919	-0.431983	1.181181	0.048*	
051	0.5352 (3)	0.9043 (3)	0.84705 (12)	0.0266 (7)	0.443 (4)
H51A	0.525878	1.012002	0.852157	0.040*	0.443 (4)
H51B	0.451198	0.913256	0.819034	0.040*	0.443 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C21	0.0200 (6)	0.0189 (6)	0.0233 (6)	-0.0069 (5)	-0.0074 (5)	0.0009 (5)
O23	0.0220 (5)	0.0278 (5)	0.0269 (5)	-0.0012 (4)	-0.0041 (4)	0.0030 (4)
O24	0.0244 (5)	0.0274 (5)	0.0272 (5)	-0.0045 (4)	-0.0021 (4)	0.0080 (4)
C22	0.0193 (6)	0.0309 (7)	0.0211 (6)	-0.0061 (5)	-0.0053 (5)	0.0044 (5)
O28	0.1000 (13)	0.1124 (14)	0.0845 (12)	-0.0817 (12)	-0.0781 (11)	0.0698 (11)
O27	0.0641 (8)	0.0266 (6)	0.0474 (7)	-0.0205 (6)	-0.0360 (6)	0.0180 (5)
C41	0.0213 (6)	0.0214 (6)	0.0222 (6)	-0.0077 (5)	-0.0051 (5)	0.0044 (5)
C42	0.0231 (6)	0.0210 (6)	0.0233 (6)	-0.0077 (5)	-0.0060 (5)	0.0038 (5)
O43	0.0304 (5)	0.0302 (5)	0.0232 (5)	-0.0064 (4)	-0.0048 (4)	0.0080 (4)
O44	0.0251 (5)	0.0274 (5)	0.0246 (5)	-0.0025 (4)	-0.0059 (4)	0.0047 (4)
O45	0.0408 (6)	0.0238 (5)	0.0241 (5)	0.0037 (5)	-0.0041 (4)	0.0051 (4)
O46	0.0276 (5)	0.0364 (6)	0.0217 (5)	-0.0001 (4)	-0.0055 (4)	0.0014 (4)
N31	0.0249 (6)	0.0253 (6)	0.0263 (6)	-0.0084 (5)	-0.0040 (5)	-0.0018 (5)
C32	0.0293 (7)	0.0274 (7)	0.0220 (6)	-0.0131 (6)	-0.0081 (5)	0.0037 (5)
C33	0.0258 (6)	0.0217 (6)	0.0224 (6)	-0.0095 (5)	-0.0090 (5)	0.0046 (5)
C34	0.0254 (6)	0.0220 (6)	0.0213 (6)	-0.0121 (5)	-0.0078 (5)	0.0027 (5)

C35	0.0281 (7)	0.0261 (7)	0.0231 (6)	-0.0124 (6)	-0.0115 (5)	0.0070 (5)	
C36	0.0248 (7)	0.0237 (7)	0.0319 (7)	-0.0090(5)	-0.0112 (5)	0.0054 (5)	
N37	0.0321 (6)	0.0245 (6)	0.0208 (6)	-0.0106 (5)	-0.0046 (5)	0.0014 (4)	
C38	0.0301 (7)	0.0240 (7)	0.0334 (8)	-0.0077 (6)	-0.0047 (6)	-0.0020 (6)	
C39	0.0454 (9)	0.0386 (8)	0.0198 (7)	-0.0191 (7)	-0.0041 (6)	0.0018 (6)	
N11	0.0347 (6)	0.0228 (6)	0.0261 (6)	-0.0115 (5)	-0.0141 (5)	0.0063 (4)	
C12	0.0322 (7)	0.0270 (7)	0.0255 (7)	-0.0127 (6)	-0.0083 (6)	0.0016 (5)	
C13	0.0253 (6)	0.0211 (6)	0.0285 (7)	-0.0076 (5)	-0.0092 (5)	0.0008 (5)	
C14	0.0278 (7)	0.0207 (6)	0.0268 (7)	-0.0132 (5)	-0.0127 (5)	0.0043 (5)	
C15	0.0293 (7)	0.0230 (7)	0.0264 (7)	-0.0100 (6)	-0.0085 (5)	0.0011 (5)	
C16	0.0292 (7)	0.0200 (6)	0.0315 (7)	-0.0081 (5)	-0.0125 (6)	0.0021 (5)	
N17	0.0286 (6)	0.0251 (6)	0.0278 (6)	-0.0122 (5)	-0.0116 (5)	0.0075 (5)	
C18	0.0317 (7)	0.0270 (7)	0.0376 (8)	-0.0109 (6)	-0.0179 (6)	0.0101 (6)	
C19	0.0384 (8)	0.0353 (8)	0.0256 (7)	-0.0167 (7)	-0.0100 (6)	0.0065 (6)	
O51	0.0255 (12)	0.0223 (12)	0.0306 (13)	-0.0075 (9)	-0.0093 (9)	0.0031 (9)	

Geometric parameters (Å, °)

C21—O23	1.2639 (16)	C38—H38B	0.9800
C21—O24	1.2310 (17)	C38—H38C	0.9800
C21—C22	1.5276 (18)	С39—Н39А	0.9800
C22—O28	1.196 (2)	С39—Н39В	0.9800
C22—O27	1.2976 (19)	С39—Н39С	0.9800
O27—H27	0.8400	N11—H11	0.8800
C41—C42	1.5527 (18)	N11—C12	1.3476 (19)
C41—O45	1.2608 (17)	N11—C16	1.3467 (19)
C41—O46	1.2222 (17)	С12—Н12	0.9500
C42—O43	1.2112 (17)	C12—C13	1.363 (2)
C42—O44	1.3161 (16)	С13—Н13	0.9500
O44—H44	0.8400	C13—C14	1.418 (2)
N31—H31	0.8800	C14—C15	1.4243 (19)
N31—C32	1.3500 (19)	C14—N17	1.3388 (18)
N31—C36	1.3476 (19)	С15—Н15	0.9500
С32—Н32	0.9500	C15—C16	1.364 (2)
C32—C33	1.360 (2)	С16—Н16	0.9500
С33—Н33	0.9500	N17—C18	1.4593 (18)
C33—C34	1.4234 (18)	N17—C19	1.4630 (19)
C34—C35	1.4251 (19)	C18—H18A	0.9800
C34—N37	1.3386 (18)	C18—H18B	0.9800
С35—Н35	0.9500	C18—H18C	0.9800
C35—C36	1.360 (2)	С19—Н19А	0.9800
С36—Н36	0.9500	C19—H19B	0.9800
N37—C38	1.4641 (19)	С19—Н19С	0.9800
N37—C39	1.4641 (18)	O51—H51A	0.8694
C38—H38A	0.9800	O51—H51B	0.8714
O23—C21—C22	115.43 (11)	N37—C39—H39A	109.5
O24—C21—O23	126.89 (13)	N37—C39—H39B	109.5

O24—C21—C22	117.66 (11)	N37—C39—H39C	109.5
O28—C22—C21	121.46 (14)	H39A—C39—H39B	109.5
O28—C22—O27	125.39 (14)	H39A—C39—H39C	109.5
O27—C22—C21	113.14 (12)	H39B—C39—H39C	109.5
С22—О27—Н27	109.5	C12—N11—H11	119.9
O45—C41—C42	114.75 (11)	C16—N11—H11	119.9
O46—C41—C42	117.86 (12)	C16—N11—C12	120.22 (12)
O46—C41—O45	127.39 (13)	N11—C12—H12	119.2
O43—C42—C41	121.78 (12)	N11—C12—C13	121.67 (14)
O43—C42—O44	122.19 (12)	C13—C12—H12	119.2
O44—C42—C41	116.02 (11)	C12—C13—H13	119.9
C42—O44—H44	109.5	C12—C13—C14	120.14 (13)
C32—N31—H31	119.8	C14—C13—H13	119.9
C36—N31—H31	119.8	C13—C14—C15	116.37 (12)
C36—N31—C32	120.39 (12)	N17—C14—C13	121.90 (13)
N31—C32—H32	119.1	N17—C14—C15	121.73 (13)
N31—C32—C33	121.76 (13)	C14—C15—H15	119.9
С33—С32—Н32	119.1	C16—C15—C14	120.14 (13)
С32—С33—Н33	120.2	C16—C15—H15	119.9
C32—C33—C34	119.66 (13)	N11-C16-C15	121.46 (13)
С34—С33—Н33	120.2	N11—C16—H16	119.3
C33—C34—C35	116.72 (12)	C15—C16—H16	119.3
N37—C34—C33	121.39 (12)	C14—N17—C18	121.00 (12)
N37—C34—C35	121.88 (12)	C14—N17—C19	121.01 (12)
С34—С35—Н35	120.0	C18—N17—C19	117.93 (12)
C36—C35—C34	120.06 (13)	N17—C18—H18A	109.5
С36—С35—Н35	120.0	N17-C18-H18B	109.5
N31—C36—C35	121.40 (13)	N17—C18—H18C	109.5
N31—C36—H36	119.3	H18A—C18—H18B	109.5
С35—С36—Н36	119.3	H18A—C18—H18C	109.5
C34—N37—C38	120.70 (12)	H18B—C18—H18C	109.5
C34—N37—C39	120.23 (12)	N17—C19—H19A	109.5
C38—N37—C39	118.64 (12)	N17—C19—H19B	109.5
N37—C38—H38A	109.5	N17—C19—H19C	109.5
N37—C38—H38B	109.5	H19A—C19—H19B	109.5
N37—C38—H38C	109.5	H19A—C19—H19C	109.5
H38A—C38—H38B	109.5	H19B—C19—H19C	109.5
H38A—C38—H38C	109.5	H51A—O51—H51B	104.5
H38B—C38—H38C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O27—H27…O45	0.84	1.72	2.553 (2)	171
O44—H44…O23 ⁱ	0.84	1.84	2.645 (2)	160
N31—H31…O45	0.88	1.87	2.672 (2)	151
С33—Н33…О43 ^{іі}	0.95	2.54	3.447 (2)	160
C35—H35…O28 ⁱⁱⁱ	0.95	2.39	3.204 (2)	143

C39—H39A····O51 ^{iv}	0.98	2.54	3.367 (2)	143	
N11—H11…O23	0.88	1.87	2.749 (2)	174	
C12—H12···O46 ⁱⁱ	0.95	2.44	3.101 (2)	126	
C13—H13…O24 ⁱⁱ	0.95	2.49	3.363 (2)	154	
C15—H15…O51 ^v	0.95	2.37	3.254 (2)	155	
C16—H16…O24	0.95	2.50	3.189 (2)	129	
C18—H18 <i>C</i> ···O51 ^{vi}	0.98	2.41	3.204 (2)	138	
C19—H19A…O24 ^{vii}	0.98	2.51	3.474 (2)	167	
C19—H19 <i>B</i> ····O23 ^{vi}	0.98	2.66	3.355 (2)	128	
C19—H19B····O46 ^v	0.98	2.49	3.419 (2)	158	

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*+1, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*+2, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*+1, -*z*+2;

4-tert-Butylpyridinium hydrogen oxalate (2)

Crystal data

C₉H₁₄N^{+,}C₂HO₄⁻ $M_r = 225.24$ Monoclinic, $P2_1/c$ a = 9.7043 (1) Å b = 20.6128 (2) Å c = 11.3649 (2) Å $\beta = 95.301$ (1)° V = 2263.63 (5) Å³ Z = 8

Data collection

Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.3196 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.086$ S = 1.034749 reflections 298 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 960 $D_x = 1.322 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12822 reflections $\theta = 4.3-76.7^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 101 KBlock, colourless $0.23 \times 0.21 \times 0.15 \text{ mm}$

 $T_{\min} = 0.875, T_{\max} = 0.914$ 23245 measured reflections
4749 independent reflections
4309 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 76.9^{\circ}, \theta_{\text{min}} = 4.3^{\circ}$ $h = -12 \rightarrow 6$ $k = -25 \rightarrow 25$ $l = -14 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.6305P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0014 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.25550 (8)	0.43622 (3)	0.70494 (6)	0.02235 (17)	
O2	0.32304 (8)	0.44362 (4)	0.52213 (7)	0.02470 (17)	
03	0.33459 (8)	0.31095 (4)	0.51650 (7)	0.02367 (17)	
05	0.26234 (8)	0.30529 (3)	0.69505 (6)	0.02384 (17)	
Н5	0.236580	0.331294	0.745548	0.036*	
C11	0.29745 (10)	0.33807 (5)	0.60229 (9)	0.0178 (2)	
C15	0.29057 (10)	0.41332 (5)	0.61104 (9)	0.0176 (2)	
O4	0.18857 (9)	0.46451 (4)	0.92146 (7)	0.02595 (18)	
H4	0.195934	0.439668	0.863786	0.039*	
O6	0.08701 (8)	0.32454 (3)	1.07151 (6)	0.02113 (16)	
O7	0.15176 (9)	0.33744 (4)	0.88866 (7)	0.02549 (18)	
N8	0.01187 (9)	0.13839 (4)	0.77806 (8)	0.02008 (18)	
H8	0.048459	0.141529	0.710267	0.024*	
09	0.13464 (11)	0.45509 (4)	1.10604 (8)	0.0384 (2)	
N10	-0.58139 (9)	0.10354 (4)	0.82435 (8)	0.01965 (18)	
H10	-0.618785	0.096784	0.890936	0.024*	
C12	-0.02998 (10)	0.18412 (5)	0.96208 (9)	0.0197 (2)	
H12	-0.017786	0.219014	1.016658	0.024*	
C13	0.12757 (10)	0.35674 (5)	0.98830 (9)	0.0180 (2)	
C14	-0.11752 (10)	0.07878 (5)	0.90662 (9)	0.0190 (2)	
H14	-0.167076	0.040537	0.922749	0.023*	
C16	-0.43731 (11)	0.07692 (5)	0.41698 (9)	0.0235 (2)	
H16A	-0.537903	0.075552	0.398349	0.035*	
H16B	-0.406152	0.036516	0.456362	0.035*	
H16C	-0.392251	0.081887	0.343806	0.035*	
C17	-0.33134 (11)	0.11400 (6)	1.07311 (10)	0.0242 (2)	
H17A	-0.348024	0.073140	1.030059	0.036*	
H17B	-0.367429	0.150194	1.023517	0.036*	
H17C	-0.378245	0.112917	1.145842	0.036*	
C18	-0.56068 (10)	0.16819 (5)	0.65500 (9)	0.0195 (2)	
H18	-0.587545	0.205627	0.609813	0.023*	
C19	-0.43104 (10)	0.06991 (5)	0.68462 (9)	0.0190 (2)	
H19	-0.365858	0.039443	0.660399	0.023*	
C20	0.02689 (11)	0.18748 (5)	0.85519 (9)	0.0206 (2)	
H20	0.077167	0.225023	0.836279	0.025*	
C21	-0.44818 (12)	0.19745 (5)	0.43687 (10)	0.0252 (2)	
H21A	-0.406218	0.201309	0.361993	0.038*	
H21B	-0.420537	0.234575	0.487513	0.038*	
H21C	-0.549192	0.196699	0.421293	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C22	-0.49071 (11)	0.06006 (5)	0.78815 (9)	0.0201 (2)
H22	-0.467953	0.022485	0.834317	0.024*
C23	0.14999 (11)	0.43045 (5)	1.01214 (9)	0.0225 (2)
C24	-0.17490 (11)	0.12303 (5)	1.10438 (9)	0.0188 (2)
C25	-0.11670 (11)	0.06294 (5)	1.17200 (9)	0.0236 (2)
H25A	-0.158292	0.059412	1.247100	0.035*
H25B	-0.016064	0.067113	1.187537	0.035*
H25C	-0.138637	0.023997	1.124460	0.035*
C26	-0.61575 (10)	0.15684 (5)	0.76097 (9)	0.0206 (2)
H26	-0.678645	0.187189	0.789160	0.025*
C27	-0.46546 (10)	0.12460 (5)	0.61422 (9)	0.0169 (2)
C28	-0.39912 (10)	0.13457 (5)	0.49908 (9)	0.0182 (2)
C29	-0.10559 (10)	0.12926 (5)	0.98989 (9)	0.0171 (2)
C30	-0.24103 (11)	0.13659 (5)	0.52676 (10)	0.0226 (2)
H30A	-0.208251	0.094310	0.557250	0.034*
H30B	-0.216597	0.170110	0.586209	0.034*
H30C	-0.197493	0.146638	0.454478	0.034*
C31	-0.14953 (13)	0.18296 (5)	1.18272 (10)	0.0266 (2)
H31A	-0.186910	0.221388	1.140180	0.040*
H31B	-0.049865	0.188524	1.202940	0.040*
H31C	-0.195574	0.177365	1.255250	0.040*
C32	-0.05806 (11)	0.08431 (5)	0.80202 (9)	0.0204 (2)
H32	-0.066310	0.049822	0.746359	0.025*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0307 (4)	0.0184 (3)	0.0189 (4)	0.0006 (3)	0.0073 (3)	-0.0010 (3)
0.0365 (4)	0.0178 (4)	0.0214 (4)	0.0019 (3)	0.0111 (3)	0.0021 (3)
0.0313 (4)	0.0191 (4)	0.0218 (4)	0.0018 (3)	0.0088 (3)	-0.0017 (3)
0.0372 (4)	0.0159 (3)	0.0196 (4)	0.0009 (3)	0.0094 (3)	0.0001 (3)
0.0185 (4)	0.0175 (5)	0.0174 (5)	0.0004 (3)	0.0024 (4)	0.0005 (4)
0.0177 (4)	0.0173 (5)	0.0181 (5)	0.0008 (3)	0.0026 (4)	0.0002 (4)
0.0394 (4)	0.0177 (4)	0.0226 (4)	-0.0059 (3)	0.0126 (3)	-0.0031 (3)
0.0262 (4)	0.0187 (3)	0.0192 (4)	-0.0015 (3)	0.0063 (3)	0.0004 (3)
0.0383 (4)	0.0204 (4)	0.0189 (4)	-0.0040 (3)	0.0090 (3)	-0.0024 (3)
0.0217 (4)	0.0220 (4)	0.0169 (4)	0.0020 (3)	0.0041 (3)	0.0022 (3)
0.0653 (6)	0.0252 (4)	0.0281 (4)	-0.0146 (4)	0.0230 (4)	-0.0097 (3)
0.0224 (4)	0.0207 (4)	0.0162 (4)	-0.0006 (3)	0.0040 (3)	-0.0003 (3)
0.0223 (5)	0.0162 (4)	0.0203 (5)	-0.0002 (4)	0.0007 (4)	-0.0006 (4)
0.0181 (4)	0.0180 (5)	0.0179 (5)	-0.0008 (3)	0.0023 (4)	-0.0011 (4)
0.0220 (5)	0.0161 (4)	0.0189 (5)	-0.0004 (4)	0.0024 (4)	0.0008 (4)
0.0273 (5)	0.0262 (5)	0.0171 (5)	-0.0030 (4)	0.0036 (4)	-0.0035 (4)
0.0213 (5)	0.0301 (5)	0.0214 (5)	0.0026 (4)	0.0038 (4)	0.0023 (4)
0.0218 (5)	0.0182 (5)	0.0187 (5)	0.0019 (4)	0.0022 (4)	0.0011 (4)
0.0221 (5)	0.0165 (4)	0.0184 (5)	0.0013 (4)	0.0021 (4)	-0.0013 (4)
0.0209 (5)	0.0179 (5)	0.0230 (5)	-0.0009 (4)	0.0020 (4)	0.0036 (4)
0.0299 (6)	0.0247 (5)	0.0219 (5)	0.0049 (4)	0.0072 (4)	0.0067 (4)
	U^{11} 0.0307 (4) 0.0365 (4) 0.0313 (4) 0.0372 (4) 0.0185 (4) 0.0177 (4) 0.0262 (4) 0.0383 (4) 0.0217 (4) 0.0223 (5) 0.0224 (4) 0.0223 (5) 0.0181 (4) 0.0220 (5) 0.0213 (5) 0.0213 (5) 0.0218 (5) 0.0229 (5) 0.0299 (6)	U^{11} U^{22} $0.0307 (4)$ $0.0184 (3)$ $0.0365 (4)$ $0.0178 (4)$ $0.0313 (4)$ $0.0178 (4)$ $0.0313 (4)$ $0.0191 (4)$ $0.0372 (4)$ $0.0159 (3)$ $0.0185 (4)$ $0.0175 (5)$ $0.0177 (4)$ $0.0173 (5)$ $0.0394 (4)$ $0.0177 (4)$ $0.0262 (4)$ $0.0187 (3)$ $0.0383 (4)$ $0.0204 (4)$ $0.0217 (4)$ $0.0220 (4)$ $0.0653 (6)$ $0.0252 (4)$ $0.0224 (4)$ $0.0207 (4)$ $0.0223 (5)$ $0.0162 (4)$ $0.0181 (4)$ $0.0180 (5)$ $0.0220 (5)$ $0.0161 (4)$ $0.0273 (5)$ $0.0262 (5)$ $0.0213 (5)$ $0.0182 (5)$ $0.0218 (5)$ $0.0179 (5)$ $0.0209 (5)$ $0.0179 (5)$ $0.0299 (6)$ $0.0247 (5)$	U^{11} U^{22} U^{33} $0.0307 (4)$ $0.0184 (3)$ $0.0189 (4)$ $0.0365 (4)$ $0.0178 (4)$ $0.0214 (4)$ $0.0313 (4)$ $0.0191 (4)$ $0.0218 (4)$ $0.0372 (4)$ $0.0159 (3)$ $0.0196 (4)$ $0.0185 (4)$ $0.0175 (5)$ $0.0174 (5)$ $0.0177 (4)$ $0.0173 (5)$ $0.0181 (5)$ $0.0394 (4)$ $0.0177 (4)$ $0.0226 (4)$ $0.0262 (4)$ $0.0187 (3)$ $0.0192 (4)$ $0.0383 (4)$ $0.0204 (4)$ $0.0189 (4)$ $0.0217 (4)$ $0.0220 (4)$ $0.0169 (4)$ $0.0223 (5)$ $0.0162 (4)$ $0.0162 (4)$ $0.0223 (5)$ $0.0162 (4)$ $0.0179 (5)$ $0.0223 (5)$ $0.0161 (4)$ $0.0189 (5)$ $0.0273 (5)$ $0.0262 (5)$ $0.0171 (5)$ $0.0213 (5)$ $0.0181 (5)$ $0.0187 (5)$ $0.0213 (5)$ $0.0182 (5)$ $0.0187 (5)$ $0.0213 (5)$ $0.0182 (5)$ $0.0187 (5)$ $0.0221 (5)$ $0.0179 (5)$ $0.0230 (5)$ $0.0229 (5)$ $0.0179 (5)$ $0.0230 (5)$ $0.0229 (6)$ $0.0247 (5)$ $0.0219 (5)$	U^{11} U^{22} U^{33} U^{12} $0.0307(4)$ $0.0184(3)$ $0.0189(4)$ $0.0006(3)$ $0.0365(4)$ $0.0178(4)$ $0.0214(4)$ $0.0019(3)$ $0.0313(4)$ $0.0191(4)$ $0.0218(4)$ $0.0009(3)$ $0.0372(4)$ $0.0159(3)$ $0.0196(4)$ $0.0009(3)$ $0.0185(4)$ $0.0175(5)$ $0.0174(5)$ $0.0004(3)$ $0.0177(4)$ $0.0173(5)$ $0.0181(5)$ $0.0008(3)$ $0.0394(4)$ $0.0177(4)$ $0.0226(4)$ $-0.0059(3)$ $0.0262(4)$ $0.0187(3)$ $0.0192(4)$ $-0.0015(3)$ $0.0217(4)$ $0.0220(4)$ $0.0169(4)$ $0.0020(3)$ $0.0223(5)$ $0.0162(4)$ $0.0231(4)$ $-0.0040(3)$ $0.0223(5)$ $0.0162(4)$ $0.0203(5)$ $-0.0002(4)$ $0.0181(4)$ $0.0180(5)$ $0.0179(5)$ $-0.0008(3)$ $0.0220(5)$ $0.0161(4)$ $0.0189(5)$ $-0.0004(4)$ $0.0213(5)$ $0.0262(5)$ $0.0171(5)$ $-0.00030(4)$ $0.0213(5)$ $0.0181(5)$ $0.0187(5)$ $0.0019(4)$ $0.0218(5)$ $0.0182(5)$ $0.0187(5)$ $0.0019(4)$ $0.0221(5)$ $0.0165(4)$ $0.0230(5)$ $-0.0009(4)$ $0.0220(5)$ $0.0179(5)$ $0.0230(5)$ $-0.0009(4)$ $0.0221(5)$ $0.0179(5)$ $0.0230(5)$ $-0.0009(4)$ $0.0229(6)$ $0.0247(5)$ $0.0219(5)$ $0.0049(4)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0307 (4)$ $0.0184 (3)$ $0.0189 (4)$ $0.0006 (3)$ $0.0073 (3)$ $0.0365 (4)$ $0.0178 (4)$ $0.0214 (4)$ $0.0019 (3)$ $0.0111 (3)$ $0.0313 (4)$ $0.0191 (4)$ $0.0218 (4)$ $0.0019 (3)$ $0.0088 (3)$ $0.0372 (4)$ $0.0159 (3)$ $0.0196 (4)$ $0.0009 (3)$ $0.0094 (3)$ $0.0185 (4)$ $0.0175 (5)$ $0.0174 (5)$ $0.0004 (3)$ $0.0024 (4)$ $0.0177 (4)$ $0.0173 (5)$ $0.0181 (5)$ $0.0008 (3)$ $0.0026 (4)$ $0.0394 (4)$ $0.0177 (4)$ $0.0226 (4)$ $-0.0059 (3)$ $0.0126 (3)$ $0.0262 (4)$ $0.0187 (3)$ $0.0192 (4)$ $-0.0015 (3)$ $0.0063 (3)$ $0.0262 (4)$ $0.0187 (3)$ $0.0192 (4)$ $-0.0040 (3)$ $0.0090 (3)$ $0.0253 (4)$ $0.0204 (4)$ $0.0189 (4)$ $-0.0040 (3)$ $0.0090 (3)$ $0.0217 (4)$ $0.0220 (4)$ $0.0169 (4)$ $0.0020 (3)$ $0.0041 (3)$ $0.0223 (5)$ $0.0162 (4)$ $0.0203 (5)$ $-0.0006 (3)$ $0.0040 (3)$ $0.0223 (5)$ $0.0162 (4)$ $0.0203 (5)$ $-0.0006 (3)$ $0.0023 (4)$ $0.0223 (5)$ $0.0161 (4)$ $0.0189 (5)$ $-0.0004 (4)$ $0.0023 (4)$ $0.0223 (5)$ $0.0161 (4)$ $0.0189 (5)$ $-0.0004 (4)$ $0.0023 (4)$ $0.0223 (5)$ $0.0161 (4)$ $0.0189 (5)$ $-0.0004 (4)$ $0.0023 (4)$ $0.0221 (5)$ $0.0161 (4)$ $0.0189 (5)$ $-0.0003 (4)$ $0.0023 (4)$

C22	0.0251 (5)	0.0168 (5)	0.0183 (5)	-0.0003 (4)	0.0017 (4)	0.0004 (4)
C23	0.0279 (5)	0.0196 (5)	0.0213 (5)	-0.0048 (4)	0.0086 (4)	-0.0028 (4)
C24	0.0217 (5)	0.0183 (5)	0.0165 (5)	0.0009 (4)	0.0029 (4)	0.0006 (4)
C25	0.0266 (5)	0.0244 (5)	0.0199 (5)	0.0030 (4)	0.0026 (4)	0.0060 (4)
C26	0.0217 (5)	0.0205 (5)	0.0200 (5)	0.0026 (4)	0.0033 (4)	-0.0006 (4)
C27	0.0177 (4)	0.0167 (4)	0.0162 (4)	-0.0018 (3)	0.0008 (4)	-0.0016 (3)
C28	0.0207 (5)	0.0184 (5)	0.0158 (4)	0.0008 (4)	0.0031 (4)	0.0005 (4)
C29	0.0175 (4)	0.0169 (4)	0.0166 (5)	0.0024 (3)	0.0003 (4)	0.0015 (4)
C30	0.0211 (5)	0.0243 (5)	0.0227 (5)	-0.0023 (4)	0.0036 (4)	0.0013 (4)
C31	0.0361 (6)	0.0250 (5)	0.0193 (5)	0.0003 (4)	0.0057 (4)	-0.0043 (4)
C32	0.0240 (5)	0.0183 (5)	0.0189 (5)	0.0016 (4)	0.0016 (4)	-0.0011 (4)

Geometric parameters (Å, °)

01—C15	1.2429 (12)	C13—C23	1.5551 (14)
O2—C15	1.2526 (12)	C14—C29	1.4041 (14)
O3—C11	1.2075 (12)	C14—C32	1.3732 (14)
O5—C11	1.3230 (12)	C16—C28	1.5350 (14)
C11—C15	1.5560 (13)	C17—C24	1.5382 (14)
O4—C23	1.3291 (13)	C18—C26	1.3820 (14)
O6—C13	1.2485 (12)	C18—C27	1.3982 (14)
O7—C13	1.2429 (12)	C19—C22	1.3735 (14)
N8—C20	1.3379 (14)	C19—C27	1.4046 (14)
N8—C32	1.3460 (14)	C21—C28	1.5310 (14)
O9—C23	1.2035 (13)	C24—C25	1.5374 (14)
N10-C22	1.3469 (13)	C24—C29	1.5243 (13)
N10-C26	1.3390 (14)	C24—C31	1.5293 (14)
C12—C20	1.3816 (15)	C27—C28	1.5248 (13)
C12—C29	1.3999 (14)	C28—C30	1.5379 (14)
O3 C11 O5	121 67 (0)	C25 C24 C17	100.00 (8)
03 - 011 - 03	121.07(9) 122.06(0)	$C_{23} = C_{24} = C_{17}$	109.09 (8)
05 - C11 - C15	122.00 (9)	$C_{29} = C_{24} = C_{17}$	108.46 (8)
03-01	110.20(8) 127.77(0)	$C_{29} = C_{24} = C_{23}$	108.90 (8)
01 - 015 - 02	127.77(9)	$C_{29} - C_{24} - C_{31}$	111.05 (8)
01-015-011	116.76 (9)	$C_{31} = C_{24} = C_{17}$	109.55 (9)
02-015-011	115.47 (8)	$C_{31} - C_{24} - C_{25}$	109.13 (9)
C20 - N8 - C32	121.35 (9)	N10-C26-C18	120.70 (9)
C26—N10—C22	121.26 (9)	C18—C27—C19	117.17 (9)
C20-C12-C29	119.95 (9)	C18 - C27 - C28	122.83 (9)
06—C13—C23	115.87 (9)	C19—C27—C28	120.00 (9)
07—C13—O6	128.26 (9)	C16—C28—C30	109.00 (8)
07—C13—C23	115.88 (9)	C21—C28—C16	109.11 (8)
C32—C14—C29	120.45 (9)	C21—C28—C30	109.47 (8)
C26—C18—C27	120.05 (9)	C27—C28—C16	108.66 (8)
C22—C19—C27	120.64 (9)	C27—C28—C21	111.87 (8)
N8—C20—C12	120.67 (9)	C27—C28—C30	108.68 (8)
N10-C22-C19	120.16 (9)	C12—C29—C14	117.31 (9)
O4—C23—C13	115.21 (9)	C12—C29—C24	122.86 (9)

O9—C23—O4	122.11 (10)	C14—C29—C24	119.83 (9)
O9—C23—C13	122.68 (10)	N8—C32—C14	120.26 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
05—H5…O1	0.84	2.22	2.702 (2)	116
O5—H5…O7	0.84	1.89	2.621 (2)	144
O4—H4…O1	0.84	1.95	2.667 (2)	143
O4—H4…O7	0.84	2.17	2.665 (2)	117
N8—H8····O6 ⁱ	0.88	1.80	2.635 (2)	159
N10—H10…O2 ⁱⁱ	0.88	1.84	2.691 (2)	162
С12—Н12…Об	0.95	2.46	3.310 (2)	149
C14—H14…O2 ⁱⁱⁱ	0.95	2.62	3.563 (2)	174
C18—H18…O3 ^{iv}	0.95	2.50	3.446 (2)	172
C19—H19…O4 ⁱⁱⁱ	0.95	2.55	3.498 (2)	175
C20—H20…O7	0.95	2.48	3.329 (2)	148
C22—H22…O2 ⁱⁱⁱ	0.95	2.62	3.523 (2)	159
C26—H26…O3 ⁱⁱ	0.95	2.58	3.060 (2)	112
C32—H32…O9 ⁱ	0.95	2.63	3.144 (2)	114

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*-1, -*y*+1/2, *z*+1/2; (iii) -*x*, *y*-1/2, -*z*+3/2; (iv) *x*-1, *y*, *z*.

Morpholinium hydrogen oxalate (3)

Crystal data

C₄H₁₀NO⁺·C₂HO₄⁻ $M_r = 177.16$ Monoclinic, P2₁/c a = 5.6867 (3) Å b = 12.2465 (8) Å c = 12.0831 (6) Å $\beta = 113.150$ (4)° V = 773.73 (8) Å³ Z = 4

Data collection

Nonius Kappa CCD diffractometer Radiation source: Nonius FR591 rotating anode, Rotating Anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans to fill Ewald Sphere Absorption correction: multi-scan (SORTAV; Blessing, 1997)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.110$ F(000) = 376 $D_x = 1.521 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1705 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.12 \times 0.08 \times 0.06 \text{ mm}$

 $T_{\min} = 0.887, T_{\max} = 1.175$ 6288 measured reflections
1769 independent reflections
1390 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 3.3^{\circ}$ $h = -5 \rightarrow 7$ $k = -15 \rightarrow 15$ $l = -15 \rightarrow 15$

S = 1.051769 reflections 111 parameters 0 restraints

$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.29 {\rm e}{\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL2014
(Sheldrick, 2015bb),
$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Extinction coefficient: 0.128 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O26	0.15522 (19)	0.29264 (8)	0.49858 (9)	0.0209 (3)
O23	0.6961 (2)	0.22022 (8)	0.44496 (10)	0.0241 (3)
H23	0.8454	0.2452	0.4678	0.036*
014	0.5274 (2)	0.36802 (9)	0.17836 (10)	0.0269 (3)
O24	0.6384 (2)	0.36286 (9)	0.54702 (11)	0.0303 (3)
O25	0.1977 (2)	0.17448 (9)	0.36656 (10)	0.0269 (3)
N11	0.6060 (2)	0.57855 (10)	0.28681 (11)	0.0201 (3)
H11A	0.6178	0.6219	0.3499	0.024*
H11B	0.6287	0.6212	0.2301	0.024*
C22	0.2790 (3)	0.24484 (12)	0.44633 (13)	0.0181 (3)
C21	0.5606 (3)	0.28215 (12)	0.48638 (13)	0.0187 (3)
C13	0.7757 (3)	0.41615 (13)	0.22554 (14)	0.0242 (4)
H13A	0.8032	0.4566	0.1607	0.029*
H13B	0.9063	0.3578	0.2541	0.029*
C12	0.8090 (3)	0.49324 (12)	0.32829 (14)	0.0216 (4)
H12A	0.7971	0.4522	0.3965	0.026*
H12B	0.9797	0.5281	0.3563	0.026*
C16	0.3484 (3)	0.52708 (13)	0.23515 (14)	0.0229 (4)
H16A	0.2153	0.5841	0.2035	0.027*
H16B	0.3167	0.4859	0.2984	0.027*
C15	0.3368 (3)	0.45091 (13)	0.13495 (15)	0.0257 (4)
H15A	0.1655	0.4166	0.0997	0.031*
H15B	0.3629	0.4931	0.0708	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O26	0.0142 (6)	0.0220 (5)	0.0276 (6)	0.0011 (4)	0.0095 (4)	-0.0038 (4)
O23	0.0133 (6)	0.0254 (6)	0.0359 (6)	-0.0027 (4)	0.0121 (5)	-0.0082 (5)
O14	0.0195 (6)	0.0230 (6)	0.0355 (7)	-0.0009 (5)	0.0078 (5)	-0.0072 (5)
O24	0.0223 (6)	0.0305 (6)	0.0433 (7)	-0.0095 (5)	0.0185 (5)	-0.0158 (5)
O25	0.0181 (6)	0.0322 (6)	0.0313 (6)	-0.0061 (5)	0.0107 (5)	-0.0122 (5)
N11	0.0204 (7)	0.0183 (6)	0.0230 (7)	-0.0013 (5)	0.0101 (5)	-0.0016 (5)

C22	0.0144 (8)	0.0174 (7)	0.0224 (8)	0.0008 (6)	0.0073 (6)	0.0010 (5)
C21	0.0157 (8)	0.0191 (7)	0.0226 (7)	-0.0010 (6)	0.0090 (6)	0.0015 (6)
C13	0.0152 (8)	0.0261 (8)	0.0302 (9)	0.0022 (6)	0.0075 (6)	-0.0026 (7)
C12	0.0156 (8)	0.0251 (8)	0.0240 (8)	0.0001 (6)	0.0077 (6)	0.0002 (6)
C16	0.0162 (8)	0.0256 (8)	0.0280 (8)	0.0008 (6)	0.0099 (7)	-0.0007 (6)
C15	0.0164 (8)	0.0299 (9)	0.0284 (9)	0.0011 (6)	0.0062 (7)	-0.0050 (6)

Geometric parameters (Å, °)

O26—C22	1.2596 (18)	C22—C21	1.548 (2)
O23—H23	0.8400	C13—H13A	0.9900
O23—C21	1.3127 (18)	С13—Н13В	0.9900
O14—C13	1.4263 (19)	C13—C12	1.511 (2)
O14—C15	1.4260 (19)	C12—H12A	0.9900
O24—C21	1.2062 (18)	C12—H12B	0.9900
O25—C22	1.2389 (18)	C16—H16A	0.9900
N11—H11A	0.9100	C16—H16B	0.9900
N11—H11B	0.9100	C16—C15	1.509 (2)
N11—C12	1.4902 (19)	C15—H15A	0.9900
N11—C16	1.4876 (19)	C15—H15B	0.9900
С21—О23—Н23	109.5	С12—С13—Н13В	109.3
C15—O14—C13	110.06 (11)	N11—C12—C13	109.36 (12)
H11A—N11—H11B	108.1	N11—C12—H12A	109.8
C12—N11—H11A	109.6	N11—C12—H12B	109.8
C12—N11—H11B	109.6	C13—C12—H12A	109.8
C16—N11—H11A	109.6	C13—C12—H12B	109.8
C16—N11—H11B	109.6	H12A—C12—H12B	108.3
C16—N11—C12	110.42 (12)	N11—C16—H16A	109.9
O26—C22—C21	114.79 (13)	N11—C16—H16B	109.9
O25—C22—O26	127.01 (14)	N11—C16—C15	108.91 (12)
O25—C22—C21	118.19 (13)	H16A—C16—H16B	108.3
O23—C21—C22	113.60 (12)	C15—C16—H16A	109.9
O24—C21—O23	125.08 (14)	C15—C16—H16B	109.9
O24—C21—C22	121.29 (13)	O14—C15—C16	110.95 (12)
O14—C13—H13A	109.3	O14—C15—H15A	109.4
O14—C13—H13B	109.3	O14—C15—H15B	109.4
O14—C13—C12	111.78 (12)	C16—C15—H15A	109.4
H13A—C13—H13B	107.9	C16—C15—H15B	109.4
C12—C13—H13A	109.3	H15A—C15—H15B	108.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
023—H23…O26 ⁱ	0.84	1.75	2.587 (2)	173
N11—H11A····O26 ⁱⁱ	0.91	2.06	2.879 (2)	149
N11—H11A····O24 ⁱⁱ	0.91	2.27	2.945 (2)	131
N11—H11 <i>B</i> ····O23 ⁱⁱⁱ	0.91	2.51	3.166 (2)	130
N11—H11 <i>A</i> ···O26 ⁱⁱ N11—H11 <i>A</i> ···O24 ⁱⁱ N11—H11 <i>B</i> ···O23 ⁱⁱⁱ	0.91 0.91 0.91	2.06 2.27 2.51	2.879 (2) 2.945 (2) 3.166 (2)	149 131 130

N11—H11 <i>B</i> ····O25 ⁱⁱⁱ	0.91	1.92	2.773 (2)	156	
C12—H12A····O24	0.99	2.57	3.534 (2)	164	
C12—H12 <i>B</i> ····O24 ^{iv}	0.99	2.42	3.395 (2)	167	
C16—H16A····O23 ⁱⁱⁱ	0.99	2.64	3.156 (2)	113	
C16—H16A····O25 ^v	0.99	2.43	3.378 (2)	161	

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+2, -y+1, -z+1; (v) -x, y+1/2, -z+1/2.