

Received 29 October 2018 Accepted 31 October 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; thioether; phosphane oxide; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 1876525

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

A 1:2 co-crystal of 2,2'-thiodibenzoic acid and triphenylphosphane oxide: crystal structure, Hirshfeld surface analysis and computational study

Sang Loon Tan* and Edward R. T. Tiekink*

Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: alant@sunway.edu.my, edwardt@sunway.edu.my

The asymmetric unit of the title co-crystal, 2.2'-thiodibenzoic acid-triphenylphosphane oxide (1/2), C₁₄H₁₀O₄S·2C₁₈H₁₅OP, comprises two molecules of 2.2'-thiodibenzoic acid [TDBA; systematic name: 2-[(2-carboxyphenyl)sulfanyl]benzoic acid] and four molecules of triphenylphosphane oxide [TPPO; systematic name: (diphenylphosphoryl)benzene]. The two TDBA molecules are twisted about their disulfide bonds and exhibit dihedral angles of 74.40 (5) and 72.58 (5)° between the planes through the two SC_6H_4 residues. The carboxylic acid groups are tilted out of the planes of the rings to which they are attached forming a range of CO_2/C_6 dihedral angles of 19.87 (6)-60.43 (8)°. Minor conformational changes are exhibited in the TPPO molecules with the range of dihedral angles between phenyl rings being -2.1(1) to $-62.8(1)^{\circ}$. In the molecular packing, each TDBA acid molecule bridges two TPPO molecules via hydroxy-O-H···O(oxide) hydrogen bonds to form two three-molecule aggregates. These are connected into a three-dimensional architecture by TPPO-C-H···O(oxide, carbonyl) and TDBA-C-H···(oxide, carbonyl) interactions. The importance of $H \cdots H$, $O \cdots H/H \cdots O$ and $C \cdots H/H \cdots C$ contacts to the calculated Hirshfeld surfaces has been demonstrated. In terms of individual molecules, $O \cdots H/H \cdots O$ contacts are more important for the TDBA (ca 28%) than for the TPPO molecules (ca 13%), as expected from the chemical composition of these species. Computational chemistry indicates the four independent hydroxy-O-H···O(oxide) hydrogen bonds in the crystal impart about the same energy (*ca* 52 kJ mol⁻¹), with DTBA-phenyl-C-H···O(oxide) interactions being next most stabilizing (*ca* 40 kJ mol⁻¹).

1. Chemical context

2-Thiosalicylic acid, also known as 2-mercaptobenzoic acid, being an analogue to salicylic acid, has many applications. In medicine, is dianion is found in the salt $Na[EtHg(SC_6H_4CO_2)]$, which displays anti-fungal and anti-septic activities (Bigham & Copes, 2005). Other uses include as anti-corrosion agents (Chien et al., 2012), as reactive agents or modifiers for nanoparticles and electrochemical sensing (Cang et al., 2017; Sikarwar et al., 2014), as catalysts for organic syntheses (Yang et al., 2018; Selig & Miller, 2011) as well as being the precursor for some anti-viral and anti-microbial agents (Saha et al., 2017). The compound readily coordinates a wide variety of metals, in both neutral and anionic form, due to the presence of both hard (oxygen) and soft (sulfur) donor atoms and exhibits different modes of coordination. Very recent reviews of the coordination chemistry of 2-thiosalicylic acid (Wehr-Candler & Henderson, 2016) and the isomeric 3- and 4-species (Tiekink & Henderson, 2017) are available. However, a restriction in the chemistry of this molecule is found as it can

undergo various pH-dependent transformations, *i.e.* it remains intact in acidic condition but may be oxidized to form 2.2'dithiodibenzoic acid at neutral pH. For example and relevant to the present contribution, are studies of co-crystal formation between 2-thiosalicylic acid and bipyridyl-type molecules (Broker & Tiekink, 2007) whereby 2-thiosalicylic acid was oxidized to 2,2'-dithiodibenzoic acid during co-crystallization. During attempts to react 2-thiosalicylic acid with copper(I) chloride in the presence of two equivalents of triphenylphosphane, motivated by the desire to prepare analogues of phosphanecopper(I) dithiocarbamate derivatives which exhibit promising anti-bacterial activity (Jamaludin et al., 2016), the title co-crystal was isolated, i.e. the 1:2 co-crystal of 2,2'-thiodibenzoic acid and triphenylphosphane oxide (I). Unexpectedly, both organic reagents were found to have oxidized in the presence of copper(I) chloride in acetonitrile solution under neutral conditions. While the actual mechanism remains unclear, a very recent study describes related synthetic outcomes (Gorobet et al., 2018). Herein, the crystal and molecular structures, the analysis of the calculated Hirshfeld surface and calculation of the interaction energies through a computational approach for (I) are described.

2. Structural commentary

X-ray crystallography reveals the title co-crystal to comprise 2,2'-thiodibenzoic acid (TDBA) and triphenylphosphane oxide (TPPO) in the ratio 1:2, but with two independent TDBA molecules, Fig. 1, and four independent TPPO molecules, Fig. 2, in the asymmetric unit.

Each TDBA molecule comprises two benzoic acid residues connected in the 2-positions by a sulfur bridge. The confirmation of the presence of carboxylic acid groups is readily seen in the disparity in the C-O(hydroxy)and C=O(carbonyl) bond lengths with the minimum difference seen for the C100=O11 and C100-O12 bonds of 1.3126 (15) and 1.2075 (16) Å, respectively. As expected, the thiophenyl residues are almost planar with the maximum r.m.s. deviation of 0.053 Å being found for the S1,C80-C85 atoms. The thiophenyl rings are deviated from the perfect perpendicular bisector with dihedral angles of 74.40 (5) and 72.58 (5) $^{\circ}$ for the S1- and S2-molecules, respectively. Finally, the O6-, O8-, O10and O12- carboxylic acid groups are tilted from the phenyl rings they are connected to by 60.43 (8), 24.24 (7), 19.87 (6) and 45.78 (7)°, respectively. That there are no major conformational differences between the molecules is evidenced from the overlay diagram of Fig. 3 (r.m.s. deviation = 0.118 Å).

The molecular structures of the two independent molecules of 2,2'thiodibenzoic acid in the asymmetric unit of (I), showing the atomlabelling scheme and displacement ellipsoids at the 70% probability level.

The molecular structures of the TPPO coformers are more rigid. This is seen in the O–P–C–C torsion angles, which range from 17.7 (1) to 61.6 (1), 19.8 (1) to 61.5 (1), -2.1 (1) to -62.8 (1) and -19.2 (1) to -44.5 (1)° for the P1–P4-molecules, respectively. In the same way, the P=O bond lengths span an experimentally equivalent range, *i.e.* 1.4975 (8) [P4=O4] to 1.5018 (8) Å [P1=O1].

Figure 2

The molecular structures of the four independent molecules of triphenylphosphane oxide in the asymmetric unit of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 3

An overlay diagram of the two independent molecules of 2,2'-thiodibenzoic, with S1-molecule (purple) and S2-molecule (light-blue) superimposed so that a pair thiophenyl moieties are coincident.

3. Supramolecular features

characterizing Geometric parameters the identified (PLATON; Spek, 2009) interatomic contacts in the crystal of (I) are given in Table 1. The most prominent feature of the molecular packing is the formation of hydroxy-O- $H \cdots O(oxide)$ hydrogen bonds. These occur so that each molecule of 2,2'-thiodibenzoic acid (TDBA) links two triphenylphosphane oxide (TPPO) molecules to form a pair of three-molecule aggregates with a 13-membered, linear $\{O \cdots HOC_3SC_3OH \cdots O\}$ heterosynthon as illustrated in Fig. 4. These aggregates are connected into a three-dimensional architecture by a large number of $C-H \cdots O$ interactions. Two of these contacts, i.e. TPPO-C47-H···O11(carbonyl) and TPPO-C71-H···O5(carbonyl), operate in concert with hydroxy-O12-H···O3(oxide) and hydroxy-O6-H··· O4(oxide) hydrogen bonds, respectively, to close a ninemembered $\{HC_2PO\cdots HOCO\cdots\}$ synthon. The C-H···O contacts are of the type TPPO-C-H···O(oxide, carbonyl)

Figure 4

The two three-molecule aggregates in the crystal of (I). The hydroxy-O $H \cdots O(\text{oxide})$ hydrogen bonds are shown as red dashed lines. Colour code: S1-containing molecule, purple; S2, red; P1, green; P2, blue; P3, yellow; P4, light-blue.

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O6−H6 <i>O</i> ···O4	0.95 (2)	1.66 (2)	2.6070 (12)	171 (2)
$O8-H8O\cdots O1^{i}$	0.90(2)	1.70(2)	2.5763 (12)	163 (2)
O10−H10O···O2 ⁱⁱ	0.91(2)	1.72 (2)	2.6077 (12)	163 (2)
O12−H12O···O3 ⁱⁱⁱ	0.90(2)	1.71(2)	2.5978 (12)	170.9 (19)
C16-H16···O4	0.93	2.53	3.3333 (15)	144
$C44 - H44 \cdots O4^{iv}$	0.93	2.43	3.2404 (17)	145
$C52-H52\cdots O11^{v}$	0.93	2.49	3.3231 (16)	149
$C62 - H62 \cdot \cdot \cdot O11^{i}$	0.93	2.51	3.367 (2)	153
$C64 - H64 \cdots O5^{vi}$	0.93	2.46	3.263 (2)	144
$C68-H68\cdots O3^{vi}$	0.93	2.55	3.2747 (17)	135
C71-H71···O5	0.93	2.59	3.2765 (18)	131
$C75 - H75 \cdots O2^{i}$	0.93	2.41	3.1184 (16)	133
C96−H96···O1	0.93	2.49	3.1832 (15)	132

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z + 1; (iii) x, y, z + 1; (iv) $x - 1, -y + \frac{1}{2}, z - \frac{3}{2}$; (v) $x, -y + \frac{1}{2}, z - \frac{3}{2}$; (vi) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

and TDBA-C-H···O(oxide, carbonyl), Table 1. In addition to participating in hydroxy-O-H···O(oxide) hydrogen bonds, each of the O1-O3 atoms of TPPO form an additional C-H···O(oxide) contact whereas the O4 atom participates in two such interactions. One carbonyl group of each TDBA molecule, *i.e.* the O5 and O11 atoms, participates in two C-H···O(carbonyl) interactions, leaving no formal role for the carbonyl-O7 and O9 atoms in the molecular packing. A view of the unit-cell contents is shown in Fig. 5.

In terms of distinguishing between molecules based on intermolecular contacts, the carbonyl-O5 atom of DTBA accepts $C-H\cdots O$ interactions from phenyl rings derived from TPPO and DTBA, whereas the carbonyl-O11 atom accepts contacts from TPPO only. The DPPO-O4 atom is distinct from the O1-O3 atoms based on the number of interactions it forms. In common with the O4 atom, O3 accepts a $C-H\cdots O$ interaction from TPPO, whereas each of the O1 and O2 participates in DTBA- $C-H\cdots O$ contacts.

Figure 5 A view of the unit-cell contents shown in projection down the *a* axis. The molecules are colour-coded as for Fig. 4.

Table 2Summary of short $C \cdots H$ interatomic contacts (Å) in (I).

Contact	Separation	Symmetry operation
C13···H10	2.80	1 - x, 1 - y, 1 - z
C14· · ·H10	2.84	1-x, 1-y, 1-z
C35···H28	2.77	-x, 1-y, -z
C34···H28	2.94	-x, 1-y, -z

4. Hirshfeld surface analysis

The independent 2,2'-thiodibenzoic acid (TDBA) and triphenylphosphane oxide (TPPO) molecules of (I) were subjected to Hirshfeld surface analysis following a literature precedent on a multi-component crystal (Jotani *et al.*, 2018) to further understand the nature of the intermolecular interactions in the crystal. As shown in Fig. 6(a)-(f), the pair of TDBA-S1 and -S2 molecules, shown with the respective pairs of hydrogen bonded TPPO molecules, as well as the TPPO-P1–P4 molecules exhibit some similarities especially on the prominent close contacts as represented by the intense red regions on the corresponding d_{norm} surface mappings, which are mainly dominated by hydroxy-O-H···O(oxide) interactions.

Upon close inspection on the surface mapping, minor differences are observed between the pair of TDBA molecules. Specifically, a diminutive red spot is observed near one of the terminal carboxylic groups of the S1-molecule arising from a TPPO-phenyl-C-H···O(carbonyl) interaction but, no such contact is apparent for the S2-molecule. As for the two pairs of TPPO molecules, the significant difference between the TPPO-P1 and -P4 molecules, linked to S1-DTBA, and the TPPO-P2 and P3 molecules, linked to the S2-TDBA, is the

Figure 6

Views of the Hirshfeld surfaces mapped over d_{norm} for components of (I) for the: (a) S1-DTBA molecule hydrogen bonded (red dashed lines) to the P1- (left) and P4-TPPO molecules, (b) P1-TPPO, (c) P4-TPPO, (d) S2-DTBA molecule hydrogen bonded to the P2- (left) and P3-TPPO molecules, (e) P2-TPPO and (f) P3-TPPO. The surfaces in (a)–(c) are mapped over the range -0.766 to 1.446 a.u., and those in (d)–(f) over the range -0.766 to 1.563 a.u.

Figure 7

Different views of the Hirshfeld surfaces mapped over electrostatic potential for the centrosymmetrically related molecules of TPPO interacting *via* semi-localized phenyl-C $-H \cdots \pi$ (phenyl) interactions: (*a*) P1-TPPO, in the range of -0.100 to 0.041 a.u. and (*b*) P2-TPPO molecules (-0.100 to 0.041 a.u.).

presence of additional red spots on the surface mapping of the phenyl rings for P1- and P2-molecules in contrast to their P3and P4-containing counterparts. This difference may be attributed to the complementary phenyl-C $-H\cdots\pi$ (phenyl) interactions between centrosymmetrically-related molecules, as illustrated in Fig. 7 and tabulated in Table 2. Here, the interacting H10 and H28 atoms are directed towards two carbon atoms of a symmetry-related ring so that the interactions are best described as being semi-localized as opposed to delocalized, which corresponds to the situation where the interacting hydrogen atom is equally separated from all six carbon atoms of the ring (Schollmeyer *et al.*, 2008).

Quantitative evaluation of the Hirshfeld surfaces by the combination of the d_i and d_e (*i* is internal and *e* is external to the surface) contact distances in intervals of 0.01 Å gives the overall two-dimensional fingerprint plots for the entire asymmetric unit of (I), Fig. 8(*a*), and each of the individual TDBA, Fig. 9(*a*), and TPPO, Fig. 10(*a*), molecules. Further, these can be delineated into specific contacts (McKinnon *et al.*, 2007) and Figs. 9–10(*b*)–(*d*) give fingerprint plots delineated into H···H, O···H/H···O and C···H/H···C contacts. The relative contributions of these contacts to the surfaces is given in Table 3.

The overall fingerprint plot for (I), Fig. 8*a*, is quite different for the individual components, Figs. 9–10*a*, as the former is a sum of all the individual surface contacts, which differ for the individual molecules. As expected, the same is true for the corresponding decomposed fingerprint plots. The major contribution to the overall surface of (I), *i.e.* 49.4%, comes from $H \cdot \cdot H$ contacts. The $O \cdot \cdot H/H \cdot \cdot O$ contacts ($d_e + d_i \sim 2.34$ Å) make a significant contribution at 13.7%, while the $C \cdot \cdot H/H \cdot \cdot \cdot C$ interactions ($d_e + d_i \sim 2.66$ Å), at 30.1%, play a more prominent role.

The formation of the 13-membered $\{O \cdots HOC_3SC_3OH \cdots O\}$ heterosynthon, Fig. 4, is clearly reflected in the corresponding full fingerprint plots of the individual molecules Figs. 9–10(*a*), which exhibit an almost

research communications

Table 3

Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and for the the individual TDBA and DPPO molecules.

Contact	Percentage contribution							
	overall	S1-TDBA	S2-TDBA	P1-DPPO	P2-DPPO	P3-DPPO	P4-DPPO	
$H \cdot \cdot \cdot H$	49.4	42.3	40.7	49.8	49.6	49.7	51.4	
$O{\cdots} \cdot H/H{\cdots} O$	13.7	28.1	28.1	14.1	13.6	11.7	12.7	
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	30.1	21.9	23.4	30.2	30.9	33.4	31.3	

identical claw-like fingerprint profile but arranged in the exact reverse order, *i.e.* Fig. 9(*a*) *cf.* Fig. 10(*a*). Among all the close interactions, $H \cdot \cdot \cdot H$ contacts, Figs. 8–9*b*, represent the dominant interactions to the individual surfaces, *i.e.* 41–42% for the TDBA molecules and 49–51% for the DPPO molecules, and exhibit $d_e + d_i$ contact distances ranging from 2.24 to 2.38 Å which is very close to the sum of van der Waals radii of 2.4 Å.

The O···H hydrogen bonds constitute the strongest among all interactions present in the co-crystal and lead to formation of asymmetric, forceps-like profiles in the corresponding decomposed fingerprint plots, Figs. 9–10(c). These feature two tips – one at relatively short $d_e + d_i \sim 1.6$ Å that can be attributed to the hydroxy-H···O(oxide) hydrogen bonds for the S1- and S2-TDBA molecules, Fig. 10(c), or oxide-O···H(hydroxy) hydrogen bonds for P1–P4-TPPO. The other tip has a relatively long $d_e + d_i$ value of ~2.4 Å and arises as a result of hydroxy- $O \cdots H(\text{phenyl})$ contacts for S1- and S2-TDBA or phenyl- $H \cdots O(\text{hydroxy})$ for P1–P4-TPPO. The $O \cdots H/H \cdots O$ contacts constitute the second most dominant interactions for the TDBA molecules and third most for the TPPO molecules, Table 3.

Similar to the H···H contacts, the C···H/H···C interactions contribute weakly to the molecular packing of the cocrystal as evidenced from the $d_e + d_i$ distance range of 2.7– 2.8 Å, *i.e.* close to the sum of van der Waals radii of 2.9 Å, despite the contacts constituting the third most dominant interaction in the TDBA molecules (*ca* 22%) and being the second most dominant for the TPPO molecules (*ca* 32%). An exception to the trend is found for the P1- and P2-TPPO molecules, which display relatively short contact distances at *ca* 2.6 Å owing to the formation of C–H··· π interactions as discussed above.

(a) The full two-dimensional fingerprint plot for (I) and (b)–(d) those delineated into $H \cdots H$, $O \cdots H/H \cdots O$ and $C \cdots H/H \cdots C$ contacts, respectively.

Figure 9

(a) The full two-dimensional fingerprint plot for the two independent TDBA molecules in (I) and (b)–(d) those delineated into $H \cdots H$, $O \cdots H/H \cdots O$ and $C \cdots H/H \cdots C$ contacts, respectively.

research communications

Figure 10

(a) The full two-dimensional fingerprint plot for the four independent TPPO molecules in (I) and (b)–(d) those delineated into $H \cdots H$, $O \cdots H/H \cdots O$ and $C \cdots H/H \cdots C$ contacts, respectively.

In summary the Hirshfeld surface analysis on (I), with six individual constituents, was able to distinguish between these in terms of different intermolecular interactions, akin to the recently reported analysis of a structure with four independent cation/anion pairs (Jotani *et al.*, 2018).

5. Computational study

The co-crystal was subjected to intermolecular interaction energy calculations using CE-B3LYP/6-31G(d,p) available in *Crystal Explorer* (version 17; Turner *et al.*, 2017), with the crystal geometry being used as the input but, with hydrogenatom positions normalized to the standard neutron diffraction values. By default, a cluster of molecules (defined as density matrices) would need to be generated by applying crystallographic symmetry operations with respect to a selected central molecule (density matrix) within the radius of 3.8 Å for interaction energy calculation (Turner *et al.*, 2014). However, as the co-crystal contains multiple independent molecules in the asymmetric unit, a cluster of molecules was first generated surrounding the S1-molecule of TDBA for the calculation and then the procedure was repeated for the cluster of molecules surrounding the S2-molecule. The total intermolecular energy is the sum of energies of four main components comprising electrostatic, polarization, dispersion and exchange-repulsion with a scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie *et al.*, 2017).

Selected results obtained from the interaction energy calculations involving the DTBA molecules as reference molecules are tabulated in Table 4 and the environment about the S1-molecule of TDBA is shown in Fig. 11. As expected, $O-H\cdots O$ hydrogen bonding interactions give the greatest energies among the close contacts present in the crystal. The total intermolecular energy (E_{tot}) of the hydroxy- $O-H\cdots O(\text{oxide})$ hydrogen bonds is consistent across the series and lies in the range -50.7 to -53.3 kJ mol⁻¹. The other close contacts which exerts a relatively strong influence in the energy frameworks of the co-crystal are DTBA-phenyl- $C-H\cdots O(\text{oxide})$ interactions, with the E_{tot} amounting of ca -40 kJ mol⁻¹, Table 4.

research communications

contact	$E_{ m electrostatic}$	$E_{ m polarization}$	$E_{\rm dispersion}$	$E_{\mathrm{exchange-repulsion}}$	$E_{\rm total}$	Symmetry operation
O6−H6 <i>O</i> ···O4	-76.5	-19.4	-17.8	95.2	-52.0	x, y, z
O8−H8O···O1	-72.8	-19.2	-14.9	82.3	-53.3	1 + x, y, z
O10−H10O···O2	-70.5	-18.3	-16.4	83.8	-50.7	1 + x, y, 1 + z
O12−H12O···O3	-72.3	-19.2	-13.9	81.2	-52.5	x, y, 1 + z
C75−H75···O2	-16.8	-6.6	-41.6	29.8	-40.4	1 + x, y, z
C96−H96···O1	-15.2	-6.1	-42.0	27.9	-40.0	<i>x</i> , <i>y</i> , <i>z</i>

 Table 4

 Interaction energies ($kJ \mod^{-1}$) for selected close contacts.

6. Database survey

The only other structure of 2,2'-thiodibenzoic acid in the literature is that of the pure compound (Dai *et al.*, 2005). While this presents essentially the same features as for the two independent molecules in (I), the dihedral angle between the thiophenyl rings is up to 4° smaller at 68.0 (2)°, and the tilts of the carboxylic acid groups are less pronounced at 6.9 (5) and 29.8 (5)°.

A survey of the Cambridge Structural Database (Groom *et al.*, 2016), revealed 110 molecules of (non-coordinated) triphenylphosphane oxide. A plot of the retrieved P=O bond lengths is shown in Fig. 12. The mean value found for the P=O bond length is 1.494 Å with a standard deviation of 0.008 Å, with the minimum and maximum bond lengths being 1.478 (3) and 1.530 (7) Å, found in the multi-component structures of NUCHIC (Okawa *et al.*, 1997) and DUYXUQ (Arens *et al.*, 1986), respectively. In the latter structure, charge-assisted hydrogen bonds are formed between Ph₃P=O and Ph₃P=O⁽⁺⁾H. The observed P=O bond lengths in (I), *i.e.* in the range 1.4975 (8) to 1.5018 (8) Å are at the lower end of the range of such bonds.

Figure 11

The interaction energy framework about the S1-molecule of DTBA (indicated by an asterisk) viewed along the b-axis direction.

7. Synthesis and crystallization

All chemical precursors were of reagent grade and used as received without purification. Thiosalicylic acid (Merck; 0.154 g, 0.001 mol) and triphenylphosphane (Merck; 0.262 g, 0.002 mol) were dissolved in acetonitrile (40 ml) and the mixture subsequently added into an acetonitrile solution (25 ml) of copper(I) iodide (Merck; 0.19 g, 0.001 mol). The reaction mixture was stirred for 1 h at room temperature before the white product was filtered, washed with cold ethanol and dried *in vacuo*. The filtrate was left at room temperature, yielding colourless prisms after 1 week; Yield 74%. M.p. 457.7–459.2 K. IR (cm⁻¹): 3062 ν (C–H), 1693 ν (COO), 1236 ν (P=O), 1116 ν (P–Ar), 719 δ (P–C), 617 ν (C–S).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C–H = 0.93 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The oxygen-bound H atoms were located from difference Fourier maps and refined without constraint. Owing to poor agreement, three reflections, *i.e.* ($\overline{1}$ 5 9), ($\overline{3}$ 15 3) and ($\overline{5}$ 7 9), were omitted from the final cycles of refinement.

Funding information

The support of Sunway University for studies in co-crystals, through Grant No. INT-FST-RCCM-2016–01, is gratefully acknowledged.

References

- Arens, G., Sundermeyer, W. & Pritzkow, H. (1986). Chem. Ber. 119, 3631–3638.
- Bigham, M. & Copes, R. (2005). Drug Saf. 28, 89-101.
- Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.
- Cang, J., Wang, C.-W., Chen, P.-C., Lin, Y.-J., Li, Y.-C. & Chang, H.-T. (2017). Anal. Methods 9, 5254–5259.
- Chien, C. W., Liu, C. L., Chen, F. J., Lin, K. H. & Lin, C. S. (2012). *Electrochim. Acta*, **72**, 74–80.
- Dai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3182o3183.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gorobet, A., Vitiu, A., Petuhov, O. & Croitor, L. (2018). *Polyhedron*, **151**, 51–57.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. *Kristallogr.* 231, 341–349.
- Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. *Cryst. Mat.* doi: https://doi. org/10.1515/zkri-2018-2101.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *IUCrJ*, **4**, 575–587.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Okawa, T., Osakada, N., Eguchi, S. & Kakehi, A. (1997). *Tetrahedron*, **53**, 16061–16082.
- Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.
- Saha, M., Scerba, M. T., Shank, N. I., Hartman, T. L., Buchholz, C. A., Buckheit, R. W. Jr, Durell, S. R. & Appella, D. H. (2017). *ChemMedChem*, **12**, 714–721.
- Schollmeyer, D., Shishkin, O. V., Rühl, T. & Vysotsky, M. O. (2008). *CrystEngComm*, **10**, 715–723.
- Selig, P. S. & Miller, S. J. (2011). Tetrahedron Lett. 52, 2148-2151.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Table 5
Experimental details.

$4C_{18}H_{15}OP \cdot 2C_{14}H_{10}O_4S$
1661.64
Monoclinic, $P2_1/c$
100
10.7085 (1), 41.9751 (2), 18.9268 (1)
101.490 (1)
8336.92 (10)
4
Cu Ka
1.83
$0.17\times0.16\times0.09$
XtaLAB Synergy, Dualflex, AtlasS2
Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
0.653, 1.000
94929, 17036, 15740
0.025
0.630
0.033, 0.092, 1.04
17036
1079
H atoms treated by a mixture of independent and constrained refinement
0.42, -0.55

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

- Sikarwar, B., Sharma, P. K., Srivastava, A., Agarwal, G. S., Boopathi, M., Singh, B. & Jaiswal, Y. K. (2014). *Biosens. Bioelectron.* 60, 201– 209.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tiekink, E. R. T. & Henderson, W. (2017). Coord. Chem. Rev. 341, 19–52.
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Wehr-Candler, T. & Henderson, W. (2016). Coord. Chem. Rev. 313, 111-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, Q.-Q., Xiao, W., Du, W., Ouyang, Q. & Chen, Y.-C. (2018). *Chem. Commun.* 54, 1129–1132.

Acta Cryst. (2018). E74, 1764-1771 [https://doi.org/10.1107/S205698901801544X]

A 1:2 co-crystal of 2,2'-thiodibenzoic acid and triphenylphosphane oxide: crystal structure, Hirshfeld surface analysis and computational study

Sang Loon Tan and Edward R. T. Tiekink

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-[(2-Carboxyphenyl)sulfanyl]benzoic acid-(diphenylphosphoryl)benzene (1/2)

Crystal data

 $4C_{18}H_{15}OP \cdot 2C_{14}H_{10}O_4S$ $M_r = 1661.64$ Monoclinic, $P2_1/c$ a = 10.7085 (1) Å b = 41.9751 (2) Å c = 18.9268 (1) Å $\beta = 101.490$ (1)° V = 8336.92 (10) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, AtlasS2 diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2558 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2018)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.092$ S = 1.0417036 reflections 1079 parameters F(000) = 3472 $D_x = 1.324 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 52739 reflections $\theta = 4.2-75.9^{\circ}$ $\mu = 1.83 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.17 \times 0.16 \times 0.09 \text{ mm}$

 $T_{\min} = 0.653, T_{\max} = 1.000$ 94929 measured reflections
17036 independent reflections
15740 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 76.2^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$ $h = -13 \rightarrow 13$ $k = -49 \rightarrow 52$ $l = -23 \rightarrow 23$

0 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 3.5049P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta\rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.55 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

				· · · ·	
	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.86876 (3)	0.60239 (2)	0.45382 (2)	0.01933 (7)	
05	0.66647 (18)	0.68394 (3)	0.41031 (6)	0.0653 (5)	
O6	0.63653 (11)	0.64495 (2)	0.48314 (5)	0.0298 (2)	
H6O	0.644 (2)	0.6616 (5)	0.5178 (12)	0.064 (7)*	
O7	1.05664 (8)	0.58755 (2)	0.57331 (5)	0.02348 (19)	
08	1.25159 (9)	0.57343 (2)	0.55791 (5)	0.0250 (2)	
H8O	1.261 (2)	0.5646 (5)	0.6020 (12)	0.059 (6)*	
C73	0.57062 (11)	0.63409 (3)	0.30175 (6)	0.0189 (2)	
H73	0.510504	0.650346	0.296861	0.023*	
C74	0.56910 (12)	0.61279 (3)	0.24561 (7)	0.0208 (2)	
H74	0.507892	0.614647	0.203416	0.025*	
C75	0.65935 (13)	0.58870 (3)	0.25272 (7)	0.0231 (3)	
H75	0.659019	0.574453	0.215058	0.028*	
C76	0.75002 (12)	0.58580(3)	0.31576 (7)	0.0227 (3)	
H76	0.809779	0.569467	0.320215	0.027*	
C77	0.75263 (11)	0.60713 (3)	0.37271 (6)	0.0180 (2)	
C78	0.66130 (11)	0.63139 (3)	0.36547 (6)	0.0161 (2)	
C79	0.65763 (12)	0.65610 (3)	0.42226 (6)	0.0198 (2)	
C80	1.01153 (11)	0.61285 (3)	0.42513 (6)	0.0167 (2)	
C81	1.01083 (13)	0.62905 (3)	0.36024 (7)	0.0234 (3)	
H81	0.933478	0.633723	0.329907	0.028*	
C82	1.12341 (14)	0.63818 (4)	0.34059 (8)	0.0297 (3)	
H82	1.120595	0.648892	0.297281	0.036*	
C83	1.24037 (13)	0.63157 (4)	0.38468 (8)	0.0294 (3)	
H83	1.315681	0.638162	0.371782	0.035*	
C84	1.24298 (12)	0.61502 (3)	0.44811 (7)	0.0232 (3)	
H84	1.321038	0.610079	0.477425	0.028*	
C85	1.13031 (11)	0.60555 (3)	0.46905 (6)	0.0168 (2)	
C86	1.14015 (11)	0.58810(3)	0.53863 (6)	0.0170 (2)	
S2	0.36308 (3)	0.60471 (2)	0.95618 (2)	0.01877 (7)	
09	0.56354 (8)	0.58971 (2)	1.06759 (4)	0.02008 (18)	
O10	0.75481 (8)	0.57505 (2)	1.04690 (5)	0.02276 (19)	
H10O	0.766 (2)	0.5668 (5)	1.0924 (12)	0.060 (6)*	
011	0.12548 (13)	0.68518 (2)	0.90397 (5)	0.0423 (3)	
012	0.15116 (10)	0.64745 (2)	0.98809 (5)	0.0254 (2)	
H12O	0.1545 (18)	0.6638 (5)	1.0188 (11)	0.045 (5)*	
C87	0.48876 (12)	0.62911 (3)	0.85303 (6)	0.0184 (2)	

H87	0.408551	0.634762	0.827278	0.022*
C88	0.59558 (13)	0.63654 (3)	0.82546 (7)	0.0231 (3)
H88	0.586377	0.647289	0.781755	0.028*
C89	0.71638 (13)	0.62809 (3)	0.86246 (7)	0.0253 (3)
H89	0.787995	0.632986	0.843699	0.030*
C90	0.72868 (12)	0.61226 (3)	0.92771 (7)	0.0213 (2)
H90	0.809347	0.606453	0.952545	0.026*
C91	0.62200 (11)	0.60484 (3)	0.95702 (6)	0.0154 (2)
C92	0.49939 (11)	0.61319 (3)	0.91922 (6)	0.0151 (2)
C93	0.64177 (11)	0.58925 (3)	1.02911 (6)	0.0160 (2)
C94	0.24038 (11)	0.60750 (3)	0.87723 (6)	0.0179 (2)
C95	0.23738 (12)	0.58484(3)	0.82279 (7)	0.0225(3)
H95	0.297462	0.568554	0.828932	0.027*
C96	0.14576(12)	0.58636(3)	0.75969(7)	0.0234(3)
H96	0.145014	0.571214	0.723745	0.028*
C97	0.05526 (12)	0.61046 (3)	0.75020(7)	0.0223(3)
H97	-0.006374	0.611467	0 708014	0.0223 (3)
C98	0.0003/1 0.05714(11)	0.63302(3)	0.80384 (6)	0.027 0.0194 (2)
H98	-0.003174	0.649254	0.797145	0.023*
C99	0.0031/1 0.14835(11)	0.63174(3)	0.86788 (6)	0.025 0.0164 (2)
C100	0.14035(11) 0.14237(11)	0.65763(3)	0.00700(0) 0.92171(6)	0.0104(2) 0.0181(2)
P1	0.45306(3)	0.03705(3) 0.53046(2)	0.52171(0) 0.69428(2)	0.0101(2)
01	0.32078 (8)	0.53040(2) 0.54411(2)	0.67897(4)	0.01250(0)
C1	0.52070(0)	0.51111(2) 0.53439(3)	0.83070 (6)	0.01703(17)
H1	0.656091	0.550177	0.811734	0.020*
C^2	0.65061(12)	0.530177 0.52494 (3)	0.90237 (6)	0.020 0.0192(2)
С2 H2	0.721498	0.52494 (5)	0.931197	0.023*
C3	0.721490 0.58344(12)	0.554551 0 50146 (3)	0.93049 (6)	0.025 0.0194 (2)
НЗ	0.610599	0.30140 (3)	0.977939	0.023*
C4	0.010399 0.47584(12)	0.49781(3)	0.977939 0.88817 (7)	0.025 0.0203(2)
С4 Н4	0.430003	0.472469	0.00017(7)	0.0205 (2)
C5	0.43666 (11)	0.47240	0.81683 (6)	0.024 0.0176 (2)
С5 H5	0.45000 (11)	0.49703(3)	0.31035 (0)	0.0170(2) 0.021*
115 C6	0.504754	0.52020 (3)	0.78760 (6)	0.021 0.0136 (2)
C0	0.50508(11) 0.53838(12)	0.32020(3)	0.78700(0)	0.0130(2)
С7 Н7	0.538550	0.460321	0.00991 (7)	0.0198(2) 0.024*
117 C8	0.588550	0.409521 0.44160(3)	0.710034	0.024 0.0254(3)
C0 H8	0.54019 (15)	0.44109(3) 0.424523	0.62722 (8)	0.0204 (5)
C9	0.392000 0.46540(14)	0.424525 0.44035(3)	0.55808 (8)	0.0306 (3)
U9 H0	0.466881	0.44033 (3)	0.530560	0.0300 (3)
C10	0.400001 0.38826 (17)	0.422551	0.530509	0.037
U10	0.38820 (17)	0.40383 (4)	0.33291 (8)	0.0403 (4)
C11	0.337203 0.38620 (15)	0.404822 0.40201(4)	0.487039	0.048°
	0.38029 (13)	0.49291 (4)	0.57405(7)	0.0312(3) 0.037*
C12	0.334039	0.310043 0.40447(2)	0.550555	0.037°
C12 C13	0.40102(11)	0.49447(3) 0.54792(2)	0.04372(0)	0.0100(2)
U13	0.00001 (11)	0.34703(3)	0.00017(0)	0.0108 (2)
піз С14	0.710047	0.320322	0.000/94	0.020^{*}
U14	0.77099 (12)	0.30759 (3)	0.03990 (0)	0.0203(2)

H14	0.850763	0.562941	0.633391	0.024*
C15	0.73532 (12)	0.60136 (3)	0.62942 (7)	0.0223 (3)
H15	0.790696	0.615862	0.614766	0.027*
C16	0.61775 (13)	0.61152 (3)	0.64067 (7)	0.0228 (3)
H16	0.595084	0.632870	0.634256	0.027*
C17	0.53354 (12)	0.58992 (3)	0.66151 (6)	0.0187 (2)
H17	0.454903	0.596820	0.669357	0.022*
C18	0.56734 (11)	0.55785 (3)	0.67064 (6)	0.0141 (2)
P2	-0.04151 (3)	0.53337 (2)	0.18925 (2)	0.01230 (6)
02	-0.17363 (8)	0.54704 (2)	0.17137 (4)	0.01732 (17)
C19	0.11406 (11)	0.53774 (3)	0.32684 (6)	0.0167 (2)
H19	0.160010	0.553259	0.307909	0.020*
C20	0.15104 (12)	0.52863 (3)	0.39889 (6)	0.0194 (2)
H20	0.221743	0.538005	0.427976	0.023*
C21	0.08202 (12)	0.50557 (3)	0.42697 (6)	0.0205 (2)
H21	0.107516	0.499240	0.474765	0.025*
C22	-0.02503(12)	0.49184 (3)	0.38417 (7)	0.0211 (2)
H22	-0.071898	0.476702	0.403634	0.025*
C23	-0.06198 (11)	0.50071 (3)	0.31239 (6)	0.0176 (2)
H23	-0.133366	0.491457	0.283687	0.021*
C24	0.00844 (11)	0.52362 (3)	0.28324 (6)	0.0139 (2)
C25	0.04771 (12)	0.47170 (3)	0.16729 (6)	0.0187 (2)
H25	0.099716	0.473162	0.212801	0.022*
C26	0.04960 (12)	0.44426 (3)	0.12632 (7)	0.0226 (3)
H26	0.103258	0.427486	0.144451	0.027*
C27	-0.02776(13)	0.44180 (3)	0.05889 (7)	0.0257 (3)
H27	-0.025983	0.423458	0.031542	0.031*
C28	-0.10793 (15)	0.46669 (4)	0.03213 (8)	0.0345 (3)
H28	-0.160726	0.464959	-0.013102	0.041*
C29	-0.11000 (14)	0.49422 (3)	0.07241 (7)	0.0280 (3)
H29	-0.163834	0.510912	0.053961	0.034*
C30	-0.03175 (11)	0.49697 (3)	0.14038 (6)	0.0151 (2)
C31	0.03988 (12)	0.59295 (3)	0.15930 (7)	0.0192 (2)
H31	-0.039378	0.599663	0.166545	0.023*
C32	0.12523 (13)	0.61484 (3)	0.14071 (7)	0.0234 (3)
H32	0.102725	0.636236	0.135335	0.028*
C33	0.24365 (12)	0.60499 (3)	0.13014 (7)	0.0212 (3)
H33	0.299701	0.619741	0.117004	0.025*
C34	0.27898 (11)	0.57320 (3)	0.13908 (6)	0.0193 (2)
H34	0.359108	0.566710	0.132823	0.023*
C35	0.19411 (11)	0.55108 (3)	0.15742 (6)	0.0161 (2)
H35	0.217465	0.529756	0.163287	0.019*
C36	0.07374 (11)	0.56081 (3)	0.16705 (6)	0.0142 (2)
P3	0.09805 (3)	0.71259 (2)	0.12227 (2)	0.01599 (7)
03	0.17981 (8)	0.69166 (2)	0.08605 (5)	0.02155 (18)
C37	-0.08417 (12)	0.68424 (3)	0.19179 (7)	0.0244 (3)
H37	-0.030988	0.688982	0.235659	0.029*
C38	-0.19660(13)	0.66742 (3)	0.19036 (8)	0.0315 (3)

H38	-0.218007	0.660839	0.233340	0.038*
C39	-0.27655 (13)	0.66046 (3)	0.12557 (9)	0.0312 (3)
H39	-0.351472	0.649149	0.124875	0.037*
C40	-0.24498 (14)	0.67032 (3)	0.06181 (8)	0.0323 (3)
H40	-0.299242	0.665798	0.018164	0.039*
C41	-0.13297(14)	0.68691 (3)	0.06245 (7)	0.0274(3)
H41	-0.112158	0.693373	0.019234	0.033*
C42	-0.05124(12)	0.69397 (3)	0.12764 (7)	0.0185(2)
C43	-0.03715(12)	0.76945(3)	0.08915 (8)	0.0248(3)
H43	-0.081000	0.764003	0.125165	0.030*
C44	-0.06608(13)	0 79759 (3)	0.05104 (8)	0.0299(3)
H44	-0.128479	0.811110	0.061853	0.036*
C45	-0.00170(14)	0.80552 (3)	-0.00327(8)	0.030
H45	-0.021237	0.824361	-0.028957	0.0310(3)
C46	0.021237 0.09146(14)	0.021501 0.78551(3)	-0.01936(8)	0.0305(3)
U40 H46	0.09140(14) 0.134234	0.700946	-0.055853	0.0305 (5)
C47	0.134234 0.12140(12)	0.75730(3)	0.055055	0.037 0.0239(3)
U47	0.12140 (12)	0.73730 (3)	0.01331 (7)	0.0239 (3)
C18	0.183810 0.05757(12)	0.743830 0.74023(3)	0.007732	0.029°
C40	0.03757(12) 0.20856(12)	0.74923(3) 0.70701(3)	0.07371(7) 0.22785(7)	0.0193(2)
U49	0.29830 (12)	0.70791(3)	0.23783(7)	0.0255 (5)
П49 С50	0.334041	0.094/40	0.207831	0.028°
C50	0.30378(13)	0.71402 (3)	0.30779(8)	0.0293 (3)
H50	0.443912	0.705170	0.324258	0.035*
051	0.30930 (14)	0.73330(3)	0.35291 (8)	0.0312 (3)
H51	0.352266	0.736994	0.399933	0.03/*
C52	0.19116 (14)	0.74706(3)	0.32820 (8)	0.0308 (3)
H52	0.155341	0.760138	0.358497	0.037*
C53	0.12620 (13)	0.74136 (3)	0.25837 (7)	0.0253 (3)
H53	0.047151	0.750767	0.241795	0.030*
C54	0.17919 (12)	0.72151 (3)	0.21276 (7)	0.0188 (2)
P4	0.59434 (3)	0.71241 (2)	0.62054 (2)	0.01558 (7)
04	0.65852 (8)	0.68597 (2)	0.58832 (4)	0.01947 (18)
C55	0.36994 (13)	0.67928 (3)	0.59742 (8)	0.0282 (3)
H55	0.389594	0.674863	0.552729	0.034*
C56	0.26067 (15)	0.66662 (4)	0.61513 (9)	0.0361 (3)
H56	0.206716	0.653874	0.582208	0.043*
C57	0.23188 (14)	0.67296 (4)	0.68190 (9)	0.0357 (3)
H57	0.158804	0.664312	0.693791	0.043*
C58	0.31085 (14)	0.69200 (4)	0.73083 (8)	0.0324 (3)
H58	0.290945	0.696173	0.775564	0.039*
C59	0.42035 (13)	0.70500 (3)	0.71334 (7)	0.0248 (3)
H59	0.473371	0.717929	0.746290	0.030*
C60	0.45058 (12)	0.69863 (3)	0.64644 (7)	0.0190 (2)
C61	0.77928 (13)	0.70565 (3)	0.74264 (7)	0.0256 (3)
H61	0.789190	0.685356	0.724829	0.031*
C62	0.85001 (14)	0.71467 (4)	0.80939 (8)	0.0328 (3)
H62	0.907827	0.700498	0.835864	0.039*
C63	0.83457 (14)	0.74466 (4)	0.83647 (7)	0.0310(3)
		. ,		

H63	0.880548	0.750466	0.881635	0.037*
C64	0.75106 (15)	0.76599 (4)	0.79662 (8)	0.0351 (3)
H64	0.741536	0.786242	0.814744	0.042*
C65	0.68114 (14)	0.75731 (3)	0.72948 (8)	0.0313 (3)
H65	0.625732	0.771861	0.702523	0.038*
C66	0.69371 (11)	0.72688 (3)	0.70238 (7)	0.0191 (2)
C67	0.45982 (12)	0.76745 (3)	0.56674 (7)	0.0231 (3)
H67	0.417547	0.765712	0.604988	0.028*
C68	0.43043 (13)	0.79226 (3)	0.51757 (8)	0.0275 (3)
H68	0.369387	0.807282	0.523296	0.033*
C69	0.49220 (13)	0.79458 (3)	0.46002 (8)	0.0283 (3)
H69	0.472196	0.811139	0.427055	0.034*
C70	0.58383 (13)	0.77230 (3)	0.45135 (7)	0.0261 (3)
H70	0.624512	0.773921	0.412430	0.031*
C71	0.61497 (12)	0.74760 (3)	0.50053 (7)	0.0207 (2)
H71	0.676790	0.732791	0.494812	0.025*
C72	0.55292 (11)	0.74510 (3)	0.55873 (7)	0.0183 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.01503 (14)	0.02690 (16)	0.01590 (14)	0.00414 (11)	0.00267 (11)	0.00504 (11)
05	0.1541 (15)	0.0195 (5)	0.0287 (6)	-0.0136 (7)	0.0334 (8)	-0.0030 (4)
O6	0.0519 (6)	0.0196 (5)	0.0228 (5)	-0.0019 (4)	0.0189 (4)	-0.0022 (4)
O7	0.0198 (4)	0.0312 (5)	0.0197 (4)	0.0043 (4)	0.0047 (3)	0.0069 (4)
08	0.0187 (4)	0.0351 (5)	0.0200 (4)	0.0091 (4)	0.0011 (3)	0.0089 (4)
C73	0.0162 (5)	0.0211 (6)	0.0188 (6)	0.0022 (5)	0.0022 (4)	0.0008 (5)
C74	0.0175 (6)	0.0274 (6)	0.0164 (6)	-0.0040 (5)	0.0004 (4)	-0.0018 (5)
C75	0.0251 (6)	0.0255 (6)	0.0194 (6)	-0.0024 (5)	0.0065 (5)	-0.0073 (5)
C76	0.0211 (6)	0.0232 (6)	0.0249 (6)	0.0056 (5)	0.0072 (5)	-0.0028 (5)
C77	0.0162 (5)	0.0206 (6)	0.0170 (5)	0.0017 (5)	0.0028 (4)	0.0014 (5)
C78	0.0160 (5)	0.0161 (5)	0.0164 (5)	0.0000 (4)	0.0037 (4)	0.0006 (4)
C79	0.0234 (6)	0.0185 (6)	0.0165 (6)	0.0024 (5)	0.0018 (5)	0.0007 (5)
C80	0.0186 (6)	0.0154 (5)	0.0164 (5)	0.0031 (4)	0.0042 (4)	0.0003 (4)
C81	0.0235 (6)	0.0277 (7)	0.0192 (6)	0.0062 (5)	0.0046 (5)	0.0069 (5)
C82	0.0310 (7)	0.0344 (7)	0.0262 (7)	0.0060 (6)	0.0116 (6)	0.0128 (6)
C83	0.0246 (7)	0.0337 (7)	0.0334 (7)	0.0006 (6)	0.0139 (6)	0.0093 (6)
C84	0.0177 (6)	0.0260 (6)	0.0260 (6)	0.0022 (5)	0.0044 (5)	0.0043 (5)
C85	0.0190 (6)	0.0149 (5)	0.0165 (5)	0.0018 (4)	0.0037 (4)	0.0003 (4)
C86	0.0165 (5)	0.0161 (5)	0.0168 (5)	0.0009 (4)	-0.0005 (4)	-0.0003 (4)
S2	0.01312 (13)	0.02878 (16)	0.01450 (13)	0.00328 (11)	0.00294 (10)	0.00385 (11)
09	0.0180 (4)	0.0253 (4)	0.0169 (4)	0.0024 (3)	0.0033 (3)	0.0036 (3)
O10	0.0172 (4)	0.0317 (5)	0.0182 (4)	0.0088 (4)	0.0007 (3)	0.0046 (4)
011	0.0794 (9)	0.0169 (5)	0.0236 (5)	-0.0017 (5)	-0.0069(5)	0.0018 (4)
O12	0.0420 (6)	0.0184 (4)	0.0189 (4)	0.0065 (4)	0.0136 (4)	0.0013 (4)
C87	0.0184 (6)	0.0192 (6)	0.0168 (5)	0.0033 (5)	0.0016 (4)	0.0022 (4)
C88	0.0278 (7)	0.0233 (6)	0.0196 (6)	0.0017 (5)	0.0083 (5)	0.0060 (5)
C89	0.0212 (6)	0.0294 (7)	0.0281 (7)	0.0002 (5)	0.0118 (5)	0.0054 (5)

C90	0.0159 (6)	0.0238 (6)	0.0246 (6)	0.0019 (5)	0.0050 (5)	0.0021 (5)
C91	0.0152 (5)	0.0150 (5)	0.0157 (5)	0.0013 (4)	0.0027 (4)	-0.0007 (4)
C92	0.0166 (5)	0.0137 (5)	0.0152 (5)	0.0014 (4)	0.0037 (4)	-0.0008(4)
C93	0.0154 (5)	0.0150 (5)	0.0162 (5)	0.0005 (4)	-0.0003 (4)	-0.0012(4)
C94	0.0138 (5)	0.0237 (6)	0.0167 (5)	-0.0001 (5)	0.0037 (4)	0.0023 (5)
C95	0.0187 (6)	0.0264 (6)	0.0236 (6)	0.0027 (5)	0.0073 (5)	-0.0017(5)
C96	0.0227 (6)	0.0292 (7)	0.0193 (6)	-0.0042(5)	0.0063 (5)	-0.0050(5)
C97	0.0177 (6)	0.0309 (7)	0.0167 (6)	-0.0058(5)	-0.0003(5)	-0.0003(5)
C98	0.0151 (5)	0.0234 (6)	0.0193 (6)	-0.0011 (5)	0.0024 (5)	0.0035 (5)
C99	0.0142 (5)	0.0186 (6)	0.0166 (5)	-0.0027 (4)	0.0036 (4)	0.0027 (4)
C100	0.0155 (5)	0.0191 (6)	0.0179 (6)	-0.0015 (4)	-0.0007 (4)	0.0024 (5)
P1	0.01150 (13)	0.01351 (13)	0.01110 (13)	0.00026 (10)	0.00034 (10)	0.00070 (10)
01	0.0128 (4)	0.0217 (4)	0.0176 (4)	0.0025 (3)	0.0013 (3)	0.0031 (3)
C1	0.0172 (6)	0.0182 (5)	0.0144 (5)	-0.0027 (4)	0.0023 (4)	-0.0004 (4)
C2	0.0172 (6)	0.0259 (6)	0.0133 (5)	-0.0021(5)	-0.0001 (4)	-0.0022(5)
C3	0.0210 (6)	0.0254 (6)	0.0120 (5)	0.0037 (5)	0.0035 (4)	0.0022 (5)
C4	0.0228 (6)	0.0210 (6)	0.0180 (6)	-0.0027 (5)	0.0062 (5)	0.0037 (5)
C5	0.0172 (5)	0.0188 (6)	0.0161 (5)	-0.0027(5)	0.0014 (4)	-0.0002 (4)
C6	0.0146 (5)	0.0137 (5)	0.0125 (5)	0.0017 (4)	0.0024 (4)	-0.0003(4)
C7	0.0202 (6)	0.0193 (6)	0.0196 (6)	0.0003 (5)	0.0030 (5)	-0.0023(5)
C8	0.0257 (7)	0.0180 (6)	0.0349 (7)	-0.0006 (5)	0.0118 (6)	-0.0047 (5)
C9	0.0329 (7)	0.0278 (7)	0.0336 (7)	-0.0083 (6)	0.0124 (6)	-0.0168 (6)
C10	0.0489 (10)	0.0429 (9)	0.0232 (7)	0.0014 (7)	-0.0069 (7)	-0.0169 (6)
C11	0.0382 (8)	0.0311 (7)	0.0190 (6)	0.0060 (6)	-0.0069 (6)	-0.0056 (5)
C12	0.0155 (5)	0.0173 (5)	0.0149 (5)	-0.0032 (4)	0.0026 (4)	-0.0016 (4)
C13	0.0167 (5)	0.0175 (5)	0.0153 (5)	0.0000 (4)	0.0015 (4)	-0.0014 (4)
C14	0.0156 (5)	0.0280 (6)	0.0172 (6)	-0.0037 (5)	0.0032 (4)	-0.0022(5)
C15	0.0227 (6)	0.0253 (6)	0.0175 (6)	-0.0089(5)	0.0009 (5)	0.0035 (5)
C16	0.0272 (7)	0.0166 (6)	0.0232 (6)	-0.0022(5)	0.0016 (5)	0.0043 (5)
C17	0.0186 (6)	0.0174 (6)	0.0195 (6)	0.0016 (5)	0.0024 (5)	0.0015 (4)
C18	0.0155 (5)	0.0162 (5)	0.0096 (5)	-0.0013 (4)	0.0000 (4)	0.0002 (4)
P2	0.01140 (13)	0.01358 (13)	0.01122 (13)	0.00096 (10)	0.00054 (10)	0.00039 (10)
O2	0.0131 (4)	0.0211 (4)	0.0170 (4)	0.0036 (3)	0.0013 (3)	0.0014 (3)
C19	0.0175 (6)	0.0175 (5)	0.0151 (5)	-0.0020 (4)	0.0028 (4)	-0.0006 (4)
C20	0.0178 (6)	0.0253 (6)	0.0136 (5)	-0.0021 (5)	-0.0002 (4)	-0.0030 (5)
C21	0.0222 (6)	0.0265 (6)	0.0126 (5)	0.0023 (5)	0.0031 (5)	0.0018 (5)
C22	0.0235 (6)	0.0232 (6)	0.0171 (6)	-0.0031 (5)	0.0058 (5)	0.0032 (5)
C23	0.0169 (5)	0.0193 (6)	0.0159 (5)	-0.0023 (5)	0.0019 (4)	-0.0003 (4)
C24	0.0148 (5)	0.0140 (5)	0.0129 (5)	0.0023 (4)	0.0027 (4)	-0.0005 (4)
C25	0.0184 (6)	0.0192 (6)	0.0176 (6)	0.0011 (5)	0.0013 (5)	-0.0015 (5)
C26	0.0228 (6)	0.0175 (6)	0.0288 (7)	0.0017 (5)	0.0085 (5)	-0.0025 (5)
C27	0.0255 (7)	0.0243 (6)	0.0288 (7)	-0.0048 (5)	0.0093 (5)	-0.0125 (5)
C28	0.0375 (8)	0.0377 (8)	0.0231 (7)	0.0042 (7)	-0.0066 (6)	-0.0143 (6)
C29	0.0323 (7)	0.0288 (7)	0.0183 (6)	0.0086 (6)	-0.0062(5)	-0.0050 (5)
C30	0.0142 (5)	0.0166 (5)	0.0146 (5)	-0.0010 (4)	0.0030 (4)	-0.0014 (4)
C31	0.0189 (6)	0.0175 (6)	0.0215 (6)	0.0031 (5)	0.0046 (5)	0.0019 (5)
C32	0.0275 (7)	0.0154 (6)	0.0273 (6)	0.0013 (5)	0.0051 (5)	0.0048 (5)
C33	0.0218 (6)	0.0221 (6)	0.0189 (6)	-0.0056 (5)	0.0020 (5)	0.0043 (5)
	~ /	× /	× /	× /	× /	· · ·

C34	0.0155 (5)	0.0247 (6)	0.0176 (6)	-0.0018 (5)	0.0027 (4)	-0.0016 (5)
C35	0.0169 (6)	0.0154 (5)	0.0153 (5)	0.0010 (4)	0.0012 (4)	-0.0010 (4)
C36	0.0157 (5)	0.0158 (5)	0.0101 (5)	0.0001 (4)	0.0002 (4)	-0.0002 (4)
P3	0.01686 (14)	0.01392 (14)	0.01790 (14)	0.00187 (11)	0.00514 (11)	-0.00059 (11)
O3	0.0249 (4)	0.0197 (4)	0.0215 (4)	0.0058 (4)	0.0082 (4)	-0.0020 (3)
C37	0.0198 (6)	0.0265 (6)	0.0257 (6)	-0.0007 (5)	0.0020 (5)	0.0058 (5)
C38	0.0247 (7)	0.0321 (7)	0.0380 (8)	-0.0025 (6)	0.0066 (6)	0.0114 (6)
C39	0.0210 (6)	0.0197 (6)	0.0507 (9)	-0.0035 (5)	0.0018 (6)	0.0018 (6)
C40	0.0296 (7)	0.0229 (7)	0.0390 (8)	-0.0050 (6)	-0.0060 (6)	-0.0052 (6)
C41	0.0332 (7)	0.0230 (6)	0.0245 (6)	-0.0046 (6)	0.0020 (5)	-0.0029 (5)
C42	0.0184 (6)	0.0124 (5)	0.0241 (6)	0.0016 (4)	0.0032 (5)	-0.0001 (4)
C43	0.0209 (6)	0.0217 (6)	0.0337 (7)	0.0023 (5)	0.0102 (5)	0.0037 (5)
C44	0.0231 (6)	0.0202 (6)	0.0472 (8)	0.0053 (5)	0.0085 (6)	0.0047 (6)
C45	0.0305 (7)	0.0203 (6)	0.0432 (8)	0.0004 (6)	0.0054 (6)	0.0114 (6)
C46	0.0315 (7)	0.0281 (7)	0.0339 (7)	-0.0005 (6)	0.0109 (6)	0.0091 (6)
C47	0.0231 (6)	0.0227 (6)	0.0273 (6)	0.0015 (5)	0.0083 (5)	0.0032 (5)
C48	0.0182 (6)	0.0162 (6)	0.0234 (6)	-0.0002 (5)	0.0039 (5)	0.0014 (5)
C49	0.0202 (6)	0.0230 (6)	0.0270 (7)	0.0017 (5)	0.0051 (5)	-0.0018 (5)
C50	0.0215 (6)	0.0308 (7)	0.0325 (7)	0.0011 (5)	-0.0021 (5)	0.0002 (6)
C51	0.0353 (8)	0.0301 (7)	0.0249 (7)	-0.0059 (6)	-0.0019 (6)	-0.0052 (6)
C52	0.0379 (8)	0.0267 (7)	0.0279 (7)	0.0008 (6)	0.0065 (6)	-0.0095 (6)
C53	0.0257 (6)	0.0234 (6)	0.0266 (7)	0.0039 (5)	0.0046 (5)	-0.0051 (5)
C54	0.0185 (6)	0.0165 (5)	0.0215 (6)	-0.0015 (5)	0.0040 (5)	-0.0014 (5)
P4	0.01651 (14)	0.01290 (14)	0.01749 (14)	0.00079 (11)	0.00375 (11)	-0.00068 (11)
O4	0.0241 (4)	0.0156 (4)	0.0196 (4)	0.0037 (3)	0.0063 (3)	-0.0012 (3)
C55	0.0279 (7)	0.0244 (7)	0.0328 (7)	-0.0063 (5)	0.0073 (6)	-0.0046 (5)
C56	0.0295 (7)	0.0259 (7)	0.0530 (9)	-0.0089 (6)	0.0084 (7)	-0.0013 (7)
C57	0.0253 (7)	0.0294 (7)	0.0562 (10)	0.0005 (6)	0.0170 (7)	0.0153 (7)
C58	0.0294 (7)	0.0373 (8)	0.0344 (7)	0.0095 (6)	0.0157 (6)	0.0123 (6)
C59	0.0236 (6)	0.0267 (7)	0.0251 (6)	0.0043 (5)	0.0071 (5)	0.0026 (5)
C60	0.0193 (6)	0.0143 (5)	0.0239 (6)	0.0025 (5)	0.0055 (5)	0.0036 (5)
C61	0.0236 (6)	0.0248 (6)	0.0268 (7)	0.0015 (5)	0.0015 (5)	-0.0020 (5)
C62	0.0287 (7)	0.0372 (8)	0.0288 (7)	0.0001 (6)	-0.0033 (6)	0.0010 (6)
C63	0.0282 (7)	0.0435 (8)	0.0216 (6)	-0.0135 (6)	0.0058 (5)	-0.0076 (6)
C64	0.0381 (8)	0.0325 (8)	0.0342 (8)	-0.0052 (6)	0.0061 (6)	-0.0163 (6)
C65	0.0340 (7)	0.0241 (7)	0.0330 (7)	0.0036 (6)	0.0001 (6)	-0.0085 (6)
C66	0.0173 (6)	0.0205 (6)	0.0202 (6)	-0.0024 (5)	0.0050 (5)	-0.0025 (5)
C67	0.0192 (6)	0.0202 (6)	0.0309 (7)	0.0021 (5)	0.0072 (5)	0.0029 (5)
C68	0.0197 (6)	0.0213 (6)	0.0414 (8)	0.0045 (5)	0.0056 (6)	0.0067 (6)
C69	0.0258 (7)	0.0227 (6)	0.0352 (7)	0.0012 (5)	0.0028 (6)	0.0117 (6)
C70	0.0260 (7)	0.0248 (6)	0.0282 (7)	-0.0024 (5)	0.0074 (5)	0.0056 (5)
C71	0.0189 (6)	0.0181 (6)	0.0255 (6)	-0.0010 (5)	0.0052 (5)	0.0006 (5)
C72	0.0164 (6)	0.0153 (5)	0.0226 (6)	-0.0020 (4)	0.0024 (5)	0.0009 (5)

Geometric parameters (Å, °)

S1—C77	1.7839 (12)	С20—Н20	0.9300
S1—C80	1.7764 (12)	C20—C21	1.3866 (18)

05 070	1 1070 (17)	621 1121	0.0200
05-079	1.19/8 (17)	C21—H21	0.9300
06—H60	0.95 (2)	C21—C22	1.3902 (18)
06—C/9	1.3043 (15)	C22—H22	0.9300
07—C86	1.2104 (15)	C22—C23	1.3880 (17)
O8—H8O	0.90 (2)	C23—H23	0.9300
O8—C86	1.3279 (15)	C23—C24	1.4015 (16)
С73—Н73	0.9300	C25—H25	0.9300
C73—C74	1.3862 (17)	C25—C26	1.3910 (17)
C73—C78	1.3942 (17)	C25—C30	1.3914 (17)
С74—Н74	0.9300	C26—H26	0.9300
C74—C75	1.3866 (19)	C26—C27	1.3799 (19)
С75—Н75	0.9300	С27—Н27	0.9300
C75—C76	1.3854 (19)	C27—C28	1.383 (2)
С76—Н76	0.9300	C28—H28	0.9300
C76—C77	1.3975 (17)	C28—C29	1.3871 (19)
С77—С78	1.3996 (16)	С29—Н29	0.9300
C78—C79	1,4998 (16)	C29—C30	1.3933 (17)
C80—C81	1 4024 (16)	C31—H31	0.9300
$C_{80} - C_{85}$	14077(17)	$C_{31} - C_{32}$	1 3898 (18)
C81—H81	0.9300	$C_{31} - C_{36}$	1 3969 (16)
C81 - C82	1 3847 (19)	C_{32} H32	0.9300
$C_{82} = H_{82}$	0.0300	C_{32} C_{33}	1.3857(10)
C_{02} C_{02} C_{02}	1.388(2)	$C_{32} = C_{33}$	0.0300
$C_{02} = C_{03}$	1.300 (2)	C35—II55	0.9300
C83—H83	0.9300	$C_{33} = C_{34}$	1.3883 (18)
C83—C84	1.3826 (18)	C34—H34	0.9300
C84—H84	0.9300	C34—C35	1.3907 (17)
C84—C85	1.4004 (17)	С35—Н35	0.9300
C85—C86	1.4921 (16)	C35—C36	1.3983 (16)
S2—C92	1.7760 (12)	P3—O3	1.4991 (9)
S2—C94	1.7863 (12)	P3—C42	1.8004 (13)
O9—C93	1.2147 (15)	P3—C48	1.8001 (12)
O10—H10O	0.91 (2)	P3—C54	1.7989 (13)
O10—C93	1.3309 (14)	С37—Н37	0.9300
O11—C100	1.2075 (16)	C37—C38	1.3912 (19)
O12—H12O	0.89 (2)	C37—C42	1.3915 (17)
O12—C100	1.3126 (15)	С38—Н38	0.9300
С87—Н87	0.9300	C38—C39	1.380(2)
C87—C88	1.3842 (17)	С39—Н39	0.9300
C87—C92	1.4042 (16)	C39—C40	1.380 (2)
C88—H88	0.9300	C40—H40	0.9300
C88—C89	1.3887 (19)	C40—C41	1.385 (2)
C89—H89	0.9300	C41—H41	0.9300
C89—C90	1 3853 (18)	C41—C42	1 3949 (18)
С90—Н90	0.9300	C43—H43	0.9300
C90—C91	1 4008 (16)	C43 - C44	1 3865 (19)
C91 - C92	1 4087 (16)	C43 - C48	1 3073 (17)
$C_{01} = C_{02}$	1.4000 (16)	$C_{44} = H_{44}$	0.0300
C_{21}	1.7700(10) 1.2090(17)	C_{11}	1 200 (2)
U74-U73	1.3980 (17)	044-043	1.300 (2)

C94—C99	1.4031 (17)	C45—H45	0.9300
С95—Н95	0.9300	C45—C46	1.384 (2)
C95—C96	1.3879 (18)	C46—H46	0.9300
С96—Н96	0.9300	C46—C47	1.3911 (18)
C96—C97	1.3876 (19)	C47—H47	0.9300
С97—Н97	0.9300	C47—C48	1.3943 (17)
С97—С98	1.3856 (18)	C49—H49	0.9300
С98—Н98	0.9300	C49—C50	1.3919 (19)
С98—С99	1.3979 (16)	C49—C54	1.3941 (18)
C99—C100	1.4997 (17)	С50—Н50	0.9300
P1—O1	1.5018 (8)	C50—C51	1.387 (2)
P1—C6	1.7961 (11)	С51—Н51	0.9300
P1—C12	1.8003 (12)	C51—C52	1.385 (2)
P1—C18	1.7994 (12)	С52—Н52	0.9300
C1—H1	0.9300	C52—C53	1.3863 (19)
C1—C2	1.3952 (16)	С53—Н53	0.9300
C1—C6	1.3909 (16)	C53—C54	1.3987 (17)
C2—H2	0.9300	P4	1 4975 (8)
C2—C3	1.3874 (18)	P4—C60	1.8014 (13)
C3—H3	0.9300	P4—C66	1.8010 (13)
C3-C4	1.3890 (18)	P4—C72	1.8005 (12)
C4—H4	0.9300	C55—H55	0.9300
C4—C5	1.3868 (17)	C55—C56	1.386 (2)
С5—Н5	0.9300	C55—C60	1.3955 (18)
C5—C6	1,4007 (16)	C56—H56	0.9300
C7—H7	0.9300	C56—C57	1.385 (2)
C7—C8	1.3915 (17)	C57—H57	0.9300
C7—C12	1.3920 (17)	C57—C58	1.378 (2)
C8—H8	0.9300	C58—H58	0.9300
C8—C9	1.379 (2)	C58—C59	1.3917 (19)
С9—Н9	0.9300	C59—H59	0.9300
C9—C10	1.381 (2)	C59—C60	1.3937 (18)
C10—H10	0.9300	C61—H61	0.9300
C10—C11	1.387 (2)	C61—C62	1.3899 (19)
C11—H11	0.9300	C61—C66	1.3915 (18)
C11—C12	1.3941 (17)	C62—H62	0.9300
C13—H13	0.9300	C62—C63	1.381 (2)
C13—C14	1.3901 (17)	C63—H63	0.9300
C13—C18	1.3979 (16)	C63—C64	1.379 (2)
C14—H14	0.9300	C64—H64	0.9300
C14—C15	1 3902 (18)	C64—C65	1 389 (2)
C15—H15	0.9300	C65—H65	0.9300
C15—C16	1.3854 (19)	C65—C66	1.3929 (18)
С16—Н16	0.9300	С67—Н67	0.9300
C16—C17	1.3902 (17)	C67—C68	1.3902 (18)
C17—H17	0.9300	C67—C72	1.3991 (17)
C17—C18	1.3956 (16)	С68—Н68	0.9300
P2—O2	1.5014 (8)	C68—C69	1.386 (2)

$P_2 = C_2 A$	1 7007 (11)	C60 H60	0.0300
$P_{2} = C_{2}$	1.7997(11) 1.7008(12)	C60 C70	1.380(2)
12-030	1.7990(12)	C70 U70	1.369 (2)
P2	1./980 (12)	C70—H70	0.9300
С19—Н19	0.9300	C/0_C/1	1.3889 (18)
C19—C20	1.3956 (16)	С71—Н71	0.9300
C19—C24	1.3927 (16)	C71—C72	1.3990 (17)
C80 S1 C77	101 78 (6)	C21 C22 H22	120.0
$C_{30} = S_{1} = C_{11}$	101.78(0) 100.8(14)	$C_{21} = C_{22} = 1122$	120.0
C^{\prime}	109.0(14)	$C_{23} = C_{22} = C_{21}$	120.02 (11)
C80-08-H80	111.7 (14)	C23—C22—H22	120.0
C/4—C/3—H/3	119.7	C22—C23—H23	120.0
C/4—C/3—C/8	120.70 (11)	C22—C23—C24	119.91 (11)
С78—С73—Н73	119.7	C24—C23—H23	120.0
С73—С74—Н74	120.2	C19—C24—P2	122.36 (9)
C73—C74—C75	119.62 (11)	C19—C24—C23	119.73 (10)
С75—С74—Н74	120.2	C23—C24—P2	117.90 (9)
С74—С75—Н75	119.9	С26—С25—Н25	119.9
C76—C75—C74	120.21 (11)	C26—C25—C30	120.21 (11)
С76—С75—Н75	119.9	C30—C25—H25	119.9
С75—С76—Н76	119.6	C25—C26—H26	119.8
C75—C76—C77	120.71 (12)	C_{27} — C_{26} — C_{25}	120.31 (12)
С77—С76—Н76	119.6	C_{27} C_{26} H_{26}	119.8
C76-C77-S1	119.72 (9)	$C_{26} = C_{27} = H_{27}$	120.1
C76 $C77$ $C78$	119.72(9) 118.08(11)	$C_{26}^{26} C_{27}^{27} C_{28}^{28}$	120.1 110.70(12)
$C_{10}^{} C_{10}^{} C_{1$	121.28 (0)	$C_{20} = C_{27} = C_{28}$	119.79 (12)
C/8 - C/7 - 51	121.28 (9)	$C_{20} = C_{27} = H_{27}$	120.1
C/3_C/8_C//	119.77 (11)	$C_2/-C_{28}$ -H_28	119.8
C/3—C/8—C/9	116.79 (11)	$C_{27} = C_{28} = C_{29}$	120.33 (13)
C//_C/8_C/9	123.40 (11)	C29—C28—H28	119.8
O5—C79—O6	123.45 (12)	С28—С29—Н29	119.9
O5—C79—C78	121.67 (12)	C28—C29—C30	120.27 (13)
O6—C79—C78	114.76 (11)	С30—С29—Н29	119.9
C81—C80—S1	122.19 (9)	C25—C30—P2	123.58 (9)
C81—C80—C85	117.98 (11)	C25—C30—C29	119.09 (11)
C85—C80—S1	119.81 (9)	C29—C30—P2	117.33 (9)
C80—C81—H81	119.5	C32—C31—H31	120.2
C82—C81—C80	121.10(12)	C32—C31—C36	119.67 (11)
С82—С81—Н81	119.5	С36—С31—Н31	120.2
C81—C82—H82	119.6	C31—C32—H32	119.8
C81 - C82 - C83	120 85 (12)	C_{33} C_{32} C_{31}	120 40 (12)
C_{83} C_{82} H_{82}	119.6	C_{33} C_{32} H_{32}	110.8
C82 C83 H83	120.6	C32 C32 H32	110.0
C84 - C83 - C82	120.0 118 84 (12)	$C_{32} = C_{33} = C_{34}$	120 20 (11)
$C_{04} = C_{02} = C_{02}$	120.6	C_{24} C_{22} U_{22}	120.29 (11)
C_{04} C_{03} H_{03} H_{03}	120.0	$C_{22} = C_{24} = U_{24}$	119.9
C02 - C04 - C02	119.4	$C_{33} = C_{34} = H_{34}$	120.1
C83—C84—C85	121.26 (12)	C33—C34—C35	119.76 (11)
C85—C84—H84	119.4	C35—C34—H34	120.1
C80—C85—C86	121.64 (11)	С34—С35—Н35	119.9
C84—C85—C80	119.94 (11)	C34—C35—C36	120.18 (11)

C84—C85—C86	118.41 (11)	С36—С35—Н35	119.9
O7—C86—O8	124.24 (11)	C31—C36—P2	117.85 (9)
O7—C86—C85	123.93 (11)	C31—C36—C35	119.68 (11)
O8—C86—C85	111.83 (10)	C35—C36—P2	122.46 (9)
C92—S2—C94	100.52 (5)	O3—P3—C42	112.18 (5)
С93—О10—Н10О	110.6 (14)	O3—P3—C48	111.75 (5)
C100—O12—H12O	111.0 (12)	O3—P3—C54	110.01 (6)
С88—С87—Н87	119.4	C48—P3—C42	105.87 (6)
C88—C87—C92	121.16 (11)	C54—P3—C42	107.61 (6)
С92—С87—Н87	119.4	C54—P3—C48	109.24 (6)
С87—С88—Н88	119.7	С38—С37—Н37	120.0
C87—C88—C89	120.59 (11)	C38—C37—C42	120.05 (13)
С89—С88—Н88	119.7	С42—С37—Н37	120.0
С88—С89—Н89	120.5	С37—С38—Н38	119.8
C90—C89—C88	119.06 (12)	C39—C38—C37	120.41 (13)
С90—С89—Н89	120.5	С39—С38—Н38	119.8
С89—С90—Н90	119.4	С38—С39—Н39	120.1
C89—C90—C91	121.30 (12)	C38—C39—C40	119.79 (13)
С91—С90—Н90	119.4	С40—С39—Н39	120.1
C90—C91—C92	119.64 (11)	C39—C40—H40	119.8
C90—C91—C93	118.82 (11)	C39—C40—C41	120.39 (13)
C92—C91—C93	121.50 (10)	C41—C40—H40	119.8
C87—C92—S2	121.33 (9)	C40—C41—H41	119.9
C87—C92—C91	118.24 (11)	C40—C41—C42	120.28 (13)
C91—C92—S2	120.40 (9)	C42—C41—H41	119.9
O9—C93—O10	123.83 (11)	C37—C42—P3	123.98 (10)
O9—C93—C91	123.56 (11)	C37—C42—C41	119.08 (12)
O10—C93—C91	112.61 (10)	C41—C42—P3	116.74 (10)
C95—C94—S2	118.49 (9)	C44—C43—H43	119.8
C95—C94—C99	119.21 (11)	C44—C43—C48	120.32 (12)
C99—C94—S2	122.30 (9)	C48—C43—H43	119.8
С94—С95—Н95	119.6	C43—C44—H44	120.1
C96—C95—C94	120.76 (12)	C43—C44—C45	119.82 (13)
С96—С95—Н95	119.6	C45—C44—H44	120.1
С95—С96—Н96	120.0	C44—C45—H45	119.9
C97—C96—C95	120.05 (12)	C46—C45—C44	120.25 (13)
С97—С96—Н96	120.0	C46—C45—H45	119.9
С96—С97—Н97	120.1	C45—C46—H46	119.9
C98—C97—C96	119.71 (12)	C45—C46—C47	120.28 (13)
С98—С97—Н97	120.1	C47—C46—H46	119.9
С97—С98—Н98	119.5	C46—C47—H47	120.1
С97—С98—С99	120.98 (12)	C46—C47—C48	119.82 (12)
С99—С98—Н98	119.5	C48—C47—H47	120.1
C94—C99—C100	124.32 (11)	C43—C48—P3	121.55 (10)
С98—С99—С94	119.28 (11)	C47—C48—P3	118.94 (9)
C98—C99—C100	116.38 (11)	C47—C48—C43	119.50 (12)
O11—C100—O12	123.80 (12)	С50—С49—Н49	120.0
O11—C100—C99	121.95 (11)	C50—C49—C54	120.05 (12)

O12—C100—C99	114.18 (10)	С54—С49—Н49	120.0
O1—P1—C6	112.35 (5)	C49—C50—H50	120.0
O1—P1—C12	111.32 (5)	C51—C50—C49	120.01 (13)
O1—P1—C18	111.73 (5)	С51—С50—Н50	120.0
C6—P1—C12	106.40 (5)	С50—С51—Н51	119.9
C6—P1—C18	107.57 (5)	C52—C51—C50	120.25 (13)
C18—P1—C12	107.14 (5)	С52—С51—Н51	119.9
C2-C1-H1	120.0	С51—С52—Н52	120.0
C6-C1-H1	120.0	$C_{51} - C_{52} - C_{53}$	120.08 (13)
C6-C1-C2	120.03(11)	C53—C52—H52	120.00 (10)
$C_1 - C_2 - H_2$	120.05 (11)	C52_C53_H53	110.0
$C_1 = C_2 = C_1$	110 77 (11)	$C_{52} = C_{53} = C_{54}$	120 19 (13)
$C_3 = C_2 = C_1$	120.1	$C_{52} = C_{53} = C_{54}$	110.0
$C_{2} = C_{2} = H_{2}$	120.1	$C_{34} = C_{33} = 1155$	119.9 118.37(0)
$C_2 = C_3 = C_4$	119.0	C49 - C54 - F5	110.37(9)
$C_2 - C_3 - C_4$	120.38 (11)	$C_{49} = C_{54} = C_{55}$	119.40(12)
C4—C3—H3	119.8	C33—C34—P3	122.23 (10)
C3—C4—H4	119.9	04—P4—C60	111.07 (5)
C5—C4—C3	120.12 (11)	04—P4—C66	111.08 (5)
C5—C4—H4	119.9	O4—P4—C/2	111.95 (5)
C4—C5—H5	120.1	C66—P4—C60	105.35 (6)
C4—C5—C6	119.81 (11)	C72—P4—C60	107.95 (6)
С6—С5—Н5	120.1	C72—P4—C66	109.19 (6)
C1—C6—P1	122.24 (9)	С56—С55—Н55	119.9
C1—C6—C5	119.86 (10)	C56—C55—C60	120.19 (13)
C5—C6—P1	117.90 (9)	С60—С55—Н55	119.9
С8—С7—Н7	119.9	С55—С56—Н56	120.0
C8—C7—C12	120.14 (12)	C57—C56—C55	119.95 (14)
С12—С7—Н7	119.9	С57—С56—Н56	120.0
С7—С8—Н8	119.9	С56—С57—Н57	119.8
C9—C8—C7	120.28 (13)	C58—C57—C56	120.41 (13)
С9—С8—Н8	119.9	С58—С57—Н57	119.8
С8—С9—Н9	120.1	С57—С58—Н58	120.0
C8—C9—C10	119.85 (12)	C57—C58—C59	120.05 (14)
С10—С9—Н9	120.1	С59—С58—Н58	120.0
C9-C10-H10	119.8	С58—С59—Н59	120.0
C9—C10—C11	120.47 (13)	C58—C59—C60	120.01 (13)
$C_{11} - C_{10} - H_{10}$	119.8	С60—С59—Н59	120.01 (13)
C10-C11-H11	120.0	$C_{55} - C_{60} - P_{4}$	117.07(10)
C10-C11-C12	120.08 (13)	C59 - C60 - P4	123.46(10)
C12_C11_H11	120.00 (13)	$C_{59} = C_{60} = C_{55}$	129.40(10) 110.30(12)
C7 $C12$ $P1$	120.0	$C_{5} = C_{60} = C_{55}$	119.39 (12)
$C_{12} - C_{12} - C_{11}$	123.03(9) 110.17(11)	$C_{02} = C_{01} = 1101$	119.9 120.22(12)
$C_1 = C_1 = C_1 = C_1$	117.17(11) 117.18(10)	$C_{02} = C_{01} = C_{00}$	120.23 (13)
$C_{11} - C_{12} - C_{11}$	117.10(10)	C61 C62 H62	117.7
C14 - C13 - C12	117.7	$C_{01} = C_{02} = C_{02}$	117.7
$\begin{array}{cccc} U14 - U13 - U18 \\ C18 - C12 - U12 \\ U12 \\ \end{array}$	120.22 (11)	$C_{00} = C_{00} = C$	120.12 (14)
C12 C14 H14	119.9	$C_{00} = C_{02} = H_{02}$	119.9
C13—C14—H14	120.2	C62—C63—H63	120.0
C13—C14—C15	119.66 (12)	C64—C63—C62	120.07 (13)

C15—C14—H14	120.2	С64—С63—Н63	120.0
C14—C15—H15	119.8	С63—С64—Н64	119.9
C16—C15—C14	120.38 (12)	C63—C64—C65	120.19 (13)
C16—C15—H15	119.8	С65—С64—Н64	119.9
C15—C16—H16	119.9	С64—С65—Н65	119.9
C15—C16—C17	120.22 (12)	C64—C65—C66	120.23 (14)
C17—C16—H16	119.9	С66—С65—Н65	119.9
C16—C17—H17	120.1	C61—C66—P4	117.83 (10)
C16—C17—C18	119.82 (11)	C61—C66—C65	119.14 (12)
C18—C17—H17	120.1	C65—C66—P4	122.83 (10)
C13—C18—P1	121.99 (9)	С68—С67—Н67	120.0
C17—C18—P1	118.34 (9)	C68—C67—C72	120.06 (12)
C17—C18—C13	119.66 (11)	С72—С67—Н67	120.0
O2—P2—C24	113.00 (5)	С67—С68—Н68	120.0
O2—P2—C30	110.92 (5)	C69—C68—C67	119.93 (12)
O2—P2—C36	111.25 (5)	С69—С68—Н68	120.0
C24—P2—C30	106.18 (5)	С68—С69—Н69	119.8
C36—P2—C24	107.09 (5)	C68—C69—C70	120.30 (12)
C36—P2—C30	108.12 (5)	С70—С69—Н69	119.8
С20—С19—Н19	120.0	С69—С70—Н70	119.9
C24—C19—H19	120.0	C69—C70—C71	120.30 (12)
C24—C19—C20	120.09 (11)	С71—С70—Н70	119.9
С19—С20—Н20	120.1	С70—С71—Н71	120.2
C21—C20—C19	119.78 (11)	C70—C71—C72	119.70 (12)
C21—C20—H20	120.1	С72—С71—Н71	120.2
C20—C21—H21	119.8	C67—C72—P4	121.96 (10)
C20—C21—C22	120.45 (11)	C67—C72—C71	119.70 (11)
C22—C21—H21	119.8	C71—C72—P4	118.33 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
О6—Н6 <i>О</i> …О4	0.95 (2)	1.66 (2)	2.6070 (12)	171 (2)
O8—H8O····O1 ⁱ	0.90 (2)	1.70 (2)	2.5763 (12)	163 (2)
O10—H10 <i>O</i> ···O2 ⁱⁱ	0.91 (2)	1.72 (2)	2.6077 (12)	163 (2)
O12—H12O····O3 ⁱⁱⁱ	0.90(2)	1.71 (2)	2.5978 (12)	170.9 (19)
C16—H16…O4	0.93	2.53	3.3333 (15)	144
C44—H44····O4 iv	0.93	2.43	3.2404 (17)	145
С52—Н52…О11 ^v	0.93	2.49	3.3231 (16)	149
C62—H62…O11 ⁱ	0.93	2.51	3.367 (2)	153
C64—H64····O5 ^{vi}	0.93	2.46	3.263 (2)	144
C68—H68…O3 ^{vi}	0.93	2.55	3.2747 (17)	135
С71—Н71…О5	0.93	2.59	3.2765 (18)	131
C75—H75…O2 ⁱ	0.93	2.41	3.1184 (16)	133
С96—Н96…О1	0.93	2.49	3.1832 (15)	132

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*, *z*+1; (iii) *x*, *y*, *z*+1; (iv) *x*-1, -*y*+1/2, *z*-3/2; (v) *x*, -*y*+1/2, *z*-3/2; (vi) *x*, -*y*+1/2, *z*-1/2.