

Received 13 August 2018 Accepted 28 August 2018

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; inorganic chemistry; organometallic chemistry; NHC; nickel; carbene.

CCDC reference: 1864396

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (η^4 -cyclooctadiene)(3,3'dimesityl-1,1'-methylenediimidazoline-2,2'-diylidene)nickel(0) tetrahydrofuran monosolvate

Carlos D. Yamamoto, Zijie Zhang and Sabine Chantal E. Stieber*

Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA. *Correspondence e-mail: sestieber@cpp.edu

The crystal structure of the title compound, $[Ni(C_{25}H_{28}N_4)(C_8H_{12})]\cdot C_4H_8O$ or $(^{Mes}NHC_2Me)Ni(COD)$, which contains a bidentate N-heterocyclic carbene (NHC) ligand with mesityl aryl groups is reported. The complex at 100 K has monoclinic $(P2_1/c)$ symmetry and a distorted tetrahedral geometry around the nickel center, with the cyclooctadiene ligand coordinated in a κ^2 , η^2 fashion. The bidentate NHC ligand is not planar, with a C(carbene)-Ni-C(carbene) angle of 91.51 (12)°, resulting in the mesityl groups being on the same side of the cyclooctadiene (COD) ligand. One molecule of tetrahydrofuran (THF) is co-crystallized with the nickel complex and has positional disorder.

1. Chemical context

N-heterocyclic carbene (NHC) ligands, which have found extensive use in catalysis and organometallic chemistry, coordinate to metal centers via the lone pair of electrons of the carbene (Arduengo, 1999; Hopkinson et al., 2014; Lummiss et al., 2015). Bidentate NHC ligands (NHC₂) may be formed by linking two NHC ligands together; however, coordination to first row transition metals has been limited (Brendel et al., 2014; Herrmann et al., 1999; Douthwaite et al., 1999; Huffer et al., 2013; Harrold & Hillhouse, 2013). Nickel(0)cyclooctadiene complexes with {1,1'-di(isopropyl)phenyl-3,3'-methylenediimidazolin-2,2'-divlidene} and {1,1'-tert(butyl)-3,3'-methylenediimidazolin-2,2'-diylidene} ligands have been reported, but the mesityl variant is not known (Brendel et al., 2014). Herein, a synthetic procedure for the synthesis of {1,1'-di-(mesityl)-3,3'-methylenediimidazolin-2,2'-diylidene}nickel(0)cyclooctadiene, (MesNHC2Me)Ni(COD), and its crystallographic characterization are reported.

2. Structural commentary

 $(^{Mes}NHC_2Me)Ni(COD)$ co-crystallizes with one molecule of tetrahydrofuran (THF) as shown in Fig. 1. Fig. 2 depicts the

structure without the THF for clarity. The nickel(0) center has a pseudo-tetrahedral geometry, being coordinated to (^{Mes}NHC₂Me) in a κ^2 fashion with a C1-Ni1-C4 angle of 91.51 (12)° and to COD in a κ^2 , η^2 fashion. The distances between the nickel center and the (^{Mes}NHC₂Me) ligand are 1.909 (3) Å for Ni1-C1 and 1.916 (3) Å for Ni1-C4. These are slightly shorter than the analagous distances of 1.938 (3) and 1.953 (3) Å, respectively, reported for (^{Dipp}NHC₂Me)Ni(COD) (Brendel et al., 2014). The distances from the nickel center to the COD ligand are 1.921 (3) and 2.018 (3) Å as measured from Ni1 to the mid-points of C29-C30 and C26-C33, respectively. The backbone of each NHC contains unsaturated C=C double bonds, as evidenced by bond distances of 1.344 (4) Å for C2–C3 and 1.341 (4) Å for C5-C6. The other NHC backbone distances are 1.390 (4) Å for N1–C2, 1.384 (4) Å for N2–C3, 1.388 (3) Å for N3–C5, and 1.395 (3) Å for N4–C6. The remaining NHC bond lengths to the carbene are 1.377 (4) Å for N1-C1, 1.374 (3) Å for N2-C1, 1.379 (3) Å for N3-C4, and 1.374 (3) Å for N4-C4. These are comparable to the analagous NHC carbene distances reported for (^{Dipp}NHC₂Me)Ni(COD) of 1.374 (4), 1.387 (4), 1.379 (4), and 1.386 (4) Å, respectively (Brendel et al., 2014). The portions of the COD ligand that are coordinated to nickel have C=C bond distances of 1.411 (4) Å for C29-C30 and 1.374 (4) Å for C26-C33, consistent with unsaturated double bonds. These are slightly longer than the analagous C=C COD distances reported for (^{Dipp}NHC₂Me)-Ni(COD) of 1.383 (5), and 1.355 (5) Å, respectively (Brendel et al., 2014). The remaining C-C bond distances of the COD fragment are in the range of 1.512 (4)-1.539 (4) Å, consistent with saturated C-C single bonds, and comparable to the

C2 6 C10 C3 N2 N1 14C9 C1 C33 C7 NL1 29 С5 N4 C6 28 C18 C21 C20 C19

Figure 1

View of $(^{Mes}NHC_2Me)Ni(COD)$ ·THF with 50% probability ellipsoids, showing the THF disorder.

View of one molecule of (^{Mes}NHC₂Me)Ni(COD) with 50% probability ellipsoids. The THF molecules and H atoms are omitted for clarity.

range of bond lengths reported for ($^{\text{Dipp}}\text{NHC}_2\text{Me}$)Ni(COD) of 1.502–1.529 Å (Brendel *et al.*, 2014).

3. Supramolecular features

Four molecules of ($^{\text{Mes}}\text{NHC}_2\text{Me}$)Ni(COD) and THF are present in the unit cell, as depicted in Fig. 3. The molecules are oriented such that the COD ligands from neighboring molecules are adjacent to each other, with distances of 2.61 and 2.95 Å between nearest hydrogen atoms (H28A···H32A and H27B···H31B, respectively). Standard deviations for distances including hydrogen atoms are not listed because hydrogen atoms were positionally fixed. The methyl group at the *para* position of the mesityl fragment is oriented towards the aryl ring of the mesityl of the neighboring molecule, with a distance of 2.72 Å between the aryl ring centroid (C8–C13) and the nearest methyl hydrogen atom (H15C). The THF molecule is closest to the backbone of the ($^{\text{Mes}}\text{NHC}_2\text{Me}$) ligand, such that the molecules are 3.527 (17) Å apart from

Table 1

Intermolecular distances in the unit cell of (MesNHC₂Me)Ni(COD).

Standard deviations for distances including H atoms are omitted because H atoms were positionally fixed.

	Distance (Å)
$H15C\cdots$ centroid(C8–C13)	2.72
$H27B \cdot \cdot \cdot H31B$	2.95
$H28A \cdots H32A$	2.61
O1···C36	3.527 (17)

Figure 3

View of four molecules of ($^{Mes}NHC_2Me$)Ni(COD) and THF in the unit cell with 50% probability ellipsoids, highlighting intermolecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed.

one oxygen atom (O1) to the next nearest carbon atom (C36) (Table 1).

4. Database survey

A survey of the Cambridge Structural Database (Web accessed August 9, 2018; Groom *et al.*, 2016) and SciFinder (SciFinder, 2018) yielded no exact matches for this complex, but related complexes with slightly varied ligands, such as (^{Bu}NHC₂Me)Ni(COD) (tBu = *tert*-butyl) and (^{Dipp}NHC₂. Me)Ni(COD) (Dipp = 2,6-di(isopropyl)phenyl) (Brendel *et al.*, 2014) have been reported. The crystal structures of both these complexes have generally similar structural characteristics. The main difference is that the COD ligand in (^{^{Bu}NHC₂Me)Ni(COD) is coordinated in a κ^{-1} , η^{2} fashion.}

5. Synthesis and crystallization

1-(2,4,6-Trimethylphenyl)-1*H*-imidazole, and 1,1'-di(mesityl)-3,3'-methylene-diimidazolium dibromide were synthesized according to literature procedures (Liu et al., 2003; Gardiner et al., 1999). 1,1'-Di(mesityl)-3,3'-methylene-diimidazolium dibromide was dried overnight on a high vacuum line before transferring to an inert atmosphere N2 glovebox. {1,1'-Di (mesityl)-3,3'-methylenediimidazolin-2,2'-diylidene}nickel(0)cyclooctadiene was synthesized by the following method. A 20 mL scintillation vial was charged with 0.203 g (0.366 mmol, 1 eq.) of 1,1'-di(mesityl)-3,3'-methylene-diimidazolium dibromide, approximately 10 mL of tetrahydrofuran and a stirbar. 1.80 mL (0.915 mmol, 2.5 eq.) of 0.5 M potassium bis(trimethylsilyl)amide in toluene were added dropwise to the solution while stirring, resulting in a color change to bluegreen. The mixture was stirred for approximately five h, resulting in a clear orange-brown solution, which was filtered through a glass frit with celite. The filtrate was transferred to a new 20 mL glass scintillation vial and stirred while adding 0.090 g (0.329 mmol, 0.9 eq.) of bis(1,5-cyclooctadiene)nickel(0). The mixture was stirred for 4-12 h, resulting in a clear dark red-orange solution. The solvent was removed in vacuo, and the orange solid was washed with pentane (3-5 washes of approximately 10 mL), resulting in 0.151 g (78%) of an orange solid identified as {1,1'-di(mesityl)-3,3'-methylenediimidazolin-2,2'-divlidene}nickel(0)cyclooctadiene. Single crystals suitable for X-ray analysis were grown from a dilute solution of pentane with a drop of tetrahydrofuran. ¹H NMR (399.777 MHz, C_6D_6 , 295 K): $\delta = 1.96-2.12$ (*m*, 8H; CH₂-COD), 2.13 (s, 6H; CH₃ p-mesityl), 2.17 (s, 12H; CH₃ omesityl), 4.07 (s, 4H; CH-Ni-COD), 4.68 (s, 2H, CH₂), 6.12 (s, 2H, CH-Im), 6.42 (s, 2H, CH-Im), 6.84 (s, 4H, m-CH-Ar). ¹³C NMR (101 MHz, C_6D_6 , 295 K): $\delta = 18.43$ (CH₃ o-mesityl), 21.14 (CH₃ p-mesityl), 32.51 (CH₂-COD), 61.31 (CH₂), 74.17 (CH-Ni-COD), 118.18 (CH-Im), 119.81 (CH-Im), 128.94 (m-CH-Ar), 136.22 (o-C-Ar), 137.89 (p-C-Ar), 138.91 (i-C-Ar), 205.37 (N₂C-Im).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Most hydrogen atoms were placed in calculated positions using the AFIX commands of *SHELXL* and refined as riding with distances of 0.95 Å for C-H, 0.99 Å for CH_2 and 0.98 Å for CH_3 . Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. U_{iso} values of riding H atoms were set to 1.2 times $U_{eq}(C)$ for CH and CH₂, and 1.5 times $U_{eq}(C)$ for CH₃. The positions of the hydrogen atoms on the portions of the COD ligand directly bound to nickel and attached to C26, C29, C30, and C33 were determined from the difference map. Positions and isotropic displacement parameters were refined, but the associated C-H atom distances were restrained to be similar to each other by using a SADI command of *SHELXL* (for C26-H26A, C29-H29A, C30-H30A, and C33-H33A).

The two moieties of the disordered THF molecule were restrained to have similar geometries (a SAME command in *SHELXL* was applied for O1' through C37' and O1 through C34 to make bond distances and angles equivalent with standard deviations of 0.02 and 0.04 Å for 1,2- and 1,3 distances, respectively). U^{ij} components of ADPs of the disordered atoms were restrained to be similar to each other with an esd of 0.01 Å² for atoms closer to each other than 2.0 Å (SIMU command of *SHELXL*), resulting in a final close-to-equal site occupancy ratio of 0.502 (13) to 0.498 (13).

Acknowledgements

Special thanks to Charles Campana for helpful discussions.

Funding information

Funding for this research was provided by: U.S. Department of Defense, Army Research Office (grant No. W911NF-17-1-0537); California State University Program for Education Research in Biotechnology (CSUPERB); California State Polytechnic University, Pomona.

References

- Arduengo, A. J. (1999). Acc. Chem. Res. 32, 913-921.
- Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741–8745.
- Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Douthwaite, R. E., Haüssinger, D., Green, M. L. H., Silcock, P. J., Gomes, P. T., Martins, A. M. & Danopoulos, A. A. (1999). Organometallics, 18, 4584–4590.
- Gardiner, M. G., Herrmann, W. A., Reisinger, C., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harrold, N. D. & Hillhouse, G. L. (2013). Chem. Sci. 4, 4011-4015.
- Herrmann, W. A., Schwarz, J., Gardiner, M. G. & Spiegler, M. (1999). J. Organomet. Chem. 575, 80–86.
- Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). *Nature*, **510**, 485–496.
- Huffer, A., Jeffery, B., Waller, B. J. & Danopoulos, A. A. (2013). C. R. Chim. 16, 557–565.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[Ni(C_{25}H_{28}N_4)(C_8H_{12})]\cdot C_4H_8O$
M _r	623.50
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	10.5557 (7), 35.308 (2), 8.5951 (5)
β (°)	99.591 (2)
$V(Å^3)$	3158.6 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.65
Crystal size (mm)	$0.53 \times 0.15 \times 0.04$
Data collection	
Diffractometer	Bruker D8 Venture Kanna
Absorption correction	Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)
Tmine Tmax	0.658, 0.746
No. of measured, independent and	61849, 6973, 4784
observed $[I > 2\sigma(I)]$ reflections	· ·
R _{int}	0.141
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.642
Pafinamant	
$P[F^2 > 2\sigma(F^2)] = wP(F^2)$ S	0.048 0.104 1.03
R[T > 20(T)], WR(T), S	6073
No. of parameters	456
No. of restraints	182
H-stom treatment	H atoms treated by a mixture of
ri-atom reatment	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.50, -0.46

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.
- Lummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. & Fogg, D. E. (2015). Chem. Sci. 6, 6739–6746.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- SciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 10, 2018).
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2018). E74, 1396-1399 [https://doi.org/10.1107/S2056989018012252]

Crystal structure of (η^4 -cyclooctadiene)(3,3'-dimesityl-1,1'-methylenediimidazoline-2,2'-diylidene)nickel(0) tetrahydrofuran monosolvate

Carlos D. Yamamoto, Zijie Zhang and Sabine Chantal E. Stieber

Computing details

Data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $(\eta^4$ -Cyclooctadiene)(3,3'-dimesityl-1,1'-methylenediimidazoline-2,2'-diylidene)nickel(0) tetrahydrofuran monosolvate

[Ni(C₂₅H₂₈N₄)(C₈H₁₂)]·C₄H₈O $M_r = 623.50$ Monoclinic, $P2_1/c$ a = 10.5557 (7) Å b = 35.308 (2) Å c = 8.5951 (5) Å $\beta = 99.591$ (2)° V = 3158.6 (3) Å³ Z = 4

Data collection

Bruker D8 Venture Kappa diffractometer Radiation source: microfocus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.658, T_{\max} = 0.746$ 61849 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.104$ S = 1.036973 reflections 456 parameters 182 restraints F(000) = 1336 $D_x = 1.311 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5806 reflections $\theta = 4.6-54.2^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 100 KPlate, orange $0.53 \times 0.15 \times 0.04 \text{ mm}$

6973 independent reflections 4784 reflections with $I > 2\sigma(I)$ $R_{int} = 0.141$ $\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -13 \rightarrow 13$ $k = -45 \rightarrow 45$ $l = -10 \rightarrow 11$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0168P)^{2} + 5.0058P] \qquad \Delta \mu$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \mu$ $(\Delta/\sigma)_{max} < 0.001$

$\begin{array}{l} \Delta\rho_{\rm max}=0.50~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.46~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni01	0.40659 (3)	0.59095 (2)	0.82589 (4)	0.01352 (10)	
N1	0.5497 (2)	0.66097 (7)	0.9799 (3)	0.0171 (5)	
N2	0.4717 (2)	0.62336 (7)	1.1329 (3)	0.0160 (5)	
N3	0.2805 (2)	0.58667 (7)	1.0943 (3)	0.0158 (5)	
N4	0.1305 (2)	0.58132 (7)	0.8953 (3)	0.0155 (5)	
C1	0.4848 (3)	0.62709 (8)	0.9772 (3)	0.0147 (6)	
C2	0.5758 (3)	0.67656 (9)	1.1304 (3)	0.0217 (7)	
H2	0.620362	0.699526	1.159441	0.026*	
C3	0.5259 (3)	0.65294 (9)	1.2269 (3)	0.0209 (7)	
H3	0.527500	0.655931	1.337005	0.025*	
C4	0.2613 (3)	0.58607 (8)	0.9316 (3)	0.0144 (6)	
C5	0.1676 (3)	0.58212 (8)	1.1549 (3)	0.0179 (6)	
Н5	0.158714	0.581583	1.263073	0.021*	
C6	0.0735 (3)	0.57865 (8)	1.0301 (3)	0.0184 (6)	
H6	-0.015291	0.575044	1.032910	0.022*	
C7	0.4080 (3)	0.59040 (9)	1.1849 (3)	0.0165 (6)	
H7A	0.458691	0.567380	1.171654	0.020*	
H7B	0.402361	0.592985	1.298263	0.020*	
C8	0.5968 (3)	0.67746 (8)	0.8478 (3)	0.0163 (6)	
C9	0.5204 (3)	0.70228 (8)	0.7464 (3)	0.0177 (6)	
C10	0.5734 (3)	0.71794 (8)	0.6224 (4)	0.0214 (7)	
H10	0.521938	0.734348	0.550278	0.026*	
C11	0.6975 (3)	0.71046 (8)	0.6009 (3)	0.0201 (7)	
C12	0.7709 (3)	0.68572 (8)	0.7052 (3)	0.0200 (7)	
H12	0.856658	0.680319	0.691993	0.024*	
C13	0.7218 (3)	0.66878 (8)	0.8281 (3)	0.0178 (6)	
C14	0.3861 (3)	0.71230 (9)	0.7685 (4)	0.0262 (7)	
H14A	0.330746	0.714082	0.665288	0.039*	
H14B	0.387035	0.736703	0.823046	0.039*	
H14C	0.353120	0.692657	0.831690	0.039*	
C15	0.7554 (3)	0.72843 (10)	0.4696 (4)	0.0282 (8)	
H15A	0.795053	0.708790	0.413047	0.042*	
H15B	0.820795	0.746881	0.514294	0.042*	
H15C	0.687898	0.741271	0.396340	0.042*	
C16	0.8014 (3)	0.64084 (9)	0.9349 (4)	0.0253 (7)	
H16A	0.753695	0.617055	0.936258	0.038*	

H16B	0.820161	0.651211	1.042069	0.038*	
H16C	0.882059	0.636053	0.896079	0.038*	
C17	0.0553 (3)	0.58069 (8)	0.7392 (3)	0.0144 (6)	
C18	-0.0086(3)	0.54770 (8)	0.6843 (3)	0.0158 (6)	
C19	-0.0857 (3)	0.54843 (8)	0.5365 (3)	0.0169 (6)	
H19	-0.129619	0.526032	0.497217	0.020*	
C20	-0.1002(3)	0.58104 (8)	0.4447(3)	0.0171 (6)	
C21	-0.0343(3)	0.61332 (8)	0.5027(3)	0.0171 (6)	
H21	-0.042410	0.635603	0.439830	0.021*	
C22	0.0438(3)	0.61413 (8)	0.6504(3)	0.0167 (6)	
C23	-0.0007(3)	0.51193 (8)	0.0501(3) 0.7823(3)	0.0107(0)	
U23 H23A	-0.016531	0.31175(0)	0.7023(5)	0.0210(7)	
1123A 1123B	-0.065404	0.512707	0.851747	0.032*	
П23Б	-0.003404	0.512797	0.031/4/	0.032*	
П23C	0.083074	0.509905	0.8401/8	0.032	
C24	-0.18/4(3)	0.58143 (9)	0.2862(3)	0.0229 (7)	
H24A	-0.14/939	0.566/54	0.210144	0.034*	
H24B	-0.200454	0.607603	0.249046	0.034*	
H24C	-0.270478	0.570174	0.296654	0.034*	
C25	0.1133 (3)	0.64962 (8)	0.7106 (3)	0.0201 (7)	
H25A	0.206066	0.644930	0.729324	0.030*	
H25B	0.086099	0.657291	0.809584	0.030*	
H25C	0.093035	0.669840	0.632288	0.030*	
C26	0.4432 (3)	0.53181 (8)	0.8337 (3)	0.0186 (7)	
H26A	0.423 (2)	0.5236 (7)	0.932 (2)	0.010 (7)*	
C27	0.3628 (3)	0.51489 (9)	0.6886 (3)	0.0208 (7)	
H27A	0.276896	0.508545	0.713097	0.025*	
H27B	0.403403	0.491004	0.661976	0.025*	
C28	0.3460 (3)	0.54110 (8)	0.5439 (3)	0.0192 (7)	
H28A	0.417278	0.536693	0.484457	0.023*	
H28B	0.264580	0.534738	0.473722	0.023*	
C29	0.3440 (3)	0.58277 (8)	0.5894 (3)	0.0163 (6)	
H29A	0.262 (2)	0.5947 (8)	0.559 (3)	0.014 (8)*	
C30	0.4559(3)	0.60531 (8)	0.6134(3)	0.0149 (6)	
H30A	0.443(3)	0.6319.(6)	0.597(4)	0.024 (9)*	
C31	0.5874(3)	0.59020(9)	0.5982(3)	0.021(9)	
H31A	0.651953	0.610249	0.630734	0.023*	
H31R	0.588887	0.584307	0.485938	0.023*	
C32	0.500007 0.6263(3)	0.55448 (0)	0.405550	0.0230(7)	
U32	0.0203 (3)	0.531037	0.620023	0.0230 (7)	
1132A 1122D	0.007303	0.551957	0.029023	0.028*	
П32Б	0.720140	0.555157	0.733002	0.028	
U33	0.5586(3)	0.55016 (9)	0.8387(3)	0.0192 (7)	
H33A	0.612(2)	0.5536 (8)	0.940 (3)	0.014 (8)*	0.500 (10)
01	0.1468 (10)	0.7119 (3)	0.3805 (9)	0.0435 (18)	0.502 (13)
C34	0.2266 (17)	0.6845 (6)	0.3253 (16)	0.041 (2)	0.502 (13)
H34A	0.200127	0.658717	0.351848	0.049*	0.502 (13)
H34B	0.317128	0.688406	0.375222	0.049*	0.502 (13)
C35	0.2128 (11)	0.6890 (4)	0.1491 (15)	0.037 (2)	0.502 (13)
H35A	0.283351	0.704611	0.120317	0.045*	0.502 (13)

H35B	0.212307	0.664092	0.096250	0.045*	0.502 (13)
C36	0.0855 (17)	0.7087 (4)	0.1057 (14)	0.044 (2)	0.502 (13)
H36A	0.014923	0.690064	0.079960	0.052*	0.502 (13)
H36B	0.085608	0.725673	0.014167	0.052*	0.502 (13)
C37	0.0717 (10)	0.7310(3)	0.2521 (10)	0.0352 (19)	0.502 (13)
H37A	0.103029	0.757211	0.244043	0.042*	0.502 (13)
H37B	-0.019410	0.731908	0.266236	0.042*	0.502 (13)
O1′	0.0905 (10)	0.7022 (2)	0.3664 (9)	0.0391 (17)	0.498 (13)
C34′	0.2015 (16)	0.6844 (6)	0.3267 (16)	0.041 (2)	0.498 (13)
H34C	0.213464	0.658950	0.375138	0.049*	0.498 (13)
H34D	0.279163	0.699780	0.363667	0.049*	0.498 (13)
C35′	0.1769 (12)	0.6816 (3)	0.1473 (15)	0.037 (2)	0.498 (13)
H35C	0.131992	0.657687	0.111634	0.045*	0.498 (13)
H35D	0.258105	0.682994	0.104300	0.045*	0.498 (13)
C36′	0.0919 (16)	0.7159 (4)	0.0979 (13)	0.037 (2)	0.498 (13)
H36C	0.143422	0.738695	0.084198	0.044*	0.498 (13)
H36D	0.030569	0.711026	-0.000385	0.044*	0.498 (13)
C37′	0.0240 (12)	0.7195 (3)	0.2392 (11)	0.046 (2)	0.498 (13)
H37C	0.013576	0.746664	0.263105	0.056*	0.498 (13)
H37D	-0.062699	0.708117	0.213787	0.056*	0.498 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
Ni01	0.01553 (18)	0.01667 (19)	0.00880 (17)	-0.00028 (16)	0.00334 (13)	-0.00042 (16)
N1	0.0191 (13)	0.0178 (14)	0.0137 (12)	-0.0008 (10)	0.0009 (10)	0.0001 (10)
N2	0.0189 (13)	0.0194 (14)	0.0095 (12)	-0.0007 (10)	0.0016 (10)	-0.0006 (10)
N3	0.0177 (12)	0.0209 (14)	0.0098 (11)	-0.0016 (11)	0.0050 (9)	0.0011 (10)
N4	0.0163 (12)	0.0202 (14)	0.0104 (12)	-0.0001 (10)	0.0033 (10)	0.0025 (10)
C1	0.0147 (14)	0.0183 (16)	0.0111 (14)	0.0021 (12)	0.0020 (11)	0.0004 (12)
C2	0.0287 (18)	0.0203 (17)	0.0153 (15)	-0.0043 (14)	0.0017 (13)	-0.0059 (12)
С3	0.0269 (17)	0.0241 (17)	0.0106 (15)	0.0016 (14)	-0.0001 (13)	-0.0035 (12)
C4	0.0180 (14)	0.0144 (15)	0.0105 (13)	-0.0003 (12)	0.0013 (11)	0.0012 (11)
C5	0.0197 (15)	0.0237 (17)	0.0116 (14)	0.0033 (13)	0.0067 (12)	0.0028 (12)
C6	0.0171 (15)	0.0243 (17)	0.0157 (15)	0.0035 (12)	0.0083 (12)	0.0057 (12)
C7	0.0218 (15)	0.0195 (15)	0.0082 (13)	0.0002 (13)	0.0022 (11)	0.0042 (12)
C8	0.0214 (15)	0.0154 (15)	0.0118 (14)	-0.0042 (12)	0.0020 (12)	-0.0018 (11)
C9	0.0206 (16)	0.0125 (15)	0.0184 (16)	-0.0035 (12)	-0.0018 (12)	-0.0029 (12)
C10	0.0284 (18)	0.0139 (16)	0.0189 (16)	-0.0011 (13)	-0.0046 (13)	0.0050 (12)
C11	0.0309 (18)	0.0171 (16)	0.0114 (15)	-0.0062 (13)	0.0010 (13)	-0.0008 (12)
C12	0.0214 (16)	0.0193 (17)	0.0196 (16)	-0.0003 (13)	0.0048 (13)	-0.0003 (13)
C13	0.0232 (16)	0.0157 (16)	0.0139 (15)	0.0001 (13)	0.0016 (12)	0.0004 (12)
C14	0.0250 (18)	0.0223 (18)	0.0292 (18)	0.0006 (14)	-0.0018 (14)	0.0002 (14)
C15	0.037 (2)	0.0299 (19)	0.0182 (17)	-0.0086 (16)	0.0055 (14)	0.0058 (14)
C16	0.0259 (17)	0.0259 (19)	0.0248 (18)	0.0037 (14)	0.0060 (14)	0.0118 (14)
C17	0.0130 (14)	0.0207 (16)	0.0104 (14)	0.0035 (12)	0.0041 (11)	0.0023 (11)
C18	0.0158 (14)	0.0192 (16)	0.0136 (15)	0.0020 (12)	0.0062 (12)	0.0045 (12)
C19	0.0165 (15)	0.0197 (16)	0.0151 (15)	-0.0016 (12)	0.0047 (12)	0.0017 (12)

C20	0.0159 (14)	0.0233 (17)	0.0124 (14)	0.0048 (12)	0.0032 (11)	0.0022 (12)
C21	0.0193 (15)	0.0189 (16)	0.0144 (15)	0.0030 (12)	0.0063 (12)	0.0048 (12)
C22	0.0143 (14)	0.0203 (16)	0.0168 (15)	0.0014 (12)	0.0060 (12)	0.0011 (12)
C23	0.0264 (17)	0.0196 (17)	0.0171 (16)	-0.0029 (13)	0.0037 (13)	0.0041 (13)
C24	0.0235 (16)	0.0286 (19)	0.0169 (16)	0.0020 (14)	0.0037 (13)	0.0030 (13)
C25	0.0208 (16)	0.0214 (16)	0.0179 (16)	0.0013 (13)	0.0029 (13)	0.0041 (12)
C26	0.0257 (17)	0.0169 (16)	0.0140 (15)	0.0060 (13)	0.0055 (13)	0.0046 (12)
C27	0.0261 (17)	0.0171 (16)	0.0192 (16)	0.0018 (13)	0.0040 (13)	0.0006 (13)
C28	0.0233 (16)	0.0219 (17)	0.0119 (15)	-0.0025 (13)	0.0016 (12)	-0.0030 (12)
C29	0.0204 (15)	0.0205 (17)	0.0084 (14)	0.0026 (13)	0.0032 (11)	0.0009 (11)
C30	0.0224 (16)	0.0180 (16)	0.0053 (13)	0.0006 (12)	0.0049 (11)	0.0006 (11)
C31	0.0182 (14)	0.0286 (17)	0.0109 (14)	-0.0019 (14)	0.0053 (11)	0.0001 (13)
C32	0.0171 (16)	0.0274 (18)	0.0256 (18)	0.0070 (13)	0.0065 (13)	-0.0021 (14)
C33	0.0201 (16)	0.0231 (17)	0.0137 (15)	0.0072 (13)	0.0011 (12)	0.0013 (13)
01	0.061 (4)	0.047 (4)	0.024 (3)	0.020 (3)	0.011 (3)	0.005 (3)
C34	0.054 (5)	0.037 (4)	0.031 (3)	0.019 (4)	0.007 (3)	0.002 (3)
C35	0.047 (4)	0.040 (4)	0.026 (3)	0.013 (4)	0.010 (3)	0.004 (3)
C36	0.048 (4)	0.053 (5)	0.030 (3)	0.009 (4)	0.004 (3)	-0.004 (3)
C37	0.036 (4)	0.042 (4)	0.030 (3)	0.005 (3)	0.010 (3)	0.003 (3)
01′	0.055 (4)	0.038 (3)	0.028 (3)	0.015 (3)	0.019 (3)	0.009 (2)
C34′	0.053 (5)	0.039 (4)	0.030 (3)	0.014 (4)	0.006 (4)	0.006 (3)
C35′	0.048 (4)	0.039 (4)	0.026 (3)	0.017 (4)	0.011 (4)	0.001 (3)
C36′	0.046 (4)	0.037 (4)	0.027 (3)	0.005 (4)	0.007 (3)	0.006 (3)
C37′	0.054 (4)	0.054 (4)	0.032 (3)	0.016 (4)	0.010 (4)	-0.005 (3)

Geometric parameters (Å, °)

Ni01—C1	1.909 (3)	C22—C25	1.500 (4)	
Ni01—C4	1.916 (3)	C23—H23A	0.9800	
Ni01—C30	2.045 (3)	C23—H23B	0.9800	
Ni01—C29	2.051 (3)	C23—H23C	0.9800	
Ni01-C26	2.123 (3)	C24—H24A	0.9800	
Ni01—C33	2.145 (3)	C24—H24B	0.9800	
N1-C1	1.377 (4)	C24—H24C	0.9800	
N1—C2	1.390 (4)	C25—H25A	0.9800	
N1—C8	1.437 (4)	C25—H25B	0.9800	
N2-C1	1.374 (3)	C25—H25C	0.9800	
N2—C3	1.384 (4)	C26—C33	1.374 (4)	
N2—C7	1.451 (4)	C26—C27	1.510 (4)	
N3—C4	1.379 (3)	C26—H26A	0.951 (18)	
N3—C5	1.388 (3)	C27—C28	1.536 (4)	
N3—C7	1.444 (3)	C27—H27A	0.9900	
N4C4	1.374 (3)	С27—Н27В	0.9900	
N4—C6	1.395 (3)	C28—C29	1.523 (4)	
N4—C17	1.441 (3)	C28—H28A	0.9900	
С2—С3	1.344 (4)	C28—H28B	0.9900	
С2—Н2	0.9500	C29—C30	1.411 (4)	
С3—Н3	0.9500	C29—H29A	0.960 (18)	

C5—C6	1.341 (4)	C30—C31	1.512 (4)
C5—H5	0.9500	C30—H30A	0.956(19)
С6—Н6	0.9500	C31—C32	1.539 (4)
C7—H7A	0.9900	C31—H31A	0.9900
C7—H7B	0.9900	C31—H31B	0.9900
C8-C13	1 392 (4)	C_{32} C_{33}	1 516 (4)
C8-C9	1 394 (4)	C32—H32A	0.9900
C9-C10	1 397 (4)	C32—H32B	0.9900
C9-C14	1 503 (4)	C33—H33A	0.960(19)
C10—C11	1 379 (4)	01 - C34	1415(11)
C10—H10	0.9500	01 - C37	1.113(11) 1.417(8)
C11-C12	1 392 (4)	C_{34}	1.117(0)
C11-C15	1.592(1)	C34—H34A	0.9900
C12-C13	1.387(4)	C34—H34B	0.9900
C12_H12	0.9500	C_{35} C_{36}	1.503(12)
C13 - C16	1 505 (4)	C35—H35A	0.9900
C14—H14A	0.9800	C35—H35B	0.9900
C14—H14B	0.9800	C_{36} C_{37}	1.512(11)
C14 H14C	0.9800	C36—H36A	0.9900
C15—H15A	0.9800	C36—H36B	0.9900
C15—H15B	0.9800	C37—H37A	0.9900
C15 - H15C	0.9800	C37—H37B	0.9900
C16—H16A	0.9800	01' - C37'	1 344 (9)
C16—H16B	0.9800	01'-034'	1.311(9) 1 420 (10)
C16—H16C	0.9800	$C_{34'} - C_{35'}$	1.120(10) 1.524(11)
C17—C18	1.389 (4)	C34'—H34C	0.9900
C17 - C22	1 400 (4)	C34'—H34D	0.9900
C18—C19	1.390 (4)	C35'—C36'	1.526 (11)
C18—C23	1.512 (4)	C35'—H35C	0.9900
C19—C20	1.390 (4)	C35'—H35D	0.9900
C19—H19	0.9500	C36'—C37'	1.514 (11)
C20—C21	1.385 (4)	C36'—H36C	0.9900
C20—C24	1.512 (4)	C36'—H36D	0.9900
C21—C22	1.394 (4)	С37'—Н37С	0.9900
C21—H21	0.9500	C37'—H37D	0.9900
C1—Ni01—C4	91.51 (12)	C20—C24—H24A	109.5
C1—Ni01—C30	107.31 (12)	C20—C24—H24B	109.5
C4—Ni01—C30	142.09 (12)	H24A—C24—H24B	109.5
C1—Ni01—C29	143.24 (12)	C20—C24—H24C	109.5
C4—Ni01—C29	107.85 (12)	H24A—C24—H24C	109.5
C30—Ni01—C29	40.29 (11)	H24B—C24—H24C	109.5
C1—Ni01—C26	125.47 (12)	С22—С25—Н25А	109.5
C4—Ni01—C26	93.00 (12)	C22—C25—H25B	109.5
C30—Ni01—C26	101.53 (12)	H25A—C25—H25B	109.5
C29—Ni01—C26	85.37 (12)	C22—C25—H25C	109.5
C1—Ni01—C33	100.31 (12)	H25A—C25—H25C	109.5
C4—Ni01—C33	124.47 (12)	H25B-C25-H25C	109.5

C30—Ni01—C33	84.99 (12)	C33—C26—C27	125.9 (3)
C29—Ni01—C33	94.06 (12)	C33—C26—Ni01	72.11 (18)
C26—Ni01—C33	37.55 (11)	C27—C26—Ni01	106.80 (19)
C1—N1—C2	112.4 (2)	С33—С26—Н26А	116.6 (17)
C1—N1—C8	125.1 (2)	С27—С26—Н26А	115.6 (17)
C2—N1—C8	122.3 (2)	Ni01—C26—H26A	105.1 (17)
C1—N2—C3	113.4 (2)	C26—C27—C28	113.8 (3)
C1—N2—C7	120.2 (2)	С26—С27—Н27А	108.8
C3—N2—C7	126.4 (2)	С28—С27—Н27А	108.8
C4—N3—C5	112.8 (2)	С26—С27—Н27В	108.8
C4-N3-C7	1210(2)	C28—C27—H27B	108.8
C5—N3—C7	126.1 (2)	H27A—C27—H27B	107.7
C4-N4-C6	112 1 (2)	$C_{29} C_{28} C_{27}$	112.3(2)
C4—N4—C17	1262(2)	C29—C28—H28A	109.1
C6-N4-C17	120.2(2) 121.7(2)	C_{27} C_{28} H_{28A}	109.1
N_2 —C1—N1	101.4(2)	C_{29} C_{28} H_{28B}	109.1
$N_2 - C_1 - N_1 O_1$	119.8 (2)	C27—C28—H28B	109.1
N1Nj01	138.6 (2)	$H_{28} = C_{28} = H_{28B}$	107.9
$C_3 - C_2 - N_1$	106.9(3)	C_{30} C_{29} C_{28}	107.9 122 4 (3)
$C_3 - C_2 - H_2$	126.5	C_{30} C_{29} N_{101}	69.64(16)
$N_1 - C_2 - H_2$	126.5	$C_{28} = C_{29} = N_{101}$	111.99(19)
$C_2 - C_3 - N_2$	105.9 (3)	$C_{20} = C_{29} = H_{29A}$	111.99(19) 119.2(17)
C2_C3_H3	105.9 (5)	C_{28} C_{29} H_{29A}	113.2(17) 113.7(17)
N2_C3_H3	127.0	Ni01_C29_H29A	109.8(17)
$N_4 - C_4 - N_3$	127.0 101.8 (2)	C_{29} C_{30} C_{31}	109.0(17) 123.1(3)
N4-C4-Ni01	139.2(2)	$C_{29} = C_{30} = C_{31}$	70.07 (16)
$N_3 C_4 N_{101}$	119.02(2)	$C_{23} = C_{30} = N_{101}$	111 30 (19)
C6-C5-N3	106.2(1)	C_{29} C_{30} H_{30A}	111.50(19)
C6 C5 H5	126.0	C_{2} C_{30} H_{30A}	116.0(19)
N3_C5_H5	126.9	Ni01_C30_H30A	10.3(1)
C5-C6-N4	107.1(3)	C_{30} C_{31} C_{32}	100.9(1)
C5-C6-H6	107.1 (5)	C_{30} C_{31} H_{31A}	108.8
N4_C6_H6	126.5	C32_C31_H31A	108.8
N3N2	120.3 110.2(2)	C30_C31_H31B	108.8
N3-C7-H7A	109.6	C_{32} C_{31} H_{31B}	108.8
N2-C7-H7A	109.6	$H_{31}A = C_{31} = H_{31}B$	103.3
N3-C7-H7B	109.6	C_{33} C_{32} C_{31}	107.7 114 1 (2)
N2_C7_H7B	109.6	C_{33} C_{32} H_{32}	108 7
H7A - C7 - H7B	108.1	C31-C32-H32A	108.7
11/12 = 11/12	121.6 (3)	C33_C32_H32B	108.7
C13 - C8 - V1	121.0(3) 117.8(3)	C31_C32_H32B	108.7
C9-C8-N1	120 5 (3)	$H_{32}A = C_{32} = H_{32}B$	107.6
C_{8} C_{9} C_{10}	1175(3)	$C_{26} = C_{33} = C_{32}$	123.8 (3)
$C_{8} - C_{9} - C_{14}$	121.9 (3)	$C_{20} = C_{33} = C_{32}$	70.34(17)
C10-C9-C14	120.6 (3)	C_{32} C_{33} Ni01	109 86 (19)
$C_{11} - C_{10} - C_{9}$	122.4 (3)	C26—C33—H33A	1182(17)
C11—C10—H10	118.8	C32—C33—H33A	115 3 (17)
C9—C10—H10	118.8	Ni01—C33—H33A	106.4 (17)

C10-C11-C12	118.3 (3)	C34—O1—C37	110.5 (7)
C10—C11—C15	122.1 (3)	O1—C34—C35	107.6 (9)
C12—C11—C15	119.6 (3)	O1—C34—H34A	110.2
C13—C12—C11	121.5 (3)	С35—С34—Н34А	110.2
C13—C12—H12	119.3	01—C34—H34B	110.2
C11—C12—H12	119.3	C35—C34—H34B	110.2
C12—C13—C8	118.6 (3)	H34A—C34—H34B	108.5
C12—C13—C16	120.4 (3)	$C_{36} = C_{35} = C_{34}$	103.4 (8)
C8-C13-C16	120.9 (3)	C36—C35—H35A	111.1
C9—C14—H14A	109.5	C34—C35—H35A	111.1
C9-C14-H14B	109.5	C36—C35—H35B	111.1
H14A—C14—H14B	109.5	C34—C35—H35B	111.1
C9-C14-H14C	109.5	H35A—C35—H35B	109.1
H14A—C14—H14C	109.5	C_{35} — C_{36} — C_{37}	103.9 (9)
H14B—C14—H14C	109.5	C35—C36—H36A	111.0
C11—C15—H15A	109.5	C37—C36—H36A	111.0
C11—C15—H15B	109.5	C35—C36—H36B	111.0
H15A—C15—H15B	109.5	C37—C36—H36B	111.0
C11—C15—H15C	109.5	H36A—C36—H36B	109.0
H15A—C15—H15C	109.5	01-C37-C36	106.3 (7)
H15B-C15-H15C	109.5	01—C37—H37A	110.5
C13—C16—H16A	109.5	С36—С37—Н37А	110.5
C13—C16—H16B	109.5	01—C37—H37B	110.5
H16A—C16—H16B	109.5	С36—С37—Н37В	110.5
C13—C16—H16C	109.5	Н37А—С37—Н37В	108.7
H16A—C16—H16C	109.5	C37'	110.2 (7)
H16B—C16—H16C	109.5	O1'—C34'—C35'	105.3 (8)
C18—C17—C22	121.9 (3)	O1'—C34'—H34C	110.7
C18—C17—N4	119.4 (2)	C35′—C34′—H34C	110.7
C22—C17—N4	118.6 (3)	O1'—C34'—H34D	110.7
C17—C18—C19	118.2 (3)	C35'—C34'—H34D	110.7
C17—C18—C23	122.2 (3)	H34C—C34′—H34D	108.8
C19—C18—C23	119.6 (3)	C34'—C35'—C36'	102.8 (9)
C18—C19—C20	121.8 (3)	C34′—C35′—H35C	111.2
C18—C19—H19	119.1	С36'—С35'—Н35С	111.2
С20—С19—Н19	119.1	C34'—C35'—H35D	111.2
C21—C20—C19	118.4 (3)	C36'—C35'—H35D	111.2
C21—C20—C24	120.7 (3)	H35C—C35'—H35D	109.1
C19—C20—C24	120.8 (3)	C37′—C36′—C35′	100.3 (8)
C20—C21—C22	122.0 (3)	С37′—С36′—Н36С	111.7
C20—C21—H21	119.0	С35′—С36′—Н36С	111.7
C22—C21—H21	119.0	C37'—C36'—H36D	111.7
C21—C22—C17	117.6 (3)	C35'—C36'—H36D	111.7
C21—C22—C25	120.8 (3)	H36C—C36′—H36D	109.5
C17—C22—C25	121.5 (3)	O1'—C37'—C36'	111.1 (7)
C18—C23—H23A	109.5	O1'—C37'—H37C	109.4
C18—C23—H23B	109.5	С36'—С37'—Н37С	109.4
H23A—C23—H23B	109.5	O1'—C37'—H37D	109.4

C18—C23—H23C	109.5	C36′—C37′—H37D	109.4
H23A—C23—H23C	109.5	H37C—C37′—H37D	108.0
H23B—C23—H23C	109.5		
C3—N2—C1—N1	-0.4(3)	C9—C8—C13—C16	-177.7 (3)
C7—N2—C1—N1	-179.3 (2)	N1—C8—C13—C16	4.4 (4)
C3—N2—C1—Ni01	-175.9(2)	C4—N4—C17—C18	115.5 (3)
C7—N2—C1—Ni01	5.2 (3)	C6—N4—C17—C18	-67.4 (4)
C2—N1—C1—N2	0.8 (3)	C4—N4—C17—C22	-67.7 (4)
C8—N1—C1—N2	175.4 (3)	C6—N4—C17—C22	109.3 (3)
C2—N1—C1—Ni01	174.8 (3)	C22—C17—C18—C19	0.2 (4)
C8—N1—C1—Ni01	-10.5(5)	N4—C17—C18—C19	176.8 (2)
C1—N1—C2—C3	-0.8(3)	C22—C17—C18—C23	-177.6(3)
C8—N1—C2—C3	-175.7(3)	N4—C17—C18—C23	-0.9(4)
N1 - C2 - C3 - N2	0.5 (3)	C17—C18—C19—C20	-0.4(4)
C1 - N2 - C3 - C2	-0.1(3)	C_{23} C_{18} C_{19} C_{20}	177.4 (3)
C7-N2-C3-C2	178 8 (3)	C18 - C19 - C20 - C21	0.8(4)
C6-N4-C4-N3	-0.8(3)	C_{18} C_{19} C_{20} C_{21} C_{24}	-1783(3)
C17 - N4 - C4 - N3	1765(2)	C19 - C20 - C21 - C22	-11(4)
C6-N4-C4-Ni01	178.4(3)	C_{24} C_{20} C_{21} C_{22} C_{22}	1780(3)
C17—N4—C4—Nj01	-43(5)	C_{20} C_{21} C_{22} C_{21} C_{22} C_{17}	0.9(4)
C_{5} N3 C_{4} N4	0.6(3)	C_{20} C_{21} C_{22} C_{17} C_{20} C_{21} C_{22} C_{25}	-1795(3)
C7 - N3 - C4 - N4	178 6 (2)	$C_{18} - C_{17} - C_{22} - C_{21}$	-0.4(4)
C_{5} N3 C_{4} Ni01	-1788(2)	N4-C17-C22-C21	-1771(2)
C7 N3 C4 Ni01	-0.8(4)	C_{18} C_{17} C_{22} C_{21}	-1800(3)
C4 - N3 - C5 - C6	-0.2(3)	N4 - C17 - C22 - C25	34(4)
$C_{7} N_{3} C_{5} C_{6}$	-1781(3)	$C_{33} = C_{22} = C_{23} = C$	-46.3(4)
$N_{3} C_{5} C_{6} N_{4}$	-0.3(3)	$N_{101} = C_{20} = C_{27} = C_{28}$	335(3)
$C_4 = N_4 = C_6 = C_5$	0.3(3)	$C_{26} = C_{27} = C_{28} = C_{20}$	-321(4)
$C_{1}^{-1} N_{1}^{-1} C_{0}^{-1} C_{3}^{-1}$	-1767(3)	$C_{20} = C_{2}^{2} = C_{28}^{2} = C_{28}^{2} = C_{28}^{2}$	32.1(4) 02.8(3)
$C_{1} = N_{1} = C_{2} = C_{3}$	-1/0.7(3)	$C_{27} = C_{28} = C_{29} = C_{30}$	92.0(3)
C4 - N3 - C7 - N2	33.4(3)	$C_2^{-1} = C_2^{-1} $	15.0(5)
C_{1} N2 C_{7} N2	-128.9(3)	120 - 229 - 230 - 231	-0.7(4)
$C_1 = N_2 = C_7 = N_3$	-30.0(3)	N101 - C29 - C30 - C31	103.0(3) 102.7(2)
$C_{3} = N_{2} = C_{7} = N_{3}$	123.3(3)	$C_{20} = C_{20} = C_{30} = N_{101}$	-105.7(5)
C1 - N1 - C6 - C13	-91.4(3)	$C_{29} = C_{30} = C_{31} = C_{32}$	-32.8(4)
C_2 -NI- C_8 - C_{13}	82.8(4)	N101 - C30 - C31 - C32	20.7(3)
C1 - N1 - C8 - C9	90.7 (4)	$C_{30} = C_{31} = C_{32} = C_{33}$	-24.5(4)
$C_2 = N_1 = C_8 = C_9$	-95.1(5)	$C_2/-C_{20}-C_{33}-C_{32}$	-3.1(5)
C13 - C8 - C9 - C10	0.7(4)	N101 - C20 - C33 - C32	-101.2(3)
NI = C8 = C9 = C10	1/8.0(3)	$C_2/-C_{20}-C_{33}-N_{101}$	98.1 (5)
C13 - C8 - C9 - C14	-1/8.9(3)	$C_{31} = C_{32} = C_{33} = C_{26}$	89.1 (4)
NI - C8 - C9 - C14	-1.1(4)	$C_{31} = C_{32} = C_{33} = N_{101}$	10.0(3)
	-1.8(4)	$C_3/-O_1-C_34-C_35$	6.5(17)
C14 - C9 - C10 - C11	1//.9(3)	01 - 0.34 - 0.35 - 0.36	-22.2(19)
C9-C10-C11-C12	1.4 (4)	$C_{34} = C_{35} = C_{36} = C_{37}$	28.4 (18)
C9—C10—C11—C15	-1/8.1(3)	$C_{34} - O_{1} - C_{37} - C_{36}$	12.0 (16)
C10—C11—C12—C13	0.1 (4)	C35—C36—C37—O1	-25.4 (16)
C15-C11-C12-C13	179.6 (3)	C37'-O1'-C34'-C35'	-17.7 (17)

C11—C12—C13—C8	-1.1 (4)	O1'—C34'—C35'—C36'	30.1 (18)
C11—C12—C13—C16	177.3 (3)	C34'—C35'—C36'—C37'	-29.8 (17)
C9—C8—C13—C12	0.7 (4)	C34'—O1'—C37'—C36'	-2.5 (16)
N1-C8-C13-C12	-177.2 (3)	C35'—C36'—C37'—O1'	21.2 (17)