

Received 31 July 2018 Accepted 25 August 2018

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: crystal structure; malonate; Hirshfeld surface.

CCDC reference: 1863914

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of diethyl 2-[4-(4-fluorophenyl)-2-methyl-4-oxobutan-2-yl]malonate

Sandeep Chandrashekharappa,^a Keshab M. Bairagi,^b Mahendra K. Mohan,^a Katharigatta N. Venugopala^c* and Susanta K. Nayak^b*

^aInstitute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560 065, Karnataka, India, ^bDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440 010, Maharashtra, India, and ^cDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa. *Correspondence e-mail: katharigattav@dut.ac.za, sknayak@chm.vnit.ac.in

The title compound, $C_{18}H_{23}FO_5$, was synthesized by reacting diethyl malonate with 1-(4-fluorophenyl)-3-methylbut-2-en-1-one. The molecule adopts a loose conformation stabilized by weak $C-H\cdots O$ and $C-H\cdots \pi$ interactions. In the crystal, the molecules are joined by $C-H\cdots O$ contacts into infinite chains along the *b*-axis direction with a C(6) graph-set motif. Hirshfeld surface analysis and fingerprint plots demonstrate the predominance of $H\cdots H$, $O\cdots H$ and $F\cdots H$ intermolecular interactions in the crystal structure.

1. Chemical context

Polyfunctionalized reactions are used to synthesize the bioactive compounds that are interesting core structures for the development of new drug molecules. The direct functionalization of chemical intermediates has attracted extensive attention of synthetic chemists (Fournier et al., 1994; Liu & Couldwell, 2005; Markham & Faulds, 1998) for the construction of heterocyclic compounds that are known to exhibit various pharmacological properties such as anticancer (Kasumbwe et al., 2017), antimosquito (Venugopala et al., 2013a), anti-tubercular (Narayanaswamy et al., 2013b), anti-HIV (Poty et al., 2015), anti-diabetic (Shahidpour et al., 2015) and anti-microbial (Ji et al., 2015) activities. The title compound, achieved by Michael addition (Simamura et al., 1954), is an important precursor in the construction of the heterocyclic compound N2-(3-(difluoromethoxy)-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-7-(4-fluorophenyl)-N4,5,5-trimethyl-6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidine-2,4-diamine, which is a modulator of β -amyloid peptide production in treating Alzheimer's disease (Boy et al., 2015).

ACCESS

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system in the space group $P2_1/n$, with one molecule in the

OPEN

 $\overline{\mathbf{O}}$

rocorr	h commun	Catu	nnc
ICSCALL		Call	

Table 1				
Hydrogen-bond geometry	y	(Å,	°).	

Cg is	the	centroid	of	the	C1-C6	aromatic	ring
-------	-----	----------	----	-----	-------	----------	------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C10−H10C···O4	0.98	2.40	3.057 (2)	124
C11−H11 <i>B</i> ···O1	0.98	2.55	3.167 (2)	121
C12-H12···O1	1.00	2.36	3.056 (2)	126
$C15-H15B\cdots O2^{i}$	0.98	2.54	3.500 (2)	168
$C15-H15C\cdots Cg$	0.98	2.93	3.836 (2)	154

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

asymmetric unit (Z' = 1). The molecular conformation is stabilized by an intramolecular C-H···O hydrogen bonds and C-H··· π interaction (Fig. 1, Table 1) and short O3···O7 contact [3.007 (2) Å]. All bonds between sp^3 -hybridized atoms adopt staggered conformations, thus indicating that steric tensions are absent from this molecule. The dihedral angle between the two ester groups of the malonate residue is 61.79 (5)°; the dihedral angles formed by aromatic ring with adjacent and opposite ester groups are 56.66 (4) and 16.08 (4)°, respectively. The dihedral angle between aromatic ring and ketone carbonyl unit is 14.04 (5)°.

3. Supramolecular features

In the crystal of the title compound, the shortest intermolecular contact is C15–H15B····O2, which join the molecules into infinite chains with graph-set motif C(6) (Etter *et al.*, 1990) along the *b*-axis direction (Table 1, Fig. 2). There are also a few other H···O contacts at the level of the sum of covalent radii.

4. Hirshfeld surfaces analysis

The approach based on Hirshfeld surfaces is a tool for visualizing the intermolecular interaction (Spackman & Jayatilaka, 2009). The Hirshfeld surfaces and two-dimensional fingerprint plot generated using *CrystalExplorer* 3.1 (Wolff *et al.*, 2012) are presented in Figs. 3 and 4. The red spots on the

Figure 1

The asymmetric unit of the title compound with 50% probability ellipsoids with atom labelling. The intramolecular $C-H\cdots\pi$ interaction is shown as a dotted line.

5. Database survey

A search in the Cambridge Structural Database (version 5.39, last updated May 2018; Groom *et al.*, 2016) for the fragments $F-C_6H_4-C(=O)-CH_2$ and $C_6H_4-C(=O)-CH_2-CH_2-CH_2-CH(COO)_2$ gave 102 and 62 hits, respectively. Among them, two hits, (*S*)-ethyl-2-(4-*t*-butylbenzylsulfanyl)-4-(4-fluorophenyl)-4-oxobutanoate (refcode: YOGMEO; Kowalczyk *et al.*, 2014) and dimethyl (*S*)-2-(1-(4-nitrophenyl)-1,4-dioxopentan-3-yl) malonate (refcode: YUFSOJ; Lippur *et al.*, 2015) are the most closely related to the title crystal structure. The dihedral angles between the adjacent alkyl ester group and the

Figure 3 Hirshfeld surface of the title compound mapped over d_{norm} .

research communications

Figure 4

Two-dimensional fingerprint plots and relative contributions of various interactions to the Hirshfeld surface of the title compound.

aromatic ring in YOGMEO, YUFSOJ and the title structure are 78.97 (3), 39.37 (2) and 56.66 (4)°, respectively. As in the title structure, in YUFSOJ there are intermolecular $C-H\cdots O$ contacts involving the methyl groups, whereas in YOGMEO the $C-H\cdots O$ contacts are formed with a hydrogen atom of the aromatic group.

6. Synthesis and crystallization

To a stirred solution of diethyl malonate (1 g, 6.25 mmol) in tetrahydrofuran (5 ml), sodium hydride (0.33 g, 13.75 mmol) was added at 273 K. The reaction mixture was allowed to stir for 15 min. A solution of 1-(4-fluorophenyl)-3-methylbut-2en-1-one (1.11 g, 6.25 mmol) in THF was added into the reaction mixture. The reaction mixture was then allowed to stir overnight at room temperature. The completion of the reaction was monitored by thin layer chromatography. The reaction mixture was quenched with saturated ammonium chloride and extracted with ethyl acetate (2 \times 25 ml). The combined organic layer was washed with water $(2 \times 25 \text{ ml})$, brine (25 ml), dried over sodium sulfate and evaporated under reduced pressure to obtain the crude product, which was purified by column chromatography using 60-120 mesh silica gel with ethyl acetate and hexane eluent (v/v = 1:2). Single crystals of the title compound were obtained by slow evaporation from acetone solvent at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in idealized positions (C–H = 0.95–1.00 Å) and refined using riding model with $U_{\rm iso} = 1.2$ or $1.5U_{\rm eq}$ (C). The methyl groups were allowed to rotate.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{18}H_{23}FO_5$
M _r	338.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	153
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.3066 (6), 11.5182 (9), 20.2701 (17)
β (°)	93.673 (2)
$V(Å^3)$	1702.4 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.22 \times 0.13 \times 0.10$
Data collection	
Diffractometer	Bruker Kappa DUO APEXII
Absorption correction	Multi-scan (SADABS; Sheldrick, 2015)
T_{\min}, T_{\max}	0.929, 0.941
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15690, 4045, 2835
R _{int}	0.053
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.657
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.104, 1.03
No. of reflections	4045
No. of parameters	222
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.26, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Funding information

The authors are thankful to the National Research Foundation (96807 and 98884), South Africa and Durban University of Technology, South Africa, for support and encouragement. KMB thanks VNIT Nagpur for support of a research fellowship.

References

- Boy, K. M., Mercer, S. E., Olson, R. E. & Zhuo, X. (2015). Difluoromethoxy compound with low bioactivation potential for the reduction of β -amyloid production. Application WO2015153709A1.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fournier, C., Hamon, M., Hamon, M., Wannebroucq, J., Petiprez, S., Pruvo, J. & Hecquet, B. (1994). *Int. J. Pharm.* **106**, 41–49.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ji, C., Miller, P. A. & Miller, M. J. (2015). ACS Med. Chem. Lett. 6, 707–710.
- Kasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276–285.
- Kowalczyk, R., Wierzba, A. J., Boratyński, P. J. & Bąkowicz, J. (2014). *Tetrahedron*, **70**, 5834–5842.
- Lippur, K., Kaabel, S., Järving, I., Rissanen, K. & Kanger, T. (2015). J. Org. Chem. **80**, 6336–6341.
- Liu, J. K. & Couldwell, W. T. (2005). Neurocrit. Care, 2, 124–132.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Markham, A. & Faulds, D. (1998). Drugs, 56, 251-256.
- Narayanaswamy, V. K., Nayak, S. K., Pillay, M., Prasanna, R., Coovadia, Y. M. & Odhav, B. (2013b). *Chem. Biol. Drug Des.* **81**, 219–227.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Poty, S., Désogère, P., Goze, C., Boschetti, F., D'huys, T., Schols, D., Cawthorne, C., Archibald, S. J., Maëcke, H. R. & Denat, F. (2015). *Dalton Trans.* 44, 5004–5016.
- Shahidpour, S., Panahi, F., Yousefi, R., Nourisefat, M., Nabipoor, M. & Khalafi-Nezhad, A. (2015). *Med. Chem. Res.* **24**, 3086–3096.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Simamura, O., Inamoto, N. & Suehiro, T. (1954). *Bull. Chem. Soc. Jpn*, **27**, 221–225.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.
- Venugopala, K. N., Krishnappa, M., Nayak, S. K., Subrahmanya, B. K., Vaderapura, J. P., Chalannavar, R. K., Gleiser, R. M. & Odhav, B. (2013a). Eur. J. Med. Chem. 65, 295–303.
- Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). *CrystalExplorer*. The University of Western Australia, Perth, Australia.

supporting information

Acta Cryst. (2018). E74, 1388-1391 [https://doi.org/10.1107/S2056989018012094]

Crystal structure and Hirshfeld surface analysis of diethyl 2-[4-(4-fluorophenyl)-2-methyl-4-oxobutan-2-yl]malonate

Sandeep Chandrashekharappa, Keshab M. Bairagi, Mahendra K. Mohan, Katharigatta N. Venugopala and Susanta K. Nayak

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

Diethyl 2-[4-(4-fluorophenyl)-2-methyl-4-oxobutan-2-yl]propanedioate

Crystal data

C₁₈H₂₃FO₅ $M_r = 338.36$ Monoclinic, $P2_1/n$ a = 7.3066 (6) Å b = 11.5182 (9) Å c = 20.2701 (17) Å $\beta = 93.673$ (2)° V = 1702.4 (2) Å³ Z = 4F(000) = 720

Data collection

Bruker Kappa DUO APEXII diffractometer Radiation source: fine-focus sealed tube $0.5^{\circ} \varphi$ scans and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2015) $T_{\min} = 0.929, T_{\max} = 0.941$ 15690 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.104$ S = 1.024045 reflections 222 parameters 0 restraints $D_{\rm x} = 1.320 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.32 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2274 reflections $\theta = 5.4-52.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 153 KBlock, colorless $0.22 \times 0.13 \times 0.10 \text{ mm}$

4045 independent reflections 2835 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 27.8^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -26 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0423P)^{2} + 0.1543P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0022 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.81620 (15)	0.89772 (7)	0.46296 (5)	0.0405 (3)	
01	0.74992 (16)	0.35297 (9)	0.46976 (5)	0.0307 (3)	
O2	0.42377 (17)	0.28973 (10)	0.24940 (5)	0.0383 (3)	
O3	0.45134 (15)	0.40181 (8)	0.34014 (5)	0.0262 (3)	
O4	0.56685 (18)	0.04282 (10)	0.28153 (5)	0.0411 (3)	
05	0.45277 (15)	0.05130 (8)	0.38152 (5)	0.0258 (3)	
C1	0.8140 (2)	0.78062 (13)	0.45372 (7)	0.0268 (4)	
C2	0.8913 (2)	0.73723 (13)	0.39876 (7)	0.0260 (3)	
H2	0.9456	0.7873	0.3683	0.031*	
C3	0.8875 (2)	0.61769 (12)	0.38918 (7)	0.0221 (3)	
H3	0.9381	0.5856	0.3512	0.026*	
C4	0.8102 (2)	0.54422 (12)	0.43457 (7)	0.0205 (3)	
C5	0.7325 (2)	0.59304 (13)	0.48947 (7)	0.0247 (3)	
H5	0.6782	0.5440	0.5204	0.030*	
C6	0.7340 (2)	0.71182 (13)	0.49918 (7)	0.0285 (4)	
H6	0.6809	0.7451	0.5364	0.034*	
C7	0.8023 (2)	0.41483 (13)	0.42581 (7)	0.0217 (3)	
C8	0.8624 (2)	0.36640 (12)	0.36098 (7)	0.0224 (3)	
H8A	0.9977	0.3724	0.3620	0.027*	
H8B	0.8129	0.4183	0.3252	0.027*	
C9	0.8105 (2)	0.24080 (12)	0.34080 (7)	0.0223 (3)	
C10	0.8648 (2)	0.22647 (14)	0.26926 (7)	0.0294 (4)	
H10A	0.9970	0.2395	0.2675	0.044*	
H10B	0.7978	0.2830	0.2408	0.044*	
H10C	0.8344	0.1477	0.2538	0.044*	
C11	0.9171 (2)	0.15246 (13)	0.38520 (8)	0.0331 (4)	
H11A	0.8871	0.0736	0.3699	0.050*	
H11B	0.8832	0.1616	0.4309	0.050*	
H11C	1.0491	0.1659	0.3831	0.050*	
C12	0.5999 (2)	0.22011 (12)	0.34749 (7)	0.0218 (3)	
H12	0.5754	0.2345	0.3948	0.026*	
C13	0.4813 (2)	0.30483 (13)	0.30589 (7)	0.0232 (3)	
C14	0.3506 (2)	0.49428 (13)	0.30408 (7)	0.0261 (4)	
H14A	0.2225	0.4698	0.2930	0.031*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H14B	0.4089	0.5117	0.2624	0.031*	
C15	0.3541 (2)	0.60000 (13)	0.34758 (8)	0.0288 (4)	
H15A	0.2984	0.5814	0.3890	0.043*	
H15B	0.2848	0.6627	0.3249	0.043*	
H15C	0.4812	0.6248	0.3572	0.043*	
C16	0.5405 (2)	0.09577 (13)	0.33143 (7)	0.0247 (3)	
C17	0.3988 (2)	-0.07089 (12)	0.37518 (7)	0.0285 (4)	
H17A	0.5063	-0.1196	0.3666	0.034*	
H17B	0.3050	-0.0809	0.3382	0.034*	
C18	0.3222 (2)	-0.10521 (13)	0.43942 (8)	0.0325 (4)	
H18A	0.4151	-0.0925	0.4757	0.049*	
H18B	0.2879	-0.1875	0.4378	0.049*	
H18C	0.2137	-0.0580	0.4466	0.049*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0591 (7)	0.0204 (5)	0.0428 (6)	0.0001 (4)	0.0096 (5)	-0.0073 (4)
01	0.0479 (8)	0.0261 (6)	0.0187 (5)	-0.0084 (5)	0.0049 (5)	0.0033 (5)
02	0.0477 (8)	0.0406 (7)	0.0252 (6)	0.0070 (6)	-0.0085 (5)	-0.0085 (5)
O3	0.0358 (7)	0.0219 (6)	0.0208 (5)	0.0039 (5)	0.0003 (4)	0.0000 (4)
O4	0.0665 (9)	0.0319 (7)	0.0269 (6)	-0.0175 (6)	0.0188 (6)	-0.0121 (5)
05	0.0378 (7)	0.0175 (5)	0.0227 (5)	-0.0069(5)	0.0075 (5)	-0.0008 (4)
C1	0.0324 (9)	0.0199 (8)	0.0279 (8)	-0.0001 (6)	-0.0004 (7)	-0.0038 (6)
C2	0.0322 (9)	0.0245 (8)	0.0216 (8)	-0.0043 (6)	0.0038 (6)	0.0014 (6)
C3	0.0236 (8)	0.0250 (8)	0.0178 (7)	-0.0026 (6)	0.0038 (6)	-0.0028 (6)
C4	0.0222 (8)	0.0220 (7)	0.0172 (7)	-0.0023 (6)	-0.0010 (6)	-0.0002 (6)
C5	0.0281 (9)	0.0281 (8)	0.0182 (7)	-0.0042 (6)	0.0031 (6)	-0.0004 (6)
C6	0.0333 (9)	0.0322 (9)	0.0208 (8)	0.0015 (7)	0.0069 (6)	-0.0070 (7)
C7	0.0224 (8)	0.0238 (8)	0.0187 (7)	-0.0034 (6)	-0.0009 (6)	0.0005 (6)
C8	0.0262 (8)	0.0219 (8)	0.0194 (7)	-0.0025 (6)	0.0041 (6)	0.0001 (6)
C9	0.0270 (8)	0.0197 (8)	0.0206 (7)	-0.0008 (6)	0.0048 (6)	-0.0012 (6)
C10	0.0324 (9)	0.0297 (9)	0.0273 (8)	-0.0027 (7)	0.0105 (7)	-0.0068 (7)
C11	0.0372 (10)	0.0239 (8)	0.0376 (9)	0.0034 (7)	-0.0032 (7)	0.0006 (7)
C12	0.0299 (9)	0.0196 (7)	0.0162 (7)	-0.0042 (6)	0.0049 (6)	-0.0007 (6)
C13	0.0244 (8)	0.0244 (8)	0.0213 (8)	-0.0054 (6)	0.0056 (6)	-0.0011 (6)
C14	0.0276 (9)	0.0279 (8)	0.0227 (8)	0.0013 (6)	0.0004 (6)	0.0070 (6)
C15	0.0320 (9)	0.0273 (9)	0.0275 (8)	0.0058 (7)	0.0048 (7)	0.0055 (7)
C16	0.0295 (9)	0.0234 (8)	0.0214 (8)	-0.0037 (6)	0.0036 (6)	-0.0009 (6)
C17	0.0412 (10)	0.0177 (8)	0.0266 (8)	-0.0071 (7)	0.0031 (7)	-0.0024 (6)
C18	0.0450 (11)	0.0229 (8)	0.0302 (9)	-0.0092 (7)	0.0073 (7)	-0.0006 (7)

Geometric parameters (Å, °)

F1—C1	1.3617 (17)	C9—C11	1.537 (2)	
O1—C7	1.2212 (17)	C9—C12	1.572 (2)	
O2—C13	1.2070 (17)	C10—H10A	0.9800	
O3—C13	1.3407 (17)	C10—H10B	0.9800	

O3—C14	1.4633 (17)	C10—H10C	0.9800
O4—C16	1.2070 (17)	C11—H11A	0.9800
O5—C16	1.3372 (17)	C11—H11B	0.9800
O5—C17	1.4650 (17)	C11—H11C	0.9800
C1—C6	1.374 (2)	C12—C13	1.523 (2)
C1—C2	1.375 (2)	C12—C16	1.5254 (19)
C2—C3	1.391 (2)	C12—H12	1.0000
C2—H2	0.9500	C14—C15	1.503 (2)
C3—C4	1.396 (2)	C14—H14A	0.9900
C3—H3	0.9500	C14—H14B	0 9900
C4—C5	1 399 (2)	C15—H15A	0.9800
C4—C7	1.592(2)	C15—H15B	0.9800
C_{5}	1.302(2) 1.382(2)	C15—H15C	0.9800
C5—H5	0.9500	C17-C18	1.503(2)
C6—H6	0.9500	C17 $H17$	0.9900
C7-C8	1 518 (2)	C17—H17B	0.9900
C_{8}	1.5442(19)	C18—H18A	0.9900
	0.0000	C18 H18B	0.9800
	0.9900	C18 H18C	0.9800
C_{0} C_{10}	1.537(2)		0.9000
C)—C10	1.557 (2)		
$C_{13} - C_{14}$	116 19 (11)	C9-C11-H11B	109 5
C16 - 05 - C17	116 16 (11)	H11A—C11—H11B	109.5
$F_1 - C_1 - C_6$	118 74 (14)	C9-C11-H11C	109.5
$F_1 = C_1 = C_2$	118.01(14)		109.5
C_{6}	123 25 (14)	H11B—C11—H11C	109.5
$C_1 - C_2 - C_3$	117 86 (14)	C_{13} C_{12} C_{16}	109.5 109.85(12)
C1 - C2 - H2	121.1	C_{13} C_{12} C_{10}	109.05(12) 112.35(12)
C_{3} C_{2} H_{2}	121.1	C_{16} C_{12} C_{9}	112.98 (12)
C_{2} C_{3} C_{4}	120.92(13)	C_{13} C_{12} H_{12}	107.1
C2C3H3	119 5	C_{16} C_{12} H_{12}	107.1
C4 - C3 - H3	119.5	C9-C12-H12	107.1
$C_{3} - C_{4} - C_{5}$	118.84 (13)	$0^{2}-C^{13}-O^{3}$	123 55 (14)
C_{3} C_{4} C_{7}	122 56 (13)	02 - C13 - C12	125.55(14) 125.75(14)
$C_{5} - C_{4} - C_{7}$	118 58 (13)	03 - C13 - C12	120.75(14)
C6-C5-C4	120.75(14)	03 - C14 - C15	107.93 (11)
C6-C5-H5	119.6	O_3 C_14 H_14A	110.1
C4-C5-H5	119.6	C_{15} C_{14} H_{14A}	110.1
$C_1 - C_2 - C_5$	119.0	$O_3 - C_1 - H_1 AB$	110.1
C1-C6-H6	120.8	C_{15} C_{14} H_{14B}	110.1
C5-C6-H6	120.8	H_{14A} $-C_{14}$ H_{14B}	108.4
01 - C7 - C4	120.0	C14 $C15$ $H154$	100.4
01 - 07 - 08	120.25 (13)	C14— $C15$ — $H15R$	109.5
$C_{1} = C_{1} = C_{3}$	122.39(13) 117 12(12)	$H_{15A} = C_{15} = H_{15B}$	109.5
$C_{7} - C_{7} - C_{8} - C_{9}$	117.12(12) 110 50(12)	$\frac{113}{113}$	109.5
$C_{1} = C_{0} = C_{2}$	107 4	$H15\Delta = C15 = H15C$	109.5
C_{0} C_{0} H_{8A}	107.4	H15B_C15_H15C	109.5
C7_C8_H8B	107.4	04-C16-05	102.5
	IU/.T		140.07(10)

107.4	O4C16C12	126.51 (14)
107.0	O5-C16-C12	109.95 (12)
109.24 (13)	O5—C17—C18	106.84 (12)
106.06 (12)	O5—C17—H17A	110.4
110.99 (12)	C18—C17—H17A	110.4
112.26 (12)	O5—C17—H17B	110.4
108.15 (12)	C18—C17—H17B	110.4
110.15 (12)	H17A—C17—H17B	108.6
109.5	C17—C18—H18A	109.5
109.5	C17—C18—H18B	109.5
109.5	H18A—C18—H18B	109.5
109.5	C17—C18—H18C	109.5
109.5	H18A—C18—H18C	109.5
109.5	H18B—C18—H18C	109.5
109.5		
-179.48 (13)	C11—C9—C12—C13	179.22 (12)
0.1 (2)	C8—C9—C12—C13	57.76 (15)
-1.1 (2)	C10-C9-C12-C16	64.78 (15)
1.4 (2)	C11—C9—C12—C16	-55.81 (15)
179.59 (13)	C8—C9—C12—C16	-177.27 (11)
-0.8 (2)	C14—O3—C13—O2	-3.2 (2)
-179.03 (13)	C14—O3—C13—C12	175.51 (12)
-179.90 (13)	C16—C12—C13—O2	-36.6 (2)
0.6 (2)	C9—C12—C13—O2	90.11 (18)
-0.2 (2)	C16—C12—C13—O3	144.81 (13)
172.84 (14)	C9—C12—C13—O3	-88.52 (15)
-9.0 (2)	C13—O3—C14—C15	-172.32 (13)
-6.9 (2)	C17—O5—C16—O4	4.1 (2)
171.30 (13)	C17—O5—C16—C12	-175.80 (12)
16.5 (2)	C13—C12—C16—O4	72.5 (2)
-163.76 (13)	C9—C12—C16—O4	-53.8 (2)
171.38 (13)	C13—C12—C16—O5	-107.55 (14)
-70.08 (17)	C9—C12—C16—O5	126.14 (13)
49.67 (17)	C16—O5—C17—C18	173.97 (13)
-60.19 (16)		
	107.4 107.0 $109.24 (13)$ $106.06 (12)$ $110.99 (12)$ $112.26 (12)$ $108.15 (12)$ 109.5	107.4 $04C16C12$ 107.0 $05C16C12$ $109.24(13)$ $05C17C18$ $106.06(12)$ $05C17H17A$ $110.99(12)$ $C18C17H17A$ $112.26(12)$ $05C17H17B$ $108.15(12)$ $C18C17H17B$ $108.15(12)$ $C18C17H17B$ 109.5 $C17C18H18A$ 109.5 $C17C18H18B$ 109.5 $C17C18H18B$ 109.5 $C17C18H18B$ 109.5 $C17C18H18B$ 109.5 $H18AC18H18C$ 109.5 $H18AC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18BC18H18C$ 109.5 $H18AC18H18C$ 109.5 $H18AC18H18C$ 109.5 $H18DC18C12C13$ 109.5 $C11C9C12C13$ 109.5 $C10C9C12C16$ $-179.90(13)$ $C16C12C13O2$

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 aromatic ring.

D—H···A	<i>D</i> —Н	H···A	D···· A	<i>D</i> —H··· <i>A</i>
C10—H10C…O4	0.98	2.40	3.057 (2)	124
C11—H11 <i>B</i> …O1	0.98	2.55	3.167 (2)	121
C12—H12…O1	1.00	2.36	3.056 (2)	126
C15—H15 <i>B</i> ····O2 ⁱ	0.98	2.54	3.500(2)	168
C15—H15 <i>C</i> ··· <i>Cg</i>	0.98	2.93	3.836 (2)	154

Symmetry code: (i) -x+1/2, y+1/2, -z+1/2.