

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 September 2018 Accepted 1 October 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; Cd^{II} complex; distorted octahedral coordination; O— H···O hydrogen bonding; π — π stacking interactions.; crystal structure.

CCDC reference: 1534691

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of bis[(S)-2-(2-hydroxybenzylamino)-4-methylpentanoato- $\kappa^2 N$, O^1](1,10-phenanthroline- $\kappa^2 N$,N')cadmium dihydrate

Md. Serajul Haque Faizi,^a* Necmi Dege,^b James Pogrebetsky^c* and Turganbay S. Iskenderov^c

^aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar, University, Muzaffarpur, Bihar, India, ^bOndokuz Mayis University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ^cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine. *Correspondence e-mail: faizichemiitg@gmail.com, jameslspogr@ukr.net

The asymmetric unit of the mononuclear mixed-ligand title complex, $[Cd(C_{13}H_{18}NO_3)_2(C_{12}H_8N_2)]$ ·2H₂O, contains two crystallographically independent molecules that differ insignificantly in their geometrical parameters. In both, the Cd^{II} cation lies on a twofold rotation axis and is coordinated in a distorted octahedral fashion to two monodeprotonated residues of the L-leucine-derived ligand (S)-2-(2-hydroxybenzylamino)-4-methylpentanoic acid (L), as well as to a 1,10-phenanthroline ligand in a $\kappa^2 N, N'$ mode. The former coordinate in an N,O-chelating mode, exhibiting a trans-N,N' mutual disposition. The phenolic oxygen donor groups remain protonated and do not coordinate to the cation but take part in intra- and intermolecular hydrogen bonds. In the crystal, $O-H \cdots O$ hydrogen bonding results in the formation of a three-dimensional network structure. The contribution to the electron density of two disordered water molecules was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18]. The studied crystal was refined as a two-component inversion twin. The title complex was also characterized by IR and ¹H NMR spectroscopic methods.

1. Chemical context

Schiff base metal complexes are an important research area with respect to inorganic and supramolecular chemistry (Burkhardt et al., 2008; Przybylski et al., 2009; Moroz et al., 2012). Such compounds have been found to exhibit a number of properties among which are antibacterial, antifungal, antitumor, herbicidal activities (Asadi et al., 2011), as well as having applications in pharmaceutical, agricultural and industrial chemistry (Anis et al., 2013). Unlike oximes, another azomethine ligand family (Sliva et al., 1997; Penkova et al., 2010; Pavlishchuk et al., 2010), Schiff base ligands containing additional polar or acidic groups are known for their enhanced reactivity and, as a consequence, instability upon coordination to metals (Casella & Gullotti, 1983). Thus, attempts to isolate Schiff bases derived from aminohydroxamic acids resulted in cyclization under the formation of 2-substituted 3-hydroxyimidazolidine-4-ones (Iskenderov et al., 2009). In attempts to achieve stable polydentate ligand systems retaining the initial donor sets, it was found that reduction of Schiff bases to amines allows the formation of stable complexes (Koh et al., 1996). Phenanthroline and phenanthroline-derived ligands also have important roles in many fields (Faizi & Sharkina, 2015; Faizi et al., 2017). Herein we report the synthesis and

research communications

structure of a new hydrated cadmium complex, $[Cd(C_{13}H_{18}NO_3)_2(C_{12}H_8N_2)] \cdot 2H_2O$, with a phenanthroline ligand and two ligands derived from L-leucine.

2. Structural commentary

The asymmetric unit of the title complex contains two mononuclear molecules (Fig. 1). In each, the metal cation is located on a twofold rotation axis and is coordinated by three chelating ligands, leading to a distorted octahedral N_4O_2

Figure 1

Structures of the two complex molecules in the title compound. Displacement ellipsoids are drawn at the 40% probability level. Atoms with primed labels are generated by the symmetry operations -x + 1, y, -z + 1 for complex Cd1 and -x + 1, y, -z + 2 for complex Cd2.

Table	1			
Hydro	gen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O6-H6A\cdots O2^{i}$	0.82	1.83	2.645 (5)	174
$N4-H4\cdots O6$	0.98	2.07	2.763 (5)	126
$N2-H2A\cdots O3$	0.98	2.09	2.795 (6)	127
$O3-H3A\cdots O5$	0.82	2.33	2.951 (9)	133
$C28-H28A\cdots O4^{ii}$	0.97	2.67	3.470 (7)	141

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, y, -z + 2.

coordination sphere. The mixed-ligand complex is made up from one neutral phenanthroline ligand and two residues of the monodeprotonated L-leucine-derived ligand L. The L ligands of each complex are *trans-N*,N' disposed with respect to each other and comprise the chiral atoms C8 for the first and C27 for the second molecule. The Cd-O and Cd-N bond lengths in the first molecule are virtually the same in the Cd1O₄N₂ octahedron with Cd1-O1, Cd1-N1 and Cd1-N2 = 2.346(3), 2.341(4) and 2.315(4) Å, respectively. The second molecule also exhibits similar geometrical parameters [Cd2-O4, Cd2-N3 and Cd2-N4 = 2.322 (4), 2.351 (5) and 2.339 (4) Å, respectively]. All three sets of ligands form fivemembered chelate rings. Unlike the essentially planar chelate rings formed by the phenanthroline ligands, the ones involving the L-leucine-derived ligands exhibit a λ -conformation in both complex molecules. The deviations of the carbon atoms from the planes defined by the central atom and donor atoms are 0.258 (6) Å for C7, 0.599 (7) Å for C8, -0.417 (7) Å for C26 and 0.632 (5) Å for C27. In the second molecule, the highest deviations are found to be 0.160 and 0.232 Å for O4 and N4, respectively. The N-Cd-O and N-Cd-N bite angles are 73.01 (13) and 71.2 (2)°, respectively, for the first molecule and 72.40 (14) and 70.8 (2)° for the second. The phenolic O-Hgroup remains protonated and is non-coordinating, albeit participating in an extensive intermolecular hydrogenbonding network. Intramolecular hydrogen bonds are also found to exist and take place between atoms H2A and O3 as well as between H4 and O6 of the L-leucine-derived ligands. To a minor extent, intramolecular $C-H \cdots O$ interactions are also present between a methylene group and O4 (Table 1).

3. Supramolecular features

In the crystal structure, the complex molecules are linked *via* hydrogen-bonding interactions between phenolic O–H and C–O groups of L-leucine-derived ligands (Table 1, Fig. 2). π - π interactions take place between the central phenanthroline ring and the C14–C19 rings of two leucine-derived L ligands with distances between the centroids of the aromatic fragments being 3.813 (4) Å for the first molecule. The stacking interactions of the second molecule are between C33–C38 rings of two L-leucine-derived ligands L and the C23–C25/C23'–C25'(-x + 1, y, -z + 2) phenanthroline fragment with a centroid-to-centroid distance of 3.773 (4) Å.

Figure 2

The crystal packing of the title compound viewed along [010]. Hydrogen bonds are shown as dashed lines (see Table 1 for numerical details).

4. Database survey

A search in the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) revealed only one precedent of a Cd^{II} complex with a 2-hydroxybenzyl derivative of an amino acid (refcode WARLIL). In this mononuclear complex, the phenolic and β -carboxylic groups are deprotonated. The N-(2-hydroxybenzyl)-D,L-aspartic acid residue coordinates in an (O,N,O')-tridentate mode including the phenolic O atom (Lou et al., 2005). This differs from the title compound in which the phenolic group is protonated and is non-coordinating. The second O atom of the β -carboxylic group bridges the neighbouring Cd^{II} units into a polymeric chain. In addition, there are four structures of complexes of homologous zinc and with 2-hydroxybenzyl derivatives of alanine (refcodes AZIROQ, AZIRUW, NOLYIW, NOLYOC). These compounds have a Zn_2O_2 binuclear core, and the ligands also coordinate in an (O,N,O')-tridentate manner, with an additional μ_2 -mode for the phenolic O atom (Lou et al., 2004; Ranford et al., 1998).

5. Synthesis and crystallization

Synthesis of (S)-2-(2-hydroxybenzylamino)-4-methylpentanoic acid (L)

A mixture of L-leucine (1.00 g, 7.62 mmol) and LiOH·H₂O (0.323 g, 7.62 mmol) in methanol (25 ml) was stirred for 10 min to dissolve. A methanolic solution of *o*-salicylaldehyde (0.930 g, 7.62 mmol) was added dropwise to the above solution whereby the colour of the solution turned to yellow. Stirring was continued for 30 min before the solution was treated with NaBH₄ (0.580 g, 15.3 mmol), leading to a colourless solution. The solvent was evaporated under reduced pressure, and the resulting solid was dissolved in water. The clear solution was then acidified with diluted HCl (pH \sim 5–7). The ligand precipitated as a white solid. The suspension was filtered, and the

residue was washed thoroughly with water. The solid was dried in a vacuum desiccator (yield 1.65 g, 88%). Because of its poor solubility, the ¹H NMR spectrum for the ligand was recorded as the lithium salt of the ligand, prepared by adding 2 equiv. of LiOH·3H₂O in CD₃OD. ¹H NMR Li₂L (CD₃OD, 400 MHz, ppm): 0.76 (*d*, 3H, H^j), 0.81 (*d*, 3H, Hⁱ), 1.36 (*m*, 1H, H^g), 1.41 (*m*, 1H, H^{g'}), 1.67 (*m*, 1H, H^h), 3.07 (*dd*, 1H, H^f), 3.65 (*d*, 1H, H^e), 3.94 (*d*, 1H, H^{e'}), 6.35 (*t*, 1H, H^c), 6.45 (*d*, 1H, H^a), 6.94 (*m*, 2H, H^{b,d}). *m/z* (ESI–MS, [LiL]⁻); calculated: 242.22, found 242.02. IR (KBr, cm⁻¹) ν (COO)_{asym} 1600 (*s*), 1593 (*s*); ν (COO)_{sym} 1393 (*m*), cm⁻¹.

Synthesis of [Cd(L)₂(phen)]·(H₂O)₂]

A methanolic solution of $Cd(NO_3)_2 \cdot 4H_2O$ (0.130 g, 0.421 mmol) was added under stirring to 20 ml of a methanolic solution of L (0.200 g, 0.843mmol) and NaOH (0.034 g, 0.843 mmol), followed by addition of phenanthroline monohydrate (0.076 g, 0.421mmol) in 5 ml of methanol. A clear solution was formed within half an hour under constant stirring. After 2 h, the solvent was evaporated to dryness. The residue was subsequently washed with methanol and diethyl ether, and finally dried under vacuum. Empirical formula [Cd(L)₂(phen)]·2H₂O. Yield: 60%. [Cd(L)₂(phen)]·2H₂O: IR (KBr, cm⁻¹) ν (COO)_{asym} 1594, ν (COO)_{sym} 1384, ν (phenolic, CO) 1257. ¹H NMR [Cd(L)₂(phen)]·2H₂O] (DMSO, 400 MHz. ppm): 0.6 (s, broad, 3H^J), 0.7 (s, broad, 3Hⁱ), 1.3 (s, broad, 1H^g), 1.5 (s, broad, H^{g'}), 2.7 (s, broad, 1H^f), 2.9 (s, broad, 2H^{e,e'}), 6.6 (s, broad, 1H^d), 6.4 (s, broad, 1H^c), 6.6 (s, broad, 1H^b), 6.1 (s, broad,1H^a), 8.0 (s, broad, 2Hⁿ), 8.1 (s, broad, 2H^m), 8.7 (s, broad, 2H^l), 9.1 (s, broad, 2H^k). ESI-Mass (-ve) at 829.18 (calculated 829.18). Suitable needle-shaped crystals for X-ray data collection were obtained by slow evaporation of a methanol: DMF (2:1 v:v) solution within a week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms O3, C3, C4 and C6 showed highly anisotropic displacement parameters and were modelled using the ISOR instruction in *SHELXL* (Sheldrick, 2015). The H atoms of the phenolic OH group were located from a difference-Fourier map and were constrained to ride on their parent atoms, with O–H = 0.82 Å and with $U_{iso}(H) =$ $1.5U_{eq}(O)$. All C-bound H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

After unsuccessful attempts to model disordered solvent molecules, their contributions to the diffraction data were removed by using the SQUEEZE routine in *PLATON* (Spek, 2015). *PLATON* calculated a solvent-accessible void volume in the unit cell of 629 Å³ (15.4% of the total cell volume), corresponding to 151 electrons (residual electron density after the last refinement cycle) per unit cell, or 37.75 electrons per one complex molecule. This number agrees with two water molecules. Although not modelled in the refined structure, the two water molecules are included in the formula and other crystallographic data.

Acknowledgements

The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.

References

- Anis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). *Int J Curr Pharm Res*, 5, 21–24.
- Asadi, M., Sepehrpour, H. & Mohammadi, K. (2011). J. Serb. Chem. Soc. 76, 63–74.
- Bruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burkhardt, A., Görls, H. & Plass, W. (2008). Carbohydr. Res. 343, 1266–1277.
- Casella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259-2266.
- Faizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1393– 1397.
- Faizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195-198.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). *Acta Cryst.* E65, o2123–o2124.
- Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). *Inorg. Chem.* 35, 6466–6472.
- Lou, B.-Y., Yuan, D.-Q., Han, L., Wu, B.-L. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 759–764.
- Lou, B.-Y., Yuan, D.-Q., Wang, R.-H., Xu, Y., Wu, B.-L., Han, L. & Hong, M.-C. (2004). J. Mol. Struct. 698, 87–91.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). *Inorg. Chem.* 51, 7445–7447.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). *Eur. J. Inorg. Chem.* 2010, 4851–4858.
- Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chim. Acta*, 363, 3036–3040.
- Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.

Table	2	
Experi	mental	details

Crystal data Chemical formula

 M_r Crystal system, space group Temperature (K) a, b, c (Å)

 $\begin{array}{l} \beta \left(\stackrel{\circ}{} \right) \\ V \left(\stackrel{\circ}{A} \right) \\ Z \\ \text{Radiation type} \\ \mu \ (\text{mm}^{-1}) \\ \text{Crystal size (mm)} \end{array}$

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}

 $(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$ Refinement

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.076, 0.99
No. of reflections	7944
No. of parameters	444
No. of restraints	37
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.18
Absolute structure	Refined as an inversion twin
Absolute structure parameter	-0.03 (3)

[Cd(C13H18NO3)2(C12H8N2)]

18.0171 (6), 12.2561 (3),

2H₂O 801.22

293

4

Monoclinic, I2

18.8597 (9)

 $0.19 \times 0.12 \times 0.09$

Bruker SMART CCD

Multi-scan (SADABS; Bruker,

101.582(3)

4079.8 (3)

2011)

0.037

0.617

0.867, 0.942

22798, 7944, 6342

Μο Κα

0.59

Computer programs: SMART and SAINT (Bruker, 2011), SHELXTL (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008).

- Ranford, J. D., Vittal, J. J. & Wu, D. (1998). Angew. Chem. Int. Ed. 37, 1114–1116.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.

supporting information

Acta Cryst. (2018). E74, 1565-1568 [https://doi.org/10.1107/S2056989018013877]

Crystal structure of bis[(S)-2-(2-hydroxybenzylamino)-4-methylpentanoato- $\kappa^2 N, O^1$](1,10-phenanthroline- $\kappa^2 N, N'$)cadmium dihydrate

Md. Serajul Haque Faizi, Necmi Dege, James Pogrebetsky and Turganbay S. Iskenderov

Computing details

Data collection: *SMART* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT* (Bruker, 2011); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

 $Bis[(S)-2-(2-hydroxybenzylamino)-4-methylpentanoato-\kappa^2N, O^1](1,10-phenanthroline-\kappa^2N, N') cadmium dihydrate$

Crystal data

 $[Cd(C_{13}H_{18}NO_3)_2(C_{12}H_8N_2)] \cdot 2H_2O$ $M_r = 801.22$ Monoclinic, *I*2 a = 18.0171 (6) Å b = 12.2561 (3) Å c = 18.8597 (9) Å $\beta = 101.582$ (3)° V = 4079.8 (3) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube, x-ray Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{\min} = 0.867, T_{\max} = 0.942$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.076$ S = 0.997944 reflections 444 parameters 37 restraints F(000) = 1584 $D_x = 1.304 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2245 reflections $\theta = 1.8-26.0^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 293 KNeedle, colorless $0.19 \times 0.12 \times 0.09 \text{ mm}$

22798 measured reflections 7944 independent reflections 6342 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -22 \rightarrow 21$ $k = -15 \rightarrow 15$ $l = -23 \rightarrow 23$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.036$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: -0.03 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.500000	0.69148 (3)	0.500000	0.05478 (18)	
C1	0.3532 (4)	0.5367 (7)	0.4350 (4)	0.094 (2)	
H1	0.328791	0.603070	0.423336	0.113*	
C2	0.3123 (6)	0.4396 (10)	0.4188 (6)	0.136 (4)	
H2	0.261275	0.441306	0.396832	0.163*	
C3	0.3476 (8)	0.3454 (10)	0.4352 (6)	0.142 (4)	
H3	0.320426	0.281053	0.424184	0.171*	
C4	0.4239 (6)	0.3391 (6)	0.4682 (4)	0.106 (2)	
C5	0.4604 (3)	0.4394 (4)	0.4823 (3)	0.0693 (15)	
C6	0.4641 (6)	0.2410 (6)	0.4860 (6)	0.146 (6)	
H6	0.438503	0.174909	0.477383	0.176*	
C7	0.3702 (3)	0.8567 (5)	0.5040(3)	0.0707 (15)	
C8	0.4129 (4)	0.8566 (6)	0.5827 (4)	0.0677 (19)	
H8	0.376062	0.862966	0.614269	0.081*	
C9	0.4657 (4)	0.9528 (5)	0.5960 (3)	0.0820 (18)	
H9A	0.436890	1.017813	0.578965	0.098*	
H9B	0.503823	0.943726	0.566820	0.098*	
C10	0.5066 (6)	0.9725 (7)	0.6751 (4)	0.121 (3)	
H10	0.533040	0.904880	0.692573	0.145*	
C11	0.5670 (6)	1.0626 (7)	0.6790 (5)	0.152 (4)	
H11A	0.600500	1.044664	0.646987	0.228*	
H11B	0.542692	1.131051	0.664725	0.228*	
H11C	0.595593	1.068085	0.727635	0.228*	
C12	0.4540 (7)	0.9980 (11)	0.7240 (6)	0.208 (6)	
H12A	0.416817	0.941072	0.720849	0.313*	
H12B	0.481962	1.003153	0.772901	0.313*	
H12C	0.429061	1.066120	0.709991	0.313*	
C13	0.4116 (3)	0.6711 (5)	0.6333 (4)	0.0833 (18)	
H13A	0.365937	0.653468	0.598276	0.100*	
H13B	0.396256	0.704215	0.674837	0.100*	
C14	0.4537 (3)	0.5672 (5)	0.6570(3)	0.0637 (14)	
C15	0.4194 (4)	0.4692 (7)	0.6421 (3)	0.0750 (16)	
H15	0.370191	0.467626	0.614955	0.090*	
C16	0.4535 (5)	0.3729 (6)	0.6649 (4)	0.089 (2)	
H16	0.428382	0.307134	0.653054	0.106*	
C17	0.5248 (5)	0.3745 (6)	0.7052 (4)	0.096 (2)	
H17	0.548436	0.309439	0.722026	0.116*	
C18	0.5618 (4)	0.4705 (7)	0.7211 (4)	0.099 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18	0.611238	0.471017	0.747584	0.119*
C19	0.5264 (4)	0.5667 (5)	0.6981 (3)	0.0790 (17)
N1	0.4256 (3)	0.5362 (4)	0.4664 (2)	0.0674 (12)
N2	0.4565 (2)	0.7519 (3)	0.6006 (2)	0.0576 (10)
H2A	0.501263	0.769513	0.637666	0.069*
01	0.3930 (2)	0.7999 (3)	0.4576 (2)	0.0728 (10)
O2	0.3145 (3)	0.9197 (4)	0.4897 (3)	0.1030 (15)
O3	0.5641 (3)	0.6627 (4)	0.7132 (3)	0.130 (2)
H3A	0.542946	0.699788	0.739444	0.194*
Cd2	0.500000	0.46530 (4)	1.000000	0.05859 (18)
C20	0.5982 (4)	0.3122 (7)	0.9104 (4)	0.076 (2)
H20	0.614551	0.379213	0.896042	0.091*
C21	0.6251 (4)	0.2141 (7)	0.8843 (4)	0.094(2)
H21	0.659847	0.216857	0.853995	0.113*
C22	0.6000 (4)	0.1167 (7)	0.9037 (4)	0.098(2)
H22	0.615858	0.052420	0.885145	0.118*
C23	0.5505 (3)	0.1129 (5)	0.9514 (4)	0.0829 (19)
C24	0.5265 (3)	0.2132 (4)	0.9755 (3)	0.0661 (14)
C25	0.5235 (4)	0.0111 (5)	0.9773 (5)	0.104 (3)
H25	0.539693	-0.055026	0.961602	0.124*
C26	0.5314 (4)	0.6410 (6)	0.8935 (4)	0.0804 (18)
C27	0.4446 (3)	0.6360 (4)	0.8759 (3)	0.0664 (14)
H27	0.428202	0.641918	0.823245	0.080*
C28	0.4105 (4)	0.7320 (5)	0.9101 (3)	0.0778 (16)
H28A	0.424075	0.724288	0.962241	0.093*
H28B	0.434021	0.798545	0.897435	0.093*
C29	0.3254(5)	0.7458 (6)	0.8891 (5)	0.098(2)
H29	0.301566	0.675093	0.894081	0.117*
C30	0.3004 (6)	0.7846 (11)	0.8102 (6)	0.195 (5)
H30A	0.317410	0.733412	0.778404	0.293*
H30B	0.246106	0.789565	0.798264	0.293*
H30C	0.321961	0.854958	0.804816	0.293*
C31	0.2988 (6)	0.8255 (8)	0.9385(7)	0.164(4)
H31A	0 244850	0.833614	0.924712	0.246*
H31B	0.211856	0.799333	0.921712	0.246*
H31C	0.322687	0.894820	0.935077	0.246*
C32	0.322007	0.4556 (4)	0.8372(3)	0.0645(13)
H32A	0 435248	0 441562	0.814871	0.077*
H32B	0.353162	0.490151	0.801309	0.077*
C33	0.3628(3)	0.3497(4)	0.8590 (3)	0.0593(12)
C34	0.3872(3)	0.2514(5)	0.8345(3)	0.0728(12)
H34	0.423115	0.252114	0.805316	0.087*
C35	0 3586 (4)	0.1516 (5)	0.8532 (4)	0.0872 (19)
H35	0.374557	0.086691	0.835592	0.105*
C36	0.374(4)	0.1500(5)	0.8971(4)	0.0847(19)
H36	0 288831	0.083470	0 909771	0 102*
C37	0.2834(3)	0 2463 (5)	0.9235(4)	0.0759(16)
H37	0.249014	0.244196	0.955244	0.091*
	~~~ · / · / · ·			U.U.J I

# supporting information

C38	0.3078 (3)	0.3458 (4)	0.9020 (3)	0.0606 (13)
N3	0.5503 (2)	0.3089 (4)	0.9548 (2)	0.0644 (11)
N4	0.4156 (2)	0.5315 (3)	0.8985 (2)	0.0529 (9)
H4	0.369103	0.549857	0.915387	0.063*
O4	0.5687 (2)	0.5731 (4)	0.9349 (2)	0.0770 (11)
05	0.5606 (4)	0.7171 (7)	0.8649 (4)	0.164 (4)
O6	0.2817 (2)	0.4428 (3)	0.9223 (2)	0.0803 (11)
H6A	0.250728	0.431603	0.947898	0.120*

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Cd1	0.0543 (4)	0.0500 (4)	0.0664 (4)	0.000	0.0272 (3)	0.000
C1	0.072 (4)	0.118 (6)	0.096 (5)	-0.017 (4)	0.024 (4)	-0.012 (4)
C2	0.101 (7)	0.160 (10)	0.143 (8)	-0.066 (7)	0.015 (6)	-0.024 (8)
C3	0.197 (12)	0.117 (8)	0.126 (8)	-0.089 (9)	0.064 (8)	-0.035 (7)
C4	0.171 (8)	0.073 (5)	0.082 (5)	-0.042 (5)	0.048 (5)	-0.010 (4)
C5	0.105 (4)	0.051 (3)	0.058 (3)	-0.009(3)	0.031 (3)	-0.002(2)
C6	0.303 (19)	0.057 (4)	0.105 (9)	-0.026 (6)	0.101 (11)	-0.008(5)
C7	0.072 (4)	0.066 (3)	0.085 (4)	0.019 (3)	0.043 (3)	0.027 (3)
C8	0.085 (4)	0.051 (4)	0.078 (5)	0.007 (3)	0.044 (4)	0.012 (3)
C9	0.121 (5)	0.056 (4)	0.080 (4)	0.017 (3)	0.047 (4)	0.009 (3)
C10	0.184 (8)	0.091 (5)	0.095 (5)	-0.019 (6)	0.045 (5)	-0.015 (5)
C11	0.220 (11)	0.090 (6)	0.136 (8)	-0.023 (7)	0.012 (7)	-0.021 (6)
C12	0.244 (13)	0.261 (15)	0.145 (9)	-0.056 (11)	0.097 (10)	-0.084 (9)
C13	0.093 (4)	0.070 (4)	0.103 (5)	0.014 (3)	0.056 (4)	0.029 (3)
C14	0.074 (4)	0.067 (4)	0.057 (3)	0.012 (3)	0.029 (3)	0.015 (3)
C15	0.083 (4)	0.080 (4)	0.062 (3)	-0.012 (4)	0.016 (3)	0.015 (4)
C16	0.141 (7)	0.063 (4)	0.069 (4)	-0.006 (4)	0.036 (4)	0.008 (3)
C17	0.144 (7)	0.075 (5)	0.077 (5)	0.031 (5)	0.037 (5)	0.021 (4)
C18	0.106 (5)	0.107 (6)	0.079 (4)	0.010 (5)	0.002 (4)	0.030 (4)
C19	0.117 (5)	0.062 (4)	0.054 (3)	-0.008(4)	0.006 (3)	0.013 (3)
N1	0.072 (3)	0.070(3)	0.064 (3)	-0.019 (2)	0.022 (2)	-0.003(2)
N2	0.067 (3)	0.052 (2)	0.061 (2)	0.007 (2)	0.033 (2)	0.011 (2)
01	0.073 (2)	0.078 (3)	0.074 (2)	0.0225 (19)	0.029 (2)	0.006 (2)
O2	0.099 (3)	0.117 (3)	0.106 (3)	0.057 (3)	0.052 (3)	0.039 (3)
O3	0.182 (5)	0.094 (4)	0.090 (3)	-0.043 (3)	-0.027 (3)	0.017 (3)
Cd2	0.0580 (4)	0.0627 (4)	0.0563 (4)	0.000	0.0145 (3)	0.000
C20	0.075 (4)	0.082 (5)	0.071 (4)	0.008 (4)	0.011 (3)	-0.012 (4)
C21	0.086 (4)	0.112 (6)	0.088 (5)	0.018 (4)	0.025 (3)	-0.026 (4)
C22	0.089 (5)	0.088 (6)	0.109 (6)	0.022 (4)	-0.002 (4)	-0.034 (4)
C23	0.064 (4)	0.081 (5)	0.092 (5)	0.015 (3)	-0.013 (3)	-0.018 (4)
C24	0.053 (3)	0.064 (4)	0.073 (4)	0.003 (2)	-0.007 (2)	-0.006 (3)
C25	0.099 (7)	0.054 (4)	0.141 (8)	0.006 (3)	-0.018 (4)	-0.011 (4)
C26	0.085 (5)	0.091 (5)	0.070 (4)	-0.035 (4)	0.028 (4)	-0.007 (4)
C27	0.086 (4)	0.066 (3)	0.046 (3)	-0.020 (3)	0.011 (3)	0.008 (2)
C28	0.104 (5)	0.055 (3)	0.068 (4)	-0.013 (3)	0.001 (3)	0.009 (3)
C29	0.110 (6)	0.056 (4)	0.119 (6)	0.007 (4)	0.005 (5)	0.005 (4)

# supporting information

C30	0.150 (9)	0.275 (15)	0.136 (9)	0.038 (9)	-0.033 (7)	0.031 (9)
C31	0.180 (10)	0.124 (8)	0.189 (11)	0.073 (7)	0.038 (8)	0.017 (7)
C32	0.071 (3)	0.068 (3)	0.053 (3)	-0.010 (3)	0.009 (2)	-0.003 (3)
C33	0.055 (3)	0.054 (3)	0.065 (3)	-0.011 (2)	0.001 (2)	-0.009 (2)
C34	0.069 (3)	0.070 (4)	0.076 (4)	0.002 (3)	0.006 (3)	-0.016 (3)
C35	0.088 (5)	0.057 (4)	0.113 (5)	-0.004 (3)	0.010 (4)	-0.018 (3)
C36	0.067 (4)	0.055 (4)	0.126 (6)	-0.008 (3)	0.006 (4)	0.005 (4)
C37	0.054 (3)	0.072 (4)	0.101 (5)	-0.011 (3)	0.014 (3)	0.009 (4)
C38	0.058 (3)	0.053 (3)	0.070 (3)	-0.011 (2)	0.011 (3)	-0.009 (3)
N3	0.055 (3)	0.072 (3)	0.064 (3)	-0.001 (2)	0.008 (2)	-0.009 (2)
N4	0.058 (2)	0.052 (2)	0.050(2)	-0.0103 (18)	0.0133 (18)	-0.0006 (18)
O4	0.061 (2)	0.091 (3)	0.083 (3)	-0.013 (2)	0.026 (2)	-0.005 (2)
05	0.157 (5)	0.182 (8)	0.148 (5)	-0.098 (6)	0.021 (4)	0.078 (6)
06	0.071 (2)	0.059 (2)	0.124 (3)	-0.0123 (18)	0.049 (2)	-0.011 (2)

Geometric parameters (Å, °)

Cd1—N2 ⁱ	2.315 (4)	Cd2—O4 ⁱⁱ	2.322 (4)
Cd1—N2	2.315 (4)	Cd2—O4	2.322 (4)
Cd1—N1 ⁱ	2.341 (4)	Cd2—N4 ⁱⁱ	2.339 (4)
Cd1—N1	2.341 (4)	Cd2—N4	2.339 (4)
Cd1—O1 ⁱ	2.346 (3)	Cd2—N3	2.351 (5)
Cd1—O1	2.346 (3)	Cd2—N3 ⁱⁱ	2.352 (5)
C1—N1	1.320 (8)	C20—N3	1.321 (8)
C1—C2	1.400 (12)	C20—C21	1.420 (10)
C1—H1	0.9300	C20—H20	0.9300
C2—C3	1.324 (15)	C21—C22	1.353 (10)
С2—Н2	0.9300	C21—H21	0.9300
C3—C4	1.393 (15)	C22—C23	1.388 (10)
С3—Н3	0.9300	C22—H22	0.9300
C4—C5	1.393 (9)	C23—C24	1.408 (8)
C4—C6	1.408 (12)	C23—C25	1.459 (9)
C5—N1	1.347 (7)	C24—N3	1.333 (7)
C5-C5 ⁱ	1.449 (12)	C24—C24 ⁱⁱ	1.458 (12)
C6—C6 ⁱ	1.30 (2)	C25—C25 ⁱⁱ	1.318 (16)
С6—Н6	0.9300	C25—H25	0.9300
C7—O1	1.251 (6)	C26—O4	1.242 (8)
С7—О2	1.252 (6)	C26—O5	1.246 (8)
С7—С8	1.529 (9)	C26—C27	1.533 (8)
С8—С9	1.503 (10)	C27—N4	1.477 (6)
C8—N2	1.506 (8)	C27—C28	1.529 (8)
С8—Н8	0.9800	С27—Н27	0.9800
C9—C10	1.544 (10)	C28—C29	1.514 (10)
С9—Н9А	0.9700	C28—H28A	0.9700
С9—Н9В	0.9700	C28—H28B	0.9700
C10—C12	1.482 (12)	C29—C31	1.494 (13)
C10—C11	1.543 (11)	C29—C30	1.540 (13)
С10—Н10	0.9800	C29—H29	0.9800

C11—H11A	0.9600	C30—H30A	0.9600
C11—H11B	0.9600	C30—H30B	0.9600
C11—H11C	0.9600	C30—H30C	0.9600
C12—H12A	0.9600	C31—H31A	0.9600
C12—H12B	0.9600	C31—H31B	0.9600
C12—H12C	0.9600	C31—H31C	0.9600
C13—N2	1.489 (6)	C32—N4	1.477 (6)
C13—C14	1.504 (7)	C32—C33	1.491 (7)
C13—H13A	0.9700	C32—H32A	0.9700
C13—H13B	0.9700	C32—H32B	0.9700
C14—C15	1.355 (10)	C33—C34	1.393 (7)
C14—C19	1.380 (8)	C33—C38	1.402 (7)
C15—C16	1.360 (10)	C34—C35	1.400 (8)
C15—H15	0.9300	C34—H34	0.9300
C16—C17	1.354 (9)	C35—C36	1.358 (10)
C16—H16	0.9300	C35—H35	0.9300
C17—C18	1.356 (10)	C36—C37	1.391 (9)
C17—H17	0.9300	C36—H36	0.9300
C18-C19	1 369 (9)	C37 - C38	1 391 (8)
C18—H18	0.9300	C37—H37	0.9300
C19 - 03	1 359 (7)	$C_{38}$	1 360 (6)
N2—H2A	0.9800	N4—H4	0.9800
O3—H3A	0.8200	O6—H6A	0.8200
	0.0200		0.0200
N2 ⁱ —Cd1—N2	142.70 (19)	$O4^{ii}$ —Cd2—O4	110.6 (2)
$N2^{i}$ —Cd1—N1 ⁱ	102.22(15)	$O4^{ii}$ —Cd2—N4 ⁱⁱ	72.40 (14)
$N2-Cd1-N1^{i}$	107.96 (14)	$O4$ — $Cd2$ — $N4^{ii}$	84.68 (14)
$N2^{i}$ —Cd1—N1	107.96 (14)	$O4^{ii}$ —Cd2—N4	84.68 (14)
N2-Cd1-N1	102.22 (15)	O4— $Cd2$ — $N4$	72.40 (14)
$N1^{i}$ —Cd1—N1	71.2 (2)	$N4^{ii}$ —Cd2—N4	139.38 (18)
$N2^{i}$ —Cd1—O1 ⁱ	73 01 (13)	$O4^{ii}$ —Cd2—N3	160.06 (16)
$N_2$ —Cd1—Q1 ⁱ	85 98 (14)	O4-Cd2-N3	89 30 (16)
$N1^{i}$ Cd1 $O1^{i}$	88 94 (16)	$N4^{ii}$ —Cd2—N3	110 19 (13)
N1—Cd1— $01^{i}$	159 98 (16)	N4 - Cd2 - N3	102 76 (14)
$N^{2i}$ —Cd1—O1	85 98 (14)	$04^{ii}$ —Cd2—N3 ⁱⁱ	89 30 (17)
$N_2$ Cd1 $-01$	73 01 (13)	$04 - Cd2 - N3^{ii}$	160.06 (16)
$N1^{i}$ —Cd1—O1	159 98 (16)	$N4^{ii}$ Cd2 N3 ⁱⁱ	102.76 (14)
N1 - Cd1 - O1	88 94 (16)	$N4 - Cd2 - N3^{ii}$	110 18 (13)
$O1^{i}$ Cd1 $O1$	1110(2)	$N3 - Cd2 - N3^{ii}$	70.8 (2)
N1 - C1 - C2	111.0(2) 121.5(8)	$N_{3}$ $C_{20}$ $C_{21}$	120.3(8)
N1_C1_H1	119.2	N3_C20_H20	110.8
$C^2 - C^1 - H^1$	119.2	$C_{21}$ $C_{20}$ $H_{20}$	119.8
$C_2 = C_1 = \Pi_1$	119.2	$C_{21} = C_{20} = 1120$	119.0
$C_3 = C_2 = C_1$	110.9 (10)	$C_{22} = C_{21} = C_{20}$	119.9 (7)
$C_{1}$ $C_{2}$ $H_{2}$	120.0	$C_{22} - C_{21} - H_{21}$	120.0
$C_1 - C_2 - 112$ $C_2 - C_3 - C_4$	120.0	$C_{20}$ $C_{21}$ $C_{21}$ $C_{23}$ $C_{23}$	120.0
$C_2 = C_3 = U_4$	122.5 (9)	$C_{21}$ $C_{22}$ $C_{23}$ $C_{21}$ $C_{22}$ $C_{23}$	12.0 (0)
$C_2 = C_3 = 113$ $C_4 = C_2 = H_2^2$	110./	$C_{21} = C_{22} = \Pi_{22}$	120.1
U4—U3—ПЗ	110./	U23-U22-H22	120.1

C3—C4—C5	114.9 (8)	C22—C23—C24	117.3 (7)
C3—C4—C6	124.6 (9)	C22—C23—C25	123.2 (7)
C5—C4—C6	120.5 (9)	C24—C23—C25	119.6 (7)
N1—C5—C4	123.6 (7)	N3—C24—C23	122.5 (6)
N1-C5-C5 ⁱ	118.3 (3)	N3—C24—C24 ⁱⁱ	118.3 (3)
C4C5C5 ⁱ	118.1 (5)	$C_{23}$ — $C_{24}$ — $C_{24}^{ii}$	119.2 (4)
$C6^{i}$ — $C6$ — $C4$	121.3 (6)	$C_{25^{ii}} - C_{25} - C_{23}$	121.2 (4)
C6 ⁱ —C6—H6	1193	$C25^{ii}$ — $C25$ —H25	119.4
C4—C6—H6	119.3	$C_{23}$ $C_{25}$ $H_{25}$	119.1
01 - C7 - 02	123.6 (6)	$04-C^{2}6-05$	123.5(7)
01 - C7 - C8	120.5 (5)	$04-C^{2}6-C^{2}7$	120.6(7)
$0^{2}-0^{7}-0^{8}$	115.9 (6)	05-C26-C27	120.0(3) 1159(7)
$C_{9}$ $C_{8}$ $N_{2}$	110.3 (5)	N4-C27-C28	110.5(4)
C9 - C8 - C7	109.8 (5)	N4 - C27 - C26	110.3(4) 112.2(5)
$N_{2} = C_{8} = C_{7}$	109.0(5)	$C_{28}$ $C_{27}$ $C_{26}$	112.2(3) 110.8(5)
C9 - C8 - H8	108.6	$N4 - C^{27} - H^{27}$	107.7
$N_2 C_8 H_8$	108.6	$C_{28} C_{27} H_{27}$	107.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.6	$C_{26} = C_{27} = H_{27}$	107.7
$C^{*}$	116.6 (6)	$C_{20} = C_{27} = H_{27}$	107.7 116.6(5)
$C_8 = C_9 = C_{10}$	10.0 (0)	$C_{29} = C_{28} = C_{27}$	100.0 (3)
$C_{0} = C_{0} = H_{0}$	108.1	$C_{23} = C_{23} = H_{23} = H_{23}$	108.2
$C_{10} = C_{20} = H_{20}$	108.1	$C_{20}$ $C_{20}$ $C_{20}$ $H_{28R}$	108.2
$C_{0} = C_{0} = H_{0}$	108.1	$C_{23} = C_{23} = H_{28B}$	108.2
	106.1	$C_2/-C_{20}$ - $C_{20}$ - $C_{20$	100.2
H9A - C9 - H9B	107.5	$H_{20}A - C_{20} - H_{20}B$	107.3 110.2(7)
C12 - C10 - C11	110.7(8) 112.2(0)	$C_{21}$ $C_{29}$ $C_{20}$ $C_{20}$	110.2(7)
C12 - C10 - C9	115.2 (9)	$C_{29} = C_{29} = C_{30}$	109.4(8)
C12 - C10 - C9	110.7 (7)	$C_{28} = C_{29} = C_{30}$	111.8 (8)
C12—C10—H10	107.3	$C_{31} = C_{29} = H_{29}$	108.5
C11—C10—H10	107.3	C28—C29—H29	108.5
C9—C10—H10	107.3	C30—C29—H29	108.5
CIO-CII-HIIA	109.5	C29—C30—H30A	109.5
CIO-CII-HIIB	109.5	C29—C30—H30B	109.5
HIIA—CII—HIIB	109.5	H30A—C30—H30B	109.5
CIO-CII-HIIC	109.5	C29—C30—H30C	109.5
HIIA—CII—HIIC	109.5	H30A—C30—H30C	109.5
HIIB—CII—HIIC	109.5	H30B—C30—H30C	109.5
С10—С12—Н12А	109.5	С29—С31—Н31А	109.5
С10—С12—Н12В	109.5	С29—С31—Н31В	109.5
H12A—C12—H12B	109.5	H31A—C31—H31B	109.5
C10—C12—H12C	109.5	С29—С31—Н31С	109.5
H12A—C12—H12C	109.5	H31A—C31—H31C	109.5
H12B—C12—H12C	109.5	H31B—C31—H31C	109.5
N2-C13-C14	113.7 (4)	N4—C32—C33	113.2 (4)
N2—C13—H13A	108.8	N4—C32—H32A	108.9
C14—C13—H13A	108.8	C33—C32—H32A	108.9
N2—C13—H13B	108.8	N4—C32—H32B	108.9
C14—C13—H13B	108.8	C33—C32—H32B	108.9
H13A—C13—H13B	107.7	H32A—C32—H32B	107.7

C15—C14—C19	117.1 (5)	C34—C33—C38	118.0 (5)
C15—C14—C13	120.4 (6)	C34—C33—C32	120.5 (5)
C19—C14—C13	122.4 (6)	C38—C33—C32	121.4 (5)
C14—C15—C16	123.0 (6)	C33—C34—C35	121.0 (6)
C14—C15—H15	118.5	С33—С34—Н34	119.5
С16—С15—Н15	118.5	С35—С34—Н34	119.5
C17—C16—C15	118.9 (7)	C36—C35—C34	119.8 (6)
С17—С16—Н16	120.6	С36—С35—Н35	120.1
C15—C16—H16	120.6	C34—C35—H35	120.1
C16—C17—C18	120.4 (6)	$C_{35}$ — $C_{36}$ — $C_{37}$	120.9 (6)
C16—C17—H17	119.8	C35—C36—H36	119.5
C18 - C17 - H17	119.8	C37—C36—H36	119.5
C17 - C18 - C19	120.0 (6)	$C_{36} - C_{37} - C_{38}$	119.4 (6)
C17 - C18 - H18	120.0 (0)	C36—C37—H37	120.3
C19 - C18 - H18	120.0	$C_{38}$ $C_{37}$ $H_{37}$	120.3
03-C19-C18	119.8 (6)	06-C38-C37	120.3 122.1(5)
03-C19-C14	119.6 (6)	06-C38-C33	122.1(5) 117.2(5)
$C_{18} C_{19} C_{14}$	120.7 (6)	$C_{37}$ $C_{38}$ $C_{33}$	117.2(5) 120.7(5)
$C_{10} = C_{10} = C_{14}$	120.7(0) 118.6(5)	$C_{37} = C_{38} = C_{33}$	120.7(5)
C1 = N1 = Cd1	110.0(5) 125.3(5)	$C_{20} = N_3 = C_{24}$	120.1(0) 123.6(5)
$C_1 = N_1 = C_{d_1}$	125.5(5) 1161(4)	$C_{20}$ N3 $C_{d2}$	125.0(5) 116.3(4)
$C_3 = N_1 = C_4 I$	110.1(4)	$C_{24}$ $N_{3}$ $C_{27}$	110.5(4)
$C_{13}$ $N_2$ $C_{d1}$	110.9(4) 115.4(2)	$C_{32}$ N4 $C_{42}$	112.3(4) 117.3(2)
$CI_{3}$ $N_{2}$ $CI_{1}$	113.4(3)	C32— $N4$ — $Cd2$	117.3(3)
$C_{N_2}$	109.0 (3)	$C_2 - N_4 - C_{d_2}$	109.1 (3)
$C_{13}$ $N_{2}$ $H_{2A}$	106.8	C32—N4—H4	105.7
C8—N2—H2A	106.8	$C_2/-N_4$ H4	105.7
CdI = N2 = H2A	106.8	Cd2— $N4$ — $H4$	105.7
	116.1 (4)	$C_{26} = 04 = C_{42}$	115.8 (4)
С19—03—НЗА	109.5	С38—О6—Н6А	109.5
N1 C1 C2 C2	0.4(15)	N2 C20 C21 C22	1 ((10))
NI = CI = C2 = C3	-0.4(15)	N3-C20-C21-C22	1.6 (10)
C1 - C2 - C3 - C4	0.2(17)	$C_{20} = C_{21} = C_{22} = C_{23}$	-2.7(10)
$C_2 = C_3 = C_4 = C_5$	-0.4 (15)	$C_{21} = C_{22} = C_{23} = C_{24}$	2.3 (9)
$C_2 = C_3 = C_4 = C_6$	-1/9.3(11)	$C_{21} = C_{22} = C_{23} = C_{25}$	-1//.3(/)
$C_3 - C_4 - C_5 - N_1$	0.7(10)	$C_{22} = C_{23} = C_{24} = N_3$	-0.8 (8)
C6-C4-C5-N1	1/9.6 (8)	$C_{25} - C_{23} - C_{24} - N_{3}$	178.7 (6)
C3-C4-C5-C5 ⁴	1/9.1 (7)	C22—C23—C24—C24"	178.9 (6)
C6—C4—C5—C5 ¹	-2.0 (11)	C25—C23—C24—C24 ⁿ	-1.5 (9)
C3—C4—C6—C6 ¹	177.1 (14)	C22—C23—C25—C25 ⁿ	180.0 (9)
$C5-C4-C6-C6^{1}$	-2 (2)	C24—C23—C25—C25 ⁿ	0.4 (13)
O1—C7—C8—C9	96.8 (7)	O4—C26—C27—N4	-13.5 (8)
O2—C7—C8—C9	-80.3 (7)	O5—C26—C27—N4	167.5 (6)
O1—C7—C8—N2	-25.4 (8)	O4—C26—C27—C28	110.5 (6)
O2—C7—C8—N2	157.5 (5)	O5—C26—C27—C28	-68.5 (8)
N2-C8-C9-C10	-64.3 (8)	N4—C27—C28—C29	-62.8 (6)
C7—C8—C9—C10	173.2 (6)	C26—C27—C28—C29	172.3 (5)
C8—C9—C10—C12	-63.4 (10)	C27—C28—C29—C31	167.2 (7)
C8—C9—C10—C11	171.6 (7)	C27—C28—C29—C30	-71.0 (9)

N2-C13-C14-C15	-135.5 (6)	N4—C32—C33—C34	-133.4 (5)
N2-C13-C14-C19	48.4 (8)	N4—C32—C33—C38	49.2 (6)
C19—C14—C15—C16	-0.7 (9)	C38—C33—C34—C35	-1.0 (8)
C13—C14—C15—C16	-177.0 (6)	C32—C33—C34—C35	-178.4 (5)
C14—C15—C16—C17	0.8 (10)	C33—C34—C35—C36	-1.4 (9)
C15—C16—C17—C18	-1.4 (11)	C34—C35—C36—C37	0.5 (10)
C16—C17—C18—C19	1.8 (11)	C35—C36—C37—C38	2.8 (10)
C17—C18—C19—O3	-179.0 (7)	C36—C37—C38—O6	175.8 (5)
C17—C18—C19—C14	-1.7 (10)	C36—C37—C38—C33	-5.3 (8)
C15—C14—C19—O3	178.5 (5)	C34—C33—C38—O6	-176.6 (4)
C13—C14—C19—O3	-5.3 (9)	C32—C33—C38—O6	0.7 (7)
C15—C14—C19—C18	1.1 (9)	C34—C33—C38—C37	4.4 (8)
C13—C14—C19—C18	177.4 (5)	C32—C33—C38—C37	-178.3 (5)
C2-C1-N1-C5	0.7 (10)	C21—C20—N3—C24	-0.2 (9)
C2-C1-N1-Cd1	-178.0 (6)	C21—C20—N3—Cd2	-178.8 (5)
C4—C5—N1—C1	-0.9 (8)	C23—C24—N3—C20	-0.2 (8)
C5 ⁱ —C5—N1—C1	-179.3 (6)	C24 ⁱⁱ —C24—N3—C20	-179.9 (6)
C4—C5—N1—Cd1	177.9 (5)	C23—C24—N3—Cd2	178.6 (4)
C5 ⁱ —C5—N1—Cd1	-0.5 (7)	C24 ⁱⁱ —C24—N3—Cd2	-1.2 (7)
C14—C13—N2—C8	-176.2 (5)	C33—C32—N4—C27	179.9 (4)
C14—C13—N2—Cd1	58.4 (6)	C33—C32—N4—Cd2	52.3 (5)
C9—C8—N2—C13	143.7 (5)	C28—C27—N4—C32	134.3 (5)
C7—C8—N2—C13	-94.4 (6)	C26—C27—N4—C32	-101.4 (5)
C9—C8—N2—Cd1	-87.7 (5)	C28—C27—N4—Cd2	-93.8 (4)
C7—C8—N2—Cd1	34.2 (6)	C26—C27—N4—Cd2	30.4 (5)
O2-C7-O1-Cd1	179.1 (5)	O5—C26—O4—Cd2	166.8 (6)
C8—C7—O1—Cd1	2.2 (7)	C27—C26—O4—Cd2	-12.1 (8)

Symmetry codes: (i) -*x*+1, *y*, -*z*+1; (ii) -*x*+1, *y*, -*z*+2.

## Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O6—H6A···O2 ⁱⁱⁱ	0.82	1.83	2.645 (5)	174
N4—H4…O6	0.98	2.07	2.763 (5)	126
N2—H2A···O3	0.98	2.09	2.795 (6)	127
O3—H3A···O5	0.82	2.33	2.951 (9)	133
C28—H28A····O4 ⁱⁱ	0.97	2.67	3.470 (7)	141

Symmetry codes: (ii) -x+1, y, -z+2; (iii) -x+1/2, y-1/2, -z+3/2.