

Received 7 September 2018 Accepted 31 October 2018

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; naphthalene-1,4dione; naphthoquinone; polymorphs.

CCDC references: 1876486; 1876485

Supporting information: this article has supporting information at journals.iucr.org/e

Two polymorphs of 2-(prop-2-yn-1-yloxy)naphthalene-1,4-dione: solvent-dependent crystallization

Flaviano Melo Ottoni,^a* Raquel Geralda Isidório,^a Ricardo José Alves^a and Nivaldo Lúcio Speziali^b

^aDepartamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil, and ^bDepartamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil. *Correspondence e-mail: fmottoni@hotmail.com

The title compound, $C_{13}H_8O_3$, crystallizes in two polymorphs, namely the monoclinic (space group $P2_1/c$) and triclinic (space group P1) forms, obtained from *N*,*N*-dimethylformamide and isopropyl alcohol solutions, respectively. The molecular structures and conformations in the two forms are essentially the same as each other. The naphthoquinone ring systems are essentially planar with r.m.s. deviations of 0.015 and 0.029 Å for the monoclinic and triclinic forms, respectively. The *O*-propargyl groups are coplanar with the naphthoquinone units with r.m.s deviations ranging from 0.04 to 0.09 Å. In the monoclinic crystal, molecules are linked *via* pairs of C-H···O hydrogen bonds, forming a tape structure running along [120]. The tapes are further linked by a C-H··· π interaction into a layer parallel to the *ab* plane. Adjacent layers are linked *via* C-H··· π interactions, forming a layer parallel to the *ab* plane. Adjacent layers are linked *via* plane. Adjacent layers are linked *via* plane.

1. Chemical context

Naphthoguinone derivatives have been studied intensively over the past few decades, mostly because of their numerous biological activities, mainly antimicrobial and antitumor (Fujii et al., 1992; Hussain et al., 2007; Epifano et al., 2014). The main mechanism of the activity is related to the formation of reactive oxygen species (ROS) through semiquinonic radicals, which cause damage to cell macromolecules and consequently cell death (Da Silva et al., 2003). Among the substances that comprise this class, some synthetic bioactive derivatives have been obtained from lawsone (2-hydroxynaphthalene-1,4dione) (Jordão et al., 2015). In a basic medium, lawsone shows three sites able to be alkylated (Lamoureux et al., 2008), resulting in O-alkyl and C-alkyl derivatives difficult to purify in some cases in some cases (Kongkathip et al., 2003). The title compound was obtained in higher yields since oxygen better accommodates the negative charge generated in the enolate formation, using a weak base, propargyl bromide, aprotic solvent and heat. The product has an alkyne terminal chain and can be used as the starting material in the synthesis of triazole derivatives, which are widely exploited in medicinal chemistry (Haider et al., 2014). The present study shows that the title compound has two polymorphs, monoclinic (space group $P2_1/c$) and triclinic (space group $P\overline{1}$), crystallized from N,N-dimethylformamide (DMF) and isopropyl alcohol, respectively.

research communications

2. Structural commentary

The molecular structures in the two polymorphs are essentially the same (Fig. 1). The naphthoquinone ring systems in the monoclinic and triclinic forms are both planar, with r.m.s. deviations of 0.015 and 0.029 Å, respectively, for the non-H atoms. Each propargyl group is coplanar with the naphtho-

Figure 1

(a) The molecular structure of the title compound (monoclinic form) with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. (b) A view of the overlay of the molecular structures of the monoclinic and triclinic forms of the title compound.

Table	1			
Hydro	gen-bond	geometry	(Å,	°)

Cg2 is the midpoint of the C12=C13 bond.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
Monoclinic form				
$C3-H3\cdots O2^{i}$	0.93	2.58	3.436 (2)	153
$C13-H13\cdots O1^{ii}$	0.93	2.33	3.350 (2)	173
$C11 - H11A \cdots Cg2^{iii}$	0.97	2.91	3.740 (4)	145
$C7-H7\cdots Cg2^{iv}$	0.93	2.87	3.703 (4)	151
Triclinic form				
$C3-H3\cdots O2^{i}$	0.93	2.49	3.409 (4)	173
$C11 - H11B \cdot \cdot \cdot O2^{ii}$	0.97	2.52	3.380 (4)	149
C13−H13···O1 ⁱⁱⁱ	0.93	2.44	3.340 (5)	164
$C7 - H7 \cdots Cg2^{v}$	0.93	2.93	3.829 (4)	162

Symmetry codes: monoclinic: (i) -1 - x, 2 - y, 1 - z; (ii) -x, -y, 1 - z; (iii) x, -1 + y, z; (iv) $x, \frac{3}{2} - y, -\frac{1}{2} + z$. Triclinic: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 2 - y, 1 - z; (iv) -x, 2 - y, -z; (v) x, y, -1 + z.

quinone ring system, with C1-C2-O3-C11 and C2-O3-C11-C12 torsion angles being -178.8(1) and $175.9(1)^{\circ}$, respectively, for the monoclinic form, and -177.1(3) and $-171.9(3)^{\circ}$, respectively, for the triclinic form.

3. Supramolecular features

The molecular arrangements in both crystals are similar (Fig. 2) with nearly the same crystal densities ($\rho = 1.383$ and 1.392 Mg m^{-3} for the monoclinic and triclinic forms, respectively). In the monoclinic crystal, molecules are linked via pairs of C-H···O hydrogen bonds (C3-H3···O2ⁱ and C13-H13···O1ⁱⁱ; symmetry codes as in Table 1), forming a tape structure running along [120]. The tapes are further linked by a C-H··· π interaction (C11-H11A···Cg2ⁱⁱⁱ; Table 1) into a layer parallel to the ab plane; Cg2 is the centroid of the C12=C13 triple bond [Fig. 3(a)]. In the layer, molecules are arranged parallel to each other and adjacent layers are linked by another C-H··· π interaction (C7-H7···Cg2^{iv}; Table 1), forming a three-dimensional network [Fig. 4(a)]. In the triclinic crystal, molecules are linked via C-H···O interactions $(C3-H3\cdots O2^{i}, C11-H11B\cdots O2^{i})$ and $C13-H13\cdots O1^{iii}$; Table 1) and $\pi - \pi$ interactions with centroid-centroid distances of 3.9906 (18) and 3.991 (2) Å, respectively, between C1-C4/ C10/C9 rings and between C5-C10 rings, forming a layer parallel to the ab plane [Fig. 3(b)]. Adjacent layers are linked by a C-H··· π interaction [Fig. 4(*b*); C7-H7···*Cg*2^v; Table 1].

Figure 2

Packing diagrams of the title compound, showing the stacked naphthoquinone molecules: (a) monoclinic form viewed along the b axis and (b) triclinic form viewed along the a axis.

Figure 3

Selected intermolecular interactions in the crystals of (a) the monoclinic form and (b) the triclinic form. Purple dashed lines represent the C-H···O hydrogen bonds and green dashed lines the C-H··· π and π - π interactions. Cg1 is the centroid of the C5-C10 ring, while Cg2 is the midpoint of the C12=C13 bond.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom *et al.*, 2016) for naphthalene-1,4-dione gave about 790 structures. Among them, 2-methoxynaphthalene-1,4-dione (Jin *et al.*, 2011) and 2-{[1-(4-bromobenzyl)-1*H*-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione (Raja *et al.*, 2015) are very similar to the title compound. These compounds exhibit additional functional groups linked at O3 and essentially planar naphthoquinone ring systems and C-H···O and π - π interactions are also observed in their crystal structures.

5. Synthesis and crystallization

The synthesis of the title compound was achieved in one step according to the literature method (Raja *et al.*, 2015). To a solution of lawsone (0.20 g, 1.15 mmol) in DMF (10 ml) was

 Table 2

 Experimental details.

Figure 4

Partial packing diagrams of (a) the monoclinic form and (b) the triclinic from. Purple dashed lines represent the C-H···O hydrogen bonds and green dashed lines the C-H··· π and π - π interactions.

added K₂CO₃ (0.16 g, 1.15 mmol) and propargyl bromide (0.48 g, 4.07 mmol). The mixture was stirred at 363 K for 24 h. Then hydrochloric acid (1.0 mol l⁻¹, 0.34 ml) was added and the resulting solution was extracted with dichloromethane (3×25 ml). The organic layers were washed with water (60 ml), dried over anhydrous sodium sulfate and concentrated. The solid obtained was purified by column chromatography using silica gel and hexane–ethyl acetate (9:1) and furnished the title compound in 70% yield. Yellow single crystals of the monoclinic and triclinic forms (m.p. 420.0–423.1 K) suitable for X-ray diffraction were obtained by slow evaporation of DMF and isopropyl alcohol solutions (about 0.5 mg ml-1), respectively, at room temperature.

	Monoclinic	Triclinic
Crystal data		
Chemical formula	$C_{13}H_8O_3$	$C_{13}H_8O_3$
M_r	212.19	212.19
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Temperature (K)	293	293
a, b, c (Å)	10.0911 (7), 4.8021 (3), 20.8939 (15)	3.9906 (6), 11.6943 (16), 12.3413 (16)
α, β, γ (°)	90, 91.174 (7), 90	63.347 (14), 83.343 (12), 83.018 (12)
$V(A^3)$	1012.27 (12)	509.69 (14)
Z	4	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})^{-1}$	0.10	0.10
Crystal size (mm)	$0.35 \times 0.2 \times 0.1$	$0.35 \times 0.2 \times 0.1$
Data collection		
Diffractometer	Rigaku Xcalibur Atlas Gemini ultra	Rigaku Xcalibur Atlas Gemini ultra
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T_{\min}, \dot{T}_{\max}	0.764, 1.000	0.773, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10652, 3452, 1765	7730, 2503, 923
R _{int}	0.058	0.084
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.156, 1.01	0.064, 0.184, 1.00
No. of reflections	3452	2503
No. of parameters	145	145
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.19, -0.20	0.24, -0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

research communications

Spectrometric data. IR ν_{max} (cm⁻¹): The spectrum show the characteristic absorption bands of the main functional groups for title compound at IR (ν max/cm⁻¹): 3250 (C–H alkyne), 3053 (C–H aromatic), 2130 (C=C) 1649, 1680 (C=O quinone), 1575–1604 (C–C aromatic), 1016, 1208 and 1245 (C–O).¹H NMR (400 MHz, CDCl₃): δ_{H} 8.12 (dd, 1H, $J_{5,6}$ 7.1 Hz, $J_{8,7}$ 1.9 Hz, H-5), 8,07 (dd, 1H, $J_{8,7}$ 7.0 Hz, $J_{8,6}$ 1.9 Hz, H-8), 7.74 (td, 1H, $J_{6,5}$ 7.5 Hz, $J_{6,7}$ 7.5 Hz, $J_{6,8}$ 1.7 Hz, H-6), 7.70 (td, 1H, $J_{7,6}$ 7.4 Hz, $J_{7,8}$ 7.4 Hz, $J_{7,5}$ 1.6 Hz, H-7), 6.33 (s, 1H, H-3), 4.78 (d, 2H, $J_{11,13}$ 2.4 Hz, H-11), 2.63 (t, 1H, $J_{13,11}$ 2.4 Hz, H-13). ¹³C NMR (100 MHz, CDCl₃): δ_{C} 184.6 (C-4), 179.8 (C-1), 158.1 (C-2), 134.3 (C-6), 133.4 (C-7), 131.9 (C-10), 131.1 (C-9), 126.7 (C-5), 126.2 (C-8), 111.6 (C-3), 78.2 (C-13), 75.5 (C-12), 56.7 (C-11).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were constrained to an ideal geometry with C-H = 0.93-0.97 Å and with $U_{iso}(H) = 1.2U_{eq}$ (C).

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). References

- Da Silva, M. N., Da Souza, M. C. B. V., Ferreira, V. F., Pinto, A. V., Pinto, M. C. R. F., Solange, M. S. V. & Wardell, J. (2003). *Arkivoc*, 10, 156–168.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Epifano, F., Genovese, S., Fiorito, S., Mathieu, V. & Kiss, R. (2014). *Phytochem. Rev.* **13**, 37–49.
- Fujii, N., Yamashita, Y., Arima, Y., Nagashima, M. & Nakano, H. (1992). Antimicrob. Agents Chemother. 36, 2589–2594.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Haider, S., Alam, M. S. & Hamid, H. (2014). *Inflammation Cell Signal*, **1**, 1–10.
- Hussain, H., Krohn, K., Ahmad, V. U., Miana, G. A. & Green, I. R. (2007). Arkivoc, 2, 145–171.
- Jin, B., Song, Z.-C., Jiang, F.-S., Liu, W.-H. & Ding, Z.-S. (2011). Acta Cryst. E67, 0947.
- Jordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909–67943.
- Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). *Bioorg. Med. Chem.* 11, 3179–3191.
- Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028.
- Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). *Acta Cryst.* E71, 0231–0232.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Acta Cryst. (2018). E74, 1731-1734 [https://doi.org/10.1107/S2056989018015438]

Two polymorphs of 2-(prop-2-yn-1-yloxy)naphthalene-1,4-dione: solventdependent crystallization

Flaviano Melo Ottoni, Raquel Geralda Isidório, Ricardo José Alves and Nivaldo Lúcio Speziali

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

F(000) = 440

 $\theta = 3.9 - 30.6^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

Rod, yellow

 $D_{\rm x} = 1.392 {\rm Mg m^{-3}}$

 $0.35 \times 0.2 \times 0.1 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1655 reflections

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic)

Crystal data

 $C_{13}H_8O_3$ $M_r = 212.19$ Monoclinic, $P2_1/c$ a = 10.0911 (7) Å b = 4.8021 (3) Å c = 20.8939 (15) Å $\beta = 91.174$ (7)° V = 1012.27 (12) Å³ Z = 4

Data collection

Rigaku Xcalibur Atlas Gemini ultra	$T_{\min} = 0.764, \ T_{\max} = 1.000$
diffractometer	10652 measured reflections
Radiation source: fine-focus sealed X-ray tube,	3452 independent reflections
Enhance (Mo) X-ray Source	1765 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.058$
Detector resolution: 10.4186 pixels mm ⁻¹	$\theta_{\text{max}} = 32.8^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
ω scans	$h = -13 \rightarrow 15$
Absorption correction: multi-scan	$k = -7 \rightarrow 7$
(CrysAlis PRO; Rigaku OD, 2015)	$l = -30 \rightarrow 31$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.156$ S = 1.003452 reflections 145 parameters 0 restraints Primary atom site location: dual $R_{int} = 0.058$ $\theta_{max} = 32.8^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -13 \rightarrow 15$ $k = -7 \rightarrow 7$ $l = -30 \rightarrow 31$ Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.08336 (12)	0.4803 (2)	0.34723 (5)	0.0512 (3)
O2	0.50658 (13)	1.0905 (3)	0.41264 (6)	0.0646 (4)
O3	0.19024 (11)	0.3978 (2)	0.46005 (5)	0.0493 (3)
C1	0.17768 (15)	0.6268 (3)	0.36127 (7)	0.0381 (4)
C2	0.24795 (16)	0.5949 (3)	0.42459 (7)	0.0390 (4)
C3	0.35379 (16)	0.7492 (3)	0.44063 (7)	0.0434 (4)
H3	0.3937	0.7248	0.4807	0.052*
C4	0.40849 (16)	0.9546 (3)	0.39706 (8)	0.0419 (4)
C5	0.38922 (16)	1.1922 (3)	0.29135 (8)	0.0445 (4)
Н5	0.4645	1.2953	0.3021	0.053*
C6	0.32525 (17)	1.2340 (4)	0.23311 (8)	0.0495 (4)
H6	0.3576	1.3651	0.2046	0.059*
C7	0.21324 (18)	1.0817 (4)	0.21695 (8)	0.0528 (5)
H7	0.1701	1.1116	0.1778	0.063*
C8	0.16518 (16)	0.8854 (4)	0.25877 (8)	0.0460 (4)
H8	0.0899	0.7832	0.2477	0.055*
C9	0.22882 (15)	0.8402 (3)	0.31716 (7)	0.0362 (3)
C10	0.34126 (15)	0.9961 (3)	0.33397 (7)	0.0363 (4)
C11	0.24569 (19)	0.3468 (3)	0.52323 (7)	0.0488 (4)
H11A	0.2477	0.5175	0.5480	0.059*
H11B	0.3354	0.2761	0.5204	0.059*
C12	0.16027 (19)	0.1408 (4)	0.55324 (8)	0.0510 (5)
C13	0.0907 (2)	-0.0220 (4)	0.57682 (9)	0.0649 (6)
H13	0.0352	-0.1518	0.5956	0.078*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

```
Atomic displacement parameters (Å^2)
```

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0476 (7)	0.0589 (7)	0.0465 (7)	-0.0115 (6)	-0.0106 (5)	0.0087 (5)
0.0593 (8)	0.0758 (9)	0.0578 (9)	-0.0230 (7)	-0.0195 (6)	0.0080 (7)
0.0576 (8)	0.0521 (7)	0.0377 (6)	-0.0075 (6)	-0.0101 (5)	0.0117 (5)
0.0386 (8)	0.0394 (8)	0.0362 (8)	0.0037 (7)	-0.0047 (6)	-0.0009 (7)
0.0474 (9)	0.0381 (8)	0.0315 (8)	0.0030 (7)	-0.0020 (7)	0.0039 (6)
0.0494 (9)	0.0474 (9)	0.0330 (8)	0.0008 (8)	-0.0112 (7)	0.0019 (7)
0.0415 (9)	0.0438 (9)	0.0402 (9)	0.0014 (7)	-0.0068 (7)	-0.0023 (7)
0.0397 (8)	0.0453 (9)	0.0485 (10)	-0.0006 (7)	0.0016 (7)	0.0030 (8)
0.0524 (10)	0.0523 (10)	0.0439 (10)	0.0008 (8)	0.0037 (8)	0.0122 (8)
0.0571 (11)	0.0630 (11)	0.0380 (9)	0.0015 (9)	-0.0095 (8)	0.0115 (8)
0.0453 (9)	0.0519 (10)	0.0405 (9)	-0.0034 (8)	-0.0086 (7)	0.0065 (7)
	U^{11} 0.0476 (7) 0.0593 (8) 0.0576 (8) 0.0386 (8) 0.0474 (9) 0.0494 (9) 0.0415 (9) 0.0397 (8) 0.0524 (10) 0.0571 (11) 0.0453 (9)	U^{11} U^{22} 0.0476 (7) 0.0589 (7) 0.0593 (8) 0.0758 (9) 0.0576 (8) 0.0521 (7) 0.0386 (8) 0.0394 (8) 0.0474 (9) 0.0381 (8) 0.0474 (9) 0.0474 (9) 0.0415 (9) 0.0438 (9) 0.0397 (8) 0.0453 (9) 0.0524 (10) 0.0523 (10) 0.0571 (11) 0.0630 (11) 0.0453 (9) 0.0519 (10)	U^{11} U^{22} U^{33} 0.0476 (7) 0.0589 (7) 0.0465 (7) 0.0593 (8) 0.0758 (9) 0.0578 (9) 0.0576 (8) 0.0521 (7) 0.0377 (6) 0.0386 (8) 0.0394 (8) 0.0362 (8) 0.0474 (9) 0.0381 (8) 0.0315 (8) 0.0494 (9) 0.0474 (9) 0.0330 (8) 0.0415 (9) 0.0438 (9) 0.0402 (9) 0.0397 (8) 0.0453 (9) 0.0485 (10) 0.0524 (10) 0.0523 (10) 0.0439 (10) 0.0571 (11) 0.0630 (11) 0.0380 (9) 0.0453 (9) 0.0519 (10) 0.0405 (9)	U^{11} U^{22} U^{33} U^{12} 0.0476 (7) 0.0589 (7) 0.0465 (7) -0.0115 (6) 0.0593 (8) 0.0758 (9) 0.0578 (9) -0.0230 (7) 0.0576 (8) 0.0521 (7) 0.0377 (6) -0.0075 (6) 0.0386 (8) 0.0394 (8) 0.0362 (8) 0.0037 (7) 0.0474 (9) 0.0381 (8) 0.0315 (8) 0.0008 (8) 0.0494 (9) 0.0474 (9) 0.0330 (8) 0.0008 (8) 0.0415 (9) 0.0438 (9) 0.0402 (9) 0.0014 (7) 0.0397 (8) 0.0453 (9) 0.0439 (10) -0.0006 (7) 0.0524 (10) 0.0523 (10) 0.0439 (10) 0.0008 (8) 0.0571 (11) 0.0630 (11) 0.0380 (9) 0.0015 (9) 0.0453 (9) 0.0519 (10) 0.0405 (9) -0.0034 (8)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0476 (7) 0.0589 (7) 0.0465 (7) -0.0115 (6) -0.0106 (5) 0.0593 (8) 0.0758 (9) 0.0578 (9) -0.0230 (7) -0.0195 (6) 0.0576 (8) 0.0521 (7) 0.0377 (6) -0.0075 (6) -0.0101 (5) 0.0386 (8) 0.0394 (8) 0.0362 (8) 0.0037 (7) -0.0047 (6) 0.0474 (9) 0.0381 (8) 0.0315 (8) 0.0030 (7) -0.0020 (7) 0.0494 (9) 0.0474 (9) 0.0330 (8) 0.0008 (8) -0.0112 (7) 0.0415 (9) 0.0438 (9) 0.0402 (9) 0.0014 (7) -0.0068 (7) 0.0524 (10) 0.0523 (10) 0.0439 (10) 0.0008 (8) 0.0037 (8) 0.0571 (11) 0.0630 (11) 0.0380 (9) -0.0015 (9) -0.0095 (8) 0.0453 (9) 0.0405 (9) -0.0034 (8) -0.0086 (7)

C9	0.0367 (8)	0.0374 (8)	0.0343 (8)	0.0040 (7)	-0.0028 (6)	0.0017 (6)
C10	0.0361 (8)	0.0369 (8)	0.0356 (8)	0.0060 (6)	-0.0025 (6)	-0.0011 (6)
C11	0.0655 (11)	0.0482 (10)	0.0323 (8)	-0.0007 (9)	-0.0078 (7)	0.0043 (7)
C12	0.0674 (12)	0.0489 (10)	0.0366 (9)	0.0023 (9)	-0.0013 (8)	0.0006 (8)
C13	0.0780 (15)	0.0633 (12)	0.0536 (12)	-0.0049 (11)	0.0071 (10)	0.0095 (10)

Geometric parameters (Å, °)

01—C1	1.2145 (18)	C8—C7	1.380 (2)
O2—C4	1.2241 (18)	C8—H8	0.9300
O3—C2	1.3423 (18)	C9—C10	1.398 (2)
O3—C11	1.4442 (19)	C9—C1	1.478 (2)
C1—C2	1.496 (2)	C9—C8	1.384 (2)
C2—C3	1.337 (2)	C10—C4	1.483 (2)
С3—Н3	0.9300	C10—C5	1.390 (2)
C4—C3	1.458 (2)	C11—C12	1.462 (3)
C5—C6	1.380 (2)	C11—H11A	0.9700
С5—Н5	0.9300	C11—H11B	0.9700
C6—C7	1.382 (2)	C12—C13	1.167 (2)
С6—Н6	0.9300	C13—H13	0.9300
С7—Н7	0.9300		
O1—C1—C9	122.19 (14)	C6—C5—H5	120.0
O1—C1—C2	120.61 (14)	С6—С7—Н7	119.9
O2—C4—C10	121.15 (15)	C7—C8—C9	120.16 (16)
O2—C4—C3	120.59 (15)	С7—С6—Н6	119.9
O3—C2—C1	110.92 (14)	С7—С8—Н8	119.9
O3—C11—H11A	110.4	C8—C9—C10	119.80 (14)
O3—C11—H11B	110.4	C8—C9—C1	119.77 (14)
O3—C11—C12	106.62 (14)	C8—C7—C6	120.20 (16)
C2—O3—C11	117.37 (13)	С8—С7—Н7	119.9
C2—C3—C4	121.94 (14)	C9—C10—C4	120.35 (14)
С2—С3—Н3	119.0	C9—C1—C2	117.20 (14)
C3—C2—O3	127.29 (15)	С9—С8—Н8	119.9
C3—C2—C1	121.78 (14)	C10-C9-C1	120.42 (14)
C3—C4—C10	118.26 (14)	C10—C5—H5	120.0
С4—С3—Н3	119.0	H11A—C11—H11B	108.6
С5—С6—Н6	119.9	C12—C11—H11A	110.4
C5—C6—C7	120.24 (15)	C12—C11—H11B	110.4
C5—C10—C9	119.55 (14)	C12—C13—H13	180.0
C5—C10—C4	120.10 (15)	C13—C12—C11	179.1 (2)
C6—C5—C10	120.05 (16)		
O1—C1—C2—O3	-1.5 (2)	C8—C9—C1—C2	-177.9 (1)
O1—C1—C2—C3	178.5 (1)	C9—C1—C2—O3	179.1 (1)
O2—C4—C3—C2	-179.0 (2)	C9—C10—C4—O2	-179.6 (2)
O3—C2—C3—C4	178.9 (1)	C9—C10—C5—C6	0.6 (2)
C1—C9—C8—C7	-179.2 (2)	C9—C8—C7—C6	0.1 (3)

C1—C9—C10—C5	178.8 (1)	C9—C1—C2—C3	-1.0 (2)
C1—C9—C10—C4	-1.7 (2)	C9—C10—C4—C3	-0.3 (2)
C1—C2—C3—C4	-1.0 (2)	C10—C9—C1—O1	-177.1 (1)
C2-O3-C11-C12	175.9 (1)	C10—C5—C6—C7	0.1 (3)
C5—C10—C4—O2	-0.1 (2)	C10—C9—C8—C7	0.7 (2)
C5—C6—C7—C8	-0.5 (3)	C10—C9—C1—C2	2.3 (2)
C8—C9—C1—O1	2.7 (2)	C10—C4—C3—C2	1.7 (2)
C8—C9—C10—C5	-1.0 (2)	C11—O3—C2—C3	1.2 (2)
C8—C9—C10—C4	178.5 (1)	C11—O3—C2—C1	-178.8 (1)

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic)

Crystal data

 $C_{13}H_8O_3$ $M_r = 212.19$ Triclinic, P1 a = 3.9906 (6) Å *b* = 11.6943 (16) Å c = 12.3413 (16) Å $\alpha = 63.347 (14)^{\circ}$ $\beta = 83.343 \ (12)^{\circ}$ $\gamma = 83.018 (12)^{\circ}$ $V = 509.69 (14) \text{ Å}^3$

Data collection

Rigaku Xcalibur Atlas Gemini ultra diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4186 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.064$ H-atom parameters constrained $wR(F^2) = 0.184$ $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2]$ S = 1.00where $P = (F_0^2 + 2F_c^2)/3$ 2503 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ 145 parameters $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2F(000) = 220 $D_{\rm x} = 1.383 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 796 reflections $\theta = 3.2 - 22.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KRod, yellow $0.35 \times 0.2 \times 0.1 \text{ mm}$

 $T_{\rm min} = 0.773, T_{\rm max} = 1.000$ 7730 measured reflections 2503 independent reflections 923 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.084$ $\theta_{\text{max}} = 29.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -5 \rightarrow 5$ $k = -14 \rightarrow 15$ $l = -16 \rightarrow 16$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1734 (6)	0.9294 (2)	0.1987 (2)	0.0641 (7)	
O2	0.9527 (6)	0.4894 (2)	0.3422 (2)	0.0669 (8)	
03	0.3732 (5)	0.82577 (18)	0.41940 (19)	0.0502 (6)	
C1	0.3597 (7)	0.8310 (3)	0.2279 (3)	0.0434 (8)	
C2	0.4859 (7)	0.7629 (3)	0.3529 (3)	0.0403 (8)	
C3	0.6822 (7)	0.6529 (3)	0.3868 (3)	0.0446 (8)	
H3	0.7612	0.6142	0.4642	0.053*	
C4	0.7756 (7)	0.5920 (3)	0.3068 (3)	0.0469 (8)	
C5	0.7466 (8)	0.6005 (3)	0.1040 (3)	0.0623 (10)	
H5	0.8690	0.5209	0.1307	0.075*	
C6	0.6507 (9)	0.6636 (4)	-0.0147 (4)	0.0734 (12)	
H6	0.7105	0.6264	-0.0676	0.088*	
C7	0.4685 (9)	0.7804 (4)	-0.0543 (3)	0.0693 (11)	
H7	0.4083	0.8226	-0.1343	0.083*	
C8	0.3734 (8)	0.8360 (3)	0.0234 (3)	0.0544 (9)	
H8	0.2467	0.9147	-0.0038	0.065*	
C9	0.4678 (7)	0.7737 (3)	0.1427 (3)	0.0428 (8)	
C10	0.6598 (7)	0.6563 (3)	0.1823 (3)	0.0447 (8)	
C11	0.4891 (8)	0.7741 (3)	0.5405 (3)	0.0532 (9)	
H11A	0.7294	0.7831	0.5362	0.064*	
H11B	0.4510	0.6837	0.5849	0.064*	
C12	0.2992 (8)	0.8455 (3)	0.6013 (3)	0.0518 (9)	
C13	0.1377 (9)	0.9034 (3)	0.6476 (3)	0.0692 (11)	
H13	0.0087	0.9496	0.6846	0.083*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0807 (17)	0.0553 (14)	0.0518 (16)	0.0214 (13)	-0.0130 (12)	-0.0243 (12)
O2	0.0784 (17)	0.0510 (14)	0.0670 (17)	0.0249 (13)	-0.0154 (13)	-0.0273 (12)
03	0.0621 (14)	0.0495 (13)	0.0460 (14)	0.0123 (10)	-0.0128 (11)	-0.0294 (11)
C1	0.0431 (18)	0.0423 (18)	0.044 (2)	0.0002 (14)	0.0003 (15)	-0.0204 (16)
C2	0.0425 (18)	0.0415 (18)	0.040 (2)	0.0020 (14)	-0.0068 (14)	-0.0206 (16)
C3	0.0479 (19)	0.0440 (18)	0.0411 (19)	0.0029 (15)	-0.0038 (14)	-0.0195 (15)
C4	0.0456 (19)	0.0450 (19)	0.048 (2)	-0.0002 (15)	-0.0002 (15)	-0.0204 (16)
C5	0.068 (2)	0.068 (2)	0.064 (3)	0.0107 (19)	-0.0070 (19)	-0.044 (2)
C6	0.077 (3)	0.095 (3)	0.069 (3)	0.009 (2)	-0.008(2)	-0.057 (3)
C7	0.073 (3)	0.089 (3)	0.052 (2)	0.003 (2)	-0.0072 (19)	-0.038 (2)
C8	0.059 (2)	0.055 (2)	0.043 (2)	0.0090 (17)	-0.0107 (17)	-0.0171 (18)
C9	0.0392 (18)	0.0492 (19)	0.045 (2)	-0.0027 (14)	0.0019 (15)	-0.0268 (16)
C10	0.0482 (19)	0.0462 (19)	0.043 (2)	0.0013 (15)	-0.0035 (15)	-0.0238 (16)
C11	0.051 (2)	0.066 (2)	0.050 (2)	0.0075 (17)	-0.0159 (17)	-0.0329 (19)
C12	0.056 (2)	0.058 (2)	0.046 (2)	0.0043 (17)	-0.0090 (17)	-0.0274 (18)
C13	0.078 (3)	0.079 (3)	0.054 (2)	0.018 (2)	-0.0136 (19)	-0.036 (2)

Geometric parameters (Å, °)

01—C1	1.220 (3)	С7—Н7	0.9300	
O2—C4	1.236 (3)	C8—C7	1.378 (4)	
O3—C2	1.339 (3)	C8—H8	0.9300	
O3—C11	1.447 (3)	C9—C8	1.394 (4)	
C1—C2	1.499 (4)	С10—С9	1.393 (4)	
C1—C9	1.481 (4)	C10—C4	1.478 (4)	
C2—C3	1.339 (3)	C10—C5	1.382 (4)	
С3—Н3	0.9300	C11—H11A	0.9700	
C4—C3	1.449 (4)	C11—H11B	0.9700	
С5—Н5	0.9300	C12—C11	1.454 (4)	
C5—C6	1.389 (5)	C12—C13	1.164 (4)	
С6—Н6	0.9300	C13—H13	0.9300	
C6-C7	1 369 (4)		0.9900	
00 07	1.505 (1)			
01—C1—C2	120.7 (3)	С6—С5—Н5	120.1	
01—C1—C9	121.8 (3)	C7—C8—C9	119.7 (3)	
O3—C2—C1	111.2 (2)	С7—С8—Н8	120.1	
O3—C11—C12	107.6 (2)	C7—C6—C5	120.2 (3)	
O3—C11—H11A	110.2	С7—С6—Н6	119.9	
O3—C11—H11B	110.2	С8—С7—Н7	119.7	
O2—C4—C10	121.0 (3)	C8—C9—C1	120.2 (3)	
O2—C4—C3	120.2 (3)	С9—С8—Н8	120.1	
C2—C3—C4	122.2 (3)	C9—C10—C4	120.3 (3)	
C2—O3—C11	117.2 (2)	C9—C1—C2	117.5 (3)	
С2—С3—Н3	118.9	C10—C9—C1	120.1 (3)	
C3—C2—O3	127.8 (3)	C10—C9—C8	119.7 (3)	
C3—C2—C1	121.0 (3)	C10—C5—H5	120.1	
C3—C4—C10	118.7 (3)	C10—C5—C6	119.9 (3)	
С4—С3—Н3	118.9	H11A—C11—H11B	108.5	
C5—C10—C9	119.8 (3)	C12—C11—H11A	110.2	
C5—C10—C4	119.9 (3)	C12—C11—H11B	110.2	
С5—С6—Н6	119.9	C12—C13—H13	180.0	
C6—C7—C8	120.6 (4)	C13—C12—C11	177.6 (3)	
С6—С7—Н7	119.7			
01—C1—C2—O3	-1.3 (4)	C5-C10-C9-C1	177.0 (3)	
O1—C1—C2—C3	178.0 (3)	C5-C10-C9-C8	-2.0 (5)	
O1-C1-C9-C10	-175.2 (3)	C5-C10-C4-O2	0.8 (5)	
O1—C1—C9—C8	3.8 (5)	C5-C10-C4-C3	179.7 (3)	
O2—C4—C3—C2	-178.8 (3)	C5-C6-C7-C8	-1.0 (6)	
O3—C2—C3—C4	177.5 (3)	C9—C1—C2—O3	179.1 (3)	
C1—C2—C3—C4	-1.7 (5)	C9—C1—C2—C3	-1.5 (5)	
C1—C9—C8—C7	-178.5 (3)	C9—C10—C5—C6	1.9 (5)	
C2-03-C11-C12	-171.9 (3)	C9—C8—C7—C6	1.0 (6)	
C2-C1-C9-C10	4.4 (5)	C10-C9-C8-C7	0.5 (5)	
C2—C1—C9—C8	-176.6 (3)	C10—C4—C3—C2	2.3 (5)	

C4—C10—C9—C1	-3.9 (5)	C10—C5—C6—C7	-0.5 (6)
C4—C10—C9—C8	177.1 (3)	C11—O3—C2—C1	-177.1 (3)
C4—C10—C5—C6	-177.1 (3)	C11—O3—C2—C3	3.7 (5)