

Received 14 August 2018 Accepted 20 August 2018

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; indan-1,3-dione; cyclization; condensation; eight-membered ring.

CCDC reference: 1858143

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure determination of *rac*-11'-(1-acetyl-1*H*-indazol-3-yl)-11',11*a*'-dihydro-10'*H*,17'*H*spiro[indene-2,18'-[5a,16b]methanotriindeno-[1,2-b:1',2'-d:2'',1''-g]oxocine]-1,3,10',12',-17'(10*a*'*H*)-pentaone acetonitrile 1.5-solvate

Mark Baranov,* Radion Vainer and Mark V. Sigalov

Department of Chemistry, Ben Gurion University of the Negev, POB 653, 8410501, Beer Sheva, Israel. *Correspondence e-mail: markbara@post.bgu.ac.il

The title compound, $C_{46}H_{26}N_2O_7$ ·1.5CH₃CN, is the aldol condensation product of bindone with indazole-3-carbaldehyde followed by double intermolecular cyclization. The asymmetric unit, which has monoclinic $P2_1/c$ symmetry, contains two independent molecules of the title compound and three acetonitrile molecules. The title molecule comprises a central eight-membered ring, which contains an enol–ester, from which five arms extend. The arms exhibit intermolecular interactions within the crystal lattice between molecules of the title compound and with co-crystallized solvent molecules (acetonitrile).

1. Chemical context

1.3-Indandione derivatives have been known for more than a century and have found numerous applications as drugs (anticoagulants, analgesics, anti-inflammatory medicines; Eriks et al., 1979), reagents in analytical and forensic chemistry (ninhydrins; Hansen & Joullié, 2005), dves and pigments (Manukian & Mangini, 1970; Schelz, 1975; Bello et al., 1987), semiconductors and photo semiconductors (Silinsh & Taure, 1969), and components of advanced materials (Gvishi et al., 2003; Acharya et al., 2005; Lokshin et al., 2017). One of the important features of 1,3-indandione as well as its dimer bindone [2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene)-1Hindene-1, 3(2H)-dione] is the ease of their self-condensation, often with the formation of complex cyclic structures (Jacob et al., 2000). For over a century, cyclic 1,3-diketones have been known to form condensation products, including selfcondensation (Wislicenus, 1887). As a result of this property, they have found use as intermediates for condensed cyclization products (Sekhar, 2004; Kozlov & Gusak, 2006) that have themselves found use as antiemetic (Kuang et al., 1994) and anticancer (Heidelberger & Ansfield, 1963) drugs.

Figure 1

ORTEP representation of the asymmetric unit of the crystal, containing two compound molecules and three co-crystallized acetonitrile molecules. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The asymmetric unit of the title compound, shown in Fig. 1, contains two independent molecules and three co-crystallized acetonitrile molecules (Z = 8, Z' = 4). The title compound is shown in Fig. 2.

Figure 2

View of one of the independent molecules in the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Bond lengths (Å) in the central eight-membered ring of the molecule.

Atom pair	Bond length	Atom pair	Bond length
C1-C2	1.547 (3)	C5-C6	1.554 (3)
C1-C6	1.576 (3)	C6-C7	1.494 (3)
C2-C3	1.552 (3)	C7=C8	1.357 (3)
C3-C4	1.546 (3)	O1-C8	1.332 (3)
C4-C5	1.544 (3)	O1-C2	1.462 (2)

Table 2

The various arms extending from the central ring.

Arm designation	Carbon atoms shared with central ring	IUPAC name
1 (Fig. 3b)	C5, C6	1-indanone
2 (Fig. 3c)	C2, C3	1-indanone
3 (Fig. 3d)	C1	1,3-indandione
4 (Fig. 3e)	C4	1-(1H-indazol-1-yl)ethanone
5 (Fig. 3 <i>f</i>)	C7, C8	1-H-inden-1-one

The core of the molecule represented by an eightmembered oxocine ring, which is linked in the center by a carbon atom, C1 bridging between C2 and C6, and includes an ether group as shown in Fig. 3a. Bond lengths, listed in Table 1, clearly indicate the presence of a C==C double bond with a bond length of 1.357 (3) Å and also featuring a short C--C bond with a bond length of 1.494 (3) Å,. Also interesting to note is the stark difference between the C--O bond lengths within the ring, ranging from 1.333 (3) to 1.462 (2) Å. The presence of the double bond, the short C--C bond and the great variation within the C--O bonds is due to the five arms of the structure, which extend from the central ring as shown in Fig. 3b-3f and are described in Table 2.

3. Supramolecular features

The packing of the crystal structure indicates that the acetonitrile molecules interact with up to three different aromatic π systems belonging to arms 1–3; these interactions can be seen in Fig. 4*a*. The interactions between acetonitrile and arms 2 and 3 also force some rigidity upon the structure, as seen in

Figure 3

(a) The central eight-membered ring of the compound with the bridging carbon atom between C2 and C6. (b)-(f) The various arms extending from the central ring, showing the connection to the central ring.

Table 3

Packing interactions found inside the crystal lattice (Å).

Shortest bond distances that were found are shown for the various interactions.

Interaction	$C{\cdots}C$
C12 (Arm 1) $\cdot \cdot \cdot$ C97 ⁱ (Acetonitrile)	3.489 (3)
C26 (Arm 3)····C97 ⁱ (Acetonitrile)	3.475 (3)
C58 (Arm $2'$)···C97 ⁱⁱ (Acetonitrile)	3.317 (3)
C66 (Arm 1)····C66 ⁱ (Arm 1')	3.388 (2)
C32 (Arm 4)···C89 ^{iv} (Arm 2')	3.381 (3)

Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) x - 1, y, z; (iii) x, $\frac{3}{2} - y$, $-\frac{1}{2} + z$.

Fig. 4*b*. It is worth noting that the interaction seen in Fig. 4*b* is not observed in the asymmetric unit, but in the extended packing of the crystal. These interactions are listed in Table 3.

A second interaction, which contributes to the crystal packing, is a π - π interaction between arms 4 and 5, as seen in Fig. 5*a*. A third interaction, which contributes to the crystal packing, is a π - π interaction between arms 1 and 2, as seen in Fig. 5*b*. These interactions are listed in Table 3.

Finally, a hydrogen-bonding network (Table 4) is observed throughout the crystal, consisting of a $C-H\cdots O=C$ bonding

Figure 4

(a) van der Waals interactions between the acetonitrile molecules and the title compound: one acetonitrile molecule interacts with up to three arms. (b) Illustration of the rigidity that is enforced upon two arms of the title compound as a result of van der Waals interactions.

Figure 5

 π - π stacking between (a) arms 4 and 5 of adjacent molecules and (b) arms 1 and 2 of the title compound.

Table 4			
Hydrogen-bond	geometry	(Å,	°).

	•			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C14 - H14 \cdots O11^{i}$	0.93	2.48	3 217 (2)	136
$C19-H19\cdots O9^{ii}$	0.93	2.58	3.277 (3)	132
C26-H26···O13	0.93	2.56	3.147 (3)	121
C39−H39 <i>B</i> ···O7 ⁱⁱⁱ	0.96	2.49	3.443 (3)	174
C44-H44···O2 ⁱⁱⁱ	0.93	2.59	3.446 (3)	153
$C65 - H65 \cdots O14^{iv}$	0.93	2.40	3.112 (3)	133
$C80 - H80 \cdots O5^i$	0.93	2.33	3.235 (2)	164
$C82 - H82 \cdots O3^{v}$	0.93	2.51	3.278 (3)	141
$C83 - H83 \cdots O4^{v}$	0.93	2.53	3.289 (2)	139
$C88-H88\cdots O7^{i}$	0.93	2.53	3.313 (3)	142
C89−H89···O3 ^{vi}	0.93	2.44	3.323 (3)	159
$C93 - H93B \cdots O5^{vii}$	0.96	2.57	3.341 (4)	137
C97−H97 <i>B</i> ···O10	0.96	2.31	3.072 (3)	1361
C51-H51···N3	0.98	2.55	3.000 (3)	108

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) $-x, y-\frac{1}{2}, -z+\frac{1}{2}$; (iv) x, y+1, z; (v) -x+1, -y+2, -z+1; (vi) $x, -y+\frac{3}{2}, z+\frac{1}{2}$; (vii) -x, -y+1, -z+1.

pattern between the molecules of the title compound, and a $C-H\cdots N \equiv C$ bonding pattern between the acetonitrile molecules, as seen in Fig. 6.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39, update of August 2018; Groom *et al.*, 2016) for the molecular formula ($C_{46}H_{26}N_2O_7$) and for unit-cell dimensions yielded no results. Searching for the various arms yielded 72 hits for indanone and 38 hits for indandione. Similar structures that contain eight-membered rings and are the result of aldol condensation, namely 1-(1,3-dioxoindan-2-yl-idene)-2-[spiro-1,3-indandione-2,18'-(5'H,9b'H,12'H,16b'H-5',12'-dioxo-9b',16b'-methano-11'-methyltriindeno(1,2-b:1,2-d: 1,2-f)oxocin-17-yl)]inden-3-yl acetate and spiro(1,3-indandione-2,10'-5'H,9b'H,10'H,16'H-5',16'-dioxobenzo[a]diind-eno[1,2-f:1,2-h]azulen-11'-yl acetate) have been published previously (refcodes MEKQIC, MEKQEY; Jacob *et al.*, 2000).

Part of the C-H···O=C bonding pattern between molecules of the title compound and also part of the C-H···N=C bonding pattern between the acetonitrile molecules.

5. Synthesis and crystallization

The synthetic procedure for the title compound will be published elsewhere. The title compound was crystallized in HPLC/gradient grade acetonitrile (99.9%) obtained from Sigma (CAS 75-05-8) by slow evaporation at a temperature of 277 K over the course of several weeks, resulting in yellow crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Hydrogen atoms were placed at calculated positions (C-H = 0.93–0.98 Å) and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH and CH₂ groups and $1.5U_{eq}(C)$ for CH₃ groups.

Acknowledgements

We would like to warmly thank Professor Ira Weinstock for invaluable monetary and moral support.

Funding information

Funding for this research was provided by: Ben-Gurion University of the Negev.

References

- Acharya, S., Krief, P., Khodorkovsky, V., Kotler, Z., Berkovic, G., Klug, J. T. & Efrima, S. (2005). New J. Chem. 29, 1049–1057.
- Bello, K. A., Cheng, L. & Griffiths, J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 815–818.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Eriks, J. C., Van der Goot, H. & Nauta, W. T. (1979). Eur. J. Med. Chem. 14, 411–414.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gvishi, R., Berkovic, G., Kotler, Z., Krief, P., Becker, J. Y., Sigalov, M., Shapiro, L. & Khodorkovsky, V. (2003). *Proc. SPIE*, **5036**, 437– 442.
- Hansen, D. B. & Joullié, M. M. (2005). Chem. Soc. Rev. 34, 408-417.
- Heidelberger, C. & Ansfield, F. J. (1963). Cancer Res. 23, 1226-1243.
- Jacob, K., Sigalov, M., Becker, J. Y., Ellern, A. & Khodorkovsky, V. (2000). *Eur. J. Org. Chem.* pp. 2047–2055.

Table 5
Experimental details.

1	
Crystal data	
Chemical formula	$C_{46}H_{26}N_2O_7 \cdot 1.5C_2H_3N$
M _r	780.27
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.5195 (3), 13.0697 (3), 42.9248 (9)
β (°)	92.475 (2)
$V(Å^3)$	7577.6 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.32 \times 0.31 \times 0.29$
Data collection	
Diffractometer	Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.723, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	81627, 13290, 11196
R _{int}	0.050
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.594
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.122, 1.03
No. of reflections	13290
No. of parameters	1077
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.15, -0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Kozlov, N. G. & Gusak, K. N. (2006). *Zh. Org. Chim.* 42, 1680–1686.
 Kuang, Y., Zhang, S. & Sun, X. (1994). *Zhongguo Yiyao Gongye Zazhi*, 25, 36.
- Lokshin, V., Bekere, L. & Khodorkovsky, V. (2017). *Dyes Pigments*, **145**, 570–575.
- Manukian, B. K. & Mangini, A. (1970). Chimia, 24, 328-338.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Schelz, D. (1975). Helv. Chim. Acta, 58, 1207-1217.
- Sekhar, B. C. (2004). J. Heterocycl. Chem. 41, 807-855.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Silinsh, E. A. & Taure, L. (1969). Phys. Stat. Sol. (b), 32, 847-852.
- Wislicenus, W. (1887). Ber. Dtsch. Chem. Ges. 20, 589-595.

Acta Cryst. (2018). E74, 1444-1447 [https://doi.org/10.1107/S2056989018011763]

Crystal structure determination of *rac*-11'-(1-acetyl-1*H*-indazol-3-yl)-11',11*a*'dihydro-10'*H*,17'*H*-spiro[indene-2,18'-[5a,16b]methanotriindeno[1,2-b:1',2'*d*:2'',1''-*g*]oxocine]-1,3,10',12',17'(10*a*'*H*)-pentaone acetonitrile 1.5-solvate

Mark Baranov, Radion Vainer and Mark V. Sigalov

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

rac-11'-(1-Acetyl-1H-indazol-3-yl)-11',11a'-dihydro-10'H,17'H-

spiro[indene-2,18'-[5a,16b]methanotriindeno[1,2-b:1',2'-d:2'',1''-g]oxocine]-1,3,10',12',17'(10a'H)-pentaone acetonitrile 1.5-solvate

Crystal data

C₄₆H₂₆N₂O₇·1.5C₂H₃N $M_r = 780.27$ Monoclinic, $P2_1/c$ a = 13.5195 (3) Å b = 13.0697 (3) Å c = 42.9248 (9) Å $\beta = 92.475$ (2)° V = 7577.6 (3) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, HyPix diffractometer ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) $T_{\min} = 0.723, T_{\max} = 1.000$ 81627 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.122$ S = 1.03 F(000) = 3240 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32475 reflections $\theta = 2.4-25.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KCube, clear yellow $0.32 \times 0.31 \times 0.29 \text{ mm}$

13290 independent reflections 11196 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -16 \rightarrow 15$ $k = -15 \rightarrow 15$ $l = -50 \rightarrow 50$

13290 reflections 1077 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 7.2184P]$	$\Delta \rho_{\rm max} = 1.15 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C5(H5), C51(H51), C3(H3), C4(H4), C49(H49), C50(H50) 2.b Aromatic/amide H refined with riding coordinates: C21(H21), C11(H11), C87(H87), C14(H14), C18(H18), C59(H59), C56(H56), C25(H25), C90(H90), C63(H63), C71(H71), C83(H83), C88(H88), C74(H74), C28(H28), C19(H19), C20(H20), C13(H13), C89(H89), C72(H72), C12(H12), C66(H66), C64(H64), C33(H33), C27(H27), C58(H58), C73(H73), C80(H80), C57(H57), C26(H26), C82(H82), C65(H65), C81(H81), C36(H36), C45(H45), C34(H34), C35(H35), C44(H44), C42(H42), C43(H43) 2.c Idealised Me refined as rotating group: C77(H77A,H77B,H77C), C39(H39A,H39B,H39C), C95(H95A,H95B,H95C), C97(H97A,H97B, H97C), C93(H93A,H93B,H93C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O4	0.28132 (9)	0.90383 (11)	0.35064 (3)	0.0193 (3)
05	-0.06102 (10)	0.85056 (11)	0.35809 (3)	0.0213 (3)
O2	0.31863 (10)	1.12073 (11)	0.31418 (3)	0.0208 (3)
O8	0.26418 (10)	0.69691 (11)	0.60733 (3)	0.0195 (3)
011	0.20536 (10)	0.91667 (11)	0.60793 (3)	0.0223 (3)
O12	0.55174 (10)	0.86716 (11)	0.62155 (3)	0.0213 (3)
O3	0.36007 (10)	0.75907 (11)	0.29532 (3)	0.0243 (3)
O14	0.41342 (11)	0.33440 (11)	0.50365 (3)	0.0280 (3)
O13	0.27308 (11)	0.83008 (11)	0.50520 (3)	0.0246 (3)
01	0.01317 (10)	0.79294 (11)	0.29860 (3)	0.0247 (3)
O10	0.64519 (10)	0.84199 (12)	0.55745 (3)	0.0271 (3)
O9	0.59079 (11)	0.62756 (12)	0.64619 (3)	0.0284 (3)
O6	0.11865 (13)	0.96381 (14)	0.15127 (3)	0.0378 (4)
N4	0.45944 (12)	0.46736 (13)	0.53442 (4)	0.0193 (4)
N3	0.43295 (12)	0.55669 (13)	0.54928 (4)	0.0199 (4)
N1	0.15198 (12)	0.92208 (13)	0.23177 (4)	0.0203 (4)
N2	0.17098 (13)	0.95505 (14)	0.20192 (4)	0.0233 (4)
O7	-0.07690 (12)	1.13677 (12)	0.28272 (4)	0.0363 (4)
C31	0.22625 (14)	0.95317 (15)	0.24976 (4)	0.0177 (4)
C84	0.43465 (14)	0.97866 (15)	0.64481 (4)	0.0174 (4)
C9	0.23404 (14)	1.09819 (15)	0.31912 (4)	0.0163 (4)
C85	0.46741 (14)	0.89491 (15)	0.62467 (4)	0.0165 (4)
C86	0.35501 (14)	0.73340 (15)	0.65495 (4)	0.0180 (4)
C1	0.10267 (13)	0.89504 (15)	0.33917 (4)	0.0154 (4)
C5	0.17008 (13)	1.02282 (15)	0.29968 (4)	0.0155 (4)
Н5	0.141540	1.063153	0.282269	0.019*
C30	0.02326 (14)	0.87827 (15)	0.36358 (4)	0.0168 (4)
C6	0.08157 (13)	0.99648 (15)	0.32018 (4)	0.0160 (4)
C51	0.47739 (14)	0.77743 (15)	0.56304 (4)	0.0182 (4)

H51	0.460585	0.747922	0.542497	0.022*
C78	0.29135 (14)	0.92053 (15)	0.61719 (4)	0.0173 (4)
C3	0.19119 (14)	0.82563 (15)	0.29181 (4)	0.0167 (4)
Н3	0.165809	0.797237	0.271903	0.020*
C79	0.33333 (14)	0.99391 (15)	0.64028 (5)	0.0185 (4)
C24	0.16981 (14)	0.91786 (15)	0.39245 (4)	0.0188 (4)
C16	0.27514 (14)	0.75419 (15)	0.30310 (4)	0.0182 (4)
C15	0.07922 (14)	1.08829 (15)	0.34193 (4)	0.0178 (4)
C22	0.13573 (14)	0.70507 (15)	0.32975 (4)	0.0172 (4)
C10	0.16932 (14)	1.14016 (15)	0.34290 (4)	0.0175 (4)
C17	0.23202 (14)	0.67764 (15)	0.32367 (4)	0.0185 (4)
C4	0.22699(14)	0.93492(15)	0.32307(1) 0.28442(4)	0.0162(1)
H4	0.296052	0.939779	0.292198	0.020*
C29	0.290052 0.06897 (14)	0.90144(15)	0.39466 (5)	0.020
C53	0.00097(14) 0.29273(14)	0.78625(15)	0.55976(4)	0.0187(4)
C69	0.29273(14) 0.51264(14)	0.58956 (15)	0.56452(4)	0.0137(4)
C47	0.37501(13)	0.50750(15) 0.84789(15)	0.50452(4)	0.0179(4)
C47	0.37301(13) 0.38474(14)	0.84789(15)	0.00704(4)	0.0139(4)
C32	0.36474(14) 0.44528(14)	0.64001(13)	0.37130(4)	0.0109(4)
C49	0.44528 (14)	0.00308 (13)	0.01239 (4)	0.0183(4)
H49	0.410130	0.397043	0.609160	0.022^{+}
C75	0.55841 (14)	0.44390 (15)	0.54100 (4)	0.0188 (4)
C50	0.50919 (14)	0.685/5(15)	0.58370(4)	0.0183 (4)
H50	0.576862	0.699402	0.591/2/	0.022*
C68	0.55696 (14)	0.85675 (16)	0.55727 (4)	0.0204 (4)
C2	0.10881 (13)	0.80699 (15)	0.31525 (4)	0.0166 (4)
C62	0.40457 (15)	0.94379 (16)	0.55710 (4)	0.0192 (4)
C91	0.44309 (14)	0.69583 (16)	0.66803 (5)	0.0203 (4)
C21	0.07741 (15)	0.64118 (16)	0.34713 (5)	0.0211 (4)
H21	0.012679	0.658879	0.351301	0.025*
C7	-0.00955 (14)	0.97595 (17)	0.30021 (5)	0.0229 (5)
C70	0.59492 (14)	0.52222 (15)	0.56063 (4)	0.0190 (4)
C32	0.29768 (15)	1.00870 (16)	0.23258 (5)	0.0222 (4)
C11	0.18869 (15)	1.21979 (16)	0.36388 (5)	0.0215 (4)
H11	0.249531	1.253092	0.364730	0.026*
C54	0.24333 (14)	0.72063 (15)	0.57739 (4)	0.0185 (4)
C92	0.50673 (15)	0.65964 (16)	0.64332 (5)	0.0210 (4)
C87	0.28013 (15)	0.76636 (15)	0.67365 (5)	0.0202 (4)
H87	0.220249	0.790079	0.664941	0.024*
C23	0.19807 (14)	0.90563 (14)	0.35990 (4)	0.0161 (4)
C48	0.35832 (14)	0.73736 (15)	0.61983 (4)	0.0174 (4)
C67	0.50352 (15)	0.95311 (16)	0.54991 (4)	0.0212 (4)
C61	0.24575 (14)	0.78555 (15)	0.52835 (5)	0.0194 (4)
C55	0.15761 (14)	0.67421 (15)	0.55995 (5)	0.0196 (4)
C14	0.00486 (15)	1.11728 (16)	0.36125 (5)	0.0220 (4)
H14	-0.055927	1.083849	0.360467	0.026*
C60	0.15772 (14)	0.71537 (15)	0.52989 (5)	0.0201 (4)
C18	0.27387 (15)	0.58672 (16)	0.33491 (5)	0.0231 (4)
H18	0.338900	0.569440	0.330997	0.028*
-				= -

C76	0.38810 (15)	0.40956 (16)	0.51779 (5)	0.0219 (4)
C59	0.08710 (15)	0.68832 (17)	0.50747 (5)	0.0240 (4)
Н59	0.087021	0.716188	0.487538	0.029*
C56	0.08756 (15)	0.60420 (16)	0.56834 (5)	0.0241 (4)
H56	0.087654	0.576929	0.588354	0.029*
C25	0 22988 (15)	0.94249(17)	0 41844 (5)	0.0236(4)
H25	0 297433	0.953670	0.416928	0.028*
C90	0.46040 (16)	0.69348(18)	0.70026 (5)	0.026
H90	0.520066	0.669218	0.708969	0.0256 (5)
C/6	-0.12284(15)	0.87633(18)	0.768767	0.031
C40 C63	0.12264(13) 0.22856(16)	1.02200(16)	0.20940(5)	0.0248(3)
U03	0.33830 (10)	1.02290 (10)	0.555708	0.0237 (4)
П05 С71	0.2/2439	1.01/326	0.555708	0.028
U/1	0.09291 (15)	0.52004 (17)	0.57239(5)	0.0229 (4)
H/I	0./18013	0.572324	0.585122	0.027*
C83	0.49062 (15)	1.03680 (16)	0.66609 (5)	0.0229 (4)
H83	0.558476	1.026678	0.669028	0.027*
C37	0.26021 (16)	1.00706 (16)	0.20159 (5)	0.0242 (4)
C88	0.29727 (15)	0.76286 (16)	0.70568 (5)	0.0232 (4)
H88	0.247930	0.784231	0.718652	0.028*
C8	-0.03363 (14)	0.87959 (17)	0.29088 (5)	0.0225 (4)
C74	0.61798 (15)	0.36241 (16)	0.53240 (5)	0.0227 (4)
H74	0.594216	0.311555	0.518900	0.027*
C28	0.02389 (16)	0.90879 (17)	0.42301 (5)	0.0241 (4)
H28	-0.043755	0.898121	0.424504	0.029*
C19	0.21529 (16)	0.52303 (16)	0.35208 (5)	0.0250 (5)
H19	0.240940	0.461434	0.359673	0.030*
C20	0.11859 (16)	0.55002 (16)	0.35812 (5)	0.0244 (5)
H20	0.080612	0.506110	0.369759	0.029*
C13	0.02341 (16)	1.19748 (16)	0.38178 (5)	0.0257 (5)
H13	-0.025961	1.218367	0.394807	0.031*
C89	0.38716 (16)	0.72789 (17)	0.71885 (5)	0.0264 (5)
H89	0.397604	0.727870	0.740412	0.032*
C72	0.75127 (15)	0.43839 (18)	0.56462 (5)	0.0262 (5)
H72	0.816271	0.434646	0.572554	0.031*
C12	0.11470 (16)	1.24760 (17)	0.38333 (5)	0.0260(5)
H12	0.125723	1 300275	0 397625	0.031*
C66	0.53873 (16)	1.04115(17)	0.53591 (5)	0.031
H66	0.604850	1.046999	0.531039	0.032*
N5	0.004850 0.41672(18)	0 3769 (2)	0.60410 (6)	0.052
C64	0.41072(10) 0.37410(17)	1,11076(17)	0.53697(5)	0.0297(5)
U64	0.37410(17) 0.321022	1.11070 (17)	0.53097 (5)	0.0297(3)
П0 4 С22	0.331032 0.39950 (16)	1.104901	0.332030	0.030°
(33	0.38830 (10)	1.05521 (17)	0.24042 (3)	0.0270(3)
H33	0.413475	1.05/192	0.200943	0.033*
U27	0.08333 (17)	0.93238 (18)	0.44892 (3)	0.0294 (5)
H2/	0.01550 (15)	0.93/292	0.46826/	0.035*
058	0.01558 (15)	0.61//3(17)	0.51561 (5)	0.0270 (5)
H58	-0.033294	0.598339	0.500876	0.032*
C38	0.10284 (17)	0.93256 (17)	0.17729 (5)	0.0283 (5)

C73	0.71375 (16)	0.36069 (17)	0.54484 (5)	0.0257 (5)
H73	0.754760	0.306379	0.539972	0.031*
C80	0.28412 (15)	1.06837 (17)	0.65691 (5)	0.0256 (5)
H80	0.216336	1.078743	0.653858	0.031*
N6	0.00183 (19)	0.34600 (18)	0.57506 (6)	0.0506 (6)
C57	0.01584 (16)	0.57579 (17)	0.54527 (5)	0.0278(5)
H57	-0.032256	0.528031	0.549983	0.033*
C26	0.18458(17)	0.94969 (19)	0.44679(5)	0.0294(5)
H26	0 222491	0.966241	0.464675	0.035*
C41	-0.15187(17)	0.97597 (17)	0.161075 0.26401(5)	0.039
C82	0.44174(16)	1,11052(18)	0.20401(5) 0.68282(5)	0.0294(5)
H82	0.477777	1.11032 (10)	0.607300	0.036*
C65	0.477272	1.150156	0.097399	0.030
U05	0.47201(17) 0.404203	1.11940 (10)	0.52948 (5)	0.0310(3)
П05 С91	0.494295	1.1/0002	0.320002	0.038°
	0.33991 (10)	1.12624 (18)	0.07813 (0)	0.0315 (5)
H81	0.309056	1.1/66/1	0.689513	0.038*
C36	0.31232 (18)	1.05022 (18)	0.17746 (5)	0.0326 (5)
H36	0.287906	1.048766	0.156870	0.039*
C45	-0.17277 (18)	0.79450 (18)	0.25547 (6)	0.0344 (5)
H45	-0.153228	0.727108	0.258981	0.041*
C34	0.43964 (19)	1.09806 (19)	0.21652 (6)	0.0370 (6)
H34	0.500330	1.129471	0.220980	0.044*
C77	0.28359 (16)	0.44554 (18)	0.51910 (5)	0.0300 (5)
H77A	0.275115	0.506815	0.506941	0.045*
H77B	0.268680	0.459449	0.540345	0.045*
H77C	0.239741	0.393484	0.510840	0.045*
C40	-0.07762 (16)	1.04316 (17)	0.28265 (5)	0.0267 (5)
C96	0.48059 (19)	0.3199 (2)	0.60569 (5)	0.0356 (6)
C39	0.01509 (18)	0.87178 (19)	0.18588 (5)	0.0343 (5)
H39A	-0.022888	0.910266	0.200198	0.051*
H39B	0.036683	0.808906	0.195533	0.051*
H39C	-0.025149	0.856933	0.167463	0.051*
C35	0.4017 (2)	1.0950 (2)	0.18577 (6)	0.0395 (6)
H35	0.438368	1.124442	0.170263	0.047*
C44	-0.25598 (18)	0.8201 (2)	0.23537 (6)	0.0372 (6)
H44	-0.293132	0.768606	0.225520	0.045*
C42	-0.22916(18)	0.9994(2)	0.24452 (6)	0.0383 (6)
H42	-0.246905	1.067116	0.240608	0.046*
C94	0.0808(2)	0.3293(2)	0.58371 (6)	0.0402 (6)
N7	0.87013 (18)	0.8519 (3)	0.47954 (6)	0.0652 (8)
C43	-0.28084(18)	0.9204(2)	0,23065 (6)	0.0415(6)
H43	-0.335192	0.935602	0.217447	0.050*
C98	0.86308(18)	0.8262(2)	0.50448 (6)	0.023(7)
C95	0.5620(10)	0.3202(2) 0.2478(3)	0.50440(0) 0.60822(7)	0.0433(7) 0.0524(7)
U95 H95A	0.546901	0.180274	0.505387	0.032+(7)
H05P	0.5718/3	0.109224	0.629530	0.079
H05C	0.671713	0.220314	0.027559	0.079
C07	0.021213 0.8546 (2)	0.279070 0.7037(2)	0.001420 0.52652 (7)	0.073
U7/	0.0340(2)	0.7737(3)	0.33033(7)	0.0005 (9)

H97A	0.828297	0.725543	0.536923	0.091*
H97B	0.811132	0.839339	0.546894	0.091*
H97C	0.918807	0.794790	0.546994	0.091*
C93	0.1807 (2)	0.3063 (3)	0.59497 (9)	0.0755 (12)
H93A	0.212121	0.263414	0.580164	0.113*
H93B	0.178931	0.271479	0.614623	0.113*
H93C	0.217447	0.368823	0.597584	0.113*

Atomic displacement parameters (A^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0145 (7)	0.0234 (8)	0.0200 (7)	0.0007 (6)	-0.0003 (5)	0.0000 (6)
05	0.0159 (7)	0.0222 (8)	0.0259 (7)	-0.0003 (6)	0.0011 (6)	0.0011 (6)
O2	0.0164 (7)	0.0216 (8)	0.0244 (7)	-0.0026 (6)	0.0000 (5)	0.0014 (6)
08	0.0182 (7)	0.0195 (7)	0.0204 (7)	-0.0034 (6)	-0.0032 (5)	0.0014 (6)
011	0.0154 (7)	0.0240 (8)	0.0272 (7)	0.0012 (6)	-0.0030 (6)	-0.0009 (6)
012	0.0155 (7)	0.0257 (8)	0.0226 (7)	0.0026 (6)	-0.0011 (5)	-0.0041 (6)
03	0.0206 (8)	0.0258 (8)	0.0269 (8)	0.0052 (6)	0.0054 (6)	0.0013 (6)
O14	0.0386 (9)	0.0179 (8)	0.0270 (8)	-0.0003 (7)	-0.0052 (6)	-0.0035 (6)
013	0.0300 (8)	0.0243 (8)	0.0193 (7)	-0.0023 (6)	-0.0008 (6)	0.0021 (6)
01	0.0197 (7)	0.0272 (8)	0.0266 (8)	0.0002 (6)	-0.0044 (6)	-0.0044 (6)
O10	0.0193 (8)	0.0292 (9)	0.0331 (8)	-0.0027 (6)	0.0037 (6)	-0.0001 (7)
09	0.0249 (8)	0.0348 (9)	0.0255 (8)	0.0121 (7)	0.0005 (6)	0.0029 (7)
06	0.0477 (10)	0.0469 (11)	0.0183 (8)	0.0123 (8)	-0.0033 (7)	0.0020 (7)
N4	0.0215 (9)	0.0171 (9)	0.0193 (8)	0.0000 (7)	0.0002 (7)	-0.0032 (7)
N3	0.0213 (9)	0.0177 (9)	0.0207 (8)	0.0009 (7)	0.0005 (7)	-0.0021 (7)
N1	0.0255 (9)	0.0206 (9)	0.0146 (8)	0.0023 (7)	-0.0004 (7)	0.0008 (7)
N2	0.0305 (10)	0.0240 (10)	0.0152 (8)	0.0032 (8)	0.0005 (7)	0.0020 (7)
07	0.0377 (9)	0.0243 (9)	0.0457 (10)	0.0009 (7)	-0.0114 (8)	0.0001 (7)
C31	0.0205 (10)	0.0151 (10)	0.0176 (10)	0.0028 (8)	0.0019 (8)	-0.0014 (8)
C84	0.0156 (9)	0.0172 (10)	0.0195 (9)	0.0002 (8)	0.0012 (7)	0.0010 (8)
C9	0.0186 (10)	0.0146 (10)	0.0154 (9)	0.0012 (8)	-0.0016 (7)	0.0032 (7)
C85	0.0169 (10)	0.0169 (10)	0.0156 (9)	0.0000 (8)	-0.0006 (7)	0.0027 (8)
C86	0.0204 (10)	0.0141 (10)	0.0194 (10)	-0.0019 (8)	-0.0002 (8)	0.0015 (8)
C1	0.0133 (9)	0.0151 (10)	0.0177 (9)	0.0012 (7)	-0.0012 (7)	0.0012 (8)
C5	0.0163 (9)	0.0154 (10)	0.0146 (9)	-0.0002 (7)	-0.0008 (7)	0.0017 (7)
C30	0.0166 (10)	0.0119 (9)	0.0219 (10)	0.0020 (7)	0.0016 (8)	0.0012 (8)
C6	0.0149 (9)	0.0152 (10)	0.0179 (9)	0.0012 (7)	-0.0010 (7)	0.0004 (8)
C51	0.0203 (10)	0.0182 (10)	0.0159 (9)	-0.0012 (8)	-0.0003 (7)	-0.0009 (8)
C78	0.0170 (10)	0.0170 (10)	0.0180 (9)	-0.0013 (8)	0.0010 (7)	0.0051 (8)
C3	0.0184 (9)	0.0167 (10)	0.0147 (9)	0.0011 (8)	-0.0010 (7)	-0.0009 (8)
C79	0.0174 (10)	0.0162 (10)	0.0219 (10)	-0.0005 (8)	-0.0001 (8)	0.0019 (8)
C24	0.0200 (10)	0.0163 (10)	0.0201 (10)	0.0024 (8)	0.0000 (8)	0.0044 (8)
C16	0.0190 (10)	0.0198 (11)	0.0157 (9)	0.0034 (8)	0.0002 (7)	-0.0035 (8)
C15	0.0212 (10)	0.0145 (10)	0.0175 (9)	0.0021 (8)	-0.0016 (8)	0.0029 (8)
C22	0.0204 (10)	0.0155 (10)	0.0155 (9)	0.0011 (8)	-0.0028 (7)	-0.0015 (8)
C10	0.0199 (10)	0.0163 (10)	0.0161 (9)	0.0030 (8)	-0.0019 (7)	0.0029 (8)
C17	0.0212 (10)	0.0177 (10)	0.0163 (9)	0.0016 (8)	-0.0014 (7)	-0.0013 (8)

C4	0.0152 (9)	0.0175 (10)	0.0165 (9)	0.0008 (8)	-0.0007(7)	-0.0010 (8)
C29	0.0205 (10)	0.0156 (10)	0.0201 (10)	0.0009 (8)	0.0006 (8)	0.0021 (8)
C53	0.0165 (9)	0.0189 (10)	0.0202 (10)	0.0017 (8)	-0.0024 (8)	-0.0033 (8)
C69	0.0189 (10)	0.0178 (10)	0.0171 (9)	-0.0008(8)	0.0011 (7)	0.0014 (8)
C47	0.0145 (9)	0.0156 (10)	0.0174 (9)	-0.0009(7)	-0.0021 (7)	0.0000 (8)
C52	0.0170 (9)	0.0168 (10)	0.0167 (9)	-0.0010 (8)	-0.0017 (7)	0.0004 (8)
C49	0.0207 (10)	0.0165 (10)	0.0182 (10)	0.0019 (8)	-0.0002 (8)	0.0010 (8)
C75	0.0220 (10)	0.0188 (10)	0.0159 (9)	0.0001 (8)	0.0024 (8)	0.0017 (8)
C50	0.0173 (9)	0.0191 (10)	0.0185 (9)	0.0002 (8)	0.0000 (7)	-0.0014 (8)
C68	0.0200 (11)	0.0245 (11)	0.0166 (9)	-0.0033 (8)	0.0011 (8)	-0.0023 (8)
C2	0.0129 (9)	0.0180 (10)	0.0187 (9)	-0.0006 (8)	-0.0026 (7)	-0.0012 (8)
C62	0.0232 (10)	0.0195 (10)	0.0146 (9)	-0.0043 (8)	-0.0036 (8)	-0.0004 (8)
C91	0.0195 (10)	0.0193 (10)	0.0221 (10)	0.0012 (8)	0.0004 (8)	0.0020 (8)
C21	0.0225 (10)	0.0175 (10)	0.0236 (10)	0.0009 (8)	0.0027 (8)	-0.0016 (8)
C7	0.0112 (9)	0.0323 (12)	0.0249 (10)	0.0010 (8)	-0.0018 (8)	0.0147 (9)
C70	0.0212 (10)	0.0192 (10)	0.0169 (9)	0.0003 (8)	0.0031 (8)	0.0014 (8)
C32	0.0289 (11)	0.0164 (10)	0.0219 (10)	0.0005 (9)	0.0071 (8)	0.0008 (8)
C11	0.0251 (11)	0.0182 (11)	0.0210 (10)	-0.0020 (8)	-0.0025 (8)	0.0002 (8)
C54	0.0180 (10)	0.0173 (10)	0.0201 (10)	0.0011 (8)	-0.0009 (8)	-0.0025 (8)
C92	0.0216 (11)	0.0195 (11)	0.0217 (10)	0.0038 (8)	-0.0001 (8)	0.0031 (8)
C87	0.0197 (10)	0.0170 (10)	0.0239 (10)	0.0005 (8)	0.0015 (8)	0.0033 (8)
C23	0.0172 (10)	0.0118 (9)	0.0190 (9)	0.0009 (7)	-0.0012 (8)	0.0020 (7)
C48	0.0156 (9)	0.0159 (10)	0.0207 (10)	-0.0014 (8)	-0.0009 (7)	0.0001 (8)
C67	0.0231 (10)	0.0218 (11)	0.0182 (10)	-0.0048 (8)	-0.0039 (8)	-0.0011 (8)
C61	0.0199 (10)	0.0175 (10)	0.0206 (10)	0.0026 (8)	-0.0012 (8)	-0.0015 (8)
C55	0.0159 (9)	0.0177 (10)	0.0249 (10)	0.0024 (8)	-0.0018 (8)	-0.0053 (8)
C14	0.0211 (10)	0.0180 (10)	0.0273 (11)	0.0021 (8)	0.0047 (8)	0.0022 (8)
C60	0.0198 (10)	0.0168 (10)	0.0238 (10)	0.0025 (8)	0.0019 (8)	-0.0034 (8)
C18	0.0244 (11)	0.0212 (11)	0.0233 (10)	0.0066 (9)	-0.0013 (8)	-0.0006 (8)
C76	0.0292 (11)	0.0173 (11)	0.0188 (10)	-0.0038 (9)	-0.0035 (8)	0.0039 (8)
C59	0.0251 (11)	0.0239 (11)	0.0227 (10)	0.0044 (9)	-0.0020 (8)	-0.0028 (9)
C56	0.0263 (11)	0.0191 (11)	0.0269 (11)	0.0003 (9)	0.0008 (8)	0.0007 (9)
C25	0.0213 (10)	0.0285 (12)	0.0206 (10)	0.0011 (9)	-0.0027 (8)	0.0031 (9)
C90	0.0245 (11)	0.0319 (12)	0.0206 (10)	0.0042 (9)	-0.0019 (8)	0.0029 (9)
C46	0.0162 (10)	0.0376 (13)	0.0203 (10)	-0.0016 (9)	-0.0031 (8)	0.0033 (9)
C63	0.0239 (11)	0.0221 (11)	0.0246 (11)	-0.0008 (9)	-0.0045 (8)	0.0022 (9)
C71	0.0229 (10)	0.0259 (11)	0.0198 (10)	0.0002 (9)	0.0004 (8)	-0.0035 (8)
C83	0.0173 (10)	0.0253 (11)	0.0259 (11)	-0.0006 (8)	0.0001 (8)	-0.0043 (9)
C37	0.0318 (11)	0.0201 (11)	0.0208 (10)	0.0038 (9)	0.0036 (8)	0.0004 (8)
C88	0.0270 (11)	0.0205 (11)	0.0228 (10)	-0.0001 (9)	0.0075 (8)	0.0010 (8)
C8	0.0169 (10)	0.0317 (12)	0.0189 (10)	-0.0004 (9)	0.0001 (8)	0.0042 (9)
C74	0.0284 (11)	0.0190 (11)	0.0211 (10)	0.0002 (9)	0.0048 (8)	-0.0008 (8)
C28	0.0231 (10)	0.0276 (12)	0.0221 (10)	-0.0020 (9)	0.0051 (8)	0.0028 (9)
C19	0.0334 (12)	0.0182 (11)	0.0231 (10)	0.0069 (9)	-0.0028 (9)	0.0030 (8)
C20	0.0322 (12)	0.0185 (11)	0.0226 (10)	-0.0020 (9)	0.0015 (9)	0.0016 (8)
C13	0.0338 (12)	0.0207 (11)	0.0232 (10)	0.0038 (9)	0.0085 (9)	-0.0017 (9)
C89	0.0321 (12)	0.0295 (12)	0.0175 (10)	-0.0007 (9)	0.0003 (9)	0.0019 (9)
C72	0.0202 (10)	0.0319 (12)	0.0265 (11)	0.0050 (9)	0.0004 (8)	0.0003 (9)

C12	0.0381 (12)	0.0200 (11)	0.0198 (10)	0.0010 (9)	0.0007 (9)	-0.0050 (8)
C66	0.0259 (11)	0.0273 (12)	0.0260 (11)	-0.0102 (9)	-0.0052 (9)	0.0046 (9)
N5	0.0479 (14)	0.0571 (16)	0.0494 (14)	0.0082 (13)	0.0142 (11)	0.0171 (12)
C64	0.0328 (12)	0.0214 (12)	0.0342 (12)	-0.0021 (9)	-0.0079 (10)	0.0056 (9)
C33	0.0304 (12)	0.0240 (12)	0.0286 (11)	-0.0059 (9)	0.0053 (9)	-0.0018 (9)
C27	0.0337 (12)	0.0372 (13)	0.0178 (10)	0.0011 (10)	0.0058 (9)	0.0034 (9)
C58	0.0232 (11)	0.0250 (12)	0.0321 (12)	-0.0005 (9)	-0.0080 (9)	-0.0082 (9)
C38	0.0377 (13)	0.0269 (12)	0.0196 (11)	0.0108 (10)	-0.0058 (9)	-0.0020 (9)
C73	0.0254 (11)	0.0247 (12)	0.0277 (11)	0.0064 (9)	0.0078 (9)	0.0006 (9)
C80	0.0186 (10)	0.0230 (11)	0.0353 (12)	0.0034 (8)	0.0009 (9)	-0.0038 (9)
N6	0.0529 (15)	0.0372 (13)	0.0619 (15)	0.0033 (11)	0.0037 (12)	0.0124 (12)
C57	0.0229 (11)	0.0203 (11)	0.0402 (13)	-0.0062 (9)	0.0006 (9)	-0.0022 (10)
C26	0.0328 (12)	0.0389 (14)	0.0159 (10)	0.0006 (10)	-0.0042 (9)	0.0018 (9)
C41	0.0399 (13)	0.0242 (12)	0.0242 (11)	-0.0034 (10)	0.0013 (9)	-0.0009 (9)
C82	0.0243 (11)	0.0296 (13)	0.0365 (12)	-0.0023 (9)	-0.0003 (9)	-0.0141 (10)
C65	0.0368 (13)	0.0233 (12)	0.0337 (12)	-0.0101 (10)	-0.0083 (10)	0.0096 (10)
C81	0.0245 (11)	0.0271 (12)	0.0431 (13)	0.0023 (9)	0.0044 (10)	-0.0150 (10)
C36	0.0471 (14)	0.0279 (13)	0.0234 (11)	0.0031 (11)	0.0089 (10)	0.0053 (9)
C45	0.0446 (14)	0.0209 (12)	0.0385 (13)	0.0081 (10)	0.0106 (11)	0.0030 (10)
C34	0.0397 (14)	0.0330 (14)	0.0391 (14)	-0.0122 (11)	0.0130 (11)	-0.0002 (11)
C77	0.0263 (11)	0.0269 (12)	0.0363 (12)	-0.0042 (9)	-0.0056 (9)	-0.0015 (10)
C40	0.0280 (11)	0.0235 (12)	0.0284 (11)	0.0001 (9)	-0.0022 (9)	-0.0012 (9)
C96	0.0395 (14)	0.0432 (15)	0.0245 (12)	-0.0004 (12)	0.0052 (10)	0.0067 (11)
C39	0.0418 (14)	0.0322 (13)	0.0277 (12)	0.0003 (11)	-0.0141 (10)	-0.0011 (10)
C35	0.0517 (16)	0.0329 (14)	0.0355 (13)	-0.0064 (12)	0.0202 (12)	0.0068 (11)
C44	0.0401 (14)	0.0368 (14)	0.0341 (13)	-0.0156 (11)	-0.0074 (10)	-0.0116 (11)
C42	0.0382 (14)	0.0324 (14)	0.0436 (14)	0.0042 (11)	-0.0068 (11)	0.0035 (11)
C94	0.0470 (16)	0.0321 (14)	0.0419 (14)	-0.0078 (12)	0.0058 (12)	0.0084 (11)
N7	0.0392 (13)	0.109 (2)	0.0481 (15)	0.0146 (14)	0.0087 (11)	0.0306 (16)
C43	0.0297 (13)	0.0428 (16)	0.0504 (15)	0.0011 (11)	-0.0152 (11)	0.0120 (12)
C98	0.0276 (13)	0.0573 (18)	0.0454 (16)	0.0122 (12)	0.0071 (11)	0.0108 (13)
C95	0.0523 (17)	0.062 (2)	0.0424 (15)	0.0185 (15)	0.0022 (13)	0.0110 (14)
C97	0.071 (2)	0.063 (2)	0.0493 (17)	0.0325 (17)	0.0279 (15)	0.0133 (15)
C93	0.0429 (17)	0.099 (3)	0.084 (2)	-0.0192 (18)	-0.0034 (16)	0.043 (2)

Geometric parameters (Å, °)

O4—C23	1.210 (2)	C87—C88	1.385 (3)
O5—C30	1.209 (2)	C67—C66	1.391 (3)
О2—С9	1.209 (2)	C61—C60	1.506 (3)
O8—C54	1.340 (2)	C55—C60	1.398 (3)
O8—C48	1.459 (2)	C55—C56	1.376 (3)
O11—C78	1.213 (2)	C14—H14	0.9300
O12—C85	1.209 (2)	C14—C13	1.386 (3)
O3—C16	1.211 (2)	C60—C59	1.372 (3)
O14—C76	1.212 (3)	C18—H18	0.9300
O13—C61	1.222 (2)	C18—C19	1.383 (3)
O1—C2	1.462 (2)	C76—C77	1.492 (3)

O1—C8	1.332 (3)	С59—Н59	0.9300
O10—C68	1.208 (2)	C59—C58	1.392 (3)
O9—C92	1.213 (2)	С56—Н56	0.9300
O6—C38	1.217 (3)	C56—C57	1.406 (3)
N4—N3	1.385 (2)	С25—Н25	0.9300
N4—C75	1.390 (3)	C25—C26	1.389 (3)
N4—C76	1.397 (3)	С90—Н90	0.9300
N3—C69	1.309 (3)	C90—C89	1.374 (3)
N1—N2	1.386 (2)	C46—C8	1.485 (3)
N1—C31	1.305 (3)	C46—C41	1.377 (3)
N2-C37	1 385 (3)	C46-C45	1.387(3)
N2-C38	1.303(3)	C63—H63	0.9300
07-C40	1.103(3) 1.223(3)	C63 - C64	1.388(3)
C_{31}	1.506 (3)	C71_H71	0.9300
C_{31} C_{32}	1.300(3) 1.437(3)	C71 C72	1.377(3)
$C_{31} = C_{32}$	1.437(3) 1.475(3)	$C_{1} = C_{12}$	0.0300
$C_{84} = C_{83}$	1.475(3) 1.280(2)	C^{83}	0.9300
C_{84}	1.369 (3)	$C_{00} = C_{00} = C$	1.380(3)
$C_{84} = C_{83}$	1.387 (3)	C_{3} C_{3	1.397 (3)
C9—C3	1.534 (5)	C88—H88	0.9300
C9—C10	1.4/8 (3)	C88—C89	1.395 (3)
	1.547 (3)	C/4—H/4	0.9300
C86—C91	1.384 (3)	C/4—C/3	1.379 (3)
C86—C87	1.387 (3)	C28—H28	0.9300
C86—C48	1.511 (3)	C28—C27	1.381 (3)
C1—C30	1.548 (3)	C19—H19	0.9300
C1—C6	1.576 (3)	C19—C20	1.389 (3)
C1—C2	1.547 (3)	C20—H20	0.9300
C1—C23	1.541 (2)	С13—Н13	0.9300
С5—Н5	0.9800	C13—C12	1.396 (3)
C5—C6	1.554 (3)	С89—Н89	0.9300
C5—C4	1.544 (3)	С72—Н72	0.9300
C30—C29	1.478 (3)	С72—С73	1.404 (3)
C6—C15	1.522 (3)	С12—Н12	0.9300
C6—C7	1.494 (3)	С66—Н66	0.9300
C51—H51	0.9800	C66—C65	1.379 (3)
C51—C52	1.552 (3)	N5—C96	1.140 (3)
C51—C50	1.541 (3)	С64—Н64	0.9300
C51—C68	1.522 (3)	C64—C65	1.388 (3)
C78—C79	1.475 (3)	С33—Н33	0.9300
C78—C47	1.546 (3)	C33—C34	1.380(3)
С3—Н3	0.9800	C27—H27	0.9300
C3—C16	1.532 (3)	C27—C26	1.391 (3)
C3—C4	1 546 (3)	C58—H58	0.9300
C3—C2	1.552 (3)	C58—C57	1.386 (3)
C79—C80	1 393 (3)	C38—C39	1 487 (3)
C24—C29	1 387 (3)	С73—Н73	0.9300
C_{24} C_{23}	1 473 (3)	C80—H80	0.9300
C_{24} C_{25}	1 389 (3)	C_{80} C_{81}	1 382 (3)
027 - 023	1.507 (5)		1.502 (5)

C16—C17	1.471 (3)	N6—C94	1.137 (3)
C15—C10	1.393 (3)	C57—H57	0.9300
C15—C14	1.383 (3)	C26—H26	0.9300
C22—C17	1.386 (3)	C41—C40	1.533 (3)
C22—C2	1.508 (3)	C41—C42	1.345 (3)
C22—C21	1.388 (3)	C82—H82	0.9300
C10-C11	1.394 (3)	C82—C81	1.398 (3)
C17—C18	1.393 (3)	С65—Н65	0.9300
C4—H4	0.9800	C81—H81	0.9300
C29—C28	1.388 (3)	С36—Н36	0.9300
C53—C52	1.497 (3)	C36—C35	1.376 (4)
C53—C54	1.341 (3)	C45—H45	0.9300
C53—C61	1 465 (3)	C45-C44	1427(3)
C69—C50	1.504 (3)	C34—H34	0.9300
C69—C70	1434(3)	C34-C35	1 396 (4)
C47—C52	1.566 (3)	C77—H77A	0.9600
C47 - C48	1.556 (3)	C77—H77B	0.9600
C_{52} C_{62}	1 519 (3)	C77—H77C	0.9600
C49—H49	0.9800	C96-C95	1450(4)
C49-C50	1 557 (3)	C39—H39A	0.9600
C49 - C92	1.537(3)	C39—H39B	0.9600
C49 - C48	1.537(3) 1 547(3)	C39—H39C	0.9600
C75—C70	1.402(3)	C35—H35	0.9300
C75—C74	1.395 (3)	C44—H44	0.9300
С50—Н50	0.9800	C44—C43	1 367 (4)
C68—C67	1.479 (3)	C42—H42	0.9300
C62—C67	1.391 (3)	C42—C43	1.369 (4)
C62—C63	1.385 (3)	C94—C93	1.446 (4)
C91—C92	1.472 (3)	N7—C98	1.130 (3)
C91—C90	1.393 (3)	C43—H43	0.9300
C21—H21	0.9300	C98—C97	1.449 (4)
C21—C20	1.389(3)	С95—Н95А	0.9600
С7—С8	1.357 (3)	С95—Н95В	0.9600
C7—C40	1.458 (3)	С95—Н95С	0.9600
C70—C71	1.397 (3)	С97—Н97А	0.9600
C32—C37	1.403 (3)	С97—Н97В	0.9600
C32—C33	1.398 (3)	С97—Н97С	0.9600
C11—H11	0.9300	С93—Н93А	0.9600
C11—C12	1.379 (3)	С93—Н93В	0.9600
C54—C55	1.482 (3)	С93—Н93С	0.9600
С87—Н87	0.9300		
C56····C97	3.381		
C54—O8—C48	114.40 (15)	O13—C61—C53	127.64 (19)
C8-01-C2	114.55 (16)	O13—C61—C60	126.34 (18)
N3—N4—C75	110.99 (15)	C53—C61—C60	105.99 (17)
N3—N4—C76	120.31 (16)	C60—C55—C54	106.07 (17)
	· · ·		. /

C75—N4—C76	128.46 (17)	C56—C55—C54	132.23 (19)
C69—N3—N4	106.46 (16)	C56—C55—C60	121.70 (18)
C31—N1—N2	106.35 (16)	C15—C14—H14	120.9
N1—N2—C38	119.31 (17)	C15—C14—C13	118.17 (19)
C37—N2—N1	111.01 (16)	C13—C14—H14	120.9
C37—N2—C38	129.68 (18)	C55—C60—C61	107.87 (17)
N1—C31—C4	120.49 (17)	C59—C60—C61	130.80 (19)
N1—C31—C32	111.75 (17)	C59—C60—C55	121.31 (19)
C32—C31—C4	127.65 (18)	C17—C18—H18	121.2
C79—C84—C85	110.10 (17)	C19—C18—C17	117.67 (19)
C83—C84—C85	128.56 (18)	C19—C18—H18	121.2
C83—C84—C79	121.33 (18)	O14—C76—N4	119.38 (19)
O2—C9—C5	125.23 (17)	O14—C76—C77	124.24 (19)
O2—C9—C10	128.56 (18)	N4—C76—C77	116.38 (18)
C10—C9—C5	106.10 (15)	С60—С59—Н59	121.2
O12—C85—C84	126.58 (18)	C60—C59—C58	117.7 (2)
O12—C85—C47	125.06 (17)	С58—С59—Н59	121.2
C84—C85—C47	108.36 (15)	С55—С56—Н56	121.5
C91—C86—C87	120.80 (18)	C55—C56—C57	116.9 (2)
C91—C86—C48	110.78 (17)	С57—С56—Н56	121.5
C87—C86—C48	128.33 (18)	C24—C25—H25	121.5
C30—C1—C6	110.73 (15)	C26—C25—C24	117.05 (19)
C2-C1-C30	113.74 (15)	С26—С25—Н25	121.5
C2—C1—C6	107.22 (15)	С91—С90—Н90	120.8
C23—C1—C30	102.10 (15)	C89—C90—C91	118.37 (19)
C23—C1—C6	110.57 (15)	С89—С90—Н90	120.8
C23—C1—C2	112.49 (15)	C41—C46—C8	107.21 (19)
С9—С5—Н5	105.3	C41—C46—C45	121.7 (2)
C9—C5—C6	105.32 (15)	C45—C46—C8	131.1 (2)
C9—C5—C4	115.41 (15)	С62—С63—Н63	121.0
С6—С5—Н5	105.3	C62—C63—C64	118.0 (2)
С4—С5—Н5	105.3	С64—С63—Н63	121.0
C4—C5—C6	119.03 (16)	C70—C71—H71	120.9
O5—C30—C1	125.87 (17)	C72—C71—C70	118.2 (2)
O5—C30—C29	126.24 (18)	C72—C71—H71	120.9
C29—C30—C1	107.88 (15)	С84—С83—Н83	121.2
C5—C6—C1	110.65 (15)	C82—C83—C84	117.58 (19)
C15—C6—C1	110.73 (15)	С82—С83—Н83	121.2
C15—C6—C5	102.11 (15)	N2—C37—C32	106.05 (17)
C7—C6—C1	105.78 (15)	N2—C37—C36	132.3 (2)
C7—C6—C5	110.55 (15)	C36—C37—C32	121.6 (2)
C7—C6—C15	117.06 (16)	С87—С88—Н88	119.4
С52—С51—Н51	105.1	C87—C88—C89	121.24 (19)
C50—C51—H51	105.1	C89—C88—H88	119.4
C50—C51—C52	118.88 (16)	O1—C8—C7	127.61 (18)
C68—C51—H51	105.1	O1—C8—C46	119.59 (19)
C68—C51—C52	105.21 (16)	C7—C8—C46	112.79 (19)
C68—C51—C50	116.21 (16)	С75—С74—Н74	121.5

O11—C78—C79	125.63 (18)	C73—C74—C75	117.0 (2)
O11—C78—C47	126.11 (18)	С73—С74—Н74	121.5
C79—C78—C47	108.23 (15)	С29—С28—Н28	121.4
С16—С3—Н3	105.8	C27—C28—C29	117.29 (19)
C16—C3—C4	113.20 (15)	С27—С28—Н28	121.4
C16—C3—C2	103.99 (15)	С18—С19—Н19	119.6
С4—С3—Н3	105.8	C18—C19—C20	120.77 (19)
C4—C3—C2	121.20 (16)	С20—С19—Н19	119.6
С2—С3—Н3	105.8	C21—C20—C19	121.4 (2)
C84—C79—C78	110.44 (17)	С21—С20—Н20	119.3
C84—C79—C80	121.22 (19)	C19—C20—H20	119.3
C80—C79—C78	128.32 (18)	C14—C13—H13	119.3
C29—C24—C23	110.13 (17)	C14—C13—C12	121.37 (19)
C29—C24—C25	121.53 (18)	С12—С13—Н13	119.3
C_{25} C_{24} C_{23}	128.34 (18)	C90—C89—C88	120.58 (19)
03-C16-C3	125.36 (18)	C90—C89—H89	119.7
O3-C16-C17	127.32 (18)	C88—C89—H89	119.7
C17—C16—C3	107.28 (16)	С71—С72—Н72	119.6
C10-C15-C6	111.13 (16)	C71—C72—C73	120.74 (19)
C14—C15—C6	128.23 (18)	С73—С72—Н72	119.6
C14—C15—C10	120.41 (18)	C11—C12—C13	120.68 (19)
C17—C22—C2	111.26 (17)	С11—С12—Н12	119.7
C17—C22—C21	120.37 (18)	С13—С12—Н12	119.7
C21—C22—C2	128.36 (18)	С67—С66—Н66	121.0
C15—C10—C9	109.98 (17)	C65—C66—C67	118.0 (2)
C15—C10—C11	121.48 (18)	С65—С66—Н66	121.0
С11—С10—С9	128.53 (18)	С63—С64—Н64	119.3
C22—C17—C16	109.69 (17)	C65—C64—C63	121.3 (2)
C22—C17—C18	121.74 (19)	С65—С64—Н64	119.3
C18—C17—C16	128.48 (18)	С32—С33—Н33	121.3
C31—C4—C5	108.61 (15)	C34—C33—C32	117.4 (2)
C31—C4—C3	111.12 (16)	С34—С33—Н33	121.3
C31—C4—H4	107.0	С28—С27—Н27	119.2
C5—C4—C3	115.73 (15)	C28—C27—C26	121.64 (19)
C5—C4—H4	107.0	С26—С27—Н27	119.2
C3—C4—H4	107.0	С59—С58—Н58	119.4
C24—C29—C30	110.10 (17)	C57—C58—C59	121.23 (19)
C24—C29—C28	121.29 (19)	С57—С58—Н58	119.4
C28—C29—C30	128.60 (18)	O6—C38—N2	119.1 (2)
C54—C53—C52	122.47 (17)	O6—C38—C39	125.5 (2)
C54—C53—C61	107.98 (17)	N2-C38-C39	115.44 (18)
C61—C53—C52	129.32 (18)	C74—C73—C72	122.1 (2)
N3—C69—C50	120.24 (17)	С74—С73—Н73	119.0
N3—C69—C70	111.48 (17)	С72—С73—Н73	119.0
C70—C69—C50	128.27 (17)	С79—С80—Н80	121.3
C85—C47—C52	113.18 (15)	C81—C80—C79	117.44 (19)
C85—C47—C48	109.61 (15)	C81—C80—H80	121.3
C78—C47—C85	102.46 (15)	С56—С57—Н57	119.4

C78—C47—C52	113.40 (15)	C58—C57—C56	121.1 (2)
C78—C47—C48	111.25 (15)	С58—С57—Н57	119.4
C48—C47—C52	106.96 (15)	C25—C26—C27	121.2 (2)
C51—C52—C47	111.70 (15)	C25—C26—H26	119.4
C53—C52—C51	109.94 (16)	С27—С26—Н26	119.4
C53—C52—C47	105.09 (15)	C46—C41—C40	106.12 (19)
C53—C52—C62	116.14 (16)	C42—C41—C46	121.9 (2)
C62—C52—C51	102.52 (15)	C42—C41—C40	131.9 (2)
C62—C52—C47	111.61 (16)	С83—С82—Н82	119.5
С50—С49—Н49	105.9	C83—C82—C81	121.1 (2)
С92—С49—Н49	105.9	С81—С82—Н82	119.5
C92—C49—C50	113.21 (16)	C66—C65—C64	120.9 (2)
C92—C49—C48	103.88 (15)	С66—С65—Н65	119.6
C48—C49—H49	105.9	С64—С65—Н65	119.6
C48—C49—C50	120.92 (16)	C80—C81—C82	121.4 (2)
N4—C75—C70	105.78 (17)	С80—С81—Н81	119.3
N4—C75—C74	132.58 (19)	С82—С81—Н81	119.3
C74—C75—C70	121.62 (19)	С37—С36—Н36	121.8
C51—C50—C49	115.83 (16)	C35—C36—C37	116.4 (2)
С51—С50—Н50	107.1	С35—С36—Н36	121.8
C69—C50—C51	110.46 (15)	C46—C45—H45	122.0
C69—C50—C49	108.86 (16)	C46—C45—C44	115.9 (2)
С69—С50—Н50	107.1	C44—C45—H45	122.0
С49—С50—Н50	107.1	С33—С34—Н34	119.5
O10-C68-C51	126.50 (19)	C33—C34—C35	121.1 (2)
O10—C68—C67	127.61 (19)	С35—С34—Н34	119.5
C67—C68—C51	105.82 (16)	С76—С77—Н77А	109.5
O1—C2—C1	110.26 (15)	С76—С77—Н77В	109.5
O1—C2—C3	110.31 (15)	С76—С77—Н77С	109.5
O1—C2—C22	106.47 (15)	Н77А—С77—Н77В	109.5
C1—C2—C3	111.97 (15)	Н77А—С77—Н77С	109.5
C22—C2—C1	113.71 (15)	Н77В—С77—Н77С	109.5
C22—C2—C3	103.82 (15)	O7—C40—C7	126.6 (2)
C67—C62—C52	110.90 (17)	O7—C40—C41	125.4 (2)
C63—C62—C52	128.49 (18)	C7—C40—C41	108.01 (19)
C63—C62—C67	120.61 (19)	N5—C96—C95	179.1 (3)
C86—C91—C92	109.94 (17)	С38—С39—Н39А	109.5
C86—C91—C90	121.00 (19)	С38—С39—Н39В	109.5
C90—C91—C92	129.03 (18)	С38—С39—Н39С	109.5
C22—C21—H21	121.0	Н39А—С39—Н39В	109.5
C22—C21—C20	118.03 (19)	Н39А—С39—Н39С	109.5
C20—C21—H21	121.0	H39B—C39—H39C	109.5
C8—C7—C6	121.15 (18)	C36—C35—C34	122.7 (2)
C8—C7—C40	105.57 (18)	С36—С35—Н35	118.7
C40—C7—C6	132.4 (2)	С34—С35—Н35	118.7
C75—C70—C69	105.28 (17)	C45—C44—H44	120.1
C71—C70—C69	134.30 (19)	C43—C44—C45	119.8 (2)
C71—C70—C75	120.39 (19)	C43—C44—H44	120.1

C37—C32—C31	104.82 (18)	C41—C42—H42	121.1
C33—C32—C31	134.31 (19)	C41—C42—C43	117.8 (2)
C33—C32—C37	120.83 (19)	C43—C42—H42	121.1
C10-C11-H11	121.1	N6—C94—C93	179.0 (3)
C12—C11—C10	117.85 (19)	C44—C43—C42	122.8 (2)
C12—C11—H11	121.1	C44—C43—H43	118.6
O8—C54—C53	126.87 (18)	C42—C43—H43	118.6
O8—C54—C55	121.15 (17)	N7—C98—C97	179.6 (4)
C53—C54—C55	111.98 (17)	С96—С95—Н95А	109.5
O9—C92—C49	125.08 (18)	С96—С95—Н95В	109.5
O9—C92—C91	127.74 (18)	С96—С95—Н95С	109.5
C91—C92—C49	107.14 (16)	Н95А—С95—Н95В	109.5
С86—С87—Н87	121.0	Н95А—С95—Н95С	109.5
C88—C87—C86	117.96 (18)	Н95В—С95—Н95С	109.5
С88—С87—Н87	121.0	С98—С97—Н97А	109.5
O4—C23—C1	125.15 (17)	С98—С97—Н97В	109.5
O4—C23—C24	126.65 (17)	С98—С97—Н97С	109.5
C24—C23—C1	108.20 (15)	Н97А—С97—Н97В	109.5
O8—C48—C86	106.96 (15)	Н97А—С97—Н97С	109.5
O8—C48—C47	110.46 (15)	Н97В—С97—Н97С	109.5
O8—C48—C49	111.29 (15)	С94—С93—Н93А	109.5
C86—C48—C47	112.23 (16)	С94—С93—Н93В	109.5
C86—C48—C49	103.93 (15)	С94—С93—Н93С	109.5
C49—C48—C47	111.72 (15)	Н93А—С93—Н93В	109.5
C62—C67—C68	110.09 (18)	Н93А—С93—Н93С	109.5
C62—C67—C66	121.2 (2)	Н93В—С93—Н93С	109.5
C66—C67—C68	128.56 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C14—H14…O11 ⁱ	0.93	2.48	3.217 (2)	136
С19—Н19…О9 ^{іі}	0.93	2.58	3.277 (3)	132
C26—H26…O13	0.93	2.56	3.147 (3)	121
C39—H39 <i>B</i> ····O7 ⁱⁱⁱ	0.96	2.49	3.443 (3)	174
C44—H44…O2 ⁱⁱⁱ	0.93	2.59	3.446 (3)	153
C65—H65…O14 ^{iv}	0.93	2.40	3.112 (3)	133
C80—H80…O5 ⁱ	0.93	2.33	3.235 (2)	164
C82—H82····O3 ^v	0.93	2.51	3.278 (3)	141
C83—H83····O4 ^v	0.93	2.53	3.289 (2)	139
C88—H88…O7 ⁱ	0.93	2.53	3.313 (3)	142
C89—H89…O3 ^{vi}	0.93	2.44	3.323 (3)	159
C93—H93 <i>B</i> ····O5 ^{vii}	0.96	2.57	3.341 (4)	137
С97—Н97В…О10	0.96	2.31	3.072 (3)	1361
C51—H51…N3	0.98	2.55	3.000 (3)	108

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*+2, -*z*+1; (vi) *x*, -*y*+3/2, *z*+1/2; (vii) -*x*, -*y*+1, -*z*+1.