

Received 2 October 2018 Accepted 8 October 2018

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; dimorphism; Mg₃TeO₆ structure type; solid solution.

CCDC reference: 1872058

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

A new form of Cd₃TeO₆ revealing dimorphism

Matthias Weil^a* and Théo Veyer^b

^aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and ^bIUT Bordeaux 1, 15 Rue Naudet, 33175 Gradignan, France. *Correspondence e-mail: matthias.weil@tuwien.ac.at

Phase-formation studies in the system CdO–TeO₃ using a CsCl/NaCl melt at comparatively low temperatures revealed that tricadmium orthotellurate(VI), Cd₃TeO₆, is dimorphic. The new modification of Cd₃TeO₆ is denoted as the β -form and adopts the rhombohedral Mg₃TeO₆ structure type with one Cd and two O sites in general positions, and two Te sites with site symmetry $\overline{3}$ each. In comparison with the previously reported monoclinic cryolite-type α -form that was prepared at higher temperatures, β -Cd₃TeO₆ has a much lower density and most likely represents a metastable modification. Whereas the [TeO₆] octahedra in both polymorphs are very similar and show only minor deviations from ideal values, the polyhedra around the Cd^{II} sites are different, with a distorted [CdO₆] octahedron in both modifications but an additional [CdO₈] polyhedron with a [4 + 4] coordination in the α -form.

1. Chemical context

Various salts of meta-telluric acid, H2TeO4, have been reported as a result of high-pressure and high-temperature experiments (3000 atm; 973 K) aiming at various M^{II} TeO₄ phases, where M = Mg, Ca, Sr, Ba, Cd or Pb (Sleight *et al.*, 1972). Meanwhile, the crystal structures of the Ca, Sr and Ba salts were determined (Hottentot & Loopstra, 1979; Weil et al., 2016) whereas those of the other phases remain unknown to date. In a recent project on single-crystal growth of the Cd salt of meta-telluric acid, we used a CsCl/NaCl salt mixture (Źemcźuźny & Rambach, 1909) at temperatures < 800 K as a flux. Instead of the target phase CdTeO₄, we obtained a new form of Cd₃TeO₆. The previously reported Cd₃TeO₆ polymorph crystallizes as a monoclinically distorted cryolite-type material in space-group type $P2_1/n$ (Burckhardt *et al.*, 1982) while the new form adopts the rhombohedral Mg₃TeO₆ structure type.

Prior to the current study, solid solutions $Cd_{3-x}Mn_xTeO_6$ with x = 3, 2, 1.5 and 1 were prepared in polycrystalline form (Ivanov *et al.*, 2012), but not the cadmium end member, *i.e.* where x = 0. We report here the crystal structure of the new polymorph of Cd₃TeO₆, together with a comparative discussion of isostructural solid solutions $Cd_{3-x}Mn_xTeO_6$. In the following, we refer to the previously reported monoclinic polymorph of Cd₃TeO₆ (Burckhardt *et al.*, 1982) as the α -form, and the new rhombohedral polymorph as the β -form of Cd₃TeO₆.

2. Structural commentary

The crystal structure of β -Cd₃TeO₆ (Fig. 1) is made up from a distorted close packing of hexagonal oxygen layers extending

Table 1	
Selected bond lengths (Å) in rhombohedral β -Cd ₃ TeO ₆ and in	n isotypic
(Cd ₁ sMn ₁ s)TeO ₄ and Mn ₂ TeO ₄	

	β -Cd ₃ TeO ₆ ^{<i>a</i>}	Cd _{1.5} Mn _{1.5} TeO ₆ ^b	$Mn_3TeO_6^{\ c}$
$M_{1} = 0_{1}$	2 2348 (17)	2 147	2 1055 (14)
$M1 - O2^i$	2.2455 (17)	2.150	2.1275 (13)
$M1 - O1^{ii}$	2.2907 (19)	2.240	2.2009 (13)
$M1 - O2^{iii}$	2.3051 (18)	2.260	2.2311 (12)
M1 - O2	2.3370 (18)	2.273	2.2313 (13)
$M1 - O1^{iv}$	2.4658 (19)	2.412	2.3841 (13)
Te1-O1	1.9339 (17)	1.955	1.9247 (13)
Te2-O2	1.9290 (17)	1.959	1.9214 (12)

Notes: (a) This study; (b) Ivanov *et al.* (2012) on the basis of X-ray powder diffraction data at room temperature (no s.u. given in original publication); (c) Weil (2006) on the basis of single-crystal X-ray data at room temperature. [Symmetry codes: (i) $y - \frac{1}{3}, -x + y + \frac{1}{3}, -z + \frac{1}{3}$; (ii) $-x + \frac{1}{3}, y + \frac{2}{3}, -z + \frac{2}{3}$; (iii) -y, x - y, z; (iv) $-y + \frac{1}{3}, x - y + \frac{2}{3}, z - \frac{1}{3}$.]

parallel to (001). The Cd site (site symmetry 1) and the two unique Te sites (each with site symmetry $\overline{3}$) are situated in the octahedral interstices of this arrangement. The distorted [CdO₆] octahedron has Cd-O distances ranging from 2.2348 (17)–2.4658 (19) Å (Table 1) and shares one edge with a [Te1O₆] octahedron, another edge with a [Te2O₆] octahedron, and four edges with neighbouring [CdO₆] octahedra. Both [TeO₆] octahedra show only minute deviations from the ideal octahedral symmetry. They are isolated from each other and are connected to six [CdO₆] octahedra by sharing edges. The average Te-O bond length in β -Cd₃TeO₆ (1.931 Å) is in

Figure 1

The crystal structure of β -Cd₃TeO₆ in polyhedral view in a projection along [010]. [CdO₆] octahedra are blue and [TeO₆] octahedra are red. Displacement ellipsoids are drawn at the 90% probability level.

very good agreement with the mean Te–O bond length of 1.923 Å calculated for numerous (> 100) oxotellurates with octahedrally coordinated Te^{VI} (Christy *et al.*, 2016; Gagné & Hawthorne, 2018). Both unique O atoms are bonded to one Te and three Cd atoms in the form of a distorted tetrahedron.

Like β -Cd₃TeO₆, Mn₃TeO₆ (Weil, 2006) as well as phases with x = 2, 1.5 and 1 of the Cd_{3-x}Mn_xTeO₆ solid-solution series (Ivanov et al., 2012) adopt the rhombohedral Mg₃TeO₆ structure type. A comparison of the bond lengths of the $[MO_6]$ (M = Cd, Mn) octahedra in the end members β -Cd₃TeO₆ and Mn_3TeO_6 and the solid solution $Cd_{1.5}Mn_{1.5}TeO_6$ (mixed occupancy for the M site) shows intermediate values for the solid solution, consistent with the different ionic radii for sixcoordinate Cd^{II} and Mn^{II} of 0.95 and 0.83 (high-spin) Å, respectively (Shannon, 1976). For a quantitative structural comparison of the end members β -Cd₃TeO₆ and Mn₃TeO₆ the program compstru (de la Flor et al., 2016) available at the Bilbao Crystallographic Server (Aroyo et al., 2006) was used. The degree of lattice distortion is 0.0204, the maximum distance between the atomic positions of paired atoms is 0.0680 Å for pair O2, the arithmetic mean of all distances is 0.0417 Å, and the measure of similarity is 0.011. All these values show a high similarity between the two crystal structures.

The structure of the monoclinic α -form of Cd₃TeO₆ (Burckhardt et al., 1982) comprises of two cadmium sites (one on a general position and one on an inversion centre), one tellurium site on an inversion centre and three oxygen sites in general positions. While the $[TeO_6]$ octahedra in both Cd₃TeO₆ polymorphs have nearly the same bond length distribution $[2 \times 1.904 (4), 2 \times 1.924 (5), 2 \times 1.948 (4) \text{ Å in}$ the α -form; for the β -form, see: Table 1], the set of coordination polyhedra around the two Cd^{II} cations in the two structures is different. In β -Cd₃TeO₆, the cadmium site has a coordination number (CN) of six with an octahedral oxygen environment whereas in α -Cd₃TeO₆, only one site is octahedrally surrounded [range of Cd-O bond lengths: 2.211 (5)-2.350 (4) Å] and the other site exhibits a distorted [4 + 4]coordination [range of Cd-O bond lengths: 2.237 (5)-3.010 (5) Å].

As noted above, the end members β -Cd₃TeO₆ and Mn₃TeO₆ crystallize in the same structure type, suggesting a full miscibility over the complete range of x for the solid-solution series $Cd_{3-x}Mn_xTeO_6$. However, the adopted structure type for the complete range of x appears to be dependent on the reaction temperature. Single crystals of α -Cd₃TeO₆ for structure analysis were grown from a 9 CdO: 11 TeO₂ mixture that was heated in air at 1350 K for three h (Burckhardt et al., 1982) while single crystals of β -Cd₃TeO₆ were obtained at much lower temperatures (793 K) using a flux method. This suggests that the high-temperature synthesis yields the thermodynamically stable modification. The rule of thumb that in the majority of cases the denser polymorph represents also the thermodynamically stable modification supports this assumption because α -Cd₃TeO₆ [D_x = 7.490 (2) g cm⁻³; Burckhardt *et al.*, 1982] is much denser than β -Cd₃TeO₆ [$D_r = 6.941$ g cm⁻³]. Under consideration of the similar reaction conditions for

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	Cd ₃ TeO ₆
Mr	560.80
Crystal system, space group	Trigonal, $R\overline{3}$:H
Temperature (K)	296
a, c (Å)	9.1620 (2), 11.0736 (3)
$V(Å^3)$	805.01 (4)
Z	6
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	17.06
Crystal size (mm)	0.08 (radius)
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.527, 0.749
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11351, 1623, 1526
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	1.025
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.046, 1.29
No. of reflections	1623
No. of parameters	33
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	2.57, -1.53

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXL2017/1 (Sheldrick, 2015), ATOMS for Windows (Dowty, 2006) and publCIF (Westrip, 2010).

preparation of monoclinic α -Cd₃TeO₆ and the given solid solutions Cd_{3-x}Mn_xTeO₆ (1270 K following a ceramic route; Ivanov *et al.*, 2012), it appears likely that the rhombohedral β -Cd₃TeO₆ end member can be prepared only at lower temperatures whereas certain amounts of manganese substituting cadmium in the Cd_{3-x}Mn_xTeO₆ solid-solution series stabilize the Mg₃TeO₆ structure type at higher temperatures. Unfortunately, because of the scarcity of β -Cd₃TeO₆ material, a detailed investigation of the thermal behaviour of this phase, *e.g.* in terms of stability and a possible phase transition to α -Cd₃TeO₆, could not be undertaken.

3. Database survey

According to a search of the Inorganic Crystal Structure Database (ICSD; Belsky *et al.*, 2002), the Mg₃TeO₆ structure type is realized for eponymous Mg₃TeO₆ (Schulz & Bayer, 1971), Ca₃UO₆ (Holc & Golic, 1983), Mn₃WO₆ (Klüver & Müller-Buschbaum, 1994), Li₃AlD₆ (Brinks & Hauback, 2003; Løvvik *et al.*, 2004), Mn₃TeO₆ (Weil, 2006), selected solid solutions Cd_{3-x}Mn_xTeO₆ (Ivanov *et al.*, 2012), Mn_{3-x}Co_xTeO₆ (Singh *et al.*, 2014; Ivanov *et al.*, 2014), Mn_{2.4}Cu_{0.6}TeO₆ (Wulff *et al.*, 1998), (Ca_{0.2667} Y_{0.7333})₃(Y_{0.2}Sn_{0.3})Sn_{0.5}O6 (Kaminaga *et al.*, 2006), Mn₂InSbO₆ and Mn₂ScSbO₆ (Ivanov *et al.*, 2011), Sc₃(Sc_{0.295} Al_{0.705})O₆ (Müller *et al.*, 2004) and Ho₃ScO₆ (Badie, 1973).

4. Synthesis and crystallization

The rhombohedral β -form of Cd₃TeO₃ was obtained as one of the products from a flux synthesis using a CsCl/NaCl salt

mixture (molar ratio 0.65/0.35). To 1.7 g of the salt mixture were added CdO (0.13 g) and TeO₃ (0.18 g). TeO₃ had previously been prepared by heating H_6 TeO₆ at 573 K for 8 h. The reaction mixture was evacuated and sealed in a silica ampoule, heated from room temperature within 3 h to 793 K, kept at that temperature for 90 h and cooled within 10 h back to room temperature. The silica ampoule was subsequently broken and the solidified melt leached out with water for 2 h. The off-white product was filtered off, washed with water and was air-dried. The title compound was present in the form of a few nearly spherical colourless crystals. Other phases identified by single-crystal X-ray diffraction measurements of selected crystals were α -Cd₃TeO₆ (Burckhardt *et al.*, 1982), the mixed-valent Te^{IV/VI} compound Cd₂Te₂O₇ (Weil, 2004) and a new form of incommensurately modulated CdTe₂O₅ (Weil & Stöger, 2018). Estimated on optical inspection with a microscope, all these phases represent minor by-products. Powder X-ray diffraction measurements of the bulk additionally revealed triple-perovskite-type CsCdCl₃ (Siegel & Gebert, 1964) as the main phase and the Te^{IV} compound CdTeO₃ (Krämer & Brandt, 1985) as a minority phase. Some additional reflections in the X-ray powder diffraction pattern of the bulk could not be assigned to the phases mentioned above or to any other known phase(s).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Standardized coordinates (Gelato & Parthé, 1987) from the isotypic phase Mn_3TeO_6 (Weil, 2006) were taken as starting parameters for refinement. The highest and lowest remaining electron density peaks are located 1.56 and 1.53 Å from sites Te2 and O1, respectively.

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.

Funding information

TV acknowledges the Erasmus+ programme for an educational exchange.

References

- Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.
- Badie, J. M. (1973). C. R. Acad. Sci. Ser. C, 277, 1365-1366.
- Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.
- Brinks, H. W. & Hauback, B. C. (2003). J. Alloys Compd. 354, 143-147.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450–2452.
- Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). *Miner. Mag.* **80**, 415–545.

research communications

- Dowty, E. (2006). *ATOMS for Windows*. Shape Software, Kingsport, TN, USA.
- Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.
- Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Holc, J. & Golic, L. (1983). J. Solid State Chem. 48, 396-400.
- Hottentot, D. & Loopstra, B. O. (1979). Acta Cryst. B35, 728-729.
- Ivanov, S. A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. & Proidakova, V. (2012). J. Magn. Magn. Mater. 324, 1637–1644.
- Ivanov, S. A., Mathieu, R., Nordblad, P., Ritter, C., Tellgren, R., Golubko, N., Mosunov, A., Politova, E. D. & Weil, M. (2014). *Mater. Res. Bull.* 50, 42–56.
- Ivanov, S., Nordblad, P., Mathieu, R., Tellgren, R., Politova, E. & André, G. (2011). Eur. J. Inorg. Chem. pp. 4691–4699.
- Kaminaga, Y., Yamane, H. & Yamada, T. (2006). Acta Cryst. C62, i57– i58.
- Klüver, E. & Müller-Buschbaum, H. (1994). Z. Anorg. Allg. Chem. 620, 733–736.
- Krämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152-1154.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

- Løvvik, O. M., Opalka, S. M., Brinks, H. W. & Hauback, B. C. (2004). *Phys. Rev. B*, **69**, 134117-, 1–1341179.
- Müller, D., Assenmacher, W. & Mader, W. (2004). Z. Anorg. Allg. Chem. 630, 2483–2489.
- Schulz, H. & Bayer, G. (1971). Acta Cryst. B27, 815-821.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Siegel, S. & Gebert, E. (1964). Acta Cryst. 17, 790.
- Singh, H., Sinha, A. K., Ghosh, H., Singh, M. N., Rajput, P., Prajapat, C. L., Singh, M. R. & Ravikumar, G. (2014). J. Appl. Phys. 116, 074904.
- Sleight, A. W., Foris, C. M. & Licis, M. S. (1972). Inorg. Chem. 11, 1157–1158.
- Weil, M. (2004). Solid State Sci. 6, 29–37.
- Weil, M. (2006). Acta Cryst. E62, i244-i245.
- Weil, M. & Stöger, B. (2018). Unpublished results.
- Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187–197.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wulff, L., Wedel, B. & Müller-Buschbaum, H. (1998). Z. Naturforsch. Teil B, 53, 49–52.
- Źemcźuźny, S. & Rambach, F. (1909). Z. Anorg. Allg. Chem. 65, 403– 428.

supporting information

Acta Cryst. (2018). E74, 1561-1564 [https://doi.org/10.1107/S2056989018014214]

A new form of Cd₃TeO₆ revealing dimorphism

Matthias Weil and Théo Veyer

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: coordinates from isotypic structure; program(s) used to refine structure: *SHELXL2017/1* (Sheldrick, 2015); molecular graphics: *ATOMS for Windows* (Dowty, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tricadmium orthotellurate(VI)

Crystal data

Cd₃TeO₆ $M_r = 560.80$ Trigonal, $R\overline{3}$:H a = 9.1620 (2) Å c = 11.0736 (3) Å V = 805.01 (4) Å³ Z = 6F(000) = 1464

Data collection

Bruker APEXII CCD diffractometer ω - and φ -scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.527, T_{\max} = 0.749$ 11351 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.046$ S = 1.291623 reflections 33 parameters 0 restraints $D_{\rm x} = 6.941 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6637 reflections $\theta = 5.0-46.6^{\circ}$ $\mu = 17.06 \text{ mm}^{-1}$ T = 296 KSpherical, colourless $0.08 \times 0.08 \times 0.08 \times 0.08$ (radius) mm

1623 independent reflections 1526 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 46.8^\circ, \ \theta_{min} = 3.2^\circ$ $h = -18 \rightarrow 18$ $k = -18 \rightarrow 16$ $l = -22 \rightarrow 22$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0021P)^2 + 11.2674P] \\ &where P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} < 0.001 \\ &\Delta\rho_{max} = 2.57 \text{ e } \text{ Å}^{-3} \\ &\Delta\rho_{min} = -1.53 \text{ e } \text{ Å}^{-3} \\ &\text{Extinction correction: SHELXL-2017/1} \\ &(\text{Sheldrick 2015}), \\ &\text{Fc}^* = \text{kFc}[1 + 0.001\text{xFc}^2\lambda^3/\sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.00434 (9) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.03947 (2)	0.26424 (2)	0.21210 (2)	0.00731 (4)
Te1	0.000000	0.000000	0.500000	0.00444 (5)
Te2	0.000000	0.000000	0.000000	0.00424 (5)
01	0.0289 (2)	0.1903 (2)	0.40560 (16)	0.0087 (2)
O2	0.1800 (2)	0.1509 (2)	0.10570 (16)	0.0078 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.00657 (6)	0.00745 (6)	0.00789 (6)	0.00348 (5)	-0.00052 (4)	-0.00099 (4)
Te1	0.00419 (7)	0.00419 (7)	0.00492 (10)	0.00210 (3)	0.000	0.000
Te2	0.00403 (7)	0.00403 (7)	0.00464 (10)	0.00202 (3)	0.000	0.000
01	0.0102 (6)	0.0074 (6)	0.0082 (5)	0.0043 (5)	-0.0001(5)	0.0024 (4)
02	0.0058 (5)	0.0069 (6)	0.0094 (6)	0.0021 (5)	-0.0024 (4)	-0.0017 (4)

Geometric parameters (Å, °)

Cd1—O1	2.2348 (17)	Te1—O1 ^{viii}	1.9339 (18)
Cd1—O2 ⁱ	2.2455 (17)	Te1—O1 ⁱⁱⁱ	1.9339 (17)
Cd1—O1 ⁱⁱ	2.2907 (19)	Te1—O1 ^{ix}	1.9339 (17)
Cd1—O2 ⁱⁱⁱ	2.3051 (18)	Te1—O1 ^x	1.9339 (17)
Cd1—O2	2.3370 (18)	Te1—O1 ^{xi}	1.9339 (17)
Cd1—O1 ^{iv}	2.4658 (19)	Te1—O1	1.9339 (17)
Cd1—Te2	3.2608 (2)	Te2—O2	1.9290 (17)
Cd1—Te1 ^v	3.3420 (2)	Te2—O2 ^{xii}	1.9290 (17)
Cd1—Cd1 ⁱⁱ	3.3606 (3)	Te2—O2 ⁱⁱⁱ	1.9290 (17)
Cd1—Cd1 ^{vi}	3.4239 (3)	Te2—O2 ^{xiii}	1.9291 (17)
Cd1—Cd1 ^{vii}	3.4537 (2)	Te2—O2 ^{xiv}	1.9291 (17)
Cd1—Cd1 ⁱ	3.4538 (2)	Te2—O2 ^{xi}	1.9291 (17)
O1—Cd1—O2 ⁱ	94.05 (7)	$O1^{x}$ —Te1—Cd1 ^{xvii}	79.65 (6)
O1—Cd1—O1 ⁱⁱ	84.10 (7)	O1 ^{xi} —Te1—Cd1 ^{xvii}	100.35 (6)
O2 ⁱ —Cd1—O1 ⁱⁱ	120.35 (7)	O1—Te1—Cd1 ^{xvii}	138.37 (6)
O1—Cd1—O2 ⁱⁱⁱ	107.98 (7)	Cd1 ^{xv} —Te1—Cd1 ^{xvii}	117.776 (1)
O2 ⁱ —Cd1—O2 ⁱⁱⁱ	82.41 (7)	Cd1 ^{xvi} —Te1—Cd1 ^{xvii}	62.224 (1)
O1 ⁱⁱ —Cd1—O2 ⁱⁱⁱ	154.11 (6)	Cd1 ⁱⁱ —Te1—Cd1 ^{xvii}	180.0
O1—Cd1—O2	107.37 (6)	O1 ^{viii} —Te1—Cd1 ^{xviii}	100.35 (6)
O2 ⁱ —Cd1—O2	148.88 (4)	O1 ⁱⁱⁱ —Te1—Cd1 ^{xviii}	79.65 (6)
O1 ⁱⁱ —Cd1—O2	84.88 (6)	O1 ^{ix} —Te1—Cd1 ^{xviii}	46.92 (5)

O2 ⁱⁱⁱ —Cd1—O2	69.79 (8)	O1 ^x —Te1—Cd1 ^{xviii}	138.37 (6)
O1-Cd1-O1 ^{iv}	144.36 (6)	O1 ^{xi} —Te1—Cd1 ^{xviii}	41.63 (6)
$O2^{i}$ —Cd1—O1 ^{iv}	82.90 (6)	O1—Te1—Cd1 ^{xviii}	133.08 (5)
O1 ⁱⁱ —Cd1—O1 ^{iv}	67.58 (8)	Cd1 ^{xv} —Te1—Cd1 ^{xviii}	62.225 (1)
O2 ⁱⁱⁱ —Cd1—O1 ^{iv}	106.78 (6)	Cd1 ^{xvi} —Te1—Cd1 ^{xviii}	117.775 (1)
$O2$ — $Cd1$ — $O1^{iv}$	91.75 (6)	Cd1 ⁱⁱ —Te1—Cd1 ^{xviii}	117.775 (1)
O1—Cd1—Te2	119.57 (5)	Cd1 ^{xvii} —Te1—Cd1 ^{xviii}	62.225 (1)
O2 ⁱ —Cd1—Te2	113.76 (5)	O1 ^{viii} —Te1—Cd1 ^{xix}	79.65 (6)
O1 ⁱⁱ —Cd1—Te2	118.53 (5)	O1 ⁱⁱⁱ —Te1—Cd1 ^{xix}	100.35 (6)
O2 ⁱⁱⁱ —Cd1—Te2	35.59 (4)	$O1^{ix}$ —Te1—Cd1 ^{xix}	133.08 (5)
O2—Cd1—Te2	35.72 (4)	O1 ^x —Te1—Cd1 ^{xix}	41.63 (6)
O1 ^{iv} —Cd1—Te2	93.60 (4)	$O1^{xi}$ —Te1—Cd1 ^{xix}	138.37 (6)
$O1-Cd1-Te1^{v}$	111.58 (5)	O1—Te1—Cd1 ^{xix}	46.92 (5)
$O2^{i}$ —Cd1—Te1 ^v	97.31 (5)	$Cd1^{xv}$ —Te1—Cd1 ^{xix}	117.775 (1)
$O1^{ii}$ —Cd1—Te1 ^v	34.11 (4)	$Cd1^{xvi}$ —Te1—Cd1 ^{xix}	62.225 (1)
$O2^{iii}$ —Cd1—Te1 ^v	140.34 (4)	$Cd1^{ii}$ —Te1—Cd1 ^{xix}	62.225(1)
Ω^2 —Cd1—Te1 ^v	95.47 (4)	$Cd1^{xvii}$ —Te1—Cd1 ^{xix}	117.775(1)
$O1^{iv}$ —Cd1—Te1 ^v	34 95 (4)	$Cd1^{xviii}$ Te1 $Cd1^{xix}$	180.0
Te2—Cd1—Te1 ^v	116 088 (5)	Ω^2 —Te ² — Ω^2^{xii}	93.00 (8)
$\Omega_1 - Cd_1 - Cd_1^{ii}$	42 69 (5)	$\Omega^2 - Te^2 = \Omega^2^{iii}$	87.00 (8)
$O2^{i}$ Cd1 Cd1 ⁱⁱ	113.04(5)	$\Omega^{2^{xii}}$ Te ² $\Omega^{2^{iii}}$	$180\ 00\ (11)$
$O1^{ii}$ — $Cd1$ — $Cd1^{ii}$	41 41 (4)	Ω^2 —Te ² — Ω^2^{xiii}	180.00 (11)
02^{iii} —Cd1—Cd1 ⁱⁱ	144 94 (5)	Ω^{2} Ω^{2} Ω^{2} Ω^{2} Ω^{2}	87.00(8)
Ω^2 $Cd1$ $Cd1^{ii}$	97 92 (4)	$\Omega^{2^{iii}}$ Te ² $\Omega^{2^{iii}}$	93.00 (8)
$O1^{iv}$ $Cd1$ $Cd1^{ii}$	106 29 (4)	Ω^2 —Te2— Ω^2 xiv	93.00 (8)
Te ² —Cd1—Cd1 ^{ii}	130 823 (8)	Ω^{2}^{xii} Te ² Ω^{2}^{xiv}	87.00(8)
Tel ^v —Cd1—Cd1 ^{ii}	71 352 (5)	Ω^{2}^{iii} Te ² Ω^{2}^{xiv}	93.00 (8)
$\Omega_1 - Cd_1 - Cd_1^{v_i}$	10472(5)	$\Omega^{2^{\text{xiii}}}$ Te ² $\Omega^{2^{\text{xiv}}}$	87.00 (8)
$O2^{i}$ Cd1 Cd1 ^{vi}	41 86 (5)	$\Omega^2 - Te^2 - \Omega^2 x^i$	87.00 (8)
$O1^{ii}$ $Cd1$ $Cd1^{vi}$	159 57 (5)	02^{xii} Te2 02^{xi}	93.00 (8)
O^{2ii} $Cd1$ $Cd1^{vi}$	40 55 (4)	Ω^{2} Ω^{2} Ω^{2} Ω^{2}	87 00 (8)
$O_2 - Cd_1 - Cd_1^{v_1}$	$109\ 20\ (4)$	$\begin{array}{c} 02 \\ 02 \\ 102 \\ 02 \\ 102 \\ 02 \\ 102$	93.00 (8)
$O_2 = Cd_1 = Cd_1$	96.51(4)	$O2^{xiv}$ Te2 $O2^{xi}$	180.00(3)
T_{2} Cd1 Cd1 ^{vi}	73.547(5)	$O_2 = C_2 = O_2$	130.00(13) 134.08(5)
Tel ^v Cd1 Cd1 ^{vi}	126 005 (8)	$O2^{xii}$ Te2 Cd1 ^{xiii}	134.98(3)
$Cd1^{ii}$ $Cd1$ $Cd1^{vi}$	120.995(8) 143.877(10)	$O2^{iii}$ Te2 Cd1 ^{xiii}	135.04(5)
$C_{1} = C_{1} = C_{1}$	143.877(10) 104.17(5)	$O2^{xiii}$ Te2 Cd1 ^{xiii}	133.94(3)
O^{i} Cd1 Cd1 ^{vii}	104.17(5) 153.08(5)	$O2^{xiv}$ Te2 Cd1 ^{xiii}	45.02(5)
$O_2 - Cu_1 - Cu_1$	155.58 (5)	$O_2 = 1e_2 = Cd_1$	90.30(3)
$O_1 = Cu_1 = Cu_1$	43.47(3) 108 67 (4)	$O_2 = Te_2 = Cd1^{xi}$	33.44(3)
$O_2 = Cd_1 = Cd_1 v_1$	108.07(4)	O_2 C_2 C_4	44.00(3)
O_2 —Cd1—Cd1 ^{xx}	40.10(4)	O_2^{iii} Te2 C_1^{iii}	85.44 (5) 06.56 (5)
T_{2} Cd1 Cd1 ^{vii}	71.44(4)	$O2^{m}$ $Te2$ $Cd1^{m}$	90.30 (3)
1e2—Cd1—Cd1 ^{···}	/3.148 (0)	O_2 T_2 C_4 T_2	135.94 (5)
	30.00/(1)	$O_2 x_1 = T_2 = C_1 T_1 x_1$	134.98 (3)
	/1.028 (3)	C_{1} C_{2} C_{2} C_{1} C_{1}	43.02 (3)
	145.000 (10)	$Cu_1 - 1e_2 - Cu_1^*$	100.152(5)
	122.01 (5)	02 - 1e2 - 0a1	45.02 (5)
$U2^{-}Cd1^{-}Cd1^{+}$	42.10 (5)	02^{-1} le2-Cd1	135.94 (5)

O1 ⁱⁱ —Cd1—Cd1 ⁱ	90.20 (4)	O2 ⁱⁱⁱ —Te2—Cd1	44.06 (5)
O2 ⁱⁱⁱ —Cd1—Cd1 ⁱ	101.62 (5)	O2 ^{xiii} —Te2—Cd1	134.98 (5)
O2—Cd1—Cd1 ⁱ	129.56 (4)	O2 ^{xiv} —Te2—Cd1	83.44 (5)
O1 ^{iv} —Cd1—Cd1 ⁱ	41.48 (4)	O2 ^{xi} —Te2—Cd1	96.56 (5)
Te2—Cd1—Cd1 ⁱ	113.622 (7)	Cd1 ^{xiii} —Te2—Cd1	180.0
Te1 ^v —Cd1—Cd1 ⁱ	58.888 (1)	Cd1 ^{xi} —Te2—Cd1	73.847 (5)
Cd1 ⁱⁱ —Cd1—Cd1 ⁱ	110.788 (6)	O2—Te2—Cd1 ^{xiv}	135.94 (5)
$Cd1^{vi}$ — $Cd1$ — $Cd1^i$	69.450 (8)	$O2^{xii}$ —Te2—Cd1 ^{xiv}	96.56 (5)
$Cd1^{vii}$ — $Cd1$ — $Cd1^{i}$	111.882 (5)	O2 ⁱⁱⁱ —Te2—Cd1 ^{xiv}	83.44 (5)
O1 ^{viii} —Te1—O1 ⁱⁱⁱ	180.0	O2 ^{xiii} —Te2—Cd1 ^{xiv}	44.06 (5)
O1 ^{viii} —Te1—O1 ^{ix}	93.54 (7)	O2 ^{xiv} —Te2—Cd1 ^{xiv}	45.02 (5)
O1 ⁱⁱⁱ —Te1—O1 ^{ix}	86.46 (7)	O2 ^{xi} —Te2—Cd1 ^{xiv}	134.98 (5)
$O1^{viii}$ —Te1—O1 ^x	93.54 (7)	Cd1 ^{xiii} —Te2—Cd1 ^{xiv}	73.848 (5)
O1 ⁱⁱⁱ —Te1—O1 ^x	86.46 (7)	Cd1 ^{xi} —Te2—Cd1 ^{xiv}	180.0
$O1^{ix}$ —Te1—O1 ^x	93.54 (7)	Cd1—Te2—Cd1 ^{xiv}	106.153 (5)
O1 ^{viii} —Te1—O1 ^{xi}	86.46 (7)	O2—Te2—Cd1 ^{xii}	83.44 (5)
O1 ⁱⁱⁱ —Te1—O1 ^{xi}	93.54 (7)	O2 ^{xii} —Te2—Cd1 ^{xii}	45.02 (5)
O1 ^{ix} —Te1—O1 ^{xi}	86.46 (7)	O2 ⁱⁱⁱ —Te2—Cd1 ^{xii}	134.98 (5)
$O1^{x}$ —Te1— $O1^{xi}$	180.0	O2 ^{xiii} —Te2—Cd1 ^{xii}	96.56 (5)
O1 ^{viii} —Te1—O1	86.46 (7)	O2 ^{xiv} —Te2—Cd1 ^{xii}	44.06 (5)
O1 ⁱⁱⁱ —Te1—O1	93.54 (7)	O2 ^{xi} —Te2—Cd1 ^{xii}	135.94 (5)
O1 ^{ix} —Te1—O1	180.0	Cd1 ^{xiii} —Te2—Cd1 ^{xii}	73.848 (5)
O1 ^x —Te1—O1	86.46 (7)	Cd1 ^{xi} —Te2—Cd1 ^{xii}	106.152 (5)
O1 ^{xi} —Te1—O1	93.54 (7)	Cd1—Te2—Cd1 ^{xii}	106.153 (5)
O1 ^{viii} —Te1—Cd1 ^{xv}	41.63 (6)	Cd1 ^{xiv} —Te2—Cd1 ^{xii}	73.848 (5)
$O1^{iii}$ —Te1—Cd1 ^{xv}	138.37 (6)	O2—Te2—Cd1 ⁱⁱⁱ	96.56 (5)
$O1^{ix}$ —Te1—Cd1 ^{xv}	79.65 (6)	O2 ^{xii} —Te2—Cd1 ⁱⁱⁱ	134.98 (5)
O1 ^x —Te1—Cd1 ^{xv}	133.08 (6)	O2 ⁱⁱⁱ —Te2—Cd1 ⁱⁱⁱ	45.02 (5)
$O1^{xi}$ —Te1—Cd1 ^{xv}	46.92 (6)	O2 ^{xiii} —Te2—Cd1 ⁱⁱⁱ	83.44 (5)
O1—Te1—Cd1 ^{xv}	100.35 (6)	O2 ^{xiv} —Te2—Cd1 ⁱⁱⁱ	135.94 (5)
O1 ^{viii} —Te1—Cd1 ^{xvi}	138.37 (6)	O2 ^{xi} —Te2—Cd1 ⁱⁱⁱ	44.06 (5)
O1 ⁱⁱⁱ —Te1—Cd1 ^{xvi}	41.63 (6)	Cd1 ^{xiii} —Te2—Cd1 ⁱⁱⁱ	106.152 (5)
$O1^{ix}$ —Te1—Cd1 ^{xvi}	100.35 (6)	Cd1 ^{xi} —Te2—Cd1 ⁱⁱⁱ	73.848 (5)
O1 ^x —Te1—Cd1 ^{xvi}	46.92 (6)	Cd1—Te2—Cd1 ⁱⁱⁱ	73.847 (5)
O1 ^{xi} —Te1—Cd1 ^{xvi}	133.08 (6)	Cd1 ^{xiv} —Te2—Cd1 ⁱⁱⁱ	106.152 (5)
O1—Te1—Cd1 ^{xvi}	79.65 (6)	Cd1 ^{xii} —Te2—Cd1 ⁱⁱⁱ	180.000 (11)
Cd1 ^{xv} —Te1—Cd1 ^{xvi}	180.0	Te1—O1—Cd1	139.23 (10)
O1 ^{viii} —Te1—Cd1 ⁱⁱ	46.92 (5)	Te1—O1—Cd1 ⁱⁱ	104.25 (8)
O1 ⁱⁱⁱ —Te1—Cd1 ⁱⁱ	133.08 (5)	Cd1—O1—Cd1 ⁱⁱ	95.90 (7)
O1 ^{ix} —Te1—Cd1 ⁱⁱ	138.37 (6)	Te1—O1—Cd1 ^{xix}	98.13 (7)
O1 ^x —Te1—Cd1 ⁱⁱ	100.35 (6)	Cd1—O1—Cd1 ^{xix}	116.00 (7)
O1 ^{xi} —Te1—Cd1 ⁱⁱ	79.65 (6)	Cd1 ⁱⁱ —O1—Cd1 ^{xix}	93.05 (7)
O1—Te1—Cd1 ⁱⁱ	41.63 (6)	Te2—O2—Cd1 ^{vii}	147.03 (10)
Cd1 ^{xv} —Te1—Cd1 ⁱⁱ	62.223 (1)	Te2—O2—Cd1 ^{xi}	100.35 (7)
Cd1 ^{xvi} —Te1—Cd1 ⁱⁱ	117.776 (1)	$Cd1^{vii}$ — $O2$ — $Cd1^{xi}$	97.59 (7)
O1 ^{viii} —Te1—Cd1 ^{xvii}	133.08 (5)	Te2—O2—Cd1	99.25 (7)

supporting information

O1 ⁱⁱⁱ —Te1—Cd1 ^{xvii}	46.92 (5)	Cd1 ^{vii} —O2—Cd1	97.80 (7)
O1 ^{ix} —Te1—Cd1 ^{xvii}	41.63 (6)	Cd1 ^{xi} —O2—Cd1	115.12 (8)

Symmetry codes: (i) y-1/3, -x+y+1/3, -z+1/3; (ii) -x+1/3, -y+2/3, -z+2/3; (iii) -y, x-y, z; (iv) -y+1/3, x-y+2/3, z-1/3; (v) x+1/3, y+2/3, z-1/3; (vi) -x-1/3, -y+1/3, -y+1/3, -z+1/3; (vii) x-y+2/3, x+1/3, -z+1/3; (viii) y, -x+y, -z+1; (ix) -x, -y, -z+1; (x) x-y, x, -z+1; (xi) -x+y, -x; (xii) y, -x+y, -z; (xiii) -x, -y, -z; (xiv) x-y, x, -z; (xv) -y+2/3, x-y+1/3, z+1/3; (xvi) y-2/3, -x+y-1/3, -z+2/3; (xvii) x-1/3, y-2/3, z+1/3; (xviii) x-y+1/3, -z+2/3; (xix) -x+y-1/3, -x+1/3, z+1/3, z+1/3.