

Received 20 August 2018 Accepted 26 September 2018

Edited by S. V. Lindeman, Marquette University, USA

**Keywords:** crystal structure; syringaldehyde; 4methoxyaniline; 4-hydroxy-3,5-dimethoxybenzaldehyde.

CCDC reference: 1843910

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Crystal structure of (*E*)-2,6-dimethoxy-4-{[(4-meth-oxyphenyl)imino]methyl}phenol

# Md. Serajul Haque Faizi,<sup>a</sup> Mohamad Nadeem Lone,<sup>b</sup> Necmi Dege,<sup>c</sup> Sergey Malinkin<sup>d</sup>\* and Tatiana Yu. Sliva<sup>d</sup>

<sup>a</sup>Department of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India, <sup>b</sup>Department of Chemistry, Govt. College For Women, Udhampur, Jammu and Kashmir 182 101, India, <sup>c</sup>Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Atakum 55139 Samsun, Turkey, and <sup>d</sup>Department of Chemistry, National Taras Shevchenko University of Kiev, 64/13, Volodymyrska Street, City of Kyiv, 01601, Ukraine. \*Correspondence e-mail: malinachem88@gmail.com

In the title compound,  $C_{16}H_{17}NO_4$ , the dihedral angle between benzene rings is 72.7 (2)°. The methoxy groups are rotated by 2.4 (2) and -4.9 (2) (benzilidene moiety) and by 5.6 (3)° (aniline moiety) relative to the adjacent benzene ring. In the crystal, the molecules are linked into chains along [101] through  $C-H\cdots O$  and  $O-H\cdots N$  hydrogen bonds.

### 1. Chemical context

Syringaldehyde is a product of the catalytic decomposition of lignin (Crestini *et al.*, 2010). Syringaldehyde is widely used as a molecular marker to monitor pollution sources and detect the extent of combustion (Robinson *et al.*, 2006). It is also known to be an antioxidant (Ibrahim *et al.*, 2012), anticancer, anti-inflammatory (Duke, 2003) and antifungal agent (Gurpilhares *et al.*, 2006). In addition, its Schiff bases are known to exhibit a wide range of biological activities (Shi & Zhou, 2011; da Silva *et al.*, 2011).



### 2. Structural commentary

The molecular structure of the title molecule is shown on Fig. 1. The compound has a *trans*-configuration of the C9—N1 double bond. The molecule has a non-planar conformation with the two benzene rings forming a dihedral angle of 72.7 (2)°. The methoxy groups are almost co-planar with the planes of the adjacent aromatic rings [the C1–O1–C4–C3, C2–O3–C6–C7 and C16–O4–C13–C12 torsion angles are -4.9 (2), 2.4 (2) and 5.6 (3)°, respectively].

### 3. Supramolecular features

In the crystal, the molecules are connected *via*  $C7-H7\cdots O2^{ii}$  and  $O2-H2\cdots N1^{i}$  hydrogen bonding (Table 1), forming chains along the [101] direction (Fig. 2).



OPEN  $\widehat{\odot}$  ACCESS



Figure 1

A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

### 4. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom *et al.*, 2016) revealed the structures of five similar Schiff bases based on *p*-methoxy-aniline and *p*-hydroxybenzaldehyde: 4-[(4-methoxyphenylimino)methyl]phenol, (I) (VUKDEK; Yeap *et al.*, 1992), (*E*)-5-methoxy-2-[(4-methoxyphenylimino)methyl]phenol, (II) (NURNAQ; Sahin *et al.*, 2010), 2-methoxy-4-{[(4-methoxyphenyl)imino]methyl}phenol, (III) (MOTLIR; Singh *et al.*, 2008), 2,6-di-*tert*-butyl-4-[(4-methoxyphenylimino)methyl]-phenol, (IV) (WEFTEH; Xin *et al.*, 2006) and 5-bromo-2-methoxy-4-{[(4-methoxyphenyl)imino]methyl}phenol mono-hydrate, (V) (GAPFEK; Mao *et al.*, 2012). The dihedral angle between the benzene rings in the title compound [72.7 (2)°] is larger than those in compounds (I), (III) and (IV) (49.75–



Figure 2

A view along the a axis of the crystal packing. Dashed lines indicate hydrogen bonds (see Table 1).

| Table 1                                  |  |
|------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ). |  |

| $D - H \cdots A$      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------|------|-------------------------|--------------|------------------|
| $O2-H2\cdots N1^{i}$  | 0.82 | 2.21                    | 2.9415 (18)  | 149              |
| $C7-H7\cdots O2^{ii}$ | 0.93 | 2.29                    | 3.2043 (18)  | 167              |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ .

53.63°). Compounds (II) and (V) are almost planar. In all of the compounds, the methoxy groups deviate from the plane of aromatic system. There are no  $C-H\cdots\pi$  or  $\pi-\pi$  interactions in the crystal structure of the title compound, in contrast to what is observed for compounds (I), (IV) and (V).

#### 5. Synthesis

4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) (0.05 mol) was added to a mixture of 50 ml of methanol and *p*-methoxyaniline (PMA) (5 ml, 0.05 mol) and 50 ml of distilled water. The reaction mixture was taken in a clean 250 ml round-bottom flask and stirred well with a magnetic stirrer. It was then refluxed for 7 h. The dark-yellow product that formed was separated by filtration, dried under vacuum and recrystallized from methanol solution upon slow evaporation for two days (yield 65%, m.p. 353–357 K).

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geom-

| Table  | 2      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                               |                                             |
|----------------------------------------------------------------------------|---------------------------------------------|
| Chemical formula                                                           | $C_{16}H_{17}NO_4$                          |
| M <sub>r</sub>                                                             | 287.30                                      |
| Crystal system, space group                                                | Monoclinic, $P2_1/n$                        |
| Temperature (K)                                                            | 296                                         |
| <i>a, b, c</i> (Å)                                                         | 10.4996 (15), 12.4896 (18),<br>11.8128 (17) |
| 3 (°)                                                                      | 107.936 (5)                                 |
| V (Å <sup>3</sup> )                                                        | 1473.8 (4)                                  |
| Z                                                                          | 4                                           |
| Radiation type                                                             | Μο Κα                                       |
| $\mu (\text{mm}^{-1})$                                                     | 0.09                                        |
| Crystal size (mm)                                                          | $0.45 \times 0.33 \times 0.21$              |
| Data collection                                                            |                                             |
| Diffractometer                                                             | Bruker APEXII CCD                           |
| No. of measured, independent and                                           | 19289, 2887, 2306                           |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                             |
| R <sub>int</sub>                                                           | 0.035                                       |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.617                                       |
| Refinement                                                                 |                                             |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.044, 0.116, 1.05                          |
| No. of reflections                                                         | 2887                                        |
| No. of parameters                                                          | 194                                         |
| H-atom treatment                                                           | H-atom parameters constrained               |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.17, -0.21                                 |
|                                                                            |                                             |

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS97* (Sheldrick 2008), *SHELXL2017* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009).

etrically and refined using a riding model: O-H = 0.82-0.96 Å and C-H = 0.93-0.96 Å with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(O, Cmethyl)$ .

### Acknowledgements

The authors are grateful to the Department of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India for the research lab and National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.

### References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crestini, C., Crucianelli, M., Orlandi, M. & Saladino, R. (2010). Catal. Today, 156, 8–22.
- Duke, J. A. (2003). CRC book of medicinal spices. Boca Raton, Florida: CRC Press LLC.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Gurpilhares, D. B., Pessoa, A. Jr & Roberto, I. C. (2006). Process Biochem. 41, 631–637.
- Ibrahim, M. N., Sriprasanthi, R. B., Shamsudeen, S., Adam, F. & Bhawani, S. A. (2012). *BioResources J.* 7, 4377–4399.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mao, C.-G., Wang, S.-S., Su, D.-C. & Qian, S.-S. (2012). Acta Cryst. E68, 0249.
- Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A. & Rogge, W. F. (2006). *Environ. Sci. Technol.* 40, 7811– 7819.
- Sahin, O., Buyukgungor, O., Albayrak, C. & Odabasoglu, M. (2010). Chin. J. Struct. Chem. (Jiegou Huaxue), 29, 359–361.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Shi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956-960.
- Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). *J. Adv. Res.* 2, 1–8.
- Singh, N. B., Das, S. S., Gupta, P., Gupta, A. & Fröhlich, R. (2008). Mol. Cryst. Lig. Cryst. 490, 106–123.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xin, C.-W., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, 01560-01561.
- Yeap, G.-Y., Fun, H.-K., Teoh, S.-G., Teo, S.-B., Chinnakali, K. & Yip, B.-C. (1992). Acta Cryst. C48, 2257–2258.

# supporting information

Acta Cryst. (2018). E74, 1540-1542 [https://doi.org/10.1107/S2056989018013713]

Crystal structure of (*E*)-2,6-dimethoxy-4-{[(4-methoxyphenyl)imino]methyl}-phenol

### Md. Serajul Haque Faizi, Mohamad Nadeem Lone, Necmi Dege, Sergey Malinkin and Tatiana Yu. Sliva

### **Computing details**

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2017* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

(E)-2,6-Dimethoxy-4-{[(4-methoxyphenyl)imino]methyl}phenol

| Crystal | data |
|---------|------|
|---------|------|

| C <sub>16</sub> H <sub>17</sub> NO <sub>4</sub> |
|-------------------------------------------------|
| $M_r = 287.30$                                  |
| Monoclinic, $P2_1/n$                            |
| <i>a</i> = 10.4996 (15) Å                       |
| <i>b</i> = 12.4896 (18) Å                       |
| c = 11.8128 (17) Å                              |
| $\beta = 107.936 \ (5)^{\circ}$                 |
| $V = 1473.8 (4) \text{ Å}^3$                    |
| Z = 4                                           |
|                                                 |

### Data collection

Bruker APEXII CCD diffractometer  $\varphi$  and  $\omega$  scans 19289 measured reflections 2887 independent reflections 2306 reflections with  $I > 2\sigma(I)$ 

### Refinement

Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.044$ H-atom parameters constrained  $wR(F^2) = 0.116$  $w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.4295P]$ *S* = 1.05 where  $P = (F_0^2 + 2F_c^2)/3$ 2887 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ 194 parameters 0 restraints  $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 

F(000) = 608  $D_x = 1.295 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6353 reflections  $\theta = 2.3-28.3^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 296 KPrism, colorless  $0.45 \times 0.33 \times 0.21 \text{ mm}$ 

 $R_{int} = 0.035$   $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$   $h = -12 \rightarrow 12$   $k = -15 \rightarrow 15$  $l = -14 \rightarrow 14$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|--------------|-----------------------------|
| O2   | 0.34000 (12) | 0.73324 (9)  | 0.04196 (10) | 0.0465 (3)                  |
| H2   | 0.347012     | 0.797633     | 0.056037     | 0.070*                      |
| O3   | 0.52685 (12) | 0.84064 (9)  | 0.20703 (10) | 0.0473 (3)                  |
| 01   | 0.32775 (12) | 0.52385 (9)  | 0.03728 (11) | 0.0530 (4)                  |
| O4   | 1.04377 (13) | 0.24711 (10) | 0.85736 (10) | 0.0524 (3)                  |
| N1   | 0.76944 (13) | 0.53851 (10) | 0.50837 (11) | 0.0388 (3)                  |
| C10  | 0.83876 (15) | 0.46251 (12) | 0.59633 (13) | 0.0350 (4)                  |
| C15  | 0.93325 (16) | 0.39274 (12) | 0.57930 (14) | 0.0369 (4)                  |
| H15  | 0.951974     | 0.392859     | 0.507304     | 0.044*                      |
| C8   | 0.61237 (15) | 0.56465 (13) | 0.31098 (13) | 0.0355 (4)                  |
| C4   | 0.42672 (15) | 0.56804 (13) | 0.12973 (13) | 0.0371 (4)                  |
| C6   | 0.53028 (15) | 0.73189 (12) | 0.21930 (13) | 0.0344 (4)                  |
| C14  | 1.00014 (16) | 0.32282 (12) | 0.66827 (14) | 0.0384 (4)                  |
| H14  | 1.064957     | 0.277361     | 0.656291     | 0.046*                      |
| C7   | 0.61974 (15) | 0.67549 (13) | 0.30970 (13) | 0.0361 (4)                  |
| H7   | 0.684472     | 0.711472     | 0.369303     | 0.043*                      |
| C9   | 0.69704 (15) | 0.50052 (13) | 0.40957 (14) | 0.0377 (4)                  |
| H9   | 0.697878     | 0.426753     | 0.399120     | 0.045*                      |
| C5   | 0.43155 (15) | 0.67913 (13) | 0.13033 (13) | 0.0345 (4)                  |
| C3   | 0.51728 (16) | 0.51059 (13) | 0.21959 (14) | 0.0386 (4)                  |
| H3   | 0.514739     | 0.436151     | 0.219040     | 0.046*                      |
| C13  | 0.97179 (16) | 0.31969 (13) | 0.77481 (14) | 0.0380 (4)                  |
| C11  | 0.81296 (18) | 0.46051 (15) | 0.70406 (15) | 0.0486 (5)                  |
| H11  | 0.751385     | 0.508458     | 0.717490     | 0.058*                      |
| C12  | 0.87678 (18) | 0.38867 (16) | 0.79243 (16) | 0.0505 (5)                  |
| H12  | 0.855831     | 0.386815     | 0.863378     | 0.061*                      |
| C2   | 0.6266 (2)   | 0.90036 (14) | 0.29204 (16) | 0.0546 (5)                  |
| H2B  | 0.615906     | 0.975079     | 0.272312     | 0.082*                      |
| H2C  | 0.713615     | 0.877111     | 0.291596     | 0.082*                      |
| H2D  | 0.617836     | 0.889302     | 0.369713     | 0.082*                      |
| C1   | 0.3232 (2)   | 0.41090 (15) | 0.02729 (18) | 0.0603 (5)                  |
| H1A  | 0.255752     | 0.390654     | -0.044946    | 0.090*                      |
| H1B  | 0.302110     | 0.380713     | 0.094094     | 0.090*                      |
| H1C  | 0.408703     | 0.384713     | 0.025963     | 0.090*                      |
| C16  | 1.0104 (2)   | 0.2356 (2)   | 0.96441 (19) | 0.0743 (7)                  |
| H16A | 0.918409     | 0.214220     | 0.945995     | 0.111*                      |
| H16B | 1.023357     | 0.302705     | 1.006081     | 0.111*                      |
| H16C | 1.066751     | 0.182152     | 1.013549     | 0.111*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supporting information

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| O2  | 0.0477 (7)  | 0.0351 (6)  | 0.0389 (6)  | 0.0019 (5)  | -0.0128 (5)  | 0.0021 (5)  |
| O3  | 0.0525 (7)  | 0.0317 (6)  | 0.0402 (6)  | -0.0019 (5) | -0.0114 (5)  | 0.0026 (5)  |
| 01  | 0.0521 (7)  | 0.0372 (7)  | 0.0488 (7)  | -0.0005(5)  | -0.0152 (6)  | -0.0056 (5) |
| 04  | 0.0602 (8)  | 0.0525 (8)  | 0.0453 (7)  | 0.0195 (6)  | 0.0174 (6)   | 0.0221 (6)  |
| N1  | 0.0403 (7)  | 0.0353 (7)  | 0.0342 (7)  | 0.0050 (6)  | 0.0017 (6)   | 0.0049 (6)  |
| C10 | 0.0353 (8)  | 0.0315 (8)  | 0.0324 (8)  | -0.0008 (6) | 0.0019 (6)   | 0.0039 (6)  |
| C15 | 0.0442 (9)  | 0.0333 (8)  | 0.0314 (8)  | 0.0013 (7)  | 0.0091 (7)   | 0.0009 (6)  |
| C8  | 0.0328 (8)  | 0.0371 (8)  | 0.0322 (8)  | 0.0034 (6)  | 0.0036 (6)   | 0.0025 (6)  |
| C4  | 0.0341 (8)  | 0.0375 (9)  | 0.0337 (8)  | -0.0001 (7) | 0.0016 (6)   | -0.0034 (6) |
| C6  | 0.0354 (8)  | 0.0323 (8)  | 0.0308 (8)  | -0.0002 (6) | 0.0034 (6)   | 0.0008 (6)  |
| C14 | 0.0418 (9)  | 0.0317 (8)  | 0.0413 (9)  | 0.0055 (7)  | 0.0121 (7)   | 0.0022 (7)  |
| C7  | 0.0339 (8)  | 0.0380 (9)  | 0.0291 (8)  | -0.0018 (7) | -0.0011 (6)  | -0.0006 (6) |
| C9  | 0.0368 (8)  | 0.0333 (8)  | 0.0389 (9)  | 0.0028 (7)  | 0.0056 (7)   | 0.0049 (7)  |
| C5  | 0.0319 (8)  | 0.0373 (9)  | 0.0285 (8)  | 0.0033 (6)  | 0.0007 (6)   | 0.0030 (6)  |
| C3  | 0.0402 (9)  | 0.0314 (8)  | 0.0394 (9)  | 0.0030 (7)  | 0.0052 (7)   | 0.0017 (7)  |
| C13 | 0.0378 (9)  | 0.0348 (9)  | 0.0380 (9)  | 0.0031 (7)  | 0.0066 (7)   | 0.0080(7)   |
| C11 | 0.0460 (10) | 0.0548 (11) | 0.0458 (10) | 0.0201 (8)  | 0.0156 (8)   | 0.0111 (8)  |
| C12 | 0.0529 (11) | 0.0624 (12) | 0.0400 (9)  | 0.0154 (9)  | 0.0198 (8)   | 0.0145 (8)  |
| C2  | 0.0591 (12) | 0.0363 (10) | 0.0509 (11) | -0.0115 (8) | -0.0089 (9)  | 0.0027 (8)  |
| C1  | 0.0658 (13) | 0.0427 (11) | 0.0568 (11) | -0.0089 (9) | -0.0042 (10) | -0.0113 (9) |
| C16 | 0.0816 (16) | 0.0896 (17) | 0.0569 (13) | 0.0299 (13) | 0.0291 (11)  | 0.0395 (12) |
|     |             |             |             |             |              |             |

Atomic displacement parameters  $(Å^2)$ 

### Geometric parameters (Å, °)

| 01-C2 <sup>i</sup> | 3.159 (2)   | C6—C7    | 1.379 (2) |
|--------------------|-------------|----------|-----------|
| O2—C5              | 1.3610 (17) | C6—C5    | 1.394 (2) |
| O2—H2              | 0.8200      | C14—C13  | 1.380 (2) |
| O3—C6              | 1.3652 (19) | C14—H14  | 0.9300    |
| O3—C2              | 1.4193 (19) | С7—Н7    | 0.9300    |
| O1—C4              | 1.3704 (18) | С9—Н9    | 0.9300    |
| O1—C1              | 1.415 (2)   | С3—Н3    | 0.9300    |
| O4—C13             | 1.3748 (18) | C13—C12  | 1.382 (2) |
| O4—C16             | 1.420 (2)   | C11—C12  | 1.383 (2) |
| N1—C9              | 1.2722 (19) | C11—H11  | 0.9300    |
| N1—C10             | 1.4299 (19) | C12—H12  | 0.9300    |
| C10—C11            | 1.380 (2)   | C2—H2B   | 0.9600    |
| C10—C15            | 1.381 (2)   | C2—H2C   | 0.9600    |
| C15—C14            | 1.381 (2)   | C2—H2D   | 0.9600    |
| С15—Н15            | 0.9300      | C1—H1A   | 0.9600    |
| C8—C7              | 1.387 (2)   | C1—H1B   | 0.9600    |
| C8—C3              | 1.398 (2)   | C1—H1C   | 0.9600    |
| C8—C9              | 1.466 (2)   | C16—H16A | 0.9600    |
| C4—C3              | 1.387 (2)   | C16—H16B | 0.9600    |
| C4—C5              | 1.388 (2)   | C16—H16C | 0.9600    |
|                    |             |          |           |

| С5—О2—Н2                        | 109.5                    | C4—C5—C6                                            | 119.60 (13) |
|---------------------------------|--------------------------|-----------------------------------------------------|-------------|
| C6—O3—C2                        | 117.27 (12)              | C4—C3—C8                                            | 119.96 (15) |
| C4—O1—C1                        | 117.75 (13)              | С4—С3—Н3                                            | 120.0       |
| C13—O4—C16                      | 117.76 (14)              | С8—С3—Н3                                            | 120.0       |
| C9—N1—C10                       | 116.47 (13)              | O4—C13—C14                                          | 116.08 (14) |
| C11—C10—C15                     | 118.47 (14)              | O4—C13—C12                                          | 124.69 (15) |
| C11—C10—N1                      | 118.78 (14)              | C14—C13—C12                                         | 119.22 (14) |
| C15—C10—N1                      | 122.73 (14)              | C10—C11—C12                                         | 121.36 (16) |
| C14—C15—C10                     | 120.54 (15)              | C10—C11—H11                                         | 119.3       |
| C14—C15—H15                     | 119.7                    | C12—C11—H11                                         | 119.3       |
| C10—C15—H15                     | 119.7                    | C13—C12—C11                                         | 119.69 (16) |
| C7—C8—C3                        | 120.18 (14)              | C13—C12—H12                                         | 120.2       |
| C7—C8—C9                        | 122.12 (14)              | C11—C12—H12                                         | 120.2       |
| C3—C8—C9                        | 117.62 (14)              | 03—C2—H2B                                           | 109.5       |
| 01-C4-C3                        | 125.06 (15)              | 03—C2—H2C                                           | 109.5       |
| 01                              | 115.09 (13)              | H2B-C2-H2C                                          | 109.5       |
| $C_{3}-C_{4}-C_{5}$             | 119.85 (14)              | O3-C2-H2D                                           | 109.5       |
| 03 - C6 - C7                    | 125 44 (13)              | $H^2B - C^2 - H^2D$                                 | 109.5       |
| 03 - C6 - C5                    | 113 65 (13)              | $H_{2}C_{2}$ $H_{2}D$                               | 109.5       |
| $C_{7}$ $C_{6}$ $C_{5}$         | 120.91 (14)              | $\Omega_1 - C_1 - H_1 A$                            | 109.5       |
| $C_{13}$ $C_{14}$ $C_{15}$      | 120.91(14)<br>120.67(15) | 01-C1-H1B                                           | 109.5       |
| C13 - C14 - H14                 | 110.7                    | $H_1 A - C_1 - H_1 B$                               | 109.5       |
| C15 - C14 - H14                 | 119.7                    | $\Omega_1 - \Omega_1 - H_1C$                        | 109.5       |
|                                 | 119.7<br>110.44(14)      |                                                     | 109.5       |
| C6 C7 H7                        | 120.3                    | HIR CI HIC                                          | 109.5       |
| $C_{0}$ $C_{7}$ $H_{7}$         | 120.3                    | $\Omega_{4}$ $C_{16}$ $H_{16A}$                     | 109.5       |
| $C_{0} = C_{1} = H_{1}$         | 120.3<br>124.73(15)      | $O_4 = C_{10} = H_{10} A$                           | 109.5       |
| N1 = C0 = H0                    | 124.75 (15)              |                                                     | 109.5       |
| $N_1 = C_2 = H_2$               | 117.0                    | $\Omega_{A} = \Omega_{A} = \Omega_{A} = \Omega_{A}$ | 109.5       |
| $C_{0}$                         | 11/.0                    |                                                     | 109.5       |
| 02 - C3 - C4                    | 110.44(15)               | H10A - C10 - H10C                                   | 109.5       |
| 02-03-08                        | 121.90 (14)              | H10B-C10-H10C                                       | 109.5       |
| C9—N1—C10—C11                   | -120.05 (18)             | C3—C4—C5—C6                                         | 2.1 (2)     |
| C9—N1—C10—C15                   | 61.7 (2)                 | O3—C6—C5—O2                                         | -1.2(2)     |
| C11—C10—C15—C14                 | 0.0 (2)                  | C7—C6—C5—O2                                         | 178.26 (15) |
| N1-C10-C15-C14                  | 178.20 (15)              | O3—C6—C5—C4                                         | 177.70 (14) |
| C1C4C3                          | -4.9 (3)                 | C7—C6—C5—C4                                         | -2.8(2)     |
| C1-O1-C4-C5                     | 175.89 (16)              | 01-C4-C3-C8                                         | -178.61(15) |
| C2-O3-C6-C7                     | 2.4 (2)                  | C5-C4-C3-C8                                         | 0.5 (2)     |
| $C_{2} = 0_{3} = C_{6} = C_{5}$ | -178.17(15)              | C7—C8—C3—C4                                         | -2.4(2)     |
| C10-C15-C14-C13                 | 1.4 (2)                  | C9—C8—C3—C4                                         | 174.26 (15) |
| 03-C6-C7-C8                     | -179.66(15)              | C16 - O4 - C13 - C14                                | -175.25(18) |
| $C_{5}-C_{6}-C_{7}-C_{8}$       | 09(2)                    | C16 - O4 - C13 - C12                                | 56(3)       |
| $C_3 - C_8 - C_7 - C_6$         | 1.7(2)                   | $C_{15}$ $C_{14}$ $C_{13}$ $C_{12}$                 | 179.86 (15) |
| C9 - C8 - C7 - C6               | -174.84 (15)             | $C_{15}$ $C_{14}$ $C_{13}$ $C_{12}$                 | -1.0(3)     |
| C10-N1-C9-C8                    | 176.30 (14)              | $C_{15}$ $C_{10}$ $C_{11}$ $C_{12}$                 | -1.8(3)     |
| C7 - C8 - C9 - N1               | 10.4 (3)                 | N1-C10-C11-C12                                      | 179.89 (16) |
| $C_{3}$ $C_{8}$ $C_{9}$ $N_{1}$ | -166 23 (16)             | 04-C13-C12-C11                                      | 178 25 (17) |
|                                 | 100.25 (10)              |                                                     | 1,0.20 (17) |

## supporting information

| O1—C4—C5—O2 | 0.2 (2)      | C14—C13—C12—C11 | -0.8 (3) |
|-------------|--------------|-----------------|----------|
| C3—C4—C5—O2 | -178.98 (14) | C10-C11-C12-C13 | 2.2 (3)  |
| O1—C4—C5—C6 | -178.72 (14) |                 |          |

Symmetry code: (i) x-1/2, -y+3/2, z-1/2.

### Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|-------|-------------|-------------------------|
| O2—H2···N1 <sup>i</sup>   | 0.82        | 2.21  | 2.9415 (18) | 149                     |
| C7—H7····O2 <sup>ii</sup> | 0.93        | 2.29  | 3.2043 (18) | 167                     |

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) x+1/2, -y+3/2, z+1/2.