

Received 12 September 2018 Accepted 24 September 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; parthenolide; 2-iodoaniline; Heck product.

CCDC reference: 1869537

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\odot}$ ACCESS

Crystal structure of 13-(*E*)-(2-aminobenzylidene)parthenolide

Shobanbabu Bommagani,^a Narsihma R. Penthala,^a Sean Parkin^b and Peter A. Crooks^a*

^aDept. of Pharm. Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and ^bDept. of Chemistry, University of Kentucky, Lexington KY 40506, USA. *Correspondence e-mail: pacrooks@uams.edu

The title compound, $C_{21}H_{25}NO_3$ [systematic name: (1aR,4E,7aS,8E,10aS,10bR)-8-(2-aminobenzylidene)-1a,5-dimethyl-2,3,6,7,7a,8,10a,10b-octahydrooxireno [2',3':9,10]cyclodeca[1,2-*b*]furan-9(1a*H*)-one], was synthesized by the reaction of parthenolide [systematic name (1aR,7aS,10aS,10bS,E)-1a,5-dimethyl-8-methylene-2,3,6,7,7a,8,10*a*,10b-octahydrooxireno[2',3':9,10]cyclodeca[1,2-*b*]furan-9(1a*H*)-one] with 2-iodoaniline *via* Heck reaction conditions. The molecule is composed of fused ten-, five- (lactone), and three-membered (epoxide) rings. The lactone ring shows a flattened envelope-type conformation (r.m.s. deviation from planarity = 0.0477 Å), and bears a 2-aminobenzylidene substituent that is disordered over two conformations [occupancy factors 0.901 (4) and 0.099 (4)]. The ten-membered ring has an approximate chair-chair conformation. The dihedral angle between the 2-aminobenzylidine moiety (major component) and the lactone ring (mean plane) is 59.93 (7)°. There are no conventional hydrogen bonds, but there are a number of weaker C-H···O-type interactions.

1. Chemical context

Sesquiterpene lactones (SLs) are a large family of natural products that have been widely investigated for their anticancer activity. Parthenolide (PTL), a naturally occurring germacranolide SL (Minnaard et al., 1999) isolated from the feverfew plant (Tanacetum parthenium) (Knight, 1995), has unique biological properties and selectively targets leukemia stem cells (LSC) compared to normal hematopoietic stem cells (Guzman et al., 2005). PTL has been demonstrated to inhibit the NFkB pathway in LSCs, and also increases reactive oxygen species, and inhibits STAT3 (signal transduction and activation of transcription) (Mathema et al., 2012). Synthetic analogues of SLs are also excellent sources of novel chemical entities for drug discovery, and over the last decade have been developed as efficacious anticancer drugs (Ghantous et al., 2010). Previous work from our laboratory (Nasim & Crooks, 2008) reported the amino analogues of PTL as anti-leukemic agents, and moreover a water-soluble analogue of PTL, dimethylaminoparthenolide (DMAPT), has advanced into clinical studies (Ghantous et al., 2010). Recently, Kempema et al. (2015) have reported C1 to C10-modified PTL analogues as anti-leukemic agents. Han et al. (2009) have also reported Heck products of PTL as anti-cancer agents. In continuing efforts from our group, Penthala et al. (2014a) reported Heck products of PTL and Melampomagnolide B as anti-cancer agents. Subsequently, Bommagani et al. (2015) reported the crystal structure of (E)-13-(pyrimidin-5-yl)-parthenolide, an

research communications

analog of PTL, which was found to have an *E*-configuration at C-13. The useful biological properties of PTL and its analogs directed our attention to design and synthesize novel bioactive analogs. In order to obtain detailed information on the structural conformation of the current molecule and to determine the geometry of the exocyclic double bond, a single-crystal X-ray structure determination has been carried out.

2. Structural commentary

The title compound (Fig. 1) is built from the PTL substructure, which contains a ten-membered carbocyclic ring (chair-chair conformation) merged to a lactone ring, and an epoxide ring, as previously reported (Castañeda-Acosta *et al.*, 1993). The lactone ring has a flattened envelope-type conformation, wherein atoms C6 and C7 reside 0.093 (4) and -0.105 (4) Å above and below the mean plane through atoms C11, C12, O2, and O3. The molecule also contains a 2-aminobenzylidene group attached by an *E*-exocyclic C11—C13 olefinic bond. The 2-aminobenzylidene ring is twisted out of the plane of the furan ring, subtending a dihedral angle of 59.93 (7)°. All other bond lengths and angles are largely unremarkable.

3. Supramolecular features

There are no conventional hydrogen bonds in the crystal structure, although there are a number of weaker $C-H\cdots O$ -

Figure 1

The molecular structure of the title compound with ellipsoids drawn at the 50% probability level.

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C5-H5\cdots O3^{i}$	1.00	2.59	3.268 (3)	125
$C7-H7\cdots O3^{i}$	1.00	2.57	3.226 (3)	123
$C15 - H15A \cdots O1^{ii}$	0.98	2.40	3.223 (3)	141

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) -x, $y + \frac{1}{2}$, -z.

type interactions (Table 1). The most striking packing feature consists of 2_1 screw-related $(1 - x, \frac{1}{2} + y, -z)$ stacking of lactone groups parallel to the *b* axis (Fig. 2). The distance between planes of adjacent lactone rings is therefore half the *b*-axis length.

4. Database survey

A search of the November 2017 release (with three incremental updates) of the Cambridge Structure Database (Groom *et al.*, 2016) for the PTL substructure gave 30 hits. Three of these, PARTEN (Quick & Rogers, 1976), PARTEN01 (Bartsch *et al.*, 1983), and PARTEN02 (Long *et al.*, 2013) give the structure of PTL itself. One (EBOLOZ, Jamal *et al.*, 2014) is flagged in the CSD as a stereoisomer of parthenolide, though from the context it appears to be parthenolide with an incorrectly assigned absolute configuration. The remaining 26 are substituted variants of PTL. Of these, only six entries: HORZOF (Penthala *et al.*, 2014*b*), HUKLAB, HUKLEF (Han *et al.*, 2009), QILGEZ (Penthala *et al.*, 2013), RUTPON (Bommagani *et al.*, 2015), and BEMHIN (El Bouakher *et al.*, 2017) are substituted at the exocyclic double bond.

Figure 2

A packing plot showing the stacking of 2_1 screw-related adjacent lactone groups. The stacking direction, shown by a dashed line, is parallel to the crystallographic *b* axis. For emphasis, lactone-group atoms are depicted as solid balls. For clarity, hydrogen atoms and minor disorder components are omitted.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{21}H_{25}NO_3$
Mr	339.42
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	90
a, b, c (Å)	11.6136 (3), 6.2403 (1), 12.6875 (3)
β (°)	104.385 (1)
$V(Å^3)$	890.67 (3)
Z	2
Radiation type	Cu Kα
$\mu (\mathrm{mm}^{-1})$	0.67
Crystal size (mm)	$0.16 \times 0.12 \times 0.08$
Data collection	
Diffractometer	Bruker X8 Proteum
Absorption correction	Multi-scan (SADABS;
1	Krause et al., 2015)
Tmin, Tmax	0.840, 0.942
No. of measured, independent and	24004, 2592, 2559
observed $[I > 2\sigma(I)]$ reflections	, ,
Rint	0.041
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.602
(con conjinax (conj	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.084, 1.08
No. of reflections	2592
No. of parameters	238
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$	0.18 - 0.14
Absolute structure	Flack x determined using 811
	auotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons <i>et al</i> 2013) as
	calculated by <i>PLATON</i> (Spek
	2009)
Absolute structure parameter	0.07(7)
su actare parameter	(.)

Computer programs: APEX2 and SAINT (Bruker, 2006), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and CIFFIX (Parkin, 2013).

5. Synthesis and crystallization

Synthetic procedures: The title compound, containing the PTL substructure, was synthesized by the previously reported literature procedure (Han *et al.*, 2009). In brief, parthenolide (1 mmol), 2-iodoaniline (1.2 mmol), triethylamine (3.0 mmol) and 5 mol% of palladium acetate were charged into dimethylformamide (2 ml) at room temperature. The reactants were stirred at 333–343 K for 24 h. After completion of the reaction, water was added to the reaction mass at room temperature, and the mixture was extracted into diethyl ether (2 × 30 mL). The combined organic layers were dried over anhydrous sodium sulfate, concentrated and purified by silica gel column chromatography.

Crystallization: The title compound was recrystallized from a mixture of hexane and acetone (9:1), which gave colorless crystals upon slow evaporation of the solution at room temperature over 24 h. Melting point 457–459 K. ¹H NMR (400 MHz, CDCl₃d): δ 7.63 (*s*, 1H), 7.17 (*d*, *J* = 6.4 Hz, 2H), 6.78 (*dd*, *J* = 7.6 Hz, *J* = 18.4 Hz, 2H), 5.26 (*d*, *J* = 11.6 Hz, 1H), 3.97 (*s*, 2H), 3.92 (*t*, *J* = 7.6 Hz, *J* = 15.6 Hz, 1H), 2.87–2.83 (*m*, 2H), 2.42–2.38 (*m*, 1H), 2.20–2.08 (*m*, 4H), 2.08–1.96 (*m*, 1H),

1.74 (*d*, *J* = 18.0 Hz, 1H), 1.63 (*s*, 3H), 1.36–1.26 (*m*, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃d) δ 171.17, 145.47, 135.37, 133.98, 131.11, 130.06, 129.05, 124.82, 118.93, 118.25, 116.21, 83.33, 66.91, 61.85, 47.42, 41.54, 36.49, 29.76, 24.42, 17.62, 17.54 ppm; (ESI): *m*/*z* C₂₁H₂₆NO₃ [*M* + H] 340.28.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were found in difference-Fourier maps. Carbon-bound hydrogens were subsequently placed at idealized positions with constrained distances of 0.98 Å (*R*CH₃), 0.99 Å (R_2 CH₂), 1.00 Å (R_3 CH) and 0.95 Å (Csp^2 H). Nitrogen-bound hydrogens on the major disorder component were refined freely, while those on the minor component were heavily restrained. U_{iso} (H) values were set to either $1.2U_{eq}$ or $1.5U_{eq}$ (*R*CH₃) of the attached atom.

To ensure satisfactory refinement of disordered groups in the structure, a combination of constraints and restraints were employed. The constraints (*SHELXL* commands EXYZ and EADP) were used to fix parameters of superimposed or partially overlapping fragments. Restraints (*SHELXL* command SADI) were used to maintain the integrity of illdefined or disordered groups. Refinement progress was checked using *PLATON* (Spek, 2009) and by an *R*-tensor (Parkin, 2000).

The minor component of disorder of the amine was apparent in a difference map. Given the small occupancy factor (only about 10%), the geometry of the minor component is approximate, and its hydrogen atoms were included merely to achieve the correct atom count.

The conventionally calculated Flack parameter does not convincingly indicate the proper assignment of absolute configuration. An alternative formulation of the chirality parameter using Parsons quotients (Parsons *et al.*, 2013) [the so-called 'z' parameter = 0.07 (7)] as calculated by *PLATON* (Spek, 2009) is much more definitive.

Funding information

This work was supported by NIH/NCI grant CA158275. SP thanks the National Science Foundation (NSF) MRI program for grants CHE0319176 and CHE1625732.

References

- Castañeda-Acosta, J., Fischer, N. H. & Vargas, D. (1993). J. Nat. Prod. 56, 90–98.
- Bartsch, H.-H., Jarchow, O. & Schmalle, H. W. (1983). Z. Kristallogr. 162, 15–17.
- Bommagani, S., Penthala, N. R., Parkin, S. & Crooks, P. A. (2015). *Acta Cryst.* E**71**, 1536–1538.
- Bruker (2006). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- El Bouakher, A., Jismy, B., Allouchi, H., Duverger, E., Barkaoui, L., El Hakmaoui, A., Daniellou, R., Guillaumet, G. & Akssira, M. (2017). *Planta Med.* 83, 661–671.
- Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A. & Darwiche, N. (2010). *Drug Discovery Today*, **15**, 668–678.

research communications

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guzman, M. L., Rossi, R. M., Karnischky, L., Li, X., Peterson, D. R., Howard, D. S. & Jordan, C. T. (2005). *Blood*, **105**, 4163–4169.
- Han, C., Barrios, F. J., Riofski, M. V. & Colby, D. A. (2009). J. Org. Chem. 74, 7176–7179.
- Jamal, W., Bari, A., Mothana, R. A., Basudan, O., Mohammed, M. S. & Ng, S. W. (2014). Asian J. Chem. 26, 5183–5185.
- Kempema, A. M., Widen, J. C., Hexum, J. K., Andrews, T. E., Wang, D., Rathe, S. K., Meece, F. A., Noble, K. E., Sachs, Z., Largaespada, D. A. & Harki, D. A. (2015). *Bioorg. Med. Chem.* 23, 4737–4745.
- Knight, D. W. (1995). Nat. Prod. Rep. 12, 271-276.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Long, J., Ding, Y.-H., Wang, P.-P., Zhang, Q. & Chen, Y. (2013). J. Org. Chem. 78, 10512–10518.
- Mathema, V. B., Koh, Y. S., Thakuri, B. C. & Sillanpää, M. (2012). *Inflammation*, **35**, 560–565.
- Minnaard, A. J., Wijnberg, J. B. P. A. & de Groot, A. (1999). *Tetrahedron*, **55**, 2115–2146.

- Nasim, S. & Crooks, P. A. (2008). Bioorg. Med. Chem. Lett. 18, 3870– 3873.
- Parkin, S. (2000). Acta Cryst. A56, 157-162.
- Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/ programs/ciffix
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Penthala, N. R., Bommagani, S., Janganati, V., MacNicol, K. B., Cragle, C. E., Madadi, N. R., Hardy, L. L., MacNicol, A. M. & Crooks, P. A. (2014a). *Eur. J. Med. Chem.* 85, 517–525.
- Penthala, N. R., Bommagani, S., Janganati, V., Parkin, S. & Crooks, P. A. (2014b). Acta Cryst. E70, o1092–o1093.
- Penthala, N. R., Janganati, V., Parkin, S., Varughese, K. I. & Crooks, P. A. (2013). *Acta Cryst.* E69, 01709–01710.
- Quick, A. & Rogers, D. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 465– 469.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2018). E74, 1543-1546 [https://doi.org/10.1107/S2056989018013622]

Crystal structure of 13-(E)-(2-aminobenzylidene)parthenolide

Shobanbabu Bommagani, Narsihma R. Penthala, Sean Parkin and Peter A. Crooks

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELX* (Sheldrick, 2008) and *CIFFIX* (Parkin, 2013).

(1a*R*,4*E*,7a*S*,8*E*,10a*S*,10b*R*)-8-(2-Aminobenzylidene)-1a,5-dimethyl-2,3,6,7,7a,8,10a,10b-octahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-9(1a*H*)-one

Crystal data

 $C_{21}H_{25}NO_3$ $M_r = 339.42$ Monoclinic, $P2_1$ a = 11.6136 (3) Å b = 6.2403 (1) Å c = 12.6875 (3) Å $\beta = 104.385$ (1)° V = 890.67 (3) Å³ Z = 2

Data collection

Bruker X8 Proteum
diffractometer
Radiation source: fine-focus rotating anode
Detector resolution: 5.6 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.840, \ T_{\max} = 0.942$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.084$ S = 1.082592 reflections 238 parameters 2 restraints Primary atom site location: structure-invariant direct methods F(000) = 364 $D_x = 1.266 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 Å Cell parameters from 9958 reflections $\theta = 3.9-68.2^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 90 KBlock, colourless $0.16 \times 0.12 \times 0.08 \text{ mm}$

24004 measured reflections 2592 independent reflections 2559 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -13 \rightarrow 13$ $k = -6 \rightarrow 7$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 0.1894P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$

Absolute structure: Flack *x* determined using 811 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013), as calculated by PLATON (Spek, 2009). Absolute structure parameter: 0.07 (7)

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using *Platon* (Spek, 2009) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.15259 (14)	0.2877 (3)	-0.01598 (12)	0.0449 (5)	
O2	0.37973 (12)	0.4845 (3)	0.01116 (10)	0.0310 (3)	
O3	0.57392 (13)	0.4878 (3)	0.08619 (10)	0.0338 (3)	
C1	0.0887 (2)	0.3088 (4)	-0.34185 (17)	0.0352 (5)	
H1	0.1376	0.1884	-0.3456	0.042*	
C2	-0.0258 (2)	0.2614 (4)	-0.31056 (19)	0.0398 (6)	
H2A	-0.0672	0.1415	-0.3555	0.048*	
H2B	-0.0781	0.3887	-0.3256	0.048*	
C3	-0.0032 (2)	0.2016 (5)	-0.18904 (19)	0.0408 (6)	
H3A	-0.0797	0.1974	-0.1680	0.049*	
H3B	0.0331	0.0573	-0.1769	0.049*	
C4	0.07850 (19)	0.3630 (4)	-0.11934 (17)	0.0353 (5)	
C5	0.20641 (18)	0.3246 (4)	-0.10509 (17)	0.0328 (5)	
Н5	0.2251	0.1905	-0.1407	0.039*	
C6	0.29816 (17)	0.4982 (4)	-0.09641 (14)	0.0288 (4)	
H6	0.2587	0.6418	-0.1064	0.035*	
C7	0.37413 (16)	0.4677 (4)	-0.18048 (14)	0.0262 (4)	
H7	0.3626	0.3171	-0.2080	0.031*	
C8	0.34284 (18)	0.6194 (4)	-0.28030 (15)	0.0287 (5)	
H8A	0.3081	0.7530	-0.2596	0.034*	
H8B	0.4167	0.6578	-0.3014	0.034*	
C9	0.25450 (18)	0.5184 (4)	-0.37888 (14)	0.0314 (5)	
H9A	0.2521	0.6076	-0.4439	0.038*	
H9B	0.2840	0.3748	-0.3924	0.038*	
C10	0.12982 (17)	0.4963 (4)	-0.36473 (13)	0.0286 (4)	
C11	0.49909 (17)	0.4865 (4)	-0.11042 (13)	0.0255 (4)	
C12	0.49328 (19)	0.4875 (4)	0.00462 (15)	0.0280 (4)	
C13	0.60415 (17)	0.5038 (4)	-0.13427 (14)	0.0282 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13	0.6711	0.5207	-0.0742	0.034*	
C14	0.0631 (2)	0.7032 (4)	-0.37465 (19)	0.0395 (6)	
H14A	-0.0194	0.6752	-0.3727	0.059*	
H14B	0.0644	0.7725	-0.4436	0.059*	
H14C	0.1005	0.7976	-0.3141	0.059*	
C15	0.0281 (2)	0.5807 (5)	-0.1117 (2)	0.0436 (6)	
H15A	-0.0376	0.5705	-0.0762	0.065*	
H15B	-0.0013	0.6402	-0.1850	0.065*	
H15C	0.0901	0.6745	-0.0690	0.065*	
C16	0.62889 (16)	0.5001 (4)	-0.24275 (14)	0.0279 (4)	
C17	0.58739 (18)	0.3343 (4)	-0.31796 (15)	0.0301 (4)	0.901 (4)
N1	0.52374 (18)	0.1616 (4)	-0.29365 (15)	0.0308 (5)	0.901 (4)
H1N	0.524 (3)	0.047 (5)	-0.334 (2)	0.046*	0.901 (4)
H2N	0.530 (3)	0.136 (6)	-0.225 (2)	0.046*	0.901 (4)
C17′	0.58739 (18)	0.3343 (4)	-0.31796 (15)	0.0301 (4)	0.099 (4)
H17′	0.5450	0.2160	-0.2992	0.036*	0.099 (4)
C18	0.61026 (19)	0.3482 (5)	-0.42116 (16)	0.0349 (5)	
H18	0.5830	0.2377	-0.4728	0.042*	
C19	0.67180 (19)	0.5197 (5)	-0.44896 (16)	0.0382 (6)	
H19	0.6843	0.5279	-0.5201	0.046*	
C20	0.71561 (19)	0.6804 (4)	-0.37407 (18)	0.0372 (5)	
H20	0.7588	0.7973	-0.3932	0.045*	
C21	0.69556 (18)	0.6680 (4)	-0.27111 (17)	0.0315 (5)	0.901 (4)
H21	0.7275	0.7751	-0.2188	0.038*	0.901 (4)
C21′	0.69556 (18)	0.6680 (4)	-0.27111 (17)	0.0315 (5)	0.099 (4)
N1′	0.7329 (16)	0.843 (3)	-0.2219 (13)	0.0308 (5)	0.099 (4)
H1N'	0.7209	0.8389	-0.1538	0.046*	0.099 (4)
H2N'	0.8119	0.8571	-0.2175	0.046*	0.099 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0318 (8)	0.0637 (13)	0.0419 (8)	0.0018 (9)	0.0144 (6)	0.0236 (8)
O2	0.0381 (7)	0.0293 (8)	0.0295 (6)	0.0003 (8)	0.0160 (5)	0.0015 (7)
O3	0.0452 (8)	0.0288 (8)	0.0258 (6)	-0.0091 (8)	0.0060 (6)	-0.0006 (7)
C1	0.0382 (12)	0.0304 (13)	0.0368 (10)	0.0021 (11)	0.0093 (9)	-0.0045 (9)
C2	0.0356 (12)	0.0331 (14)	0.0491 (12)	-0.0049 (10)	0.0075 (9)	0.0010 (10)
C3	0.0324 (11)	0.0388 (15)	0.0542 (13)	0.0006 (11)	0.0162 (9)	0.0129 (11)
C4	0.0310 (11)	0.0456 (15)	0.0331 (10)	0.0096 (11)	0.0154 (8)	0.0133 (10)
C5	0.0325 (10)	0.0298 (12)	0.0401 (10)	0.0067 (10)	0.0166 (8)	0.0112 (10)
C6	0.0311 (10)	0.0266 (11)	0.0314 (9)	0.0056 (10)	0.0130 (7)	0.0072 (9)
C7	0.0269 (9)	0.0251 (11)	0.0279 (8)	0.0011 (9)	0.0096 (7)	0.0014 (8)
C8	0.0277 (10)	0.0315 (12)	0.0282 (9)	0.0012 (9)	0.0094 (7)	0.0052 (8)
C9	0.0381 (11)	0.0335 (13)	0.0246 (8)	0.0022 (10)	0.0114 (7)	-0.0011 (9)
C10	0.0314 (10)	0.0319 (12)	0.0205 (8)	0.0005 (11)	0.0029 (7)	-0.0023 (9)
C11	0.0320 (10)	0.0204 (10)	0.0251 (8)	0.0004 (9)	0.0090 (7)	-0.0003 (8)
C12	0.0389 (10)	0.0178 (10)	0.0287 (8)	-0.0027 (10)	0.0110 (7)	0.0005 (9)
C13	0.0277 (9)	0.0281 (11)	0.0276 (8)	0.0002 (10)	0.0048 (7)	-0.0002 (9)

supporting information

C14	0.0334 (11)	0.0383 (15)	0.0446 (12)	0.0063 (11)	0.0058 (9)	0.0133 (11)	
C15	0.0393 (12)	0.0528 (17)	0.0417 (12)	0.0142 (12)	0.0161 (9)	-0.0052 (11)	
C16	0.0221 (8)	0.0335 (12)	0.0285 (8)	0.0047 (10)	0.0071 (7)	0.0024 (9)	
C17	0.0266 (9)	0.0338 (12)	0.0314 (9)	0.0032 (10)	0.0103 (7)	-0.0003 (9)	
N1	0.0382 (11)	0.0292 (12)	0.0270 (9)	-0.0012 (9)	0.0122 (7)	-0.0032 (8)	
C17′	0.0266 (9)	0.0338 (12)	0.0314 (9)	0.0032 (10)	0.0103 (7)	-0.0003 (9)	
C18	0.0333 (10)	0.0435 (15)	0.0299 (9)	0.0041 (11)	0.0119 (8)	-0.0012 (10)	
C19	0.0331 (10)	0.0509 (17)	0.0332 (10)	0.0071 (11)	0.0134 (8)	0.0107 (11)	
C20	0.0274 (10)	0.0412 (15)	0.0456 (12)	0.0013 (11)	0.0140 (8)	0.0125 (11)	
C21	0.0225 (9)	0.0351 (13)	0.0371 (10)	0.0021 (9)	0.0075 (7)	0.0011 (9)	
C21′	0.0225 (9)	0.0351 (13)	0.0371 (10)	0.0021 (9)	0.0075 (7)	0.0011 (9)	
N1′	0.0382 (11)	0.0292 (12)	0.0270 (9)	-0.0012 (9)	0.0122 (7)	-0.0032 (8)	

Geometric parameters (Å, °)

1.440 (2)	С9—Н9В	0.9900
1.456 (2)	C10—C14	1.496 (3)
1.342 (3)	C11—C13	1.332 (3)
1.458 (2)	C11—C12	1.478 (2)
1.211 (3)	C13—C16	1.474 (2)
1.323 (4)	C13—H13	0.9500
1.508 (3)	C14—H14A	0.9800
0.9500	C14—H14B	0.9800
1.544 (3)	C14—H14C	0.9800
0.9900	C15—H15A	0.9800
0.9900	C15—H15B	0.9800
1.510 (4)	C15—H15C	0.9800
0.9900	C16—C21	1.402 (3)
0.9900	C16—C17	1.409 (3)
1.471 (3)	C17—N1	1.384 (3)
1.492 (4)	C17—C18	1.402 (3)
1.504 (3)	N1—H1N	0.88 (3)
1.0000	N1—H2N	0.87 (3)
1.556 (2)	C18—C19	1.381 (4)
1.0000	C18—H18	0.9500
1.506 (3)	C19—C20	1.388 (4)
1.550 (3)	C19—H19	0.9500
1.0000	C20—C21	1.385 (3)
1.541 (3)	C20—H20	0.9500
0.9900	C21—H21	0.9500
0.9900	N1′—H1N′	0.9100
1.509 (3)	N1′—H2N′	0.9100
0.9900		
61.05 (13)	С10—С9—Н9В	108.8
111.18 (13)	C8—C9—H9B	108.8
128.4 (2)	H9A—C9—H9B	107.7
115.8	C1-C10-C14	125.06 (19)
	$\begin{array}{c} 1.440 \ (2) \\ 1.456 \ (2) \\ 1.342 \ (3) \\ 1.458 \ (2) \\ 1.211 \ (3) \\ 1.323 \ (4) \\ 1.508 \ (3) \\ 0.9500 \\ 1.544 \ (3) \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 1.510 \ (4) \\ 0.9900 \\ 0.9900 \\ 1.471 \ (3) \\ 1.492 \ (4) \\ 1.504 \ (3) \\ 1.0000 \\ 1.556 \ (2) \\ 1.0000 \\ 1.556 \ (2) \\ 1.0000 \\ 1.556 \ (3) \\ 1.550 \ (3) \\ 1.550 \ (3) \\ 1.550 \ (3) \\ 1.550 \ (3) \\ 1.509 \ (3) \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 1.509 \ (3) \\ 0.9900 \\ 61.05 \ (13) \\ 111.18 \ (13) \\ 128.4 \ (2) \\ 115.8 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C2 C1 U1	115 0	C1 C10 C0	101 1 (0)
	115.8		121.1 (2)
C1 - C2 - C3	111.59 (19)	C14—C10—C9	113.8 (2)
C1—C2—H2A	109.3	C13—C11—C12	119.54 (17)
C3—C2—H2A	109.3	C13—C11—C7	132.42 (16)
C1—C2—H2B	109.3	C12—C11—C7	108.03 (16)
C3—C2—H2B	109.3	O3—C12—O2	120.69 (17)
H2A—C2—H2B	108.0	O3—C12—C11	128.95 (19)
C4-C3-C2	110 5 (2)	02-C12-C11	110 35 (16)
C4 - C3 - H3A	109.6	C_{11} $-C_{13}$ $-C_{16}$	127.78(17)
$C_2 C_3 H_{3A}$	109.6	$C_{11} C_{12} H_{13}$	116.1
$C_2 = C_2 = H_2 R$	109.0	$C_{11} = C_{12} = 1112$	116.1
$C_4 = C_3 = H_3 B$	109.0	С10—С13—Н13	110.1
C2—C3—H3B	109.6	C10—C14—H14A	109.5
НЗА—СЗ—НЗВ	108.1	C10—C14—H14B	109.5
O1—C4—C5	58.93 (13)	H14A—C14—H14B	109.5
O1—C4—C15	112.9 (2)	C10—C14—H14C	109.5
C5—C4—C15	122.7 (2)	H14A—C14—H14C	109.5
O1—C4—C3	117.2 (2)	H14B—C14—H14C	109.5
C5—C4—C3	115.6 (2)	C4—C15—H15A	109.5
C15—C4—C3	116.50 (19)	C4—C15—H15B	109.5
Q1—C5—C4	60.02 (12)	H15A—C15—H15B	109.5
01	119.7 (2)	C4—C15—H15C	109.5
C4-C5-C6	1246(2)	H_{15A} $-C_{15}$ $-H_{15C}$	109.5
01-05-45	114.0	H15B-C15-H15C	109.5
C_{4} C_{5} U_{5}	114.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 110.52(17)
С4—С5—Н5	114.0	$C_{21} = C_{10} = C_{17}$	119.33 (17)
С6—С5—Н5	114.0		118.4 (2)
02	108.06 (16)	C17 - C16 - C13	122.1 (2)
O2—C6—C7	106.71 (15)	N1—C17—C18	119.5 (2)
C5—C6—C7	111.96 (18)	N1—C17—C16	122.18 (18)
O2—C6—H6	110.0	C18—C17—C16	118.4 (2)
С5—С6—Н6	110.0	C17—N1—H1N	115 (2)
С7—С6—Н6	110.0	C17—N1—H2N	117 (2)
C11—C7—C8	115.51 (17)	H1N—N1—H2N	115 (3)
С11—С7—С6	102.31 (14)	C19—C18—C17	121.1 (2)
C8—C7—C6	115.32 (17)	C19—C18—H18	119.4
C11—C7—H7	107.7	C17 - C18 - H18	119.4
C8_C7_H7	107.7	C18 - C19 - C20	120.67 (19)
C6 C7 H7	107.7	$C_{18} = C_{19} = C_{20}$	110.7
$C_0 = C_1 = C_1$	107.7 112.77(19)	$C_{10} = C_{10} = H_{10}$	119.7
C_{2}	112.77 (18)	C_{20} C_{19} C_{19} C_{10} C	119.7
C9—C8—H8A	109.0	$C_{21} = C_{20} = C_{19}$	119.1 (2)
C/C8H8A	109.0	C21—C20—H20	120.4
С9—С8—Н8В	109.0	C19—C20—H20	120.4
C7—C8—H8B	109.0	C20—C21—C16	121.1 (2)
H8A—C8—H8B	107.8	C20—C21—H21	119.4
C10—C9—C8	113.94 (16)	C16—C21—H21	119.4
С10—С9—Н9А	108.8	H1N'—N1'—H2N'	109.5
С8—С9—Н9А	108.8		
C10—C1—C2—C3	-107.8 (3)	C8—C9—C10—C1	-103.1 (2)

C1—C2—C3—C4	49.0 (3)	C8—C9—C10—C14	74.6 (2)
C5-01-C4-C15	-115.5 (2)	C8—C7—C11—C13	-43.4 (4)
C5—O1—C4—C3	104.9 (2)	C6—C7—C11—C13	-169.5 (3)
C2-C3-C4-O1	-151.63 (19)	C8—C7—C11—C12	135.47 (19)
C2—C3—C4—C5	-85.0 (2)	C6—C7—C11—C12	9.4 (2)
C2—C3—C4—C15	70.2 (2)	C6—O2—C12—O3	176.5 (2)
C4—O1—C5—C6	115.1 (3)	C6-02-C12-C11	-4.5 (3)
C15—C4—C5—O1	98.8 (2)	C13—C11—C12—O3	-5.6 (4)
C3—C4—C5—O1	-107.7 (2)	C7—C11—C12—O3	175.3 (2)
O1—C4—C5—C6	-107.3 (2)	C13—C11—C12—O2	175.4 (2)
C15—C4—C5—C6	-8.5 (3)	C7—C11—C12—O2	-3.6 (3)
C3—C4—C5—C6	145.1 (2)	C12-C11-C13-C16	178.2 (2)
C12—O2—C6—C5	131.12 (19)	C7—C11—C13—C16	-3.0 (4)
C12—O2—C6—C7	10.6 (3)	C11-C13-C16-C21	127.5 (3)
O1—C5—C6—O2	44.4 (3)	C11-C13-C16-C17	-52.3 (3)
C4—C5—C6—O2	116.6 (2)	C21-C16-C17-N1	178.3 (2)
O1—C5—C6—C7	161.60 (18)	C13—C16—C17—N1	-1.9 (3)
C4—C5—C6—C7	-126.2 (2)	C21-C16-C17-C18	-2.7 (3)
O2—C6—C7—C11	-11.8 (2)	C13—C16—C17—C18	177.11 (19)
C5-C6-C7-C11	-129.85 (19)	N1-C17-C18-C19	179.0 (2)
O2—C6—C7—C8	-138.03 (19)	C16-C17-C18-C19	-0.1 (3)
C5—C6—C7—C8	103.9 (2)	C17—C18—C19—C20	1.8 (3)
C11—C7—C8—C9	146.42 (18)	C18—C19—C20—C21	-0.8 (3)
C6—C7—C8—C9	-94.4 (2)	C19—C20—C21—C16	-2.0 (3)
C7—C8—C9—C10	71.1 (2)	C17—C16—C21—C20	3.8 (3)
C2-C1-C10-C14	-6.3 (4)	C13—C16—C21—C20	-176.0 (2)
C2-C1-C10-C9	171.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
C5—H5…O3 ⁱ	1.00	2.59	3.268 (3)	125	
C7—H7···O3 ⁱ	1.00	2.57	3.226 (3)	123	
C15—H15A…O1 ⁱⁱ	0.98	2.40	3.223 (3)	141	

Symmetry codes: (i) -x+1, y-1/2, -z; (ii) -x, y+1/2, -z.