

Received 29 August 2018 Accepted 6 September 2018

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: chalcone; crystal structure; DFT; molecular electrostatic potential.

CCDC references: 1817222; 1817220

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, spectroscopic characterization and DFT study of two new linear fused-ring chalcones

Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad*

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: suhanaarshad@usm.my

The structures of two new anthracenyl chalcones, namely (*E*)-1-(anthracen-9-yl)-3-(4-nitrophenyl)prop-2-en-1-one, $C_{23}H_{15}NO_3$, and (*E*)-1-(anthracen-9-yl)-3-(4-iodophenyl)prop-2-en-1-one, $C_{23}H_{15}IO$ are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The molecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6–311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, intermolecular interactions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO–LUMO energies were calculated by time-dependent density functional theory (TD–DFT) and the results complement the experimental findings. The molecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and quantify the possible reactive sites.

1. Chemical context

The synthesis of new organic molecules and the characterization of their molecular properties are the necessary prerequisites for further research in modern technologies. Conjugated organic chalcone molecules are recognized to be promising materials in the field of opto-electronic applications (Aggarwal et al., 2001). The materials are characterized by an extremely excited π -conjugated chain with strong electron acceptor-donor pairs at the end $(D-\pi - A)$ of the terminal rings (Manjunath et al., 2011). Chalcone derivatives are an interesting type of organic NLO materials that can be tuned to match particular requirements. In these systems, two aromatic rings have to be substituted with suitable electron-donor or acceptor groups to increase the asymmetric charge distribution in either or both the ground state and excited states, giving rise to an enhanced optical non-linearity (Rajesh Kumar et al., 2012). Meanwhile, the enone moiety acts as the π -conjugated bridge that is responsible for intermolecular charge transfer between the donor and acceptor substituent groups. The title compounds contain an anthracene fused-ring system (strong electron donor) containing a nitro group or an iodine atom (strong electron acceptor) substituted at the para terminal position. Their investigation included characterization using UV-vis spectroscopy and computed studies of HOMO-LUMO energy gaps and molecular electrostatic potential (MEP).

research communications

2. Structural commentary

The molecular structures of the compounds (I) and (II) are shown in Fig. 1*a*. All geometrical parameters are within normal ranges and comparable with those in the previously reported structure of anthracenyl chalcones (Zainuri *et al.*, 2018*a*). The optimization of the molecular geometries (Fig. 1*b*) leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee– Yang–Parr correlation function (B3LYP)] with the 6-311++G (d,p) basis set as implemented in *Gaussian09* program package (Frisch *et al.*, 2009).

The compounds exist in an *s*-trans configuration with respect to the C15=O1 [experimental = 1.2246 (17) and DFT = 1.22 Å in (I); exp = 1.226 (3) and DFT=1.22 Å in (II)] and C16=C17 [exp = 1.335 (2) and DFT = 1.34 Å in (I); exp = 1.336 (4) and DFT= 1.35 Å in (II)] bond lengths within the enone moiety. The molecular structures of both compounds are twisted at the C14-C15 bond with C1-C14-C15-C16 torsion angles of -94.21 (16) and 97.3 (3)° in (I) and (II),

respectively. The corresponding DFT values are -91.63° (I) and -85.63° (II). The large twist angles are a result of the bulkiness of the strong-electron-donor anthracene ring system (Zainuri *et al.*, 2018*b*). The enone moieties are found to be essentially planar with respect to the C17=C18 double bond with the C16-C17=C18-C19 torsion angle being 8.2 (2)° (DFT = 0.21°) in (I) and -5.7 (4)° (DFT = -1.06°) in (II). The small deviations between the experimental and DFT values are due to the intermolecular interactions observed in the solid-state environment but absent during the optimization process.

The enone moiety in (I) [O1/C15-C17, maximum deviation of 0.0133 (12) Å at O1] forms dihedral angles of 87.63 (14) and $7.70 (15)^{\circ}$, respectively, with the anthracene ring system [C1– C14, maximum deviation of 0.044 (14) Å at C14] and the nitrobenzene moiety [C18-C23, maximum deviation of 0.007 (14) Å at C18]. Meanwhile in (II), the enone moiety [O1/C15–C17, maximum deviation of 0.033 (3) Å at O1] forms dihedral angles of 82.5 (3) and 6.8 (3) $^{\circ}$, respectively, with the anthracene ring system [C1-C14, maximum deviation of 0.031 (5) Å at C4] and the iodobenzene ring [C18-C23, maximum deviation of 0.002 (3) Å at C18]. The anthracene ring system forms dihedral angles of $87.50 (6)^{\circ}$ with the nitrobenzene ring in (I) and of 80.45 (11)° with the iodobenzene ring in (II). These large dihedral angles may indicate the diminishing electronic effect between the anthracene groups through the enone bridge (Jung et al., 2008).

3. Supramolecular features

In the crystal of (I), $C17-H17A\cdots O1$, $C20-H20A\cdots O3$ and $C23-H23B\cdots O1$ hydrogen bonds link the molecules into

(a) (*a)* The molecular structures of compounds (I) and (II) and (*b*) the optimized structures of (I) and (II) at the DFT/B3LYP 6–311++G(d,p) level.

Table 1					
Hydrogen-bond	geometry	(Å,	°)	for	(I).

*Cg*1 is the centroid of the C18–C23 ring.

	D II	TT 4	D 4	
$D - H \cdots A$	D-H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
$C17-H17A\cdots O1^{i}$	0.95	2.35	3.2279 (18)	154
$C20-H20A\cdots O3^{ii}$	0.95	2.45	3.336 (2)	156
$C23-H23B\cdotsO1^{i}$	0.95	2.53	3.3763 (18)	148
$C3-H3A\cdots Cg1^{iii}$	0.95	2.78	3.6179 (19)	148

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (II).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17 - H17A \cdots O1^{i}$	0.93	2.49	3.369 (3)	158

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1.

dimers, generating $R_2^1(6)$ and $R_4^4(28)$ ring motifs (Fig. 2 and Table 1). C-H··· π and π - π interactions $[Cg2 \cdot \cdot Cg2(1 - x, -y, 1 - z) = 3.6900 (9) \text{ Å and } Cg3 \cdot \cdot Cg4(1 - x, -y, 1 - z) =$

3.7214(10) A; Cg1, Cg2, Cg3, Cg4 are the centroids of the
C18-C23, C1/C6-C8/C13/C14, C8-C13 and C1-C6 rings,
respectively] further stabilize the crystal structure, forming a
three-dimensional network. In the crystal of (II), $C\!-\!H\!\cdots\!O$
hydrogen bonds (Table 2) link the molecules into infinite
chains along the <i>c</i> -axis direction (Fig. 3).

~ •

Figure 2

Packing diagram showing weak C-H···O, C-H··· π and π - π interactions in (I).

Figure 3 The crystal packing of compound (II) showing weak $C-H\cdots O$ interactions.

UV–Vis absorption spectra for compounds (I) and (II).

4. UV–Vis absorption analysis and frontier molecular orbital (FMO) energies

TD–DFT calculations at the B3LYP/6-311G++(d,p) level were performed to simulate the absorption characteristics and obtain information about the excited states. The experimental spectrum (Fig. 4) shows peaks at wavelengths of 318, 366 and 386 nm in (I) and 321, 367 and 387 nm in (II) with the wavelength of maximum absorbance being observed at 386 nm in (I) and 387 nm in (II). The absorption maxima are assigned to the π - π^* transitions, *i.e.* the transition of an electron from a bonding (π) to an anti-bonding (π^*) molecular orbital, which are attributed to the C=O groups and aromatic ring excitations. The experimentally measured spectra of both compounds match those of the simulated chalcones, which have maxima at 395 nm for (I) and 394 nm for (II).

The difference in energy of the HOMO and LUMO is an important index that provides information about the chemical stability of molecules since these energies are directly related to the ability to donate and accept electrons. In the ground state (HOMO), the charge densities are mainly delocalized

Compound (1) Compound (1) First Excited State CE = 2.93 eV Cround State Cround State

Figure 5 The electron distribution of the HOMO and LUMO energy levels in compounds (I) and (II).

over the anthracene ring systems and the enone moiety, while in the LUMO state, the charge densities are accumulated on the nitrobenzene ring and the enone moiety in (I), and the iodobenzene ring in (II). A small HOMO-LUMO gap automatically means small excitation energies to the manifold excited states and a large HOMO-LUMO gap implies high stability with respect to chemical reactions (Custodio et al., 2017). The HOMO-LUMO energy gaps (Fig. 5) are computed to be 2.93 eV and 2.81 eV, respectively, for (I) and (II). In the experimental results, the value of energy gap was estimated from the absorption curve by extrapolating the linear portion of the curve to zero absorption, giving values of 3.14 eV for (I) and 3.07 eV for (II). These values for the band gaps suggest that the materials are dielectric in nature (Suguna et al., 2015), dielectric materials having wide transparency in the UV region. Such materials with wide transparency are required for the fabrication of optical electronic devices.

5. Molecular electrostatic potential (MEP)

The importance of the MEP lies in the fact that it simultaneously displays molecular size and shape as well as positive, negative and neutral electrostatic potential regions in terms of colour grading and is useful in investigating relationships between molecular structure and physicochemical properties (Murray & Sen, 1996; Scrocco & Tomasi, 1978). The MEP maps for the molecules of (I) and (II) were calculated theoretically at the B3LYP/6-311G++(d,p) level of theory and the

Three-dimensional maps of the total electron density surface of (a) compound (I) and (b) compound (II) with electrostatic potential calculated at B3LYP/6-311 G++ (d,p) level.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{22}H_{15}NO_{2}$	C22H15IO
M_r	353.36	434.25
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	100	294
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.9197 (14), 12.7282 (13), 10.9016 (12)	14.8004 (12), 11.3095 (9), 11.5139 (9)
β (°)	105.212 (2)	111.3608 (13)
$V(Å^3)$	1729.9 (3)	1794.9 (2)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09	1.79
Crystal size (mm)	$0.51 \times 0.23 \times 0.12$	$0.24 \times 0.20 \times 0.20$
Data collection		
Diffractometer	Bruker SMART APEXII DUO CCD area detector	Bruker SMART APEXII DUO CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36707, 4862, 3416	20023, 5265, 3933
R _{int}	0.076	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.695	0.706
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.136, 1.03	0.034, 0.097, 1.02
No. of reflections	4862	5265
No. of parameters	244	226
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.32, -0.22	1.24, -1.01

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

obtained plots are shown in Fig. 6. The negative red regions are concentrated at the oxygen atoms, showing the electrophilic sites. Hence, the oxygen atoms are the most reactive sites for nucleophilic attack, as well as the more proper sites to attack the positive regions of the receptor molecule. The negative potential values of compounds (I) and (II) are -0.049 a.u and -0.649 a.u., respectively. The blue regions indicate areas of positive charge concentration, which are concentrated over the hydrogen atoms and iodine substituent atom, indicating the nucleophilic sites. Green regions represent areas with zero potential.

6. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) revealed fused-ring substituted chalcones similar to the title compounds. There are four compounds that have an anthrancene-ketone substituent on the chalcone, viz. 9-anthryl styryl ketone and 9,10-anthryl bis(styryl ketone) (Harlow et al., 1975), (2*E*)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one (Girisha et al., 2016), and (E)-1-(anthracen-9yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one (Abdullah et al., 2016). Zainuri et al. (2018c) reported the structure of (E)-1,3-bis(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-methylprop-2-en-1one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).

7. Synthesis and crystallization

9-Acetylanthrancene (0.5 mmol) was dissolved in methanol (20 ml) for about 10–15 mins. Then 4-nitrobenzaldehyde (0.5 mmol) [for (I)] or 4-iodobenzaldehye (0.5 mmol) [for (II]] was added and the solution was stirred for another 10–15 min. Then, NaOH was added and after stirring for 5 h, the reaction mixture was poured into cold water (50 ml) and stirred for 5–10 min. The precipitated solid was filtered, dried and recrystallized from acetone solution to obtain the corresponding chalcones.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically [C-H = 0.95 Å in (I) and 0.93 Å in (II)] and refined using a riding model with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$. In the final refinement of compound (II), three outliers (316, 232, 114) were omitted.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the research facilities.

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for funding under the Fundamental

research communications

Research Grant Scheme (FRGS) No. 203/PFIZIK/ 6711606 and the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for a My Brain15 scholarship.

References

- Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). *Acta Cryst.* E72, 648–651.
- Aggarwal, M. D., Wang, W. S., Bhat, K., Penn, B. G., Frazeir, D. O. & Nalwa, H. S. (2001). *Handbook of Advanced Electronic and Photonic Materials and Devices*. Academic Press, USA.
- Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). *Tetrahedron*, **60**, 11959–11968.
- Custodio, J. M. F., Faria, E. C. M., Sallum, L. O., Duarte, V. S., Vaz, W. F., de Aquino, G. L. B., Carvalho, P. S. Jr & Napolitano, H. B. (2017). *J. Braz. Chem. Soc.* **28**, 2180–2191.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli,

C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski,

V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). *Gaussian 09*, Revision A. 1 Gaussian, Inc., Wallingford CT, 2009.

- Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.
- Jung, Y., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.
- Manjunath, H. R., Rajesh Kumar, P. C., Naveen, S., Ravindrachary, V., Sridhar, M. A., Shashidhara Prasad, J. & Karegoudar, P. (2011). J. Cryst. Growth, 327, 161–166.
- Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier.
- Rajesh Kumar, P. C., Ravindrachary, V., Janardhana, K. & Poojary, B. (2012). J. Cryst. Growth, 354, 182–187.
- Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suguna, S., Jovita, J. V., Jeyaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2015). Int. J. ChemTech Res. 8, 249–259.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.

Acta Cryst. (2018). E74, 1427-1432 [https://doi.org/10.1107/S2056989018012641]

Crystal structure, spectroscopic characterization and DFT study of two new linear fused-ring chalcones

Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad

Computing details

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-(4-nitrophenyl)prop-2-en-1-one (I)

Crystal data

C₂₃H₁₅NO₃ $M_r = 353.36$ Monoclinic, $P2_1/c$ a = 12.9197 (14) Åb = 12.7282 (13) Åc = 10.9016 (12) Å $\beta = 105.212 \ (2)^{\circ}$ V = 1729.9 (3) Å³ Z = 4

Data collection

Bruker SMART APEXII DUO CCD areadetector diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009)

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.051$ H-atom parameters constrained $wR(F^2) = 0.136$ *S* = 1.03 where $P = (F_0^2 + 2F_c^2)/3$ 4862 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 244 parameters $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$ 0 restraints

F(000) = 736 $D_{\rm x} = 1.357 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4370 reflections $\theta = 2.3 - 29.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KBlock, bronze $0.51 \times 0.23 \times 0.12 \text{ mm}$

36707 measured reflections 4862 independent reflections 3416 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.076$ $\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$ $h = -17 \rightarrow 17$ $k = -17 \rightarrow 17$ $l = -15 \rightarrow 15$

Hydrogen site location: inferred from $w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 0.7203P]$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.00262 (10)	0.72156 (11)	0.47682 (13)	0.0289 (3)
01	0.34795 (9)	0.19601 (9)	0.21866 (10)	0.0300 (3)
O2	-0.04488 (12)	0.76881 (11)	0.38140 (13)	0.0508 (4)
O3	0.00316 (10)	0.74898 (9)	0.58507 (12)	0.0361 (3)
C1	0.48427 (11)	0.19570 (11)	0.50953 (13)	0.0199 (3)
C2	0.54467 (12)	0.27977 (12)	0.47617 (14)	0.0245 (3)
H2A	0.5135	0.3220	0.4041	0.029*
C3	0.64652 (13)	0.30025 (13)	0.54624 (15)	0.0288 (3)
H3A	0.6852	0.3569	0.5229	0.035*
C4	0.69550 (13)	0.23788 (13)	0.65380 (15)	0.0288 (3)
H4A	0.7668	0.2527	0.7015	0.035*
C5	0.64081 (12)	0.15728 (13)	0.68864 (14)	0.0254 (3)
H5A	0.6744	0.1160	0.7607	0.030*
C6	0.53356 (11)	0.13328 (11)	0.61891 (13)	0.0210 (3)
C7	0.47693 (12)	0.04993 (11)	0.65304 (13)	0.0230 (3)
H7A	0.5107	0.0074	0.7238	0.028*
C8	0.37195 (12)	0.02766 (11)	0.58571 (13)	0.0221 (3)
C9	0.31336 (13)	-0.05676 (12)	0.62076 (15)	0.0274 (3)
H9A	0.3468	-0.0999	0.6911	0.033*
C10	0.21033 (14)	-0.07675 (13)	0.55522 (16)	0.0316 (4)
H10A	0.1728	-0.1338	0.5797	0.038*
C11	0.15852 (13)	-0.01261 (13)	0.45023 (15)	0.0298 (4)
H11A	0.0860	-0.0261	0.4062	0.036*
C12	0.21207 (12)	0.06794 (12)	0.41231 (14)	0.0248 (3)
H12A	0.1766	0.1097	0.3415	0.030*
C13	0.32097 (11)	0.09053 (11)	0.47751 (13)	0.0211 (3)
C14	0.37944 (11)	0.17191 (11)	0.44012 (12)	0.0190 (3)
C15	0.33164 (11)	0.22957 (11)	0.31720 (13)	0.0213 (3)
C16	0.26653 (11)	0.32348 (11)	0.31726 (13)	0.0218 (3)
H16A	0.2392	0.3604	0.2398	0.026*
C17	0.24430 (11)	0.35893 (11)	0.42279 (13)	0.0216 (3)
H17A	0.2735	0.3206	0.4988	0.026*
C18	0.17937 (11)	0.45104 (11)	0.43267 (13)	0.0206 (3)
C19	0.12077 (12)	0.50663 (12)	0.32612 (14)	0.0231 (3)
H19A	0.1205	0.4830	0.2434	0.028*
C20	0.06347 (11)	0.59521 (12)	0.33999 (14)	0.0227 (3)
H20A	0.0246	0.6333	0.2676	0.027*
C21	0.06365 (11)	0.62771 (11)	0.46145 (14)	0.0224 (3)
C22	0.11872 (11)	0.57411 (12)	0.56955 (14)	0.0231 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H22A	0.1169	0.5971	0.6519	0.028*
C23	0.17660 (11)	0.48568 (11)	0.55348 (13)	0.0219 (3)
H23B	0.2152	0.4478	0.6262	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0239 (6)	0.0261 (7)	0.0346 (7)	0.0008 (5)	0.0039 (5)	-0.0038 (6)
01	0.0371 (6)	0.0323 (6)	0.0197 (5)	0.0029 (5)	0.0058 (5)	-0.0037 (4)
O2	0.0567 (9)	0.0465 (8)	0.0415 (8)	0.0285 (7)	-0.0007 (6)	0.0012 (6)
03	0.0371 (7)	0.0314 (6)	0.0393 (7)	0.0031 (5)	0.0091 (5)	-0.0098 (5)
C1	0.0212 (7)	0.0207 (7)	0.0181 (6)	0.0018 (5)	0.0057 (5)	-0.0020 (5)
C2	0.0256 (7)	0.0262 (7)	0.0215 (7)	-0.0016 (6)	0.0058 (6)	0.0005 (6)
C3	0.0261 (8)	0.0314 (8)	0.0290 (8)	-0.0067 (6)	0.0076 (6)	-0.0013 (6)
C4	0.0219 (7)	0.0364 (9)	0.0262 (8)	-0.0004 (6)	0.0030 (6)	-0.0051 (6)
C5	0.0230 (7)	0.0318 (8)	0.0195 (7)	0.0049 (6)	0.0020 (6)	-0.0003 (6)
C6	0.0224 (7)	0.0214 (7)	0.0193 (6)	0.0036 (6)	0.0054 (5)	-0.0023 (5)
C7	0.0280 (8)	0.0219 (7)	0.0188 (6)	0.0050 (6)	0.0056 (6)	0.0014 (5)
C8	0.0273 (7)	0.0195 (7)	0.0204 (7)	0.0025 (6)	0.0082 (6)	-0.0028 (5)
C9	0.0381 (9)	0.0223 (7)	0.0238 (7)	-0.0002 (6)	0.0116 (6)	0.0004 (6)
C10	0.0408 (9)	0.0252 (8)	0.0328 (8)	-0.0094 (7)	0.0165 (7)	-0.0029 (7)
C11	0.0281 (8)	0.0312 (8)	0.0310 (8)	-0.0069 (7)	0.0090 (6)	-0.0065 (7)
C12	0.0252 (7)	0.0257 (7)	0.0230 (7)	0.0003 (6)	0.0053 (6)	-0.0021 (6)
C13	0.0231 (7)	0.0209 (7)	0.0202 (7)	0.0002 (6)	0.0074 (5)	-0.0028 (5)
C14	0.0225 (7)	0.0177 (6)	0.0168 (6)	0.0028 (5)	0.0051 (5)	-0.0023 (5)
C15	0.0203 (7)	0.0228 (7)	0.0195 (7)	-0.0038 (6)	0.0029 (5)	-0.0004 (5)
C16	0.0232 (7)	0.0217 (7)	0.0188 (6)	-0.0006 (6)	0.0025 (5)	0.0023 (5)
C17	0.0217 (7)	0.0214 (7)	0.0196 (6)	-0.0011 (5)	0.0017 (5)	0.0019 (5)
C18	0.0202 (7)	0.0200 (7)	0.0215 (7)	-0.0021 (5)	0.0051 (5)	0.0010 (5)
C19	0.0230 (7)	0.0254 (7)	0.0205 (7)	-0.0022 (6)	0.0049 (6)	0.0007 (6)
C20	0.0204 (7)	0.0235 (7)	0.0224 (7)	-0.0001 (6)	0.0025 (5)	0.0039 (6)
C21	0.0184 (7)	0.0191 (7)	0.0292 (7)	-0.0022 (5)	0.0053 (6)	-0.0012 (6)
C22	0.0215 (7)	0.0241 (7)	0.0233 (7)	-0.0054 (6)	0.0050 (6)	-0.0027 (6)
C23	0.0220 (7)	0.0217 (7)	0.0201 (7)	-0.0021 (6)	0.0022 (5)	0.0019 (5)

Geometric parameters (Å, °)

N1—O2	1.2187 (18)	C10—H10A	0.9500
N103	1.2289 (17)	C11—C12	1.361 (2)
N1-C21	1.4650 (19)	C11—H11A	0.9500
O1—C15	1.2246 (17)	C12—C13	1.429 (2)
C1—C14	1.4002 (19)	C12—H12A	0.9500
C1—C2	1.427 (2)	C13—C14	1.404 (2)
C1—C6	1.4354 (19)	C14—C15	1.5104 (19)
С2—С3	1.362 (2)	C15—C16	1.462 (2)
C2—H2A	0.9500	C16—C17	1.335 (2)
C3—C4	1.420 (2)	C16—H16A	0.9500
С3—НЗА	0.9500	C17—C18	1.462 (2)

C4 C5	1355(2)	C17 H17A	0.9500
$C_4 = C_3$	0.0500	C18 $C23$	1.308(2)
C5 C6	0.9300	$C_{10} = C_{23}$	1.398(2)
	1.428 (2)	C10_C20	1.4000(19)
	0.9300	C19 - C20	1.579(2)
$C_0 - C_1$	1.394 (2)	C19—R19A	0.9300
	1.392 (2)	C20—C21	1.387 (2)
	0.9500	C20—H20A	0.9500
C8—C9	1.423 (2)	C21—C22	1.386 (2)
C8—C13	1.435 (2)	C22—C23	1.388 (2)
C9—C10	1.359 (2)	C22—H22A	0.9500
С9—Н9А	0.9500	C23—H23B	0.9500
C10—C11	1.422 (2)		
O2—N1—O3	123.65 (14)	C11—C12—C13	120.88 (14)
O2—N1—C21	118.06 (13)	C11—C12—H12A	119.6
O3—N1—C21	118.28 (13)	C13—C12—H12A	119.6
C14—C1—C2	122.73 (13)	C14—C13—C12	122.58 (13)
$C_{14} - C_{1} - C_{6}$	118.98 (13)	C14—C13—C8	118.97 (13)
$C_{2}-C_{1}-C_{6}$	118.28 (13)	C_{12} $-C_{13}$ $-C_{8}$	118 45 (13)
C_{3} $-C_{2}$ $-C_{1}$	120 88 (14)	C1-C14-C13	121.37(13)
$C_3 - C_2 - H_2 A$	119.6	C1 - C14 - C15	121.37(13) 119.12(12)
C1 - C2 - H2A	119.6	C_{13} C_{14} C_{15}	119.12(12) 119.35(12)
$C_1 = C_2 = H_2 R$	119.0	01 C15 C16	117.33(12) 121.13(13)
$C_2 = C_3 = C_4$	120.76 (15)	01 - C15 - C14	121.13(13) 11208(13)
$C_2 = C_3 = H_3 A$	119.0	01 - 015 - 014	110.98 (13)
C4 - C3 - H3A	119.0	C16 - C15 - C14	119.89 (12)
C5-C4-C3	120.16 (14)		122.05 (13)
C5—C4—H4A	119.9	C17—C16—H16A	119.0
C3—C4—H4A	119.9	С15—С16—Н16А	119.0
C4—C5—C6	121.15 (14)	C16—C17—C18	126.28 (13)
C4—C5—H5A	119.4	C16—C17—H17A	116.9
С6—С5—Н5А	119.4	C18—C17—H17A	116.9
C7—C6—C5	121.66 (13)	C23—C18—C19	118.68 (13)
C7—C6—C1	119.58 (13)	C23—C18—C17	118.64 (13)
C5—C6—C1	118.75 (13)	C19—C18—C17	122.67 (13)
C8—C7—C6	121.44 (13)	C20-C19-C18	120.74 (14)
С8—С7—Н7А	119.3	C20—C19—H19A	119.6
С6—С7—Н7А	119.3	C18—C19—H19A	119.6
C7—C8—C9	121.72 (14)	C19—C20—C21	118.83 (13)
C7—C8—C13	119.59 (13)	C19—C20—H20A	120.6
C9—C8—C13	118.70 (14)	C21—C20—H20A	120.6
C10—C9—C8	121.11 (15)	C22—C21—C20	122.48 (14)
С10—С9—Н9А	119.4	C22—C21—N1	118.42 (13)
С8—С9—Н9А	119.4	C20—C21—N1	119.10 (13)
C9—C10—C11	120.31 (15)	C21—C22—C23	117.73 (13)
C9—C10—H10A	119.8	C21—C22—H22A	121.1
C11—C10—H10A	119.8	C23—C22—H22A	121.1
C12-C11-C10	120.51 (15)	C_{22} C_{23} C_{18}	121 51 (13)
C12—C11—H11A	119.7	C22—C23—H23B	119.2

C10-C11-H11A	119.7	C18—C23—H23B	119.2
C14—C1—C2—C3	-179.96 (14)	C6—C1—C14—C15	-173.44 (12)
C6—C1—C2—C3	0.0 (2)	C12—C13—C14—C1	176.75 (13)
C1—C2—C3—C4	0.5 (2)	C8—C13—C14—C1	-2.9 (2)
C2—C3—C4—C5	-0.5 (2)	C12—C13—C14—C15	-8.0 (2)
C3—C4—C5—C6	-0.1 (2)	C8—C13—C14—C15	172.35 (12)
C4—C5—C6—C7	179.32 (14)	C1-C14-C15-O1	86.18 (17)
C4—C5—C6—C1	0.6 (2)	C13—C14—C15—O1	-89.21 (17)
C14—C1—C6—C7	0.7 (2)	C1-C14-C15-C16	-94.21 (16)
C2-C1-C6-C7	-179.32 (13)	C13—C14—C15—C16	90.40 (16)
C14—C1—C6—C5	179.43 (13)	O1—C15—C16—C17	177.30 (14)
C2-C1-C6-C5	-0.6 (2)	C14—C15—C16—C17	-2.3 (2)
C5—C6—C7—C8	179.20 (14)	C15—C16—C17—C18	-179.35 (13)
C1—C6—C7—C8	-2.1 (2)	C16—C17—C18—C23	-171.08 (14)
C6—C7—C8—C9	-179.44 (14)	C16—C17—C18—C19	8.2 (2)
C6—C7—C8—C13	1.0 (2)	C23—C18—C19—C20	1.5 (2)
C7—C8—C9—C10	179.07 (15)	C17—C18—C19—C20	-177.79 (13)
C13—C8—C9—C10	-1.3 (2)	C18—C19—C20—C21	-0.8 (2)
C8—C9—C10—C11	-0.5 (2)	C19—C20—C21—C22	-0.4 (2)
C9—C10—C11—C12	1.5 (2)	C19—C20—C21—N1	-179.78 (13)
C10-C11-C12-C13	-0.6 (2)	O2—N1—C21—C22	179.39 (15)
C11—C12—C13—C14	179.01 (14)	O3—N1—C21—C22	0.2 (2)
C11—C12—C13—C8	-1.3 (2)	O2—N1—C21—C20	-1.2 (2)
C7—C8—C13—C14	1.5 (2)	O3—N1—C21—C20	179.62 (14)
C9—C8—C13—C14	-178.08 (13)	C20—C21—C22—C23	1.0 (2)
C7—C8—C13—C12	-178.19 (13)	N1—C21—C22—C23	-179.68 (13)
C9—C8—C13—C12	2.2 (2)	C21—C22—C23—C18	-0.3 (2)
C2-C1-C14-C13	-178.15 (13)	C19—C18—C23—C22	-1.0 (2)
C6-C1-C14-C13	1.9 (2)	C17—C18—C23—C22	178.37 (13)
C2-C1-C14-C15	6.6 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C17—H17A····O1 ⁱ	0.95	2.35	3.2279 (18)	154
C20—H20A····O3 ⁱⁱ	0.95	2.45	3.336 (2)	156
C23—H23 <i>B</i> ···O1 ⁱ	0.95	2.53	3.3763 (18)	148
C3—H3 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.78	3.6179 (19)	148

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) -*x*+1, -*y*+1, -*z*+1.

(*E*)-1-(Anthracen-9-yl)-3-(4-iodophenyl)prop-2-en-1-one (II)

Crystal data	
$C_{23}H_{15}IO$	a = 14.8004 (12) Å
$M_r = 434.25$	b = 11.3095 (9) Å
Monoclinic, $P2_1/c$	c = 11.5139 (9) Å

Cell parameters from 6699 reflections

 $\theta = 2.3 - 27.3^{\circ}$ $\mu = 1.79 \text{ mm}^{-1}$

Block, colourless

 $0.24 \times 0.20 \times 0.20$ mm

 $\theta_{\rm max} = 30.1^\circ, \, \theta_{\rm min} = 1.5^\circ$

20023 measured reflections 5265 independent reflections 3933 reflections with $I > 2\sigma(I)$

T = 294 K

 $R_{\rm int} = 0.027$

 $h = -20 \rightarrow 20$ $k = -15 \rightarrow 14$ $l = -16 \rightarrow 14$

 $\beta = 111.3608 (13)^{\circ}$ $V = 1794.9 (2) Å^{3}$ Z = 4 F(000) = 856 $D_{x} = 1.607 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 Å$

Data collection

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wP(F^2) = 0.007$	$w = 1/(\sigma^2(E^2) + (0.0437P)^2 + 1.0680P)$
$WR(F^{-}) = 0.097$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.043/P)^{2} + 1.0089P]$
S = 1.02	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5265 reflections	$(\Delta/\sigma)_{max} = 0.001$
226 parameters	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	1)	7	II. */II
	<i>X</i>	y	2	U _{iso} / U _{eq}
I1	1.03943 (2)	-0.28858 (2)	0.01034 (2)	0.05842 (9)
01	0.68177 (19)	0.2750 (2)	0.2834 (2)	0.0690 (6)
C1	0.53340 (19)	0.2882 (2)	0.0026 (2)	0.0475 (6)
C2	0.4848 (3)	0.1961 (3)	0.0395 (4)	0.0655 (8)
H2A	0.5192	0.1489	0.1073	0.079*
C3	0.3886 (3)	0.1757 (4)	-0.0231 (4)	0.0838 (12)
H3A	0.3576	0.1151	0.0024	0.101*
C4	0.3360 (3)	0.2463 (5)	-0.1264 (4)	0.0885 (13)
H4A	0.2703	0.2319	-0.1682	0.106*
C5	0.3790 (2)	0.3341 (4)	-0.1658 (3)	0.0730 (10)
H5A	0.3426	0.3797	-0.2341	0.088*
C6	0.4803 (2)	0.3584 (3)	-0.1039 (2)	0.0533 (7)
C7	0.5266 (2)	0.4483 (3)	-0.1403 (3)	0.0582 (7)
H7A	0.4912	0.4942	-0.2089	0.070*
C8	0.6245 (2)	0.4731 (2)	-0.0782 (3)	0.0505 (6)
C9	0.6722 (3)	0.5656 (3)	-0.1165 (3)	0.0675 (9)

H9A	0.6377	0.6104	-0.1863	0.081*	
C10	0.7668 (3)	0.5895 (3)	-0.0534 (4)	0.0730 (10)	
H10A	0.7968	0.6499	-0.0806	0.088*	
C11	0.8204 (2)	0.5236 (3)	0.0532 (3)	0.0653 (8)	
H11A	0.8854	0.5415	0.0964	0.078*	
C12	0.7780 (2)	0.4344 (3)	0.0935 (3)	0.0526 (6)	
H12A	0.8143	0.3919	0.1643	0.063*	
C13	0.67851 (19)	0.4049 (2)	0.0287 (2)	0.0439 (5)	
C14	0.63246 (19)	0.3133 (2)	0.0679 (2)	0.0424 (5)	
C15	0.6865 (2)	0.2445 (3)	0.1837 (2)	0.0473 (6)	
C16	0.7450 (2)	0.1432 (3)	0.1768 (2)	0.0502 (6)	
H16A	0.7728	0.0975	0.2481	0.060*	
C17	0.76109 (19)	0.1121 (2)	0.0741 (2)	0.0457 (5)	
H17A	0.7285	0.1554	0.0023	0.055*	
C18	0.82431 (18)	0.0175 (2)	0.0624 (2)	0.0444 (5)	
C19	0.8844 (2)	-0.0486 (3)	0.1638 (2)	0.0561 (7)	
H19A	0.8841	-0.0334	0.2430	0.067*	
C20	0.9439 (2)	-0.1355 (3)	0.1484 (2)	0.0569 (7)	
H20A	0.9831	-0.1789	0.2168	0.068*	
C21	0.94538 (19)	-0.1584 (2)	0.0315 (2)	0.0465 (5)	
C22	0.8867 (2)	-0.0951 (3)	-0.0709(2)	0.0513 (6)	
H22A	0.8875	-0.1109	-0.1498	0.062*	
C23	0.82706 (19)	-0.0083 (2)	-0.0546 (2)	0.0489 (6)	
H23A	0.7876	0.0342	-0.1236	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.05287 (12)	0.06107 (14)	0.06002 (13)	0.00369 (8)	0.01901 (9)	0.00257 (8)
01	0.0894 (17)	0.0801 (16)	0.0428 (10)	-0.0057 (12)	0.0304 (11)	-0.0093 (10)
C1	0.0471 (14)	0.0522 (15)	0.0459 (13)	-0.0077 (11)	0.0204 (11)	-0.0153 (11)
C2	0.0603 (18)	0.074 (2)	0.0660 (19)	-0.0226 (16)	0.0275 (15)	-0.0128 (16)
C3	0.068 (2)	0.101 (3)	0.090 (3)	-0.037 (2)	0.037 (2)	-0.030 (2)
C4	0.0470 (18)	0.127 (3)	0.088 (3)	-0.018 (2)	0.0204 (19)	-0.051 (3)
C5	0.0531 (17)	0.096 (3)	0.0617 (18)	0.0072 (18)	0.0110 (15)	-0.0286 (19)
C6	0.0494 (14)	0.0646 (18)	0.0452 (13)	0.0073 (13)	0.0163 (11)	-0.0152 (12)
C7	0.0687 (18)	0.0591 (17)	0.0446 (13)	0.0168 (14)	0.0182 (13)	-0.0025 (12)
C8	0.0674 (17)	0.0415 (13)	0.0496 (14)	0.0041 (12)	0.0295 (13)	-0.0039 (11)
C9	0.100 (3)	0.0487 (16)	0.0649 (18)	0.0057 (17)	0.0440 (19)	0.0050 (14)
C10	0.100 (3)	0.0501 (18)	0.089 (2)	-0.0145 (18)	0.058 (2)	-0.0020 (17)
C11	0.0657 (18)	0.0601 (19)	0.083 (2)	-0.0164 (15)	0.0424 (17)	-0.0122 (16)
C12	0.0502 (14)	0.0524 (16)	0.0600 (15)	-0.0081 (12)	0.0256 (13)	-0.0083 (12)
C13	0.0506 (13)	0.0412 (13)	0.0454 (12)	-0.0021 (10)	0.0240 (11)	-0.0072 (10)
C14	0.0457 (13)	0.0436 (13)	0.0407 (12)	-0.0047 (10)	0.0191 (10)	-0.0079 (9)
C15	0.0531 (15)	0.0517 (14)	0.0396 (12)	-0.0132 (12)	0.0200 (11)	-0.0062 (11)
C16	0.0557 (15)	0.0527 (15)	0.0376 (12)	-0.0062 (12)	0.0114 (11)	0.0043 (11)
C17	0.0471 (13)	0.0446 (14)	0.0406 (12)	-0.0066 (11)	0.0104 (10)	0.0033 (10)
C18	0.0463 (13)	0.0460 (13)	0.0374 (11)	-0.0068 (11)	0.0111 (10)	0.0013 (10)

C19	0.0637 (17)	0.0644 (18)	0.0376 (12)	0.0065 (14)	0.0152 (12)	0.0054 (12)
C20	0.0579 (16)	0.0666 (18)	0.0395 (12)	0.0079 (14)	0.0099 (11)	0.0105 (12)
C21	0.0433 (13)	0.0457 (14)	0.0470 (13)	-0.0048 (10)	0.0121 (10)	0.0011 (11)
C22	0.0599 (16)	0.0530 (15)	0.0380 (12)	-0.0036 (12)	0.0141 (11)	-0.0001 (11)
C23	0.0549 (14)	0.0501 (15)	0.0373 (11)	-0.0014 (12)	0.0115 (10)	0.0061 (10)

Geometric parameters (Å, °)

I1—C21	2.100 (3)	C11—C12	1.356 (4)	
O1—C15	1.226 (3)	C11—H11A	0.9300	
C1—C14	1.411 (3)	C12—C13	1.427 (4)	
C1—C2	1.416 (4)	C12—H12A	0.9300	
C1—C6	1.431 (4)	C13—C14	1.402 (4)	
C2—C3	1.361 (5)	C14—C15	1.499 (4)	
C2—H2A	0.9300	C15—C16	1.455 (4)	
C3—C4	1.409 (7)	C16—C17	1.336 (4)	
С3—НЗА	0.9300	C16—H16A	0.9300	
C4—C5	1.344 (7)	C17—C18	1.460 (4)	
C4—H4A	0.9300	C17—H17A	0.9300	
C5—C6	1.432 (4)	C18—C23	1.393 (4)	
С5—Н5А	0.9300	C18—C19	1.398 (4)	
C6—C7	1.374 (5)	C19—C20	1.373 (4)	
С7—С8	1.391 (4)	C19—H19A	0.9300	
С7—Н7А	0.9300	C20—C21	1.379 (4)	
C8—C9	1.419 (4)	C20—H20A	0.9300	
C8—C13	1.426 (4)	C21—C22	1.383 (4)	
C9—C10	1.349 (5)	C22—C23	1.379 (4)	
С9—Н9А	0.9300	C22—H22A	0.9300	
C10—C11	1.407 (5)	C23—H23A	0.9300	
C10—H10A	0.9300			
C14—C1—C2	122.0 (3)	C13—C12—H12A	119.6	
C14—C1—C6	119.0 (2)	C14—C13—C8	119.5 (2)	
C2C1C6	119.0 (3)	C14—C13—C12	122.3 (3)	
C3—C2—C1	120.9 (4)	C8—C13—C12	118.2 (2)	
C3—C2—H2A	119.5	C13—C14—C1	120.6 (2)	
C1—C2—H2A	119.5	C13—C14—C15	120.3 (2)	
C2—C3—C4	120.0 (4)	C1—C14—C15	119.0 (2)	
С2—С3—НЗА	120.0	O1-C15-C16	120.7 (3)	
С4—С3—НЗА	120.0	O1—C15—C14	119.5 (3)	
C5—C4—C3	121.4 (3)	C16—C15—C14	119.7 (2)	
С5—С4—Н4А	119.3	C17—C16—C15	123.8 (2)	
C3—C4—H4A	119.3	C17—C16—H16A	118.1	
C4—C5—C6	120.8 (4)	C15—C16—H16A	118.1	
С4—С5—Н5А	119.6	C16—C17—C18	127.0 (2)	
С6—С5—Н5А	119.6	C16—C17—H17A	116.5	
C7—C6—C1	119.5 (3)	C18—C17—H17A	116.5	
C7—C6—C5	122.5 (3)	C23—C18—C19	117.5 (3)	

C1—C6—C5	117.9 (3)	C23—C18—C17	119.2 (2)
C6—C7—C8	122.3 (3)	C19—C18—C17	123.3 (2)
С6—С7—Н7А	118.8	C20-C19-C18	121.2 (3)
С8—С7—Н7А	118.8	С20—С19—Н19А	119.4
C7—C8—C9	122.2 (3)	C18—C19—H19A	119.4
C7—C8—C13	119.1 (3)	C19—C20—C21	119.9 (3)
C9—C8—C13	118.8 (3)	C19—C20—H20A	120.0
C10—C9—C8	121.1 (3)	C21—C20—H20A	120.0
С10—С9—Н9А	119.4	C20—C21—C22	120.5 (3)
С8—С9—Н9А	119.4	C20—C21—I1	119.5 (2)
C9—C10—C11	120.6 (3)	C22—C21—I1	120.1 (2)
C9—C10—H10A	119.7	C23—C22—C21	119.1 (2)
C11—C10—H10A	119.7	C23—C22—H22A	120.4
C12—C11—C10	120.5 (3)	C21—C22—H22A	120.4
C12—C11—H11A	119.7	C22—C23—C18	121.8 (2)
C10—C11—H11A	119.7	C22—C23—H23A	119.1
C11—C12—C13	120.9 (3)	C18—C23—H23A	119.1
C11—C12—H12A	119.6		
	119.0		
$C_{14} - C_{1} - C_{2} - C_{3}$	178 3 (3)	C12 - C13 - C14 - C1	1788(2)
C6-C1-C2-C3	-15(4)	C8-C13-C14-C15	-1769(2)
C1 - C2 - C3 - C4	03(6)	C12-C13-C14-C15	19(4)
$C_2 - C_3 - C_4 - C_5$	0.4 (6)	C_{2} C_{1} C_{14} C_{13}	1.9(1) 1798(3)
C_{3} C_{4} C_{5} C_{6}	0.1(0)	C6-C1-C14-C13	-0.4(4)
C_{14} C_{1} C_{6} C_{7}	0.0(4)	C_{2} C_{1} C_{14} C_{15}	-33(4)
C_{2} C_{1} C_{6} C_{7}	179 8 (3)	C_{6} C_{1} C_{14} C_{15}	1765(2)
C_{14} C_{1} C_{6} C_{5}	-1777(2)	C_{13} C_{14} C_{15} C_{15}	934(3)
C_{2} C_{1} C_{6} C_{5}	21(4)	C1 - C14 - C15 - O1	-835(3)
C_{4} C_{5} C_{6} C_{7}	-1791(3)	C_{13} C_{14} C_{15} C_{16}	-85.8(3)
C4-C5-C6-C1	-1.5(5)	C1 - C14 - C15 - C16	97 3 (3)
$C_{1} - C_{2} - C_{3}$	1.5(5) 1.0(4)	01 - C15 - C16 - C17	-1732(3)
$C_{1} = C_{0} = C_{1} = C_{0}$	178 6 (3)	$C_{14} - C_{15} - C_{16} - C_{17}$	60(4)
$C_{0}^{-} = C_{0}^{-} = C_{0}^{-} = C_{0}^{-}$	179.6 (3)	C_{15} C_{16} C_{17} C_{18}	175.2(2)
$C_{0} = C_{1} = C_{0} = C_{1}$	-1 A (A)	$C_{16} = C_{17} = C_{18} = C_{23}$	175.2(2)
$C_{7} - C_{8} - C_{10}$	1.7(+)	$C_{10} = C_{17} = C_{18} = C_{23}$	-57(4)
$C_{13} = C_{10} = C_{10} = C_{10}$	-0.2(4)	$C_{10} = C_{17} = C_{10} = C_{17}$	0.0(4)
$C_{13} = C_{13} = C_{10} = C_{10}$	-0.6(5)	$C_{23} = C_{13} = C_{19} = C_{20}$	-1789(3)
C_{0} C_{10} C_{11} C_{12}	0.0(5)	$C_{18}^{18} C_{19}^{19} C_{20}^{20} C_{21}^{21}$	170.7(5)
$C_{10} = C_{10} = C_{11} = C_{12}$	0.0(5)	$C_{10} = C_{10} = C_{20} = C_{21}$	-0.6(4)
C7 C8 C13 C14	10(4)	$C_{19} = C_{20} = C_{21} = C_{22}$	178 4 (2)
$C_{1} = C_{0} = C_{13} = C_{14}$	1.0(7)	$C_{1}^{-} - C_{2}^{-} - C_{2}^{-} - C_{1}^{-} - C_{1}^{-} - C_{2}^{-} - C_{2}^{-} - C_{1}^{-} - C_{1$	1/0.7(2)
$C_7 = C_8 = C_{13} = C_{14}$	-177.9(2)	11 C21 C22 C23	-178 6 (2)
$C_{1} = C_{0} = C_{13} = C_{12}$	1/1.7(2)	11 - 0.21 - 0.22 - 0.23	170.0(2)
C_{7} C_{10} C_{13} C_{12} C_{14}	-180.0(3)	$C_{10} = C_{12} = C_{23} = C_{10}$	-0.2(4)
$C_{11} = C_{12} = C_{13} = C_{14}$	-1.1(4)	$C_{17} = C_{10} = C_{23} = C_{22}$	1787(4)
$C_{11} - C_{12} - C_{13} - C_{8}$	-1.1(4)	11 - 10 - 123 - 122	1/0./(2)
Lo-LIJ-LI4-LI	0.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C17—H17A···O1 ⁱ	0.93	2.49	3.369 (3)	158

Symmetry code: (i) x, -y+1/2, z-1/2.