

Received 15 August 2018

Accepted 15 September 2018

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; bis-amides; intermolecular hydrogen bonds; Hirshfeld surface analysis.

CCDC reference: 1578746

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of *N*,*N*'-bis(2-nitrophenyl)glutaramide

Akshatha R. Salian,^a Sabine Foro,^b S. Madan Kumar^c and B. Thimme Gowda^{a,d}*

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, ^cPURSE Lab, Mangalore University, Mangalagangothri 574 199, India, and ^dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India. *Correspondence e-mail: gowdabt@yahoo.com

The asymmetric unit of the title compound, $C_{17}H_{16}N_4O_6$, contains two independent molecules (*A* and *B*). The two benzene rings are twisted by an angle of 79.14 (7)° in molecule *A*, whereas, in molecule *B*, they are inclined by 19.02 (14)°. The conformations of the molecules are stabilized by intramolecular $N-H \cdots O$ hydrogen bonds between the amide nitrogen atom and the O atom of the *ortho*-nitro substituent on the phenyl ring, enclosing an *S*(6) ring motif. In the amide and aliphatic segments, all the N-H, C=O and C-H bonds are *anti* to each other. In the crystal, the *A* and *B* molecules are linked by intermolecular amide-to-amide $N-H \cdots O$ hydrogen bonds, resulting in chains running along the *b*-axis direction. The intermolecular interactions were analysed using Hirshfeld surface analysis. The two-dimensional fingerprint plots of the intermolecular contacts indicate that the major contributions are from $H \cdots H$ and $O \cdots H$ interactions.

1. Chemical context

Alkanediamide derivatives are known to possess a variety of biological activities. There has been a study on the influence of the length of the connecting chain on the antimalarial activity of bisquinolines (Raynes *et al.*, 1995) and OER (oxygen evolution rate) inhibiting activity in spinach in a series of N,N'-bis(3,4-dichlorophenyl)alkanediamides (Kubicova *et al.*, 2000*a,b*). The crystal structures of a homologous series of bis(pyridinecarboxamido)alkanes have been studied to analyse their supramolecular structures (Sarkar & Biradha, 2006). As a part of a study on substituent effects on the structures of bis-amides, the crystal structure of N,N'-bis(2-nitrophenyl)glutaramide has been determined and is described in the present work.

2. Structural commentary

The asymmetric unit of the title compound (I) contains two independent molecules (designated as A and B in Fig. 1), and four molecules in the unit cell. In both the molecules present in the asymmetric unit, all the N-H, C=O and C-H bonds

Figure 1

Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity.

of the amide and aliphatic segments are *anti* to each other. The conformation of the nearest C==O group is *anti* to the *ortho*nitro group in the aniline ring in one half of each molecule, as indicated by the torsion angles of -159.5 (3) and -161.9 (3)° for C2-C1-N1-C7 and C19-C18-N5-C24, respectively. In the other half, they are *syn* to the *ortho*-substituent as shown by the torsion angles of 48.6 (4) and -50.6 (4)° for C13-C12-N2-C11 and C30-C29-N6-C28, respectively. The O1-C7, O2-C11, O7-C24 and O8-C28 bond lengths are 1.213 (3), 1.224 (3), 1.218 (3) and 1.218 (3) Å, respectively, which indicate that the molecules exist in their keto forms in the solid state. In molecule *A*, the bis-amide group forms dihedral angles of 24.79 (12) and 55.04 (7)° with the phenyl rings C1-C6 and C12-C17, respectively. In molecule *B*, the plane of the amide group forms dihedral angles of 34.24 (13)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,	, , , ,			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1N\cdots O4$	0.86 (2)	2.01 (3)	2.639 (3)	130 (3)
$N2-H2N\cdots O8$	0.86(2)	2.17 (2)	3.002 (3)	162 (3)
$C3-H3\cdots O5^{i}$	0.93	2.49	3.337 (4)	151
$C14-H14\cdots O6^{ii}$	0.93	2.50	3.267 (3)	140
N5−H5N···O10	0.86(2)	2.01 (3)	2.651(3)	130 (3)
$N6-H6N\cdots O2^{iii}$	0.86(2)	2.11(2)	2.959 (3)	171 (3)
$C27 - H27B \cdot \cdot \cdot O2^{iii}$	0.97	2.55	3.396 (3)	146
$C31\!-\!H31\!\cdots\!O12^{iv}$	0.93	2.49	3.238 (3)	138

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y + 2, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z + 1.

and 24.27 (12)° with the C18–C23 and C29–C34 phenyl rings, respectively, while the two benzene rings form a dihedral angle of 79.14 (7) and 19.02 (14)° in molecules *A* and *B*, respectively. The planes of molecules *A* and *B* are almost coplanar with each other, as is evident from the dihedral angle of only 3.15 (17)° between phenyl rings C1–C6 and C18–C23.

The O atoms of the *ortho*-substituted nitro groups attached to the C1/C6 and C18/C23 phenyl rings form short intramolecular contacts, each of 2.01 (3) Å, with the nearest amide N atom, forming an $N-H\cdots O$ contact resulting in an S(6) hydrogen bonding motif.

3. Supramolecular features

In the crystal, the molecules are linked by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2). An intermolecular amide-to-amide $N-H\cdots O$ hydrogen bond

Hydrogen-bonding pattern in (I) with hydrogen bonds shown as dashed lines.

Figure 3 Molecular packing of (I) with hydrogen bonds shown as dashed lines.

between two bis-amide groups results in molecular chains running along the *b*-axis direction. The oxygen atom of the amide C=O group in molecule *B* forms a bifurcated hydrogen bond with the N-H group of the amide unit and the C-H group of the aliphatic chain of an adjacent molecule. The C3-H3 unit of the C1-C6 ring of molecule *A* forms a short intermolecular contact with the oxygen atom O5 belonging to the nitro group of the C12-C17 phenyl ring of another *A* molecule at position -x, 1 - y, -z. C-H groups of the C12-

Figure 4

View of the Hirshfeld surface mapped over d_{norm} for the two independent molecules (A and B). The colour scale is between -0.21 au (red) to 1.2 au (blue).

Figure 5 View of the Hirshfeld surface mapped over the electrostatic potential for the two molecules (*A* and *B*).

C17 and C29–C34 phenyl rings form hydrogen bonds with the O atoms of the nitro groups of the C12/C17 and C29/C34 phenyl rings at -x, -y + 2, -z + 1 and -x + 1, -y + 1, -z + 1, respectively. A packing diagram of the title compound is shown in Fig. 3.

4. Hirshfeld Surface analysis

The intermolecular contacts in the crystal structure were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, generated using *CrystalExplorer* (Figs. 4, 5 and 6). The red-coloured areas of the Hirshfeld surface indicate intermolecular interactions (McKinnon *et al.*, 2004; Spackman & McKinnon, 2002; Spackman & Jayatilaka, 2009; Madan *et al.*, 2013). Dark-red areas on the d_{norm} surface arise as a result of short interatomic contacts, *i.e.* strong hydrogen bonds, while the other intermolecular interactions appear as light-red spots (Fig. 4). In the surface mapped over the electrostatic potential (Fig. 5), blue and red regions around the atoms correspond to the positive and negative electrostatic potentials of the N-H···O and C-H···O hydrogen-bond donors and acceptors, respectively.

Figure 6

Two-dimensional fingerprint plots for the title compound showing the contributions of different types of interactions

research communications

In the two-dimensional fingerprint plot (Fig. 6), d_i is the closest internal distance from a given point on the Hirshfeld surface to the nearest atom and d_e is the closest external contact. The outline of the full fingerprint is shown in grey. The fingerprint plots are used to plot intermolecular contacts with respect to d_i and d_e . Visualization of the Hirshfeld surfaces and fingerprint plots allow the intermolecular interactions to be quantified. The fingerprint plot of $O \cdots H/H \cdots O$ contacts shows two symmetrical narrow pointed wings, which represent the largest contribution to the Hirshfeld surfaces (41.7%), with $d_e + d_i \sim 2.4$ Å (Fig. 6b). H···H contacts represent the next largest contribution to the Hirshfeld surfaces (29.2%) and show a distinct pattern with a minimum value of $d_e = d_i \sim 1.2$ Å (Fig. 6c). $O \cdots C/C \cdots O$ and $N \cdots H/$ H···N interactions cover only 5.4% (Fig. 6d) and 3.4% (Fig. 6e) of the surface, respectively. Two triangles featuring the $C \cdot \cdot \cdot C$ contacts contribute 3.2% to the Hirshfeld surfaces, with a minimum $(d_e + d_i)$ distance of 3.5 Å (Fig. 6*f*).

5. Related structures

The structure of bis-amides, namely, 3-methyl; 2-chloropropanediamides (Gowda *et al.*, 2010*b,c*), *N,N'*-bis(phenyl)suberamide (Gowda *et al.*, 2010*a*), bis-2-methyl; 2-chloro; 4-chlorosuccinamide (Saraswathi *et al.*, 2011*a*, 2011*b*, Purandara *et al.*, 2012) and bis-3-chlorophenylmalonamide (Rodrigues *et al.*, 2011) have been investigated as part of our studies on the substituent effect on the structures and other aspects of the bis-amides. The title compound is similar to these compounds with the difference being the length of the aliphatic chain, substituent type and position in the phenyl ring of the molecule.

6. Synthesis and crystallization

A mixture of glutaric acid (0.2 mol) and thionyl chloride (1.0 mol) was heated for half an hour at 363 K. Then 2nitroaniline (0.4 mol) was added dropwise under stirring. The resultant mixture was stirred for 3 h and left standing for 12 h for the completion of the reaction. The product was added to crushed ice. The white precipitate obtained was washed thoroughly with water and then with saturated sodium bicarbonate solution and again with water. It was washed first with 2 N HCl, then with water, collected by filtration, dried and recrystallized from dimethyl formamide (melting point: 503-504 K). The purity of the compound was checked by TLC and it was characterized by IR spectroscopy. The characteristic absorptions were observed at 3334.9, 1693.5 and 1330.9 cm^{-1} for N-H, C=O and C-N, respectively. ¹H NMR (400 MHz, DMSO, δ in p.p.m): 1.93 to 2.00 (q, 1H, alkyl-H), 2.48 (t, 2H, alkyl-H, J = 7.4 Hz), 7.95 (dd, 1H, Ar-H, J = 8.2, 1.4 Hz), 7.28-7.33 (m, 1H, Ar-H), 7.63-7.70 (m, 1H, Ar-H), 7.82 (dd, 1H, Ar-H, J = 8.2, 1.2 Hz), 10.24 (s, 1H, -NH-). ¹³C NMR (100 MHz, DMSO, δ in p.p.m): 20.40, 35.19, 124.38, 124.65, 124.68, 131.71, 133.75, 141.36 and 170.82. Rod-shaped yellow single crystals of the title compound were obtained by slow evaporation of a DMF solution at room temperature.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{17}H_{16}N_4O_6$
M _r	372.34
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	9.625 (1), 9.673 (1), 18.500 (2)
α, β, γ (°)	95.37 (1), 93.38 (1), 92.77 (1)
$V(Å^3)$	1709.3 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.48 \times 0.26 \times 0.06$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.948, 0.993
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10696, 6248, 3877
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.158, 1.05
No. of reflections	6248
No. of parameters	499
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.27, -0.22

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015) and PLATON (Spek, 2003).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned with idealized geometry $[C-H = 0.93 \text{ Å or } 0.97 \text{ Å (methyl$ $ene)}]$ and refined using a riding model with $U_{iso}(H) =$ $1.2U_{eq}(C)$. The H atoms of the NH groups were located in a difference map and later restrained to a distance of N-H = 0.86 (2) Å. They were refined with $U_{iso}(H) = 1.2 U_{eq}(N)$.

Acknowledgements

The authors thank SAIF Panjab University for use of their NMR equipment and Mangalore University for providing all the facilities required.

Funding information

ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST–PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty. References

- Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010a). Acta Cryst. E66, o1363.
- Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o3037.
- Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010c). Acta Cryst. E66, o3038.
- Kubicova, L., Kralova, K., Kunes, J. & Waisser, K. (2000a). Chem. Papers, **54**, 90–93.
- Kubicova, L., Waisser, K., Kunes, J., Kralova, K., Odlerova, Z., Slosarek, M., Janota, J. & Svoboda, Z. (2000b). *Molecules*, 5, 714– 726.
- Madan, K. S., Manjunath, B. C., Lingaraju, G. S., Abdoh, M. M. M., Sadashiva, M. P. & Lokanath, N. K. (2013). *Cryst. Struct. Theor. Appl.* **3**, 124–131.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.

- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
- Purandara, H., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, 02063.
- Raynes, K., Galatis, D., Cowman, A. F., Tilley, L. & Deady, L. W. (1995). J. Med. Chem. 38, 204–206.
- Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, 02278.
- Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, 0607.
- Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, 01139.
- Sarkar, M. & Biradha, K. (2006). Cryst. Growth Des. 6, 202-208.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378– 392.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2018). E74, 1455-1459 [https://doi.org/10.1107/S2056989018013075]

Crystal structure and Hirshfeld surface analysis of *N*,*N*'-bis(2-nitrophenyl)-glutaramide

Akshatha R. Salian, Sabine Foro, S. Madan Kumar and B. Thimme Gowda

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS2013/1* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/6* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL2014/6* (Sheldrick, 2015).

N,*N*'-bis(2-nitrophenyl)glutaramide

Crystal data

 $C_{17}H_{16}N_4O_6$ $M_r = 372.34$ Triclinic, P1 a = 9.625 (1) Å b = 9.673 (1) Å c = 18.500 (2) Å $\alpha = 95.37 (1)^{\circ}$ $\beta = 93.38 (1)^{\circ}$ $\gamma = 92.77 (1)^{\circ}$ $V = 1709.3 (3) \text{ Å}^{3}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.948, T_{\max} = 0.993$

10696 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.158$ S = 1.056248 reflections 499 parameters 4 restraints Z = 4 F(000) = 776 $D_x = 1.447 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2127 reflections $\theta = 2.9-27.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 KRod, yellow $0.48 \times 0.26 \times 0.06 \text{ mm}$

6248 independent reflections 3877 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 6$ $l = -20 \rightarrow 22$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0698P)^{2} + 0.4948P] \qquad \Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.3147 (3)	0.67820 (19)	0.05292 (11)	0.0655 (7)
O2	0.2237 (2)	0.73540 (16)	0.33207 (10)	0.0451 (5)
O3	0.0896 (3)	0.2146 (3)	-0.18879 (14)	0.1000 (10)
O4	0.0869 (3)	0.2646 (3)	-0.07551 (13)	0.0799 (8)
05	-0.0882 (2)	0.6967 (2)	0.35971 (12)	0.0655 (6)
O6	-0.0156 (2)	0.9019 (2)	0.40685 (13)	0.0644 (6)
N1	0.2543 (3)	0.4663 (2)	-0.00794 (13)	0.0491 (6)
H1N	0.206 (3)	0.391 (2)	-0.0022 (16)	0.059*
N2	0.1565 (3)	0.5376 (2)	0.37960 (12)	0.0408 (6)
H2N	0.154 (3)	0.4480 (18)	0.3730 (15)	0.049*
N3	0.1320 (3)	0.2859 (3)	-0.13395 (15)	0.0515 (6)
N4	-0.0203 (2)	0.7745 (2)	0.40554 (13)	0.0452 (6)
C1	0.2958 (3)	0.4828 (3)	-0.07765 (14)	0.0393 (6)
C2	0.2399 (3)	0.3959 (3)	-0.13878 (15)	0.0408 (7)
C3	0.2840 (3)	0.4113 (3)	-0.20821 (16)	0.0543 (8)
H3	0.2461	0.3520	-0.2477	0.065*
C4	0.3825 (4)	0.5128 (4)	-0.21869 (18)	0.0607 (9)
H4	0.4111	0.5237	-0.2651	0.073*
C5	0.4389 (3)	0.5990 (3)	-0.15941 (18)	0.0551 (8)
Н5	0.5061	0.6682	-0.1663	0.066*
C6	0.3978 (3)	0.5847 (3)	-0.09057 (17)	0.0485 (7)
H6	0.4384	0.6437	-0.0517	0.058*
C7	0.2653 (3)	0.5604 (3)	0.05253 (15)	0.0424 (7)
C8	0.2078 (3)	0.5029 (3)	0.11788 (15)	0.0480 (7)
H8A	0.2476	0.4141	0.1238	0.058*
H8B	0.1079	0.4858	0.1088	0.058*
C9	0.2354 (3)	0.5960 (3)	0.18866 (14)	0.0441 (7)
H9A	0.3341	0.6228	0.1956	0.053*
H9B	0.1850	0.6800	0.1859	0.053*
C10	0.1911 (4)	0.5236 (3)	0.25192 (15)	0.0541 (8)
H10A	0.2503	0.4462	0.2572	0.065*
H10B	0.0966	0.4849	0.2406	0.065*
C11	0.1953 (3)	0.6099 (2)	0.32375 (14)	0.0361 (6)
C12	0.1367 (3)	0.5978 (2)	0.45035 (14)	0.0336 (6)
C13	0.0578 (3)	0.7132 (3)	0.46469 (14)	0.0360 (6)
C14	0.0414 (3)	0.7718 (3)	0.53445 (16)	0.0482 (8)

H14	-0.0110	0.8496	0.5418	0.058*
C15	0.1025 (3)	0.7150 (3)	0.59281 (16)	0.0548 (8)
H15	0.0925	0.7541	0.6400	0.066*
C16	0.1794 (3)	0.5988 (3)	0.58054 (16)	0.0546 (8)
H16	0.2198	0.5586	0.6198	0.065*
C17	0.1970 (3)	0.5415 (3)	0.51009 (16)	0.0451 (7)
H17	0.2501	0.4642	0.5029	0.054*
07	0.3045 (3)	0.17649 (19)	0.05705 (11)	0.0663 (7)
08	0.2036 (2)	0.23692 (17)	0.33766 (10)	0.0448 (5)
09	0.0953 (3)	-0.2729 (3)	-0.19779 (13)	0.0802 (8)
O10	0.0912 (3)	-0.2415 (2)	-0.08189 (13)	0.0700 (7)
011	0.5169 (2)	0.2177 (2)	0.34074 (12)	0.0629 (6)
012	0.4749 (2)	0.41508 (19)	0.39786 (11)	0.0568 (6)
N5	0.2408 (3)	-0.0328 (2)	-0.00706 (13)	0.0455 (6)
H5N	0.197 (3)	-0.112 (2)	-0.0042 (16)	0.055*
N6	0.2854 (2)	0.0364 (2)	0.37197 (12)	0.0376 (5)
H6N	0.272 (3)	-0.0524 (18)	0.3653 (14)	0.045*
N7	0.1378 (3)	-0.2110 (2)	-0.13923 (15)	0.0509 (6)
N8	0.4744 (2)	0.2875 (2)	0.39265 (13)	0.0432 (6)
C18	0.2939 (3)	-0.0158 (3)	-0.07437 (14)	0.0386 (6)
C19	0.2469 (3)	-0.1001 (3)	-0.13854 (15)	0.0407 (7)
C20	0.3026 (3)	-0.0821 (3)	-0.20481 (16)	0.0559 (8)
H20	0.2700	-0.1393	-0.2461	0.067*
C21	0.4051 (4)	0.0189 (3)	-0.20990 (17)	0.0592 (9)
H21	0.4422	0.0306	-0.2544	0.071*
C22	0.4527 (3)	0.1035 (3)	-0.14813 (17)	0.0530 (8)
H22	0.5213	0.1733	-0.1514	0.064*
C23	0.3996 (3)	0.0855 (3)	-0.08174 (15)	0.0463 (7)
H23	0.4351	0.1422	-0.0408	0.056*
C24	0.2492 (3)	0.0601 (3)	0.05446 (15)	0.0422 (7)
C25	0.1819 (3)	0.0042 (3)	0.11826 (14)	0.0429 (7)
H25A	0.2108	-0.0894	0.1229	0.052*
H25B	0.0815	-0.0008	0.1089	0.052*
C26	0.2196 (3)	0.0934 (3)	0.18947 (14)	0.0410 (7)
H26A	0.1857	0.1855	0.1859	0.049*
H26B	0.3202	0.1029	0.1975	0.049*
C27	0.1582 (3)	0.0320 (3)	0.25438 (14)	0.0434 (7)
H27A	0.0575	0.0352	0.2503	0.052*
H27B	0.1811	-0.0645	0.2545	0.052*
C28	0.2149 (3)	0.1123 (2)	0.32459 (14)	0.0340 (6)
C29	0.3407 (3)	0.0933 (2)	0.44173 (14)	0.0334 (6)
C30	0.4243 (3)	0.2158 (2)	0.45335 (14)	0.0348 (6)
C31	0.4704 (3)	0.2724 (3)	0.52307 (16)	0.0463 (7)
H31	0.5248	0.3553	0.5295	0.056*
C32	0.4354 (3)	0.2058 (3)	0.58253 (16)	0.0539 (8)
H32	0.4655	0.2433	0.6293	0.065*
C33	0.3553 (3)	0.0829 (3)	0.57198 (16)	0.0538 (8)
H33	0.3325	0.0367	0.6119	0.065*

C34	0.3083 (3)	0.0273 (3)	0.50262 (15)	0.0448 (7)
4	0.2542	-0.0557	0.4967	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.111 (2)	0.0311 (11)	0.0515 (13)	-0.0148 (12)	0.0110 (12)	-0.0030 (9)
O2	0.0691 (13)	0.0216 (9)	0.0441 (11)	-0.0060 (9)	0.0122 (10)	-0.0012 (8)
O3	0.111 (2)	0.118 (2)	0.0579 (17)	-0.0585 (19)	-0.0034 (15)	-0.0241 (15)
O4	0.0968 (19)	0.0837 (17)	0.0527 (16)	-0.0467 (15)	0.0060 (14)	-0.0017 (13)
O5	0.0732 (16)	0.0596 (14)	0.0594 (15)	0.0004 (12)	-0.0224 (12)	0.0010 (11)
O6	0.0776 (16)	0.0361 (12)	0.0822 (17)	0.0150 (11)	0.0116 (13)	0.0100 (11)
N1	0.0760 (19)	0.0321 (12)	0.0369 (14)	-0.0132 (12)	0.0053 (12)	-0.0010 (11)
N2	0.0626 (16)	0.0208 (10)	0.0395 (14)	0.0009 (11)	0.0136 (11)	0.0003 (10)
N3	0.0525 (16)	0.0524 (15)	0.0454 (16)	-0.0078 (13)	-0.0075 (13)	-0.0049 (13)
N4	0.0467 (15)	0.0373 (14)	0.0520 (16)	0.0063 (11)	0.0070 (12)	0.0020 (12)
C1	0.0477 (17)	0.0326 (14)	0.0374 (16)	0.0024 (12)	-0.0005 (13)	0.0045 (12)
C2	0.0438 (16)	0.0379 (15)	0.0400 (17)	0.0018 (13)	-0.0035 (13)	0.0032 (12)
C3	0.062 (2)	0.064 (2)	0.0360 (18)	0.0035 (17)	-0.0036 (15)	0.0015 (15)
C4	0.066 (2)	0.074 (2)	0.046 (2)	0.0075 (19)	0.0119 (17)	0.0167 (17)
C5	0.0527 (19)	0.0509 (18)	0.065 (2)	0.0003 (15)	0.0138 (16)	0.0166 (16)
C6	0.0539 (18)	0.0393 (16)	0.0509 (19)	-0.0059 (14)	0.0024 (14)	0.0017 (13)
C7	0.0597 (19)	0.0290 (14)	0.0371 (16)	-0.0001 (13)	-0.0012 (13)	0.0008 (12)
C8	0.069 (2)	0.0327 (15)	0.0414 (17)	-0.0047 (14)	0.0072 (15)	-0.0005 (12)
C9	0.066 (2)	0.0299 (14)	0.0355 (16)	-0.0008 (13)	0.0070 (14)	-0.0023 (12)
C10	0.092 (2)	0.0304 (15)	0.0388 (17)	-0.0057 (15)	0.0142 (16)	-0.0030 (12)
C11	0.0445 (16)	0.0273 (14)	0.0367 (15)	0.0010 (12)	0.0086 (12)	0.0016 (11)
C12	0.0343 (14)	0.0313 (13)	0.0349 (15)	-0.0054 (11)	0.0070 (11)	0.0031 (11)
C13	0.0397 (15)	0.0316 (14)	0.0355 (15)	-0.0061 (12)	0.0040 (12)	0.0003 (11)
C14	0.0534 (18)	0.0427 (16)	0.0459 (18)	-0.0076 (14)	0.0140 (15)	-0.0117 (14)
C15	0.059 (2)	0.067 (2)	0.0349 (18)	-0.0189 (17)	0.0070 (15)	-0.0050 (15)
C16	0.0450 (18)	0.077 (2)	0.0412 (19)	-0.0155 (17)	-0.0016 (14)	0.0176 (16)
C17	0.0406 (16)	0.0461 (17)	0.0506 (19)	-0.0011 (13)	0.0056 (14)	0.0147 (14)
O7	0.118 (2)	0.0311 (11)	0.0479 (13)	-0.0172 (12)	0.0230 (13)	-0.0062 (9)
08	0.0652 (13)	0.0241 (10)	0.0440 (12)	0.0046 (9)	-0.0024 (9)	0.0004 (8)
09	0.0763 (17)	0.0865 (17)	0.0662 (17)	-0.0178 (14)	-0.0146 (13)	-0.0306 (13)
O10	0.0775 (17)	0.0651 (15)	0.0622 (16)	-0.0260 (13)	0.0001 (13)	-0.0028 (12)
O11	0.0771 (16)	0.0529 (13)	0.0581 (14)	-0.0100 (11)	0.0341 (12)	-0.0102 (11)
O12	0.0718 (15)	0.0289 (11)	0.0686 (15)	-0.0100 (10)	0.0086 (11)	0.0032 (9)
N5	0.0667 (17)	0.0322 (12)	0.0354 (14)	-0.0096 (12)	0.0028 (12)	-0.0016 (10)
N6	0.0516 (14)	0.0201 (10)	0.0393 (13)	-0.0046 (10)	-0.0016 (11)	0.0001 (10)
N7	0.0477 (15)	0.0455 (14)	0.0551 (17)	0.0016 (12)	-0.0094 (13)	-0.0094 (13)
N8	0.0452 (14)	0.0335 (13)	0.0494 (15)	-0.0088 (11)	0.0105 (11)	-0.0035 (11)
C18	0.0478 (17)	0.0310 (14)	0.0366 (16)	0.0050 (12)	0.0008 (13)	0.0000 (11)
C19	0.0445 (16)	0.0370 (15)	0.0385 (16)	0.0058 (13)	-0.0044 (13)	-0.0048 (12)
C20	0.065 (2)	0.061 (2)	0.0389 (19)	0.0070 (17)	-0.0041 (15)	-0.0070 (15)
C21	0.068 (2)	0.067 (2)	0.0425 (19)	0.0055 (18)	0.0116 (16)	0.0030 (16)
C22	0.057 (2)	0.0473 (18)	0.055 (2)	-0.0008 (15)	0.0095 (16)	0.0054 (15)

C23	0.0570 (19)	0.0407 (16)	0.0390 (17)	-0.0041 (14)	0.0023 (14)	-0.0036 (12)
C24	0.0616 (19)	0.0280 (14)	0.0365 (16)	0.0020 (13)	0.0025 (13)	0.0011 (12)
C25	0.0571 (18)	0.0327 (14)	0.0378 (16)	-0.0053 (13)	0.0037 (13)	0.0010 (12)
C26	0.0541 (18)	0.0319 (14)	0.0357 (16)	-0.0045 (13)	0.0028 (13)	0.0004 (11)
C27	0.0599 (19)	0.0324 (14)	0.0361 (16)	-0.0104 (13)	-0.0020 (13)	0.0042 (12)
C28	0.0423 (15)	0.0261 (14)	0.0332 (15)	-0.0056 (11)	0.0053 (12)	0.0031 (11)
C29	0.0340 (14)	0.0278 (13)	0.0381 (15)	0.0042 (11)	0.0017 (11)	0.0006 (11)
C30	0.0396 (15)	0.0287 (13)	0.0357 (15)	-0.0003 (11)	0.0076 (12)	-0.0016 (11)
C31	0.0464 (17)	0.0389 (15)	0.0501 (19)	-0.0007 (13)	-0.0019 (14)	-0.0092 (13)
C32	0.059 (2)	0.062 (2)	0.0387 (18)	0.0054 (17)	-0.0029 (15)	-0.0039 (15)
C33	0.0527 (19)	0.070 (2)	0.0409 (18)	0.0060 (16)	0.0005 (14)	0.0147 (15)
C34	0.0448 (17)	0.0435 (16)	0.0466 (18)	-0.0057 (13)	-0.0011 (14)	0.0127 (13)

Geometric parameters (Å, °)

01	1.213 (3)	O7—C24	1.218 (3)
O2—C11	1.224 (3)	O8—C28	1.218 (3)
O3—N3	1.210 (3)	O9—N7	1.225 (3)
O4—N3	1.220 (3)	O10—N7	1.231 (3)
O5—N4	1.217 (3)	O11—N8	1.223 (3)
O6—N4	1.228 (3)	O12—N8	1.229 (3)
N1—C7	1.370 (3)	N5—C24	1.378 (3)
N1-C1	1.393 (3)	N5—C18	1.394 (3)
N1—H1N	0.863 (17)	N5—H5N	0.862 (17)
N2-C11	1.361 (3)	N6—C28	1.366 (3)
N2-C12	1.409 (3)	N6—C29	1.417 (3)
N2—H2N	0.863 (17)	N6—H6N	0.859 (16)
N3—C2	1.463 (4)	N7—C19	1.464 (4)
N4—C13	1.477 (4)	N8—C30	1.467 (3)
C1—C6	1.404 (4)	C18—C23	1.399 (4)
C1—C2	1.408 (4)	C18—C19	1.414 (4)
C2—C3	1.395 (4)	C19—C20	1.389 (4)
C3—C4	1.367 (4)	C20—C21	1.368 (4)
С3—Н3	0.9300	C20—H20	0.9300
C4—C5	1.381 (4)	C21—C22	1.383 (4)
C4—H4	0.9300	C21—H21	0.9300
C5—C6	1.373 (4)	C22—C23	1.380 (4)
С5—Н5	0.9300	C22—H22	0.9300
С6—Н6	0.9300	C23—H23	0.9300
C7—C8	1.501 (4)	C24—C25	1.510 (4)
C8—C9	1.521 (3)	C25—C26	1.520 (3)
C8—H8A	0.9700	C25—H25A	0.9700
C8—H8B	0.9700	C25—H25B	0.9700
C9—C10	1.492 (4)	C26—C27	1.525 (4)
С9—Н9А	0.9700	C26—H26A	0.9700
С9—Н9В	0.9700	C26—H26B	0.9700
C10-C11	1.499 (4)	C27—C28	1.508 (3)
C10—H10A	0.9700	C27—H27A	0.9700

C10—H10B	0.9700	С27—Н27В	0.9700
C12—C17	1.386 (4)	C29—C34	1.389 (3)
C12—C13	1.394 (4)	C29—C30	1.392 (3)
C13—C14	1.381 (4)	C30—C31	1.392 (4)
C14—C15	1.371 (4)	C31—C32	1.376 (4)
C14—H14	0.9300	C31—H31	0.9300
C15—C16	1 384 (4)	$C_{32} - C_{33}$	1 376 (4)
C15—H15	0.9300	C_{32} H ₃₂	0.9300
C16 C17	1 301 (1)	C_{32} C_{34}	1.385(4)
C16 H16	0.0300	C32 H32	1.383(4)
C10—H10	0.9300	C34_H34	0.9300
C1/—H1/	0.9300	C34—H34	0.9300
C7—N1—C1	128.9 (2)	C24—N5—C18	128.3 (2)
C7—N1—H1N	114 (2)	C24—N5—H5N	117 (2)
C1—N1—H1N	117 (2)	C18—N5—H5N	115 (2)
$C_{11} = N_2 = C_{12}$	1246(2)	$C_{28} - N_{6} - C_{29}$	1230(2)
$C11_N2_H2N$	1177(19)	C_{28} N6 H6N	125.0(2) 116.9(18)
C12 N2 H2N	117.7(19) 117.2(10)	C_{20} N6 H6N	116.9(18)
$O_2 = N_2 = O_4$	117.2(19) 120.2(2)	O_{2} N7 O_{10}	110.9(18) 121.3(3)
$O_3 = N_3 = O_4$	120.3(3)	09 - 17 - 010	121.3(3)
03-N3-C2	110.9(3)	09 - N7 - C19	118.3(3)
04 - N3 - C2	120.7(2)	010-17-012	120.2(2)
05—N4—06	124.0 (3)	011-N8-012	123.6 (2)
05—N4—C13	118.4 (2)	011—N8—C30	118.5 (2)
O6—N4—C13	117.7 (2)	O12—N8—C30	117.9 (2)
N1—C1—C6	121.9 (2)	N5—C18—C23	121.3 (2)
N1—C1—C2	121.7 (2)	N5—C18—C19	122.6 (2)
C6—C1—C2	116.4 (3)	C23—C18—C19	116.1 (3)
C3—C2—C1	121.4 (3)	C20—C19—C18	121.5 (3)
C3—C2—N3	116.0 (2)	C20—C19—N7	116.2 (3)
C1—C2—N3	122.6 (3)	C18—C19—N7	122.3 (3)
C4—C3—C2	120.5 (3)	C21—C20—C19	120.7 (3)
С4—С3—Н3	119.7	C21—C20—H20	119.7
C2—C3—H3	119.7	С19—С20—Н20	119.7
C_{3} C_{4} C_{5}	119.0(3)	C_{20} C_{21} C_{22}	119 2 (3)
$C_3 - C_4 - H_4$	120.5	$C_{20} = C_{21} = H_{21}$	120.4
$C_5 C_4 H_4$	120.5	$C_{22} C_{21} H_{21}$	120.1
C_{5}	120.3 121.2(3)	$C_{22} = C_{21} = H_{21}$	120.4
$C_0 = C_3 = C_4$	121.3 (3)	$C_{23} = C_{22} = C_{21}$	120.8 (3)
C6C5H5	119.4	C23—C22—H22	119.6
C4—C5—H5	119.4	C21—C22—H22	119.6
C5—C6—C1	121.4 (3)	C22—C23—C18	121.8 (3)
С5—С6—Н6	119.3	С22—С23—Н23	119.1
C1—C6—H6	119.3	C18—C23—H23	119.1
01—C7—N1	123.5 (3)	07—C24—N5	123.3 (3)
O1—C7—C8	123.6 (2)	O7—C24—C25	123.1 (2)
N1—C7—C8	112.9 (2)	N5—C24—C25	113.6 (2)
C7—C8—C9	114.8 (2)	C24—C25—C26	112.7 (2)
С7—С8—Н8А	108.6	C24—C25—H25A	109.0
С9—С8—Н8А	108.6	C26—C25—H25A	109.0

C7—C8—H8B	108.6	C24—C25—H25B	109.0
C9—C8—H8B	108.6	C26—C25—H25B	109.0
H8A—C8—H8B	107.6	H25A—C25—H25B	107.8
C10-C9-C8	111 1 (2)	C_{25} C_{26} C_{27}	1125(2)
C10 - C9 - H9A	109.4	$C_{25} = C_{26} = H_{26A}$	109.1
$C_8 C_9 H_{9A}$	109.4	C_{23} C_{26} H_{26A}	109.1
$C_{10} = C_{10} = H_{0}R$	109.4	$C_{27} = C_{20} = H_{20}R$	109.1
	100.4	C27 C26 H26B	109.1
	109.4	$H_{26A} = C_{26} = H_{26B}$	107.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116.5 (2)	1120A - C20 - 1120B	107.8
C_{9}	110.5 (2)	$C_{28} = C_{27} = C_{20}$	110.3(2)
C_{11} C_{10} H_{10A}	108.2	$C_{28} = C_{27} = H_{27A}$	109.6
CII—CIO—HIOA	108.2	$C_{20} = C_{27} = H_{27}A$	109.6
C9—C10—H10B	108.2	C_{28} — C_{27} —H2/B	109.6
CII—CIO—HI0B	108.2	С26—С27—Н2/В	109.6
H10A—C10—H10B	107.3	Н27А—С27—Н27В	108.1
O2—C11—N2	121.9 (2)	O8—C28—N6	121.8 (2)
O2—C11—C10	124.2 (2)	O8—C28—C27	123.0 (2)
N2—C11—C10	113.8 (2)	N6—C28—C27	115.2 (2)
C17—C12—C13	116.7 (2)	C34—C29—C30	117.2 (2)
C17—C12—N2	119.8 (2)	C34—C29—N6	119.5 (2)
C13—C12—N2	123.5 (2)	C30—C29—N6	123.3 (2)
C14—C13—C12	122.5 (3)	C31—C30—C29	121.6 (3)
C14—C13—N4	116.1 (3)	C31—C30—N8	116.7 (2)
C12—C13—N4	121.2 (2)	C29—C30—N8	121.6 (2)
C15—C14—C13	119.9 (3)	C32—C31—C30	120.0 (3)
C15—C14—H14	120.1	C32—C31—H31	120.0
C13—C14—H14	120.1	C30—C31—H31	120.0
C14—C15—C16	119.1 (3)	C33—C32—C31	119.2 (3)
C14—C15—H15	120.5	С33—С32—Н32	120.4
C16—C15—H15	120.5	С31—С32—Н32	120.4
C15—C16—C17	120.7 (3)	C_{32} — C_{33} — C_{34}	120.8 (3)
$C_{15} - C_{16} - H_{16}$	119.6	C32—C33—H33	119.6
C17 - C16 - H16	119.6	C34—C33—H33	119.6
C_{12} C_{17} C_{16}	121.1 (3)	C_{33} C_{34} C_{29}	121.2(3)
$C_{12} = C_{17} = C_{10}$	110 /	$C_{33} = C_{34} = C_{23}$	121.2 (5)
$C_{12} = C_{17} = H_{17}$	119.4	$C_{33} = C_{34} = H_{34}$	119.4
С10—С1/—Н1/	119.4	C29—C34—H34	119.4
C7 N1 C1 C6	22.1(5)	C24 N5 C18 C23	10.3(4)
C7 N1 C1 C2	22.1(3)	$C_{24} = N_{5} = C_{18} = C_{19}$	-1610(3)
C = N = C = C Z	-139.3(3)	$C_{24} = N_{3} = C_{10} = C_{19}$	-101.9(3)
NI = CI = C2 = C3	-1/8.7(3)	N_{3} $-C_{18}$ $-C_{19}$ $-C_{20}$	-1/9.2(3)
$C_6 - C_1 - C_2 - C_3$	-0.2(4)	C_{23} C_{18} C_{19} C_{20}	-0.3(4)
NI - CI - C2 - N3	2.0 (4)	N5-C18-C19-N7	0.6 (4)
C_{0} C_{1} C_{2} N_{3}	-179.4(2)	C23—C18—C19—N7	179.5 (2)
03—N3—C2—C3	1.1 (4)	09—N/—C19—C20	-5.5 (4)
04—N3—C2—C3	180.0 (3)	010—N7—C19—C20	173.9 (3)
O3—N3—C2—C1	-179.5 (3)	O9—N7—C19—C18	174.7 (3)
O4—N3—C2—C1	-0.7 (4)	O10—N7—C19—C18	-5.9 (4)
C1—C2—C3—C4	-0.6 (4)	C18—C19—C20—C21	-0.3(4)

N3—C2—C3—C4	178.7 (3)	N7-C19-C20-C21	179.9 (3)
C2—C3—C4—C5	0.7 (5)	C19—C20—C21—C22	-0.1 (5)
C3—C4—C5—C6	-0.1 (5)	C20—C21—C22—C23	1.0 (5)
C4C5C1	-0.6 (5)	C21—C22—C23—C18	-1.6(5)
N1-C1-C6-C5	179.3 (3)	N5-C18-C23-C22	-179.8 (3)
C2-C1-C6-C5	0.8 (4)	C19—C18—C23—C22	1.2 (4)
C1—N1—C7—O1	0.7 (5)	C18—N5—C24—O7	2.0 (5)
C1—N1—C7—C8	179.8 (3)	C18—N5—C24—C25	-178.7 (3)
O1—C7—C8—C9	-8.9 (4)	O7—C24—C25—C26	-13.5 (4)
N1—C7—C8—C9	172.0 (3)	N5-C24-C25-C26	167.2 (2)
C7—C8—C9—C10	-172.7 (3)	C24—C25—C26—C27	-176.7 (2)
C8—C9—C10—C11	-172.3 (3)	C25—C26—C27—C28	171.9 (2)
C12—N2—C11—O2	4.0 (4)	C29—N6—C28—O8	5.2 (4)
C12—N2—C11—C10	-172.6 (3)	C29—N6—C28—C27	-177.3 (2)
C9—C10—C11—O2	4.8 (5)	C26—C27—C28—O8	57.3 (4)
C9—C10—C11—N2	-178.7 (3)	C26—C27—C28—N6	-120.2 (3)
C11—N2—C12—C17	-131.7 (3)	C28—N6—C29—C34	127.7 (3)
C11—N2—C12—C13	48.6 (4)	C28—N6—C29—C30	-50.6 (4)
C17—C12—C13—C14	1.3 (4)	C34—C29—C30—C31	-1.9 (4)
N2-C12-C13-C14	-179.0 (2)	N6-C29-C30-C31	176.4 (2)
C17—C12—C13—N4	-175.0 (2)	C34—C29—C30—N8	174.8 (2)
N2-C12-C13-N4	4.7 (4)	N6-C29-C30-N8	-6.9 (4)
O5—N4—C13—C14	-131.3 (3)	O11—N8—C30—C31	134.3 (3)
O6—N4—C13—C14	46.7 (3)	O12-N8-C30-C31	-43.7 (3)
O5—N4—C13—C12	45.2 (4)	O11—N8—C30—C29	-42.5 (4)
O6—N4—C13—C12	-136.7 (3)	O12—N8—C30—C29	139.5 (3)
C12—C13—C14—C15	-0.9 (4)	C29—C30—C31—C32	1.2 (4)
N4—C13—C14—C15	175.5 (2)	N8—C30—C31—C32	-175.7 (3)
C13—C14—C15—C16	-0.3 (4)	C30—C31—C32—C33	0.3 (4)
C14-C15-C16-C17	1.2 (4)	C31—C32—C33—C34	-0.9 (5)
C13—C12—C17—C16	-0.4 (4)	C32—C33—C34—C29	0.1 (4)
N2-C12-C17-C16	179.9 (2)	C30—C29—C34—C33	1.3 (4)
C15—C16—C17—C12	-0.9 (4)	N6-C29-C34-C33	-177.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1 <i>N</i> …O4	0.86 (2)	2.01 (3)	2.639 (3)	130 (3)
N2—H2 <i>N</i> ···O8	0.86 (2)	2.17 (2)	3.002 (3)	162 (3)
C3—H3…O5 ⁱ	0.93	2.49	3.337 (4)	151
C14—H14…O6 ⁱⁱ	0.93	2.50	3.267 (3)	140
N5—H5 <i>N</i> ···O10	0.86 (2)	2.01 (3)	2.651 (3)	130 (3)
N6—H6N····O2 ⁱⁱⁱ	0.86 (2)	2.11 (2)	2.959 (3)	171 (3)
C27—H27 <i>B</i> ···O2 ⁱⁱⁱ	0.97	2.55	3.396 (3)	146
C31—H31···O12 ^{iv}	0.93	2.49	3.238 (3)	138

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.