

Received 18 September 2018 Accepted 24 September 2018

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; (NH₄)Ga(HAsO₄)₂; TIAI(HAsO₄)₂.

CCDC references: 1869299; 1869298

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

$(NH_4)Ga(HAsO_4)_2$ and $TIAI(HAsO_4)_2$ - two new $RbFe(HPO_4)_2$ -type M^+M^{3+} arsenates

Karolina Schwendtner^a* and Uwe Kolitsch^b

^aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and ^bNaturhistorisches Museum, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria. *Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

The crystal structures of hydrothermally synthesized (T = 493 K, 7–9 d) ammonium gallium bis[hydrogen arsenate(V)], (NH₄)Ga(HAsO₄)₂, and thallium aluminium bis[hydrogen arsenate(V)], TlAl(HAsO₄)₂, were solved by single-crystal X-ray diffraction. Both compounds crystallize in the common RbFe(HPO₄)₂ structure type ($R\overline{3}c$) and share the same tetrahedral–octahedral framework topology that houses the M^+ cations in its channels. One of the two Tl sites is slightly offset from its ideal position. Strong O–H···O hydrogen bonds strengthen the network.

1. Chemical context

Compounds with mixed tetrahedral-octahedral (T-O) framework structures feature a broad range of different atomic arrangements. These result in topologies with several interesting properties such as ion exchange (Masquelier *et al.*, 1996) and ion conductivity (Chouchene *et al.*, 2017), as well as unusual piezoelectric (Ren *et al.*, 2015), magnetic (Ouerfelli *et al.*, 2007) or non-linear optical features (frequency doubling) (Sun *et al.*, 2017).

The two new compounds were obtained during an extensive experimental study of the system $M^+ - M^{3+} - O - (H) - As^{5+} (M^+ =$ Li, Na, K, Rb, Cs, Ag, Tl, NH₄; M^{3+} = Al, Ga, In, Sc, Fe, Cr, Tl), which led to an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a,b,c, 2017a, 2018a; Schwendtner, 2006, 2008). Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO₄)₂ type (Lii & Wu, 1994; rhombohedral, $R\overline{3}c$), was found to exhibit a large crystal-chemical flexibility, which allows the incorporation of a wide variety of M^+ and M^{3+} cations. Previously, it was also known for the phosphate members $RbAl(HPO_4)_2$ and $RbGa(HPO_4)_2$ (Lesage et al., 2007). Currently (including the present paper), a total of eight arsenate members are known with the following M^+M^{3+} combinations: TlAl and (NH₄)Ga (this work), RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b, 2018a,b,c). It is noteworthy that no K members are currently known.

2. Structural commentary

The two compounds are representatives of the RbFe(HPO₄)₂ structure type ($R\overline{3}c$; Lii & Wu, 1994) and show a basic tetrahedral–octahedral framework structure featuring inter-

Structure drawings of the framework structures of (a) (NH₄)Ga(HAsO₄)₂ and (b) TlAl(HAsO₄)₂ viewed along *a*. The unit cell is outlined and the alternative position As*B* in (b) is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder and is slightly offset from the ideal position.

penetrating channels, which host the M^+ cations (Fig. 1). This structure type is closely related to the triclinic $(NH_4)Fe(HPO_4)_2$ type $(P\overline{1};$ Yakubovich, 1993) in which all other known $(NH_4)M^{3+}(HTO_4)_2$ (T = P, As) compounds crystallize (see Schwendtner & Kolitsch, 2018*b* for a compilation), the RbAl₂As(HAsO₄)₆ type $(R\overline{3}c;$ Schwendtner & Kolitsch, 2018*a*) and the RbAl(HAsO₄)₂ type (R32; Schwendtner & Kolitsch, 2018*a*). The fundamental building unit in all these structure types contains $M^{3+}O_6$ octahedra, which are connected *via* their six corners to six protonated AsO₄ tetrahedra, thereby forming an $M^{3+}As_6O_{24}$ unit. These units are in turn connected *via* three corners to other $M^{3+}O_6$ octahedra. The free, protonated corner of each AsO₄ tetrahedron forms a hydrogen bond to the neighbouring $M^{3+}As_6O_{24}$ group (Fig. 2). The $M^{3+}As_6O_{24}$ units are arranged in layers perpendicular to the c_{hex} axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar crystal habit: strongly pseudo-hexagonal to pseudo-octahedral (*cf.* Fig. 3).

 $TlAl(HAsO_4)_2$ has the smallest unit cell of all the arsenates of this structure type published to date. Still, the size of the

Figure 2

Structure drawings of the framework structures of (a) $(NH_4)Ga(HAsO_4)_2$ and (b) $TIAl(HAsO_4)_2$ viewed along c. The unit cells are outlined and the alternative position AsB in (b), which can be generated by a mirror plane in (110), is shown in light yellow (the main As position is orange). The TI1 atom shows a slight positional disorder.

Table '	1
---------	---

Hydrogen-bond geometry (Å, °) for (NH₄)Ga(HAsO₄).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H3\cdots O4^{xxi}$	0.87 (3)	1.74 (3)	2.610 (3)	172 (6)
S	1 3			

Symmetry code: (xxi) $y, x - 1, -z + \frac{3}{2}$

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for TlAl(HAsO₄)₂.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
03-H3···O4 ^{xxi}	0.87 (4)	1.87 (5)	2.584 (5)	139 (6)

Symmetry code: (xxi) $y, x - 1, -z + \frac{3}{2}$.

 M^+ -hosting voids seems to be too large for the Tl⁺ cation, since Tl1 is slightly offset from the ideal position at 0, 0, 3/4 [resulting in some positional disorder for Tl1, with three symmetry-equivalent Tl1 positions in close proximity; Tl1- $Tl1^{i,ii} = 0.28$ (3) Å; symmetry codes: (i) -y, x - y, z; (ii) y - x, -x, z and there are minor, but distinct negative and positive residual electron densities close to the Tl2 atom. The latter is severely underbonded, with a very low bond-valence sum (BVS) of only 0.54 valence units (v.u.) (calculated after Gagné & Hawthorne, 2015). The average Tl2-O bond length (Table 3) of 3.321 Å is considerably larger than the longest average Tl-O bond length of 3.304 Å described in the latest review paper (Gagné & Hawthorne, 2018), but still shorter than the excessively long average Tl-O bond length found in the related compound $TlGa_2As(HAsO_4)_6$ (3.439 Å, Schwendtner & Kolitsch, 2018b). The electron-density distribution is well fitted for the Tl1 atom, which has a BVS of 0.74

Figure 3 SEM image showing a flattened pseudo-octahedral crystal of $(NH_4)Ga(-HAsO_4)_2$.

 Table 3

 Selected bond lengths (Å) for TlAl(HAsO₄)₂.

Tl1-Tl1 ⁱ	0.28 (3)	Tl2-O4 ^{xi}	3.516 (3)
Tl1-O3	3.085 (8)	Tl2-O3 ^{xii}	3.545 (4)
Tl1-O3 ⁱⁱ	3.085 (8)	$Tl2-O3^{xiii}$	3.545 (4)
Tl1-O3 ⁱⁱⁱ	3.136 (5)	Tl2-O3 ^{xiv}	3.545 (4)
Tl1-O3 ⁱ	3.136 (5)	$Al1-O2^{xv}$	1.895 (4)
Tl1-O2 ⁱⁱⁱ	3.233 (13)	$Al1-O2^{v}$	1.895 (4)
Tl1-O2 ⁱ	3.233 (13)	$Al1-O2^{xvi}$	1.895 (4)
Tl1-O3 ^{iv}	3.261 (12)	Al1-O4 ^{xvii}	1.901 (4)
$Tl1-O3^{v}$	3.261 (12)	Al1-O4 ⁱ	1.901 (4)
Tl1-O2 ⁱⁱ	3.351 (4)	Al1-O4 ^{xviii}	1.901 (4)
Tl1-O2	3.351 (4)	Al2-O1 ^{viii}	1.887 (4)
$Tl1-O2^{v}$	3.501 (15)	Al2-O1 ^{xiv}	1.887 (4)
Tl1-O2 ^{iv}	3.501 (15)	Al2-O1 ^{xix}	1.887 (4)
$Tl2-O3^{i}$	2.813 (4)	Al2-O1 ⁱ	1.887 (4)
$Tl2-O3^{v}$	2.813 (4)	Al2-O1 ^{xviii}	1.887 (4)
Tl2-O3	2.813 (4)	Al2-O1 ^{xvii}	1.887 (4)
Tl2-O1 ^{vi}	3.410 (4)	As-O1 ^{xx}	1.661 (3)
Tl2-O1 ^{vii}	3.410 (4)	As-O2	1.674 (3)
Tl2-O1 ^{viii}	3.410 (4)	As-O4 ⁱⁱ	1.679 (3)
Tl2-O4 ^{ix}	3.516 (3)	As-O3	1.746 (4)
$Tl2-O4^{x}$	3.516 (3)		
	· · ·		

Table 4 Selected bond lengths (Å) for $(NH_4)Ga(HAsO_4)$.

N1-O3	3.173 (3)	N2-O4 ^{xi}	3.493 (5)
N1-O3 ⁱ	3.173 (3)	N2-O3 ^{xii}	3.557 (4)
N1-O3 ⁱⁱ	3.173 (3)	N2-O3 ^{xiii}	3.557 (4)
N1-O3 ⁱⁱⁱ	3.173 (3)	N2-O3 ^{xiv}	3.557 (4)
N1-O3 ^{iv}	3.173 (3)	Ga1-O2 ^{xv}	1.9619 (16)
$N1 - O3^{v}$	3.173 (3)	Ga1-O2 ⁱⁱⁱ	1.9619 (17)
N1-O2	3.3657 (18)	Ga1-O2 ^{xvi}	1.9619 (17)
N1-O2 ⁱⁱ	3.3657 (18)	Ga1-O4 ^v	1.9666 (17)
$N1-O2^{iv}$	3.3657 (18)	Ga1-O4 ^{xvii}	1.9666 (17)
N1-O2 ⁱⁱⁱ	3.3657 (18)	Ga1-O4 ^{xviii}	1.9667 (16)
$N1-O2^{i}$	3.3657 (17)	Ga2-O1 ^{viii}	1.9588 (18)
$N1 - O2^{v}$	3.3657 (17)	Ga2-O1 ^{xiv}	1.9588 (19)
$N2 - O3^{v}$	2.918 (4)	Ga2-O1 ^{xix}	1.9588 (18)
N2-O3 ⁱⁱⁱ	2.918 (4)	Ga2-O1 ^v	1.9589 (18)
N2-O3	2.918 (4)	Ga2-O1 ^{xviii}	1.9589 (19)
N2-O1 ^{vi}	3.375 (3)	Ga2-O1 ^{xvii}	1.9589 (18)
N2-O1 ^{vii}	3.375 (3)	As-O1 ^{xx}	1.6555 (18)
N2-O1 ^{viii}	3.375 (3)	As-O2	1.6700 (16)
N2-O4 ^{ix}	3.493 (5)	As-O4 ⁱⁱ	1.6783 (17)
$N2-O4^{x}$	3.493 (5)	As-O3	1.740 (2)

 $\begin{array}{l} \text{Symmetry codes: (i) } x-y,-y,-z+\frac{3}{2}, (ii)-x,-x+y,-z+\frac{3}{2}; (iii)-x+y,-x,z; (iv) \\ y,x,-z+\frac{3}{2}; (v)-y,x-y,z; (v)-x+\frac{2}{3},-z+\frac{4}{3}; (vii)x-y-\frac{4}{3},x-\frac{2}{3},-z+\frac{4}{3}; \\ (viii)y+\frac{2}{3},-x+y+\frac{4}{3},-z+\frac{4}{3}; (ix)x-\frac{1}{3},x-y-\frac{2}{3},z-\frac{1}{6}; (x)-y-\frac{1}{3},-x+\frac{1}{3},z-\frac{1}{6}; (xi) \\ -x+y+\frac{2}{3},y+\frac{1}{3},z-\frac{1}{6}; (xi)-x-\frac{1}{3},-y-\frac{2}{3},-z+\frac{4}{3}; (xii)y+\frac{2}{3},-x+y+\frac{1}{3},-z+\frac{4}{3}; \\ (xiv) x-y-\frac{1}{3},x+\frac{1}{3},-z+\frac{4}{3}; (xv)-y,x-y+1,z; (xvi)x+1,y+1,z; (xvi)x+1,y+1,z; (xvi)x+1,y,z. \end{array}$

v.u. and an average Tl1–O bond length of 3.261 Å, which is also significantly longer than the reported average of 3.195 Å (Gagné & Hawthorne, 2018). In contrast, the two Al atoms are considerably overbonded (3.05 and 3.14 v.u. for Al1 and Al2, respectively) and average Al–O bond lengths of 1.898 and 1.887 Å are slightly shorter than the reported average of 1.903 Å (Gagné & Hawthorne, 2018), but well within the general range of Al–O bond lengths. The protonated AsO₄

 Table 5

 Experimental details.

	(NH ₄)Ga(HAsO ₄) ₂	TlAl(HAsO ₄) ₂
Crystal data		
M _r	367.62	511.21
Crystal system, space group	Trigonal, $R\overline{3}c:H$	Trigonal, $R\overline{3}c:H$
Temperature (K)	293	293
a, c (Å)	8.380 (1), 53.811 (11)	8.290 (1), 52.940 (11)
$V(A^3)$	3272.6 (10)	3150.8 (10)
Ζ	18	18
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	12.83	32.58
Crystal size (mm)	$0.08 \times 0.07 \times 0.03$	$0.08\times0.07\times0.03$
Data collection		
Diffractometer	Nonius KappaCCD single-crystal four-circle diffractometer	Nonius KappaCCD single-crystal four-circle
Absorption correction	Multi-scan (<i>HKL SCALEPACK</i> ; Otwinowski <i>et al.</i> , 2003)	Multi-scan (<i>HKL SCALEPACK</i> ; Otwinowski <i>et al.</i> , 2003)
T_{\min}, T_{\max}	0.427, 0.700	0.180, 0.441
No. of measured, independent and	4834, 1326, 1156	2478, 698, 685
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.024	0.022
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.757	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.055, 1.07	0.022, 0.058, 1.21
No. of reflections	1326	698
No. of parameters	61	69
No. of restraints	1	2
H-atom treatment	All H-atom parameters refined	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.75, -0.95	0.82, -1.98

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publcIF (Westrip, 2010).

group shows a fairly typical configuration with slightly above average As–O bond lengths and a BVS of 4.97 v.u. for the As atom. As expected from the strong hydrogen bond [2.584 (5) Å, Table 2] the As–O bond to the donor O3 atom is considerably elongated (Table 3).

For $(NH_4)Ga(HAsO_4)_2$, the bond-valence sum values for the M^{3+} cations and As are quite similar (Table 4), with overbonded Ga³⁺ (BVS 3.10 and 3.15 v.u., respectively) and numbers for As that are close to the expected values (BVS 5.03 v.u., average bond length of 1.686 Å). The NH₄⁺ cations (average N···O = 3.268 Å for N1 and 3.336 Å for N2) seem to fill the M^+ -hosting voids much better, and the BVSs (calculated after García-Rodríguez *et al.*, 2000) of 0.74 and 1.03 v.u. for N1 and N2, respectively, are closer to ideal values, although N1 is underbonded.

3. Synthesis and crystallization

The compounds were grown by hydrothermal synthesis at 493 K (autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm³. Reagent-grade NH₄OH, Tl₂CO₃, Ga₂O₃, Al₂O₃ and H₃AsO₄·0.5H₂O were used as starting reagents in approximate volume ratios of $M^+:M^{3+}$:As of 1:1:3 of the respective M^+M^{3+} compound for both synthesis batches. For TlAl(HAsO₄)₂, the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1 and 0.5, respectively, and the synthesis was

allowed to proceed at 493 K for 9 d. $(NH_4)Ga(HAsO_4)_2$ was grown over a period of 7 d and the initial and final pH values were 3 and 1, respectively. The reaction products were washed thoroughly with distilled water, filtered, and dried at room temperature. $(NH_4)Ga(HAsO_4)_2$ formed large colourless pseudo-octahedral crystals (Fig. 3), while TlAl(HAsO_4)_2 formed small pseudo-hexagonal platelets. Both compounds are stable in air.

A measured X-ray powder diffraction pattern of $(NH_4)Ga(HAsO_4)_2$ was deposited at the International Centre for Diffraction Data under PDF number 00-059-0055 (Wohlschlaeger *et al.*, 2007).

Semiquantitative SEM–EDX analysis (15 kV) of carboncoated, horizontally oriented crystals of $(NH_4)Ga(HAsO_4)_2$ were undertaken to discriminate between H_3O^+ and NH_4^+ . They confirmed the suspected formula and revealed no impurities.

4. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5.

For the refinement of both compounds, the coordinates of RbFe(HPO₄)₂ (Lii & Wu, 1994) were used for the initial refinement steps. The hydrogen atoms were then located in difference-Fourier maps and added to the models. In both compounds O–H bonds were restrained to 0.9 ± 0.04 Å. In (NH₄)Ga(HAsO₄)₂, several electron-density peaks between

0.4 and 0.75 e Å⁻³ were recognizable that could be attributed to the H atoms of the NH₄⁺ cation. These peaks are located at the following coordinates for the N1 atom: 0.0170, 0.1329, 0.7450; 0.0641, 0.0560, 0.7414 and -0.0910, 0.0000, 0.7500. For the N2 atom, the coordinates are: 0.0478, -0.0330, 0.6635; -0.0655, -0.1106, 0.6786; 0.1301, 0.0094, 0.6695 and -0.0521, -0.0657, 0.6513. However, despite the use of restraints, no sensible coordination geometry for the H atoms around the N atoms could be found. Therefore, they were omitted from the model. As a result of the fact that there are 12 possible N– $H \cdots O$ bonds for each N atom, with only two symmetryequivalent positions for N1 and four for N2, it seems reasonable to assume that the H-atom positions around the N atoms are, in both cases, highly disordered. The final residual electron density in (NH₄)Ga(HAsO₄)₂ is < 1e Å⁻³.

The refinement of $TlAl(HAsO_4)_2$ revealed a considerable residual electron-density peak of 2.2 e Å⁻³ 1.28 Å away from As and 1.61 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore could be an alternative flipped As position (sharing the same O1 atom). Since the inclusion of the alternative position led to a considerable drop in R_1 and weighting parameters and the highest residual electron density dropped to $< 1 \text{ e} \text{ Å}^{-3}$, this position was kept in the model. The occupancy of the alternative position As B (Fig. 1b, 2b) refined to only 2.1%, which makes it impossible to locate the alternative O ligand positions that should comprise the coordination sphere of the AsB position. For the final refinement, the displacement parameters of the AsB position were restrained to be the same as for the main As position and the sum of As was restrained to give a total occupancy of 1.00. We note that a similar alternative position was also found for isotypic $CsIn(HAsO_4)_2$ (Schwendtner & Kolitsch, 2017b).

There was also considerable residual electron density of $\pm 2 \text{ e} \text{ Å}^{-3}$ close to the two Tl positions, similar to what was encountered in the structurally related TlGa₂As(HAsO₄)₆ (Schwendtner & Kolitsch, 2018*d*). We tried a similar approach that had worked well for the aforementioned compound, *viz*. to remove the Tl atoms from their ideal, highly symmetrical positions in this structure type. We obtained a better refinement with a slightly off-centre position for Tl1, in line with a slight disorder (probably static), possibly in part or in whole due to the stereochemical activity of the lone electron pair on the Tl⁺ cations. So, although the Tl1 site is slightly offset from its ideal position (0, 0, 3/4), we unfortunately did not manage to get rid of the negative residual electron density of about

 $-2 \text{ e} \text{ } \text{Å}^{-3}$ next to Tl2. The most positive residual electron density peak, however, dropped to < 1 e Å^{-3} .

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner. The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

References

- Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
- Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.
- Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.
- Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
- García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569.
- Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.
- Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.
- Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.
- Nonius, B. V. (2003). COLLECT. Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.
- Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
- Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
- Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.
- Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
- Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.
- Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.
- Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.
- Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.
- Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.
- Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.
- Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.
- Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.
- Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.
- Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249.
- Schwendtner, K. & Kolitsch, U. (2018*d*). Acta Cryst. E74, 1163–1167.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria.
- Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.

Acta Cryst. (2018). E74, 1504-1508 [https://doi.org/10.1107/S2056989018013567]

 $(NH_4)Ga(HAsO_4)_2$ and $TIAI(HAsO_4)_2$ - two new RbFe(HPO₄)₂-type M^+M^{3+}

arsenates

Karolina Schwendtner and Uwe Kolitsch

Computing details

For both structures, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publcIF (Westrip, 2010).

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42)

Crystal data	
(NH ₄)Ga(HAsO ₄) ₂	$D_{\rm x} = 3.358 { m Mg m}^{-3}$
$M_r = 367.62$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Trigonal, $R\overline{3}c:H$	Cell parameters from 2653 reflections
a = 8.380(1) Å	$\theta = 2.9 - 32.5^{\circ}$
c = 53.811 (11) Å	$\mu = 12.83 \text{ mm}^{-1}$
$V = 3272.6 (10) \text{ Å}^3$	T = 293 K
Z = 18	Small pseudo-octahedral platelets, colourless
F(000) = 3132	$0.08 \times 0.07 \times 0.03 \text{ mm}$

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) $T_{\rm min} = 0.427, \ T_{\rm max} = 0.700$ 4834 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.071326 reflections 61 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

1326 independent reflections 1156 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ $\theta_{\rm max} = 32.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -80 \rightarrow 81$

Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 16.8283P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{\rm max} = 0.75 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL2016 (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00016 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.000000	0.000000	0.750000	0.051 (2)	
N2	0.000000	0.000000	0.66731 (10)	0.0487 (15)	
Gal	0.333333	0.666667	0.75382 (2)	0.00954 (10)	
Ga2	0.333333	0.666667	0.666667	0.01164 (13)	
As	-0.42915 (3)	-0.39386 (3)	0.71282 (2)	0.01072 (8)	
01	0.4557 (3)	-0.4378 (3)	0.68635 (3)	0.0218 (4)	
O2	-0.4457 (2)	-0.2535 (2)	0.73337 (3)	0.0133 (3)	
03	-0.1958 (3)	-0.2785 (3)	0.70541 (4)	0.0243 (4)	
04	0.4778 (2)	-0.1224 (2)	0.77594 (3)	0.0127 (3)	
H3	-0.161 (8)	-0.353 (6)	0.7114 (9)	0.075 (18)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.062 (4)	0.062 (4)	0.029 (4)	0.0311 (18)	0.000	0.000
N2	0.060 (2)	0.060 (2)	0.026 (2)	0.0300 (12)	0.000	0.000
Gal	0.01025 (13)	0.01025 (13)	0.00811 (19)	0.00513 (6)	0.000	0.000
Ga2	0.01394 (18)	0.01394 (18)	0.0070 (2)	0.00697 (9)	0.000	0.000
As	0.01365 (12)	0.01158 (12)	0.00927 (12)	0.00807 (9)	0.00172 (8)	0.00141 (7)
01	0.0368 (11)	0.0281 (10)	0.0101 (7)	0.0234 (9)	-0.0049 (7)	-0.0010 (7)
O2	0.0137 (7)	0.0121 (7)	0.0135 (7)	0.0061 (6)	0.0030 (6)	-0.0014 (6)
O3	0.0192 (9)	0.0220 (9)	0.0362 (12)	0.0137 (8)	0.0137 (8)	0.0126 (8)
O4	0.0136 (7)	0.0108 (7)	0.0153 (7)	0.0073 (6)	-0.0026 (6)	-0.0047 (6)

Geometric parameters (Å, °)

N1—O3	3.173 (3)	N2—O3 ^{xii}	3.557 (4)
N1-03 ⁱ	3.173 (3)	N2—O3 ^{xiii}	3.557 (4)
N1-03 ⁱⁱ	3.173 (3)	N2—O3 ^{xiv}	3.557 (4)
N1—O3 ⁱⁱⁱ	3.173 (3)	Ga1—O2 ^{xv}	1.9619 (16)
N1-03 ^{iv}	3.173 (3)	Ga1—O2 ⁱⁱⁱ	1.9619 (17)
N1	3.173 (3)	Ga1—O2 ^{xvi}	1.9619 (17)
N1	3.3657 (18)	Ga1—O4 ^v	1.9666 (17)
N1—O2 ⁱⁱ	3.3657 (18)	Ga1—O4 ^{xvii}	1.9666 (17)
N1-O2 ^{iv}	3.3657 (18)	Ga1—O4 ^{xviii}	1.9667 (16)
N1-O2 ⁱⁱⁱ	3.3657 (18)	Ga2—O1 ^{viii}	1.9588 (18)
N1-O2 ⁱ	3.3657 (17)	Ga2—O1 ^{xiv}	1.9588 (19)
N1	3.3657 (17)	Ga2—O1 ^{xix}	1.9588 (18)
N2	2.918 (4)	Ga2—O1 ^v	1.9589 (18)

N2—O3 ⁱⁱⁱ	2.918 (4)	Ga2—O1 ^{xviii}	1.9589 (19)
N2—O3	2.918 (4)	Ga2—O1 ^{xvii}	1.9589 (18)
N2	3.375 (3)	As—O1 ^{xx}	1.6555 (18)
N2—O1 ^{vii}	3.375 (3)	As—O2	1.6700 (16)
N2—O1 ^{viii}	3.375 (3)	As—O4 ⁱⁱ	1.6783 (17)
N2—O4 ^{ix}	3.493 (5)	As—O3	1.740 (2)
N2—O4 ^x	3.493 (5)	O3—H3	0.87 (3)
N2—O4 ^{xi}	3.493 (5)		
O3—N1—O3 ⁱ	162.83 (7)	O2 ^{xv} —Ga1—N1	119.85 (5)
O3—N1—O3 ⁱⁱ	123.01 (7)	O2 ⁱⁱⁱ —Ga1—N1	32.80 (5)
O3 ⁱ —N1—O3 ⁱⁱ	69.03 (6)	O2 ^{xvi} —Ga1—N1	105.75 (5)
O3—N1—O3 ⁱⁱⁱ	69.03 (6)	O4 ^v —Ga1—N1	77.33 (5)
O3 ⁱ —N1—O3 ⁱⁱⁱ	102.44 (7)	O4 ^{xvii} —Ga1—N1	143.46 (5)
O3 ⁱⁱ —N1—O3 ⁱⁱⁱ	162.83 (8)	O4 ^{xviii} —Ga1—N1	59.54 (5)
O3—N1—O3 ^{iv}	102.44 (7)	N2 ^{xxi} —Ga1—N1	92.432 (5)
O3 ⁱ —N1—O3 ^{iv}	69.03 (6)	N1 ^{xvii} —Ga1—N1	119.821 (1)
$O3^{ii}$ $N1 - O3^{iv}$	69.03 (6)	$O2^{xv}$ —Ga1—N1 ^{xvi}	105.75 (5)
03^{iii} N1– 03^{iv}	123.01 (7)	$O2^{iii}$ —Ga1—N1 ^{xvi}	119.85 (5)
$03 - N1 - O3^{v}$	69.03 (6)	O2 ^{xvi} —Ga1—N1 ^{xvi}	32.80 (5)
$O3^{i}$ N1 $O3^{v}$	123.01 (8)	$O4^{v}$ —Ga1—N1 ^{xvi}	143.46 (5)
$O3^{ii}$ $N1 - O3^{v}$	102.44 (7)	O4 ^{xvii} —Ga1—N1 ^{xvi}	59.54 (5)
03^{iii} N1– 03^{v}	69.03 (6)	O4 ^{xviii} —Ga1—N1 ^{xvi}	77.33 (5)
$O3^{iv}$ N1 $O3^{v}$	162.83 (7)	N2 ^{xxi} —Ga1—N1 ^{xvi}	92.432 (5)
03—N1—02	48.11 (4)	N1 ^{xvii} —Ga1—N1 ^{xvi}	119.821 (1)
03^{i} N1 -02	115.51 (5)	N1—Ga1—N1 ^{xvi}	119.821 (1)
03^{ii} N1-02	126.51 (5)	$O1^{\text{viii}}$ —Ga2— $O1^{\text{xiv}}$	93.53 (7)
03^{iii} N1-02	70.41 (5)	$O1^{\text{viii}}$ —Ga2— $O1^{\text{xix}}$	93.53 (7)
$03^{iv} - N1 - 02$	65.01 (5)	$O1^{xiv}$ —Ga2— $O1^{xix}$	93.53 (7)
03^{v} N1 -02	113.56 (5)	$O1^{\text{viii}}$ —Ga2— $O1^{\text{v}}$	180.0
$03 - N1 - O2^{ii}$	126.52 (5)	$O1^{xiv}$ —Ga2— $O1^{v}$	86.47 (7)
$O3^{i}$ N1 $O2^{ii}$	70.41 (5)	$O1^{xix}$ —Ga2—O1 ^v	86.47 (7)
03^{ii} N1 -02^{ii}	48.11 (5)	$O1^{\text{viii}}$ —Ga2— $O1^{\text{xviii}}$	86.47 (7)
03 ⁱⁱⁱ —N1—02 ⁱⁱ	115.51 (5)	$O1^{xiv}$ —Ga2— $O1^{xviii}$	180.0
$O3^{iv}$ N1 $O2^{ii}$	113.56 (5)	$O1^{xix}$ —Ga2— $O1^{xviii}$	86.47 (7)
$03^{v} - N1 - 02^{ii}$	65.01 (5)	$O1^{v}$ —Ga2— $O1^{xviii}$	93.53 (7)
$02 - N1 - 02^{ii}$	171.26 (6)	$O1^{\text{viii}}$ —Ga2— $O1^{\text{xvii}}$	86.47 (7)
$O3-N1-O2^{iv}$	65.01 (5)	$O1^{xiv}$ —Ga2— $O1^{xvii}$	86.47 (7)
$O3^{i}$ N1 $O2^{iv}$	113.56 (5)	$O1^{xix}$ $Ga2$ $O1^{xvii}$	180.0
$O3^{ii}$ $N1 - O2^{iv}$	70.41 (5)	$O1^{v}$ —Ga2— $O1^{xvii}$	93.53 (7)
03^{iii} N1– 02^{iv}	126 51 (5)	01^{xviii} Ga2 01^{xvii}	93 53 (7)
03^{iv} N1 -02^{iv}	48.11 (4)	$O1^{\text{viii}}$ $Ga2 N2^{\text{xix}}$	62.79 (8)
03^{v} N1 02^{iv}	115 51 (5)	$O1^{xiv}$ $Ga2$ $N2^{xix}$	67.00(7)
02 —N1— 02^{iv}	59.00 (6)	$O1^{xix}$ $Ga2 N2^{xix}$	146.77 (8)
02^{ii} N1 -02^{iv}	113 20 (2)	$O1^{v}$ $Ga2$ $N2^{xix}$	117 21 (8)
$03 - 11 - 02^{111}$	113.20 (2)	$O1^{xviii}$ $Ga2 N2^{xix}$	117.21(0) 113.00(7)
03^{i} N1- 02^{iii}	65 01 (5)	$O1^{xvii}$ $Ga2 N2^{xix}$	33 23 (8)
0.3^{ii} N1 0.2^{iii}	115 51 (5)	$01^{\text{viii}} - \text{Ga2} - \text{N2}^{\text{xvii}}$	117 21 (8)
0.5 - 101 - 0.2	113.31 (3)	01 -0a2-1N2	11/.21 (0)

O3 ⁱⁱⁱ —N1—O2 ⁱⁱⁱ	48.11 (5)	O1 ^{xiv} —Ga2—N2 ^{xvii}	113.00(7)
O3 ^{iv} —N1—O2 ⁱⁱⁱ	126.51 (5)	O1 ^{xix} —Ga2—N2 ^{xvii}	33.23 (8)
O3 ^v —N1—O2 ⁱⁱⁱ	70.41 (5)	O1 ^v —Ga2—N2 ^{xvii}	62.79 (8)
O2—N1—O2 ⁱⁱⁱ	113.20(2)	O1 ^{xviii} —Ga2—N2 ^{xvii}	66.99 (7)
O2 ⁱⁱ —N1—O2 ⁱⁱⁱ	74.86 (6)	O1 ^{xvii} —Ga2—N2 ^{xvii}	146.77 (8)
O2 ^{iv} —N1—O2 ⁱⁱⁱ	171.26 (6)	N2 ^{xix} —Ga2—N2 ^{xvii}	180.0
O3—N1—O2 ⁱ	115.51 (5)	O1 ^{viii} —Ga2—N2	33.23 (8)
$O3^{i}$ —N1— $O2^{i}$	48.11 (4)	O1 ^{xiv} —Ga2—N2	117.21 (8)
O3 ⁱⁱ —N1—O2 ⁱ	113.56 (5)	O1 ^{xix} —Ga2—N2	113.01 (8)
$O3^{iii}$ —N1— $O2^{i}$	65.01 (5)	O1 ^v —Ga2—N2	146.77 (8)
$O3^{iv}$ —N1— $O2^{i}$	70.41 (5)	O1 ^{xviii} —Ga2—N2	62.79 (8)
$O3^v$ —N1— $O2^i$	126.51 (5)	O1 ^{xvii} —Ga2—N2	67.00 (8)
O2-N1-O2 ⁱ	74.86 (6)	N2 ^{xix} —Ga2—N2	60.005 (2)
$O2^{ii}$ —N1— $O2^{i}$	113.20 (2)	N2 ^{xvii} —Ga2—N2	119.995 (2)
$O2^{iv}$ —N1— $O2^{i}$	113.20 (2)	O1 ^{viii} —Ga2—N2 ^{xvi}	113.01 (7)
O2 ⁱⁱⁱ —N1—O2 ⁱ	59.00 (6)	O1 ^{xiv} —Ga2—N2 ^{xvi}	33.23 (8)
O3—N1—O2 ^v	70.41 (5)	O1 ^{xix} —Ga2—N2 ^{xvi}	117.21 (8)
O3 ⁱ —N1—O2 ^v	126.51 (5)	O1 ^v —Ga2—N2 ^{xvi}	66.99 (7)
O3 ⁱⁱ —N1—O2 ^v	65.01 (5)	O1 ^{xviii} —Ga2—N2 ^{xvi}	146.77 (8)
O3 ⁱⁱⁱ —N1—O2 ^v	113.56 (5)	O1 ^{xvii} —Ga2—N2 ^{xvi}	62.79 (8)
O3 ^{iv} —N1—O2 ^v	115.51 (5)	N2 ^{xix} —Ga2—N2 ^{xvi}	60.005 (2)
$O3^{v}$ —N1— $O2^{v}$	48.11 (4)	N2 ^{xvii} —Ga2—N2 ^{xvi}	119.995 (2)
O2—N1—O2 ^v	113.20 (2)	N2—Ga2—N2 ^{xvi}	119.995 (2)
$O2^{ii}$ —N1— $O2^{v}$	59.00 (6)	O1 ^{viii} —Ga2—N2 ^{xxii}	66.99 (7)
$O2^{iv}$ N1 $O2^{v}$	74.86 (6)	O1 ^{xiv} —Ga2—N2 ^{xxii}	146.77 (8)
$O2^{iii}$ $N1$ $O2^{v}$	113.20 (2)	O1 ^{xix} —Ga2—N2 ^{xxii}	62.79 (8)
$O2^{i}$ N1 $O2^{v}$	171.26 (6)	O1 ^v —Ga2—N2 ^{xxii}	113.00(7)
O3 ^v —N2—O3 ⁱⁱⁱ	76.09 (13)	O1 ^{xviii} —Ga2—N2 ^{xxii}	33.23 (8)
03 ^v —N2—O3	76.08 (13)	O1 ^{xvii} —Ga2—N2 ^{xxii}	117.21 (8)
03 ⁱⁱⁱ —N2—O3	76.08 (13)	N2 ^{xix} —Ga2—N2 ^{xxii}	119.995 (2)
$O3^{v}$ N2 $O1^{vi}$	77.21 (6)	N2 ^{xvii} —Ga2—N2 ^{xxii}	60.005 (2)
O3 ⁱⁱⁱ —N2—O1 ^{vi}	152.44 (16)	N2—Ga2—N2 ^{xxii}	60.005 (2)
O3—N2—O1 ^{vi}	91.02 (6)	N2 ^{xvi} —Ga2—N2 ^{xxii}	180.0
$O3^{v}$ N2 $O1^{vii}$	152.44 (16)	O1 ^{viii} —Ga2—N2 ^{xxiii}	146.77 (8)
03^{iii} N2 01^{vii}	91.02 (6)	$O1^{xiv}$ —Ga2—N2 ^{xxiii}	62.79 (8)
$03-N2-01^{vii}$	77.21 (6)	$O1^{xix}$ —Ga2—N2 ^{xxiii}	66.99 (8)
01^{vi} N2 01^{vii}	110.03 (9)	$O1^{v}$ —Ga2—N2 ^{xxiii}	33.23 (8)
03^{v} N2 01^{viii}	91.02 (6)	$O1^{xviii}$ $Ga2 N2^{xxiii}$	117.21 (8)
03^{iii} N2-01 ^{viii}	77.21 (6)	$O1^{xvii}$ $Ga2 N2^{xxiii}$	113.00 (8)
$03-N2-01^{viii}$	152.44 (16)	N2 ^{xix} —Ga2—N2 ^{xxiii}	119.995 (2)
01^{vi} N2 01 ^{viii}	110.03 (9)	$N2^{xvii}$ Ga2 $N2^{xxiii}$	60,005,(2)
01^{vii} N2 01^{viii}	110.03 (9)	$N2$ —Ga2— $N2^{xxiii}$	180.0
03^{v} N2 04^{ix}	111 48 (7)	$N2^{xvi}$ Ga2 $N2^{xxiii}$	60,005,(2)
03^{iii} N2 04^{ix}	15643(10)	$N2^{xxii}$ Ga2 $N2^{xxiii}$	119 994 (2)
$03 - N2 - 04^{ix}$	126.99(7)	$O1^{xx}$ As $O2$	118 81 (9)
01^{vi} N2 04^{ix}	45 41 (6)	$O1^{xx}$ As $O2^{ii}$	105 46 (9)
01^{vii} N2 04^{ix}	90.09 (12)	Ω^2 As Ω^{4ii}	115 11 (0)
01^{viii} N2 04^{ix}	80.30 (12)	$O1^{xx} \Delta s O3$	107 12 (11)
01 112 07	00.50 (10)	01	107.12(11)

$O3^{v}$ —N2— $O4^{x}$	156.43 (10)	O2—As—O3	103.09 (10)
03 ⁱⁱⁱ —N2—O4 ^x	126.99 (7)	O4 ⁱⁱ —As—O3	106.35 (9)
$O3-N2-O4^{x}$	111.48 (7)	$O1^{xx}$ As $N2^{xii}$	64.22 (8)
$O1^{vi}$ N2 $O4^{x}$	80.30 (10)	O2—As—N2 ^{xii}	173.25 (6)
$O1^{vii}$ $N2 O4^x$	45.41 (6)	O4 ⁱⁱ —As—N2 ^{xii}	68.25 (8)
$O1^{viii}$ N2 $O4^{x}$	90.09 (12)	O3—As—N2 ^{xii}	70.17 (8)
$O4^{ix}$ N2 $O4^{x}$	45.67 (8)	O1 ^{xx} —As—N1	142.98 (8)
$O3^v$ — $N2$ — $O4^{xi}$	126.99 (7)	O2—As—N1	56.21 (6)
O3 ⁱⁱⁱ —N2—O4 ^{xi}	111.48 (7)	O4 ⁱⁱ —As—N1	108.99 (6)
O3—N2—O4 ^{xi}	156.43 (10)	O3—As—N1	50.09 (8)
$O1^{vi}$ — $N2$ — $O4^{xi}$	90.09 (12)	$N2^{xii}$ —As—N1	117.48 (2)
$O1^{vii}$ — $N2$ — $O4^{xi}$	80.30 (10)	O1 ^{xx} —As—N2	81.32 (10)
O1 ^{viii} —N2—O4 ^{xi}	45.41 (6)	O2—As—N2	99.84 (7)
$O4^{ix}$ N2 $O4^{xi}$	45.67 (8)	O4 ⁱⁱ —As—N2	133.25 (6)
$O4^{x}$ — $N2$ — $O4^{xi}$	45.67 (8)	O3—As—N2	32.26 (8)
O3v—N2—O3 ^{xii}	119.40 (8)	N2 ^{xii} —As—N2	74.310 (11)
O3 ⁱⁱⁱ —N2—O3 ^{xii}	150.86 (8)	N1—As—N2	65.36 (6)
O3—N2—O3 ^{xii}	83.78 (6)	O1 ^{xx} —As—N1 ^{xxiv}	88.02 (8)
01^{vi} N2 03^{xii}	46.33 (6)	O2—As—N1 ^{xxiv}	94.12 (6)
01^{vii} $N2$ 03^{xii}	63.78 (7)	$O4^{ii}$ As $N1^{xxiv}$	40.77 (6)
01^{viii} N2 -03^{xii}	123.57 (16)	O3—As—N1 ^{xxiv}	147.10(7)
$O4^{ix}$ N2 $O3^{xii}$	45.67 (7)	N2 ^{xii} —As—N1 ^{xxiv}	92.00 (3)
$O4^{x}$ $N2 O3^{xii}$	43.44 (7)	N1—As—N1 ^{xxiv}	127.434 (12)
04^{xi} N2 03^{xii}	80.03 (12)	N2—As—N1 ^{xxiv}	165.32 (5)
03^{v} N2 03^{xiii}	83.77 (6)	$O1^{xx}$ As $N2^{xxiv}$	43.28 (9)
03^{iii} N2 03^{xiii}	119.40 (8)	O2—As—N2 ^{xxiv}	127.15 (7)
$03-N2-03^{xiii}$	150.86 (7)	$O4^{ii}$ As $N2^{xxiv}$	63.82 (7)
01^{vi} N2 03^{xiii}	63.78 (7)	O3—As—N2 ^{xxiv}	128.79 (9)
01^{vii} $N2$ 03^{xiii}	123.57 (16)	N2 ^{xii} —As—N2 ^{xxiv}	59.42 (2)
01^{viii} N2 -03^{xiii}	46.33 (6)	N1—As—N2 ^{xxiv}	172.65 (3)
$O4^{ix}$ N2 $O3^{xiii}$	43.44 (7)	N2—As—N2 ^{xxiv}	117.94 (11)
O4 ^x —N2—O3 ^{xiii}	80.03 (12)	$N1^{xxiv}$ As $N2^{xxiv}$	48.43 (5)
O4 ^{xi} —N2—O3 ^{xiii}	45.67 (7)	As ^{xxv} —O1—Ga2 ^{xxvi}	137.99 (11)
$O3^{xii}$ N2 $O3^{xiii}$	88.14 (11)	As ^{xxv} —O1—N2 ^{vi}	89.57 (11)
O3 ^v —N2—O3 ^{xiv}	150.86 (8)	Ga2 ^{xxvi} —O1—N2 ^{vi}	128.22 (11)
O3 ⁱⁱⁱ —N2—O3 ^{xiv}	83.77 (6)	$As^{xxv} - O1 - N2^{xxv}$	76.36 (10)
O3—N2—O3 ^{xiv}	119.40 (8)	Ga2 ^{xxvi} —O1—N2 ^{xxv}	93.37 (8)
$O1^{vi}$ N2 $O3^{xiv}$	123.57 (16)	$N2^{vi}$ O1 $N2^{xxv}$	76.98 (4)
O1 ^{vii} —N2—O3 ^{xiv}	46.33 (6)	As ^{xxv} —O1—N2 ^{xxvi}	121.95 (10)
O1 ^{viii} —N2—O3 ^{xiv}	63.78 (7)	Ga2xxvi—O1—N2xxvi	89.12 (8)
$O4^{ix}$ N2 $O3^{xiv}$	80.03 (12)	$N2^{vi}$ O1 $N2^{xxvi}$	74.93 (4)
$O4^{x}$ — $N2$ — $O3^{xiv}$	45.67 (7)	$N2^{xxv} - O1 - N2^{xxvi}$	145.93 (11)
$O4^{xi}$ N2 $O3^{xiv}$	43.44 (7)	As-O2-Ga1 ^{xxiv}	121.85 (9)
O3 ^{xii} —N2—O3 ^{xiv}	88.14 (11)	As—02—N1	99.43 (7)
O3 ^{xiii} —N2—O3 ^{xiv}	88.14 (11)	Ga1 ^{xxiv} —O2—N1	128.79 (7)
O2 ^{xv} —Ga1—O2 ⁱⁱⁱ	91.61 (7)	As—02—N2	60.17 (5)
O2 ^{xv} —Ga1—O2 ^{xvi}	91.61 (7)	Ga1 ^{xxiv} —O2—N2	163.08 (8)
O2 ⁱⁱⁱ —Ga1—O2 ^{xvi}	91.61 (7)	N1-02-N2	63.03 (5)

O2 ^{xv} —Ga1—O4 ^v	88.91 (7)	As—O3—N2	129.17 (11)
O2 ⁱⁱⁱ —Ga1—O4 ^v	92.29 (8)	As—O3—N1	105.03 (9)
O2 ^{xvi} —Ga1—O4 ^v	176.05 (7)	N2—O3—N1	93.77 (9)
O2 ^{xv} —Ga1—O4 ^{xvii}	92.29 (8)	As—O3—N2 ^{xii}	82.43 (8)
O2 ⁱⁱⁱ —Ga1—O4 ^{xvii}	176.05 (7)	N2—O3—N2 ^{xii}	96.22 (6)
O2 ^{xvi} —Ga1—O4 ^{xvii}	88.91 (7)	N1—O3—N2 ^{xii}	159.27 (9)
O4 ^v —Ga1—O4 ^{xvii}	87.16 (8)	As—O3—H3	102 (4)
O2 ^{xv} —Ga1—O4 ^{xviii}	176.05 (7)	N2—O3—H3	125 (4)
O2 ⁱⁱⁱ —Ga1—O4 ^{xviii}	88.91 (7)	N1—O3—H3	91 (3)
O2 ^{xvi} —Ga1—O4 ^{xviii}	92.29 (7)	N2 ^{xii} —O3—H3	69 (3)
O4v—Ga1—O4xviii	87.16 (8)	As ⁱⁱ —O4—Ga1 ^{xxvi}	130.02 (10)
O4 ^{xvii} —Ga1—O4 ^{xviii}	87.16 (8)	As ⁱⁱ —O4—N2 ^{xxvii}	85.25 (7)
O2 ^{xv} —Ga1—N2 ^{xxi}	124.12 (5)	Ga1 ^{xxvi} —O4—N2 ^{xxvii}	100.62 (8)
O2 ⁱⁱⁱ —Ga1—N2 ^{xxi}	124.12 (5)	As ⁱⁱ —O4—N1 ^{xxv}	124.11 (7)
O2 ^{xvi} —Ga1—N2 ^{xxi}	124.12 (5)	Ga1 ^{xxvi} —O4—N1 ^{xxv}	96.68 (6)
O4v—Ga1—N2xxi	52.75 (5)	N2 ^{xxvii} —O4—N1 ^{xxv}	118.40 (4)
O4 ^{xvii} —Ga1—N2 ^{xxi}	52.75 (5)	As ⁱⁱ —O4—N1	51.75 (5)
O4 ^{xviii} —Ga1—N2 ^{xxi}	52.75 (5)	Ga1 ^{xxvi} —O4—N1	79.17 (5)
O2 ^{xv} —Ga1—N1 ^{xvii}	32.80 (5)	N2 ^{xxvii} —O4—N1	104.63 (4)
O2 ⁱⁱⁱ —Ga1—N1 ^{xvii}	105.75 (5)	N1 ^{xxv} —O4—N1	136.70 (4)
O2 ^{xvi} —Ga1—N1 ^{xvii}	119.85 (5)	As ⁱⁱ —O4—N2 ^{xxviii}	98.66 (7)
O4v—Ga1—N1xvii	59.54 (5)	Ga1 ^{xxvi} —O4—N2 ^{xxviii}	129.48 (6)
O4 ^{xvii} —Ga1—N1 ^{xvii}	77.33 (5)	N2 ^{xxvii} —O4—N2 ^{xxviii}	66.70 (3)
O4 ^{xviii} —Ga1—N1 ^{xvii}	143.46 (5)	N1 ^{xxv} —O4—N2 ^{xxviii}	57.01 (5)
N2 ^{xxi} —Ga1—N1 ^{xvii}	92.432 (5)	N1—O4—N2 ^{xxviii}	150.37 (5)

Symmetry codes: (i) x - y, -y, -z + 3/2; (ii) -x, -x + y, -z + 3/2; (iii) -x + y, -x, z; (iv) y, x, -z + 3/2; (v) -y, x - y, z; (vi) -x + 2/3, -y - 2/3, -z + 4/3; (vii) x - y - 4/3; x - 2/3, -z + 4/3; (viii) y + 2/3, -x + y + 4/3, -z + 4/3; (ix) x - 1/3, x - y - 2/3, z - 1/6; (x) -y - 1/3, -x + 1/3, z - 1/6; (xi) -x + y + 2/3, y + 1/3, z - 1/6; (xii) -x - 1/3, -y - 2/3, -z + 4/3; (xiii) y + 2/3, -x + y + 4/3; (xiv) x - y - 1/3, x + 1/3, -z + 4/3; (xiv) -x - y - 1/3, x - 1/3, -y - 2/3, -z + 4/3; (xii) x + 1/3, -z + 4/3; (xiv) x - y - 1/3, x + 1/3, -z + 4/3; (xv) -y, x - y + 1, z; (xvii) x + 1, y + 1, z; (xviii) -x + y + 1, -x + 1, z; (xix) -x + 2/3, -y + 1/3, -z + 4/3; (xx) x - 1, y, z; (xxi) -y + 1/3, -x + 2/3, z + 1/6; (xxii) -x - 1/3, -y + 1/3, -z + 4/3; (xxiii) -x + 2/3, -y + 4/3, -z + 4/3; (xxiv) x - 1, y - 1, z; (xxvi) x + 1, y, z; (xxvi) x, y - 1, z; (xxvii) -x + 1/3, -x - 1/3, -x - 1/3, -x + 1/6; (xxviii) y + 1, x, -z + 3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
O3—H3····O4 ^{xxix}	0.87 (3)	1.74 (3)	2.610 (3)	172 (6)

Symmetry code: (xxix) y, x-1, -z+3/2.

Thallium aluminium bis[hydrogen arsenate(V)] (TIAIHAsO42)

Crystal data TlAl(HAsO₄)₂ $M_r = 511.21$ Trigonal, R3c:H a = 8.290 (1) Å c = 52.940 (11) Å $V = 3150.8 (10) Å^3$ Z = 18F(000) = 4068

 $D_x = 4.849 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1004 reflections $\theta = 2.9-30.0^{\circ}$ $\mu = 32.58 \text{ mm}^{-1}$ T = 293 KSmall pseudo-octahedral platelets, colourless $0.08 \times 0.07 \times 0.03 \text{ mm}$ Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski <i>et al.</i> , 2003) $T_{\min} = 0.180, T_{\max} = 0.441$ 2478 measured reflections	698 independent reflections 685 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -8 \rightarrow 8$ $l = -64 \rightarrow 64$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.058$ S = 1.21 698 reflections 69 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.023P)^2 + 84.2452P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.82$ e Å ⁻³ $\Delta\rho_{min} = -1.98$ e Å ⁻³ Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.00049 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
T11	0.000000	-0.019 (2)	0.750000	0.037 (2)	0.3333
T12	0.000000	0.000000	0.66885 (2)	0.0322 (2)	
Al1	0.333333	0.666667	0.75439 (5)	0.0051 (5)	
A12	0.333333	0.666667	0.666667	0.0061 (7)	
As	-0.43603 (7)	-0.39811 (7)	0.71289 (2)	0.00523 (19)	0.9790 (14)
AsB	-0.596 (3)	-0.559 (3)	0.7127 (4)	0.00523 (19)	0.0210 (14)
01	0.4431 (5)	-0.4433 (5)	0.68625 (6)	0.0120 (8)	
O2	-0.4518 (5)	-0.2576 (5)	0.73421 (6)	0.0080 (7)	
03	-0.2001 (5)	-0.2792 (5)	0.70491 (8)	0.0144 (8)	
O4	0.4791 (5)	-0.1259 (5)	0.77571 (6)	0.0083 (7)	
Н3	-0.126 (8)	-0.323(8)	0.7074 (11)	0.010 (15)*	

Atomic displacement parameters $(Å^2)$

U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
(8) 0.051 (5)	0.0190 (4)	0.0178 (4)	-0.003 (2)	-0.0015 (10)	
(3) 0.0411 (3)	0.0145 (3)	0.02053 (13	6) 0.000	0.000	
(7) 0.0069 (7)	0.0014 (11)	0.0035 (4)	0.000	0.000	
(11) 0.0085 (11)	0.0014 (16)	0.0042 (5)	0.000	0.000	
	$\begin{array}{c c} & U^{22} \\ \hline (8) & 0.051 (5) \\ (3) & 0.0411 (3) \\ (7) & 0.0069 (7) \\ (11) & 0.0085 (11) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

As	0.0081 (3)	0.0070 (3)	0.0019 (3)	0.0047 (2)	0.00051 (17)	0.00064 (17)
AsB	0.0081 (3)	0.0070 (3)	0.0019 (3)	0.0047 (2)	0.00051 (17)	0.00064 (17)
01	0.0188 (19)	0.0166 (18)	0.0032 (15)	0.0109 (16)	-0.0020 (14)	-0.0009 (13)
O2	0.0077 (17)	0.0103 (16)	0.0045 (15)	0.0034 (14)	0.0021 (13)	-0.0004 (13)
03	0.0091 (18)	0.0168 (19)	0.0199 (19)	0.0085 (15)	0.0098 (15)	0.0102 (15)
04	0.0119 (17)	0.0085 (17)	0.0049 (15)	0.0054 (14)	-0.0011 (13)	-0.0044 (13)

Geometric parameters (Å, °)

Tl1—Tl1 ⁱ	0.28 (3)	Tl2—O3 ^{xiv}	3.545 (4)
Tl1—Tl1 ⁱⁱ	0.28 (3)	Tl2—O3 ^{xv}	3.545 (4)
Tl1—O3	3.085 (8)	Tl2—AsB ^{xiii}	3.74 (2)
Tl1—O3 ⁱⁱⁱ	3.085 (8)	Tl2—AsB ^{xv}	3.74 (2)
T11—O3 ^{iv}	3.136 (5)	Tl2—AsB ^{xiv}	3.74 (2)
Tl1—O3 ⁱ	3.136 (5)	Al1—O2 ^{xvi}	1.895 (4)
Tl1—O2 ^{iv}	3.233 (13)	Al1—O2 ⁱⁱ	1.895 (4)
Tl1—O2 ⁱ	3.233 (13)	Al1—O2 ^{xvii}	1.895 (4)
T11—O3 ^v	3.261 (12)	Al1—O4 ^{xviii}	1.901 (4)
Tl1—O3 ⁱⁱ	3.261 (12)	Al1—O4 ⁱ	1.901 (4)
Tl1—O2 ⁱⁱⁱ	3.351 (4)	Al1—O4 ^{xix}	1.901 (4)
Tl1—O2	3.351 (4)	Al2—O1 ^{ix}	1.887 (4)
Tl1—O2 ⁱⁱ	3.501 (15)	Al2—O1 ^{xv}	1.887 (4)
Tl1—O2 ^v	3.501 (15)	Al2—O1 ^{xx}	1.887 (4)
Tl1—AsB ^{vi}	3.89 (3)	Al2—O1 ⁱ	1.887 (4)
Tl2—O3 ⁱ	2.813 (4)	Al2—O1 ^{xix}	1.887 (4)
Tl2—O3 ⁱⁱ	2.813 (4)	Al2—O1 ^{xviii}	1.887 (4)
Tl2—O3	2.813 (4)	As—AsB	1.33 (2)
Tl2—O1 ^{vii}	3.410 (4)	As—O1 ^{xxi}	1.661 (3)
Tl2—O1 ^{viii}	3.410 (4)	As—O2	1.674 (3)
Tl2—O1 ^{ix}	3.410 (4)	As—O4 ⁱⁱⁱ	1.679 (3)
Tl2—O4 ^x	3.516 (3)	As—O3	1.746 (4)
Tl2—O4 ^{xi}	3.516 (3)	AsB—O4 ⁱⁱⁱ	1.35 (2)
Tl2—O4 ^{xii}	3.516 (3)	AsB—O1 ^{xxi}	1.64 (2)
T12—O3 ^{xiii}	3.545 (4)	AsB—O2 ^{xxii}	2.12 (2)
T11 ⁱ —T11—T11 ⁱⁱ	60.00 (3)	O1 ^{xix} —Al2—O1 ^{xviii}	92.71 (15)
Tl1 ⁱ —Tl1—O3	127.2 (3)	$O1^{ix}$ —Al2—Tl2 ^{xx}	64.49 (12)
Tl1 ⁱⁱ —Tl1—O3	98.0 (3)	$O1^{xv}$ —Al2—Tl2 ^{xx}	64.45 (11)
T11 ⁱ —T11—O3 ⁱⁱⁱ	98.0 (3)	$O1^{xx}$ —Al2—Tl2 ^{xx}	145.30 (11)
Tl1 ⁱⁱ —Tl1—O3 ⁱⁱⁱ	127.2 (2)	$O1^{i}$ —Al2—Tl2 ^{xx}	115.51 (12)
O3—T11—O3 ⁱⁱⁱ	129.1 (6)	$O1^{xix}$ —Al2—Tl2 ^{xx}	115.55 (11)
T11 ⁱ —T11—O3 ^{iv}	114.4 (3)	O1 ^{xviii} —Al2—Tl2 ^{xx}	34.70 (11)
T11 ⁱⁱ —T11—O3 ^{iv}	77.0 (4)	O1 ^{ix} —Al2—Tl2 ^{xviii}	115.51 (12)
O3—T11—O3 ^{iv}	104.2 (3)	O1 ^{xv} —Al2—Tl2 ^{xviii}	115.55 (11)
O3 ⁱⁱⁱ —Tl1—O3 ^{iv}	70.24 (16)	O1 ^{xx} —Al2—Tl2 ^{xviii}	34.70 (11)
Tl1 ⁱ —Tl1—O3 ⁱ	77.0 (3)	O1 ⁱ —Al2—Tl2 ^{xviii}	64.49 (12)
Tl1 ⁱⁱ —Tl1—O3 ⁱ	114.4 (2)	O1 ^{xix} —Al2—Tl2 ^{xviii}	64.45 (11)
O3—T11—O3 ⁱ	70.24 (16)	O1 ^{xviii} —Al2—Tl2 ^{xviii}	145.29 (11)

O3 ⁱⁱⁱ —Tl1—O3 ⁱ	104.2 (3)	Tl2 ^{xx} —Al2—Tl2 ^{xviii}	180.0
$O3^{iv}$ —T11— $O3^{i}$	167.5 (6)	$O1^{ix}$ $A12$ $T12^{xvii}$	115.55 (11)
$T11^{i}$ — $T11$ — $O2^{iv}$	163.77 (15)	O1 ^{xv} —Al2—Tl2 ^{xvii}	34.70 (11)
T11 ⁱⁱ —T11—O2 ^{iv}	112.8 (3)	O1 ^{xx} —Al2—Tl2 ^{xvii}	115.51 (12)
O3—T11—O2 ^{iv}	66.4 (3)	O1 ⁱ —Al2—Tl2 ^{xvii}	64.45 (11)
$O3^{iii}$ —T11— $O2^{iv}$	74.5 (3)	O1 ^{xix} —Al2—Tl2 ^{xvii}	145.29 (11)
$O3^{iv}$ —T11— $O2^{iv}$	49.68 (16)	O1 ^{xviii} —Al2—Tl2 ^{xvii}	64.49 (12)
$O3^{i}$ —T11— $O2^{iv}$	118.5 (5)	$T12^{xx}$ —A12— $T12^{xvii}$	60.1
$T_{11i}^{i} - T_{11}^{i} - O_{2i}^{i}$	112.84 (18)	$T12^{xviii}$ $A12$ $T12^{xvii}$	119.9
T_{11}^{ii} T_{11}^{ii} O_{2}^{i}	163.77 (10)	$O1^{ix}$ $A12$ $T12$	34.70 (11)
$03-11-02^{i}$	74.5 (3)	$O1^{xv}$ $A12$ $T12$	115.51 (12)
$O3^{iii}$ —T11— $O2^{i}$	66.4 (3)	$O1^{xx}$ $A12$ $T12$	115.55(12)
$O3^{iv}$ T11 $O2^{i}$	118 5 (5)	$O1^{i}$ $A12$ $T12$	145 29 (11)
03^{i} T11 -02^{i}	49.68 (16)	$O1^{xix}$ $A12$ $T12$	64 49 (12)
02^{iv} T11-02 ⁱ	77 8 (4)	$O1^{xviii}$ $A12$ $T12$	64 45 (12)
$T_{11}^{i} - T_{11}^{i} - O_{3}^{v}$	48.90 (18)	$T12^{xx}$ A12 T12	60.1
$T_{11}^{ii} T_{11} = O_{3^{v}}$	61 10 (14)	$T12^{xviii} = A12 = T12$	119942(1)
$\Omega_3 = T \Pi_1 = \Omega_3^{v}$	1585(4)	T12 = 712 = 712 $T12xvii = A12 = T12$	119.942 (1)
03 - 11 - 03	130.3(4)	$\begin{array}{ccc} 112 &A12 &112 \\ 0.1^{ix} & A12 & T12^{xxiv} \end{array}$	64 45 (11)
O_{3}^{iv} T11 O3 ^v	68.01 (16)	O1 - A12 - T12 $O1^{xy} - A12 - T12^{xxiy}$	145 30(11)
O_{3}^{i} T11 O_{3}^{v}	1212(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64.49(12)
03 - 11 - 03	121.2(3) 115.03(10)	O1 - A12 - 112 $O1^{i} A12 - T12xxiv$	(12)
O_2^{i} T11 O3v	113.03(10) 127.04(11)	$\begin{array}{c} O1 A12 I12 \\ O1 xix \\ A12 \\ T12 xxiv \end{array}$	34.70(11)
111 111 03	127.04(11)	O1 - A12 - 112 $O1^{xviii} A12 - T12^{xxiv}$	34.70(11)
111 - 111 - 03	(1.1(2))	$\begin{array}{ccc} O1 &A12112 \\ T12xx & A12 & T12xxiy \end{array}$	110.0
111 - 111 - 03	48.90 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.1
03 - 11 - 03	158.5(4)	$\begin{array}{c} 112 \\ \hline \\ 12xyii \\ \hline \\ 12xyii \\ \hline \\ 12xxiy \\ 12xxiy \\ \hline \\ 12xxiy \\ 12xx$	180.0
03^{ii} 111 03 ⁱⁱ	138.3(4) 121.2(2)	$\begin{array}{c} 112 \\ 112 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 1$	180.0
03 - 11 - 03	121.2(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145, 20, (11)
$03 - 11 - 03^{\circ}$	08.01(10)	$O1^{xx}$ $A12$ $T12^{xxy}$	(440,(12))
$02^{-1} - 111 - 03^{-1}$	127.04 (11)	$O1^{xx}$ $A12$ $T12^{xxy}$	64.49(12)
$02^{-111} - 03^{-11}$	115.03(10)	O_{1}^{A} A_{1}^{A} T_{2}^{A}	64.45(12)
	97.6 (5)	$O1^{4}$ $A12$ $T12^{AV}$	34.70(11)
	62.8 (3)		115.51 (12)
	120.68 (19)	OI^{xvm} Al2 $II^{2\text{xv}}$	115.55 (12)
$03 - 111 - 02^{111}$	129.1 (3)	$112^{}$ A12	119.9
03^{m} 111 -02^{m}	48.95 (11)	112^{xvm} $A12$ 112^{xvv}	60.1
	115.18 (11)	112^{xvn} A12 112^{xxv}	60.1
	64.40 (9)	$112 - A12 - 112^{xxv}$	180.0
$O2^{iv}$ 111 $O2^{in}$	117.7 (4)	112^{xxv} $A12$ 112^{xxv}	119.9
$O2^{1}$ 111 $O2^{m}$	59.15 (18)	AsB—As—O1 ^{xx1}	65.3 (9)
$O3^v$ —Tl1— $O2^{in}$	70.66 (15)	AsB—As—O2	108.5 (9)
$O3^{n}$ —Tl1— $O2^{m}$	111.8 (3)	$O1^{xxi}$ As $O2$	118.77 (18)
T111'—T11—O2	120.7 (3)	AsB—As—O4 ⁱⁿ	51.8 (9)
T111"—T11—O2	62.8 (4)	Ol ^{xxi} —As—O4 ⁱⁱⁱ	106.18 (18)
O3—T11—O2	48.94 (10)	O2—As—O4 ^m	114.71 (17)
O3 ¹¹¹ —O2	129.1 (3)	AsB—As—O3	147.0 (10)
O3 ¹ v—T11—O2	64.40 (9)	O1 ^{xxi} —As—O3	107.52 (19)
O3 ⁱ —T11—O2	115.18 (11)	O2—As—O3	103.03 (19)

O2 ^{iv} —Tl1—O2	59.15 (17)	O4 ⁱⁱⁱ —As—O3	105.63 (17)
O2 ⁱ —T11—O2	117.7 (4)	AsB—As—Tl2 ^{xiii}	79.0 (9)
O3 ^v —T11—O2	111.8 (3)	O1 ^{xxi} —As—Tl2 ^{xiii}	65.02 (13)
O3 ⁱⁱ —T11—O2	70.66 (15)	O2—As—Tl2 ^{xiii}	172.42 (13)
O2 ⁱⁱⁱ —Tl1—O2	176.5 (6)	O4 ⁱⁱⁱ —As—Tl2 ^{xiii}	68.63 (12)
Tl1 ⁱ —Tl1—O2 ⁱⁱ	14.95 (6)	O3—As—Tl2 ^{xiii}	69.39 (14)
T11 ⁱⁱ —T11—O2 ⁱⁱ	55.40 (8)	AsB—As—Tl1 ⁱⁱ	150.1 (9)
O3—T11—O2 ⁱⁱ	112.4 (2)	O1 ^{xxi} —As—Tl1 ⁱⁱ	142.74 (15)
O3 ⁱⁱⁱ —T11—O2 ⁱⁱ	112.3 (2)	O2—As—Tl1 ⁱⁱ	54.3 (2)
O3 ^{iv} —Tl1—O2 ⁱⁱ	122.2 (4)	O4 ⁱⁱⁱ —As—Tl1 ⁱⁱ	109.18 (17)
O3 ⁱ —T11—O2 ⁱⁱ	70.1 (2)	O3—As—Tl1 ⁱⁱ	51.5 (2)
O2 ^{iv} —Tl1—O2 ⁱⁱ	168.2 (3)	Tl2 ^{xiii} —As—Tl1 ⁱⁱ	118.4 (2)
O2 ⁱ —T11—O2 ⁱⁱ	113.58 (8)	AsB—As—Tl1	149.5 (9)
O3 ^v —T11—O2 ⁱⁱ	61.5 (3)	O1 ^{xxi} —As—Tl1	144.6 (2)
O3 ⁱⁱ —T11—O2 ⁱⁱ	46.5 (2)	O2—As—Tl1	57.8 (2)
O2 ⁱⁱⁱ —T11—O2 ⁱⁱ	72.6 (2)	O4 ⁱⁱⁱ —As—Tl1	106.1 (2)
O2—T11—O2 ⁱⁱ	110.7 (4)	O3—As—Tl1	49.19 (16)
$T11^{i}$ — $T11$ — $O2^{v}$	55.40 (16)	Tl2 ^{xiii} —As—Tl1	115.07 (16)
T11 ⁱⁱ —T11—O2 ^v	14.95 (6)	Tl1 ⁱⁱ —As—Tl1	4.1 (4)
O3—T11—O2 ^v	112.3 (2)	AsB—As—Tl1 ⁱ	151.5 (9)
O3 ⁱⁱⁱ —T11—O2 ^v	112.4 (2)	O1 ^{xxi} —As—Tl1 ⁱ	142.12 (17)
$O3^{iv}$ —Tl1— $O2^{v}$	70.1 (2)	O2—As—Tl1 ⁱ	56.77 (13)
O3 ⁱ —T11—O2 ^v	122.2 (4)	$O4^{iii}$ —As—Tl1 ⁱ	108.88 (15)
$O2^{iv}$ —Tl1— $O2^{v}$	113.58 (7)	O3—As—Tl1 ⁱ	49.06 (16)
$O2^{i}$ —T11— $O2^{v}$	168.2 (3)	Tl2 ^{xiii} —As—Tl1 ⁱ	115.97 (5)
$O3^{v}$ —Tl1— $O2^{v}$	46.5 (2)	Tl1 ⁱⁱ —As—Tl1 ⁱ	2.5 (3)
$O3^{ii}$ —T11— $O2^{v}$	61.5 (3)	Tl1—As—Tl1 ⁱ	2.8 (3)
$O2^{iii}$ —Tl1— $O2^{v}$	110.7 (4)	AsB—As—Tl2	145.5 (9)
O2—T11—O2 ^v	72.6 (2)	O1 ^{xxi} —As—Tl2	83.71 (13)
$O2^{ii}$ —Tl1— $O2^{v}$	55.3 (3)	O2—As—T12	99.45 (13)
Tl1 ⁱ —Tl1—AsB ^{vi}	135.2 (4)	O4 ⁱⁱⁱ —As—Tl2	131.69 (12)
Tl1 ⁱⁱ —Tl1—AsB ^{vi}	141.1 (4)	O3—As—T12	30.29 (12)
O3—Tl1—AsB ^{vi}	43.1 (4)	Tl2 ^{xiii} —As—Tl2	74.034 (11)
O3 ⁱⁱⁱ —Tl1—AsB ^{vi}	89.5 (5)	Tl1 ⁱⁱ —As—Tl2	64.11 (8)
O3 ^{iv} —Tl1—AsB ^{vi}	109.6 (5)	Tl1—As—Tl2	63.95 (6)
O3 ⁱ —T11—AsB ^{vi}	58.5 (4)	Tl1 ⁱ —As—Tl2	62.34 (12)
O2 ^{iv} —Tl1—AsB ^{vi}	60.1 (4)	AsB—As—Tl1 ^{xxvi}	23.3 (9)
O2 ⁱ —Tl1—AsB ^{vi}	33.0 (4)	O1 ^{xxi} —As—Tl1 ^{xxvi}	87.98 (15)
O3v—Tl1—AsB ^{vi}	157.7 (4)	O2—As—Tl1 ^{xxvi}	93.41 (14)
O3 ⁱⁱ —Tl1—AsB ^{vi}	101.9 (3)	O4 ⁱⁱⁱ —As—Tl1 ^{xxvi}	41.90 (12)
O2 ⁱⁱⁱ —Tl1—AsB ^{vi}	92.0 (4)	O3—As—Tl1 ^{xxvi}	147.50 (13)
O2—Tl1—AsB ^{vi}	85.0 (4)	Tl2 ^{xiii} —As—Tl1 ^{xxvi}	93.30 (5)
O2 ⁱⁱ —Tl1—AsB ^{vi}	127.8 (3)	Tl1 ⁱⁱ —As—Tl1 ^{xxvi}	126.79 (12)
O2 ^v —Tl1—AsB ^{vi}	155.4 (3)	Tl1—As—Tl1 ^{xxvi}	126.30 (17)
O3 ⁱ —T12—O3 ⁱⁱ	79.02 (13)	Tl1 ⁱ —As—Tl1 ^{xxvi}	128.27 (4)
O3 ⁱ —Tl2—O3	79.02 (13)	Tl2—As—Tl1 ^{xxvi}	166.91 (6)
O3 ⁱⁱ —Tl2—O3	79.02 (13)	AsB—As—Tl1 ^{xxii}	22.1 (9)
$O3^{i}$ —Tl2—O1 ^{vii}	75.43 (10)	O1 ^{xxi} —As—Tl1 ^{xxii}	86.49 (17)

O3 ⁱⁱ —Tl2—O1 ^{vii}	154.16 (10)	O2—As—Tl1 ^{xxii}	93.06 (16)
O3—Tl2—O1 ^{vii}	92.26 (10)	O4 ⁱⁱⁱ —As—Tl1 ^{xxii}	43.7 (2)
O3 ⁱ —Tl2—O1 ^{viii}	154.16 (10)	O3—As—Tl1 ^{xxii}	149.3 (2)
O3 ⁱⁱ —Tl2—O1 ^{viii}	92.26 (10)	Tl2 ^{xiii} —As—Tl1 ^{xxii}	93.75 (10)
O3—Tl2—O1 ^{viii}	75.43 (10)	Tl1 ⁱⁱ —As—Tl1 ^{xxii}	127.913 (17)
O1 ^{vii} —Tl2—O1 ^{viii}	109.19 (6)	Tl1—As—Tl1 ^{xxii}	127.56 (3)
$O3^{i}$ —Tl2—O1 ^{ix}	92.26 (10)	$T11^{i}$ —As— $T11^{xxii}$	129.46 (17)
$O3^{ii}$ —Tl2—O1 ^{ix}	75.43 (10)	Tl2—As—Tl1 ^{xxii}	166.76 (4)
O3—T12—O1 ^{ix}	154.15 (10)	Tl1 ^{xxvi} —As—Tl1 ^{xxii}	1.9 (2)
$O1^{vii}$ —T12— $O1^{ix}$	109.19 (6)	As—AsB—O4 ⁱⁱⁱ	77.6 (12)
$O1^{\text{viii}}$ T12 $O1^{\text{ix}}$	109.19 (6)	As—AsB—O1 ^{xxi}	67.1 (10)
$O3^{i}$ Tl2 $O4^{x}$	110.02 (10)	$O4^{iii}$ AsB $O1^{xxi}$	126.4 (16)
03^{ii} T12 04^{x}	153 52 (10)	$As = As B = O2^{xxii}$	1120.1(10) 1125(13)
$03 - T12 - 04^{x}$	126 54 (10)	$O4^{iii}$ As B $O2^{xxii}$	112.3(13) 119.3(13)
01^{vii} T12 04^{x}	45 33 (8)	01^{xxi} As B 02^{xxii}	111.1(11)
01^{viii} 12^{viii} 04^{x}	88 61 (8)	$A_s = A_s B = T12^{xiii}$	80.6 (10)
$O1^{ix}$ Tl2 $O4^{x}$	70 30 (8)	Ω^{4ii} As B T12 ^{xiii}	60.0 (10)
$O_1^{2i} = 112 = 04$	153 52 (10)	$O_{4} = A_{3}D = 112$	65.6(7)
O_{3ii}^{ii} T12 O_{4xi}^{ii}	135.52(10) 126.54(10)	OI -ASD II2 $O2^{xxii} A_{B} TI2^{xiii}$	164.8(0)
$O_{3} = T_{12} = O_{4}$	120.34(10)	$\Delta_2 = A_3 D = T11_{XXVi}$	104.8(9) 140.0(12)
$03-112-04^{m}$	110.02(11)	AS - ASD - TI1 xxvi	149.0(12)
01° -12° 04°	79.30 (8) 45.22 (8)	O4 = Asb = III	64.2(10)
$01^{\text{m}} - 112 - 04^{\text{m}}$	43.33 (8)	$O_{1}^{\text{ASB}} = A_{2}B = T_{1}^{\text{ASB}}$	142.3(11)
$01^{$	88.01(8)	O_2 ASD T_1	30.2(3)
$04^{-1}12 - 04^{-1}$	44.20 (9)	$\mathbf{H}_{\mathbf{Z}}^{\mathbf{Z}} = \mathbf{A}_{\mathbf{Z}} \mathbf{D}_{\mathbf{Z}} = \mathbf{T}_{\mathbf{Z}}^{\mathbf{Z}} \mathbf{U}_{\mathbf{Z}}^{\mathbf{Z}}$	116.5 (6)
03^{-1}	126.54 (11)	AS - ASB - TI1xxii	150.8 (12)
03^{m} 112 -04^{m}	110.01 (10)	$O4^{\text{m}}$ AsB -111^{m}	86.9 (10)
$03-112-04^{\text{xm}}$	153.52 (11)	OI^{XXI} As B III^{XXII}	140.0 (11)
01^{vii} 112 04^{vii}	88.61 (8)		54.8 (5)
$O1^{vin}$ 112 $O4^{vin}$	79.30 (8)	$T12^{xm}$ —AsB— $T11^{xm}$	117.2 (6)
01^{1x} 112 04 ^{x11}	45.33 (8)	111^{xxvi} AsB 111^{xxii}	2.7 (3)
$O4^{x}$ $12 - O4^{xn}$	44.26 (9)	As—AsB—TII ^{xxvn}	150.4 (12)
$O4^{x_1}$ 112 $O4^{x_{11}}$	44.26 (9)	$O4^{m}$ —AsB—111 ^{xxvn}	83.6 (10)
$O3^{i}$ — $Tl2$ — $O3^{xin}$	117.91 (14)	$O1^{xxi}$ AsB $-T11^{xxvii}$	141.8 (11)
$O3^{n}$ —Tl2— $O3^{xm}$	152.25 (13)	$O2^{xxu}$ AsB $Tl1^{xxvu}$	58.4 (6)
$O3$ — $Tl2$ — $O3^{xin}$	82.85 (11)	$Tl2^{xm}$ —AsB— $Tl1^{xxvn}$	114.1 (6)
$O1^{vn}$ — $Tl2$ — $O3^{xin}$	46.50 (9)	$Tl1^{xxvi}$ AsB $Tl1^{xxvi}$	2.4 (3)
$O1^{viii}$ —Tl2— $O3^{xiii}$	62.74 (9)	Tl1 ^{xxii} —AsB—Tl1 ^{xxvii}	3.9 (4)
$O1^{ix}$ —Tl2— $O3^{xiii}$	122.31 (9)	As—AsB—Tl2 ^{xxvii}	146.6 (12)
$O4^{x}$ —Tl2— $O3^{xiii}$	45.47 (8)	O4 ⁱⁱⁱ —AsB—Tl2 ^{xxvii}	112.1 (11)
$O4^{xi}$ —Tl2—O3 ^{xiii}	42.94 (8)	O1 ^{xxi} —AsB—Tl2 ^{xxvii}	82.8 (8)
O4 ^{xii} —Tl2—O3 ^{xiii}	78.63 (8)	O2 ^{xxii} —AsB—Tl2 ^{xxvii}	91.1 (7)
$O3^{i}$ —Tl2— $O3^{xiv}$	82.85 (11)	Tl2 ^{xiii} —AsB—Tl2 ^{xxvii}	73.8 (4)
$O3^{ii}$ —Tl2— $O3^{xiv}$	117.91 (14)	Tl1 ^{xxvi} —AsB—Tl2 ^{xxvii}	64.0 (4)
O3—T12—O3 ^{xiv}	152.25 (12)	Tl1 ^{xxii} —AsB—Tl2 ^{xxvii}	62.3 (3)
$O1^{vii}$ — $T12$ — $O3^{xiv}$	62.74 (9)	Tl1 ^{xxvii} —AsB—Tl2 ^{xxvii}	62.2 (3)
O1 ^{viii} —Tl2—O3 ^{xiv}	122.31 (9)	As—AsB—Tl1 ⁱⁱ	22.5 (7)
$O1^{ix}$ — $T12$ — $O3^{xiv}$	46.50 (9)	O4 ⁱⁱⁱ —AsB—Tl1 ⁱⁱ	66.6 (9)
O4 ^x —Tl2—O3 ^{xiv}	42.94 (9)	O1 ^{xxi} —AsB—Tl1 ⁱⁱ	88.7 (8)

$O4^{xi}$ —Tl2— $O3^{xiv}$	78.63 (8)	O2 ^{xxii} —AsB—Tl1 ⁱⁱ	99.8 (7)
O4 ^{xii} —Tl2—O3 ^{xiv}	45.47 (8)	Tl2 ^{xiii} —AsB—Tl1 ⁱⁱ	95.0 (5)
O3 ^{xiii} —Tl2—O3 ^{xiv}	87.33 (9)	Tl1 ^{xxvi} —AsB—Tl1 ⁱⁱ	126.5 (5)
O3 ⁱ —Tl2—O3 ^{xv}	152.25 (13)	Tl1 ^{xxii} —AsB—Tl1 ⁱⁱ	128.3 (5)
$O3^{ii}$ —Tl2— $O3^{xv}$	82.85 (11)	Tl1 ^{xxvii} —AsB—Tl1 ⁱⁱ	128.0 (5)
O3—T12—O3 ^{xv}	117.91 (14)	Tl2 ^{xxvii} —AsB—Tl1 ⁱⁱ	168.1 (5)
$O1^{vii}$ —Tl2— $O3^{xv}$	122.31 (9)	As—AsB—Tl1	22.9 (7)
$O1^{viii}$ —T12— $O3^{xv}$	46.50 (9)	O4 ⁱⁱⁱ —AsB—Tl1	63.7 (9)
$O1^{ix}$ Tl2 $O3^{xv}$	62.74 (9)	O1 ^{xxi} —AsB—T11	89.8 (9)
$O4^{x}$ —T12— $O3^{xv}$	78.63 (8)	$O2^{xxii}$ —AsB—T11	102.1 (7)
$O4^{xi}$ Tl2 $O3^{xv}$	45.47 (8)	$Tl2^{xiii}$ —AsB—Tl1	92.8 (5)
$O4^{xii}$ Tl2 $O3^{xv}$	42.94 (8)	$T11^{xxvi}$ AsB $T11$	126.1(5)
O_3^{xiii} Tl2 O_3^{xv}	87 33 (9)	$T11^{xxii}$ AsB $T11$	1281(5)
$O3^{xiv}$ T12 $O3^{xv}$	87 33 (9)	$T11^{xxvii}$ AsB $T11$	1275(5)
$O3^{i}$ Tl2—AsB ^{xiii}	90.6 (3)	$T12^{xxvii}$ AsB $T11$	166 5 (6)
$O3^{ii}$ Tl2 AsB ^{xiii}	159 8 (4)	$T11^{ii}$ AsB $T11$	31(3)
Ω_3 _T12_A sB ^{xiii}	1162(4)	$\Delta s \Delta s B T $	264(7)
$O1^{vii}$ T12 As B^{xiii}	25.9(3)	Ω^{iii} As B T12	20.4(7)
$O1 \sim H2 \sim AsB$	25.9(5)	O_{1}^{xxi} As B_{12}	37.0(10)
O1 = 112 = AsB O1ix = T12 = AsBxiii	104.1(4)	$O_1 = A_{SD} = 112$ $O_2 xxii = A_{SD} = T12$	129 4 (9)
O1 - 112 - ASB $O4^x - T12 - ASB^{xiii}$	87.9(4)	$O_2 = ASD = 112$ T12xiii AsP T12	120.4(0)
O4 - 112 - Asb	21.2(3)	$\begin{array}{ccc} 112 &ASD - 112 \\ T11xxyi & A_{2}D & T12 \end{array}$	171.8(6)
O4 - 112 - ASB	(3.0(3))	$\begin{array}{c} 111 &ASD - 112 \\ T11xxii & A_{2}D & T12 \end{array}$	171.0(0) 174.5(6)
$O_{4}^{\text{ASD}} = 112 - A_{3} D_{3}^{\text{ASD}}$	02.7(3)	$\frac{111}{11} - \frac{112}{112}$	174.3(0)
$O_{2xiy} = T_{12} = A_{s} D_{xij}$	47.7 (4)	$\begin{array}{c} 111^{\text{ASB}} \\ - 12 \\ 12 \\ 12 \\ - 12 $	1/1.0(0) 120.2(4)
$O_{3}^{\text{AV}} = \Pi_2 = A_2 B_{3}^{\text{AV}}$	42.9(4)	$\frac{112^{\text{ASB}}}{112}$	120.2(4)
O_{2i}^{i} TI2 A DXV	99.8 (3) 150.8 (4)	$\frac{111^{2}}{112}$	48.0 (2)
$O_3 = 112 = A_3 B_{33}$	159.8 (4)	$\prod A = D x x y i i $	48.5 (2)
$O_3 = 112 = A_3 B^{33}$	110.2(4)	$A = D x x^{\mu \mu} = O I = A I 2 x^{\mu} x^{\mu}$	4/.0(8)
O_3 —112—AsB ^{AV}	90.6 (4)	$AsB^{Axvin} = 01 = A12xvix$	138.8 (8)
$O1^{vii}$ $T12$ AsB^{vv}	87.9 (4)		13/./(2)
$O1^{vm}$ 112 AsB^{vv}	25.9 (3)		88.4 (8)
$O1^{x}$ 112 AsB^{xy}	104.1 (3)		88.78 (15)
$O4^{x}$ 112—AsB ^{xv}	62.7 (3)	$A12^{xxix}$ $O1$ 12^{vii}	126.91 (15)
$O4^{xi}$ $T12$ AsB^{xv}	21.2 (3)	AsB^{xxvin} $O1$ $T12^{xxix}$	75.1 (8)
$O4^{xii}$ 112—AsB ^{xv}	63.0 (3)	As^{xxvin} $O1$ $T12^{xxix}$	121.09 (16)
O3 ^{xm} —Tl2—AsB ^{xv}	42.9 (4)	$A12^{xxix}$ $O1$ $T12^{xxix}$	92.35 (12)
$O3^{xiv}$ —T12—AsB ^{xv}	99.8 (3)	112^{vn} — 01 — 112^{xxix}	75.55 (7)
O3 ^{xv} —Tl2—AsB ^{xv}	47.7 (4)	AsB ^{xxviii} —O1—Tl2 ^{xxviii}	119.6 (8)
AsB ^{xin} —Tl2—AsB ^{xv}	78.5 (5)	As ^{xxviii} —O1—Tl2 ^{xxviii}	73.85 (13)
$O3^{1}$ —Tl2—AsB ^{xiv}	116.2 (4)	$Al2^{xxix}$ O1 $-Tl2^{xxvin}$	92.31 (12)
$O3^{n}$ —Tl2—AsB ^{xiv}	90.6 (4)	$Tl2^{vn}$ —O1— $Tl2^{xxvm}$	75.53 (7)
O3—Tl2—AsB ^{xiv}	159.8 (4)	$Tl2^{xxix}$ —O1— $Tl2^{xxviii}$	146.93 (9)
O1 ^{vii} —Tl2—AsB ^{xiv}	104.1 (4)	As—O2—Al11 ^{xxvii}	122.5 (2)
O1 ^{viii} —Tl2—AsB ^{xiv}	87.9 (4)	As—O2—AsB ^{xxx}	104.8 (6)
$O1^{ix}$ —Tl2—As B^{xiv}	25.9 (3)	Al1 ^{xxvii} —O2—AsB ^{xxx}	102.5 (6)
$O4^{x}$ — $Tl2$ — AsB^{xiv}	63.0 (3)	As—O2—Tl1 ⁱⁱ	100.8 (2)
O4 ^{xi} —Tl2—AsB ^{xiv}	62.7 (3)	Al1 ^{xxvii} —O2—Tl1 ⁱⁱ	128.4 (2)
O4 ^{xii} —Tl2—AsB ^{xiv}	21.2 (3)	AsB ^{xxx} —O2—Tl1 ⁱⁱ	90.8 (7)

O3 ^{xiii} —Tl2—AsB ^{xiv}	99.8 (3)	As—O2—T11	97.2 (3)
O3 ^{xiv} —Tl2—AsB ^{xiv}	47.7 (4)	Al1 ^{xxvii} —O2—Tl1	130.04 (17)
O3 ^{xv} —Tl2—AsB ^{xiv}	42.9 (4)	AsB ^{xxx} —O2—Tl1	94.2 (7)
AsB ^{xiii} —Tl2—AsB ^{xiv}	78.5 (5)	Tl1 ⁱⁱ —O2—Tl1	4.4 (5)
AsB ^{xv} —Tl2—AsB ^{xiv}	78.5 (5)	As—O2—Tl1 ⁱ	99.66 (14)
O2 ^{xvi} —Al1—O2 ⁱⁱ	91.34 (17)	Al1 ^{xxvii} —O2—Tl1 ⁱ	129.68 (16)
O2 ^{xvi} —Al1—O2 ^{xvii}	91.34 (17)	AsB ^{xxx} -O2-Tl1 ⁱ	90.6 (7)
O2 ⁱⁱ —Al1—O2 ^{xvii}	91.34 (17)	Tl1 ⁱⁱ —O2—Tl1 ⁱ	1.27 (13)
O2 ^{xvi} —Al1—O4 ^{xviii}	92.20 (15)	Tl1	3.9 (4)
O2 ⁱⁱ —Al1—O4 ^{xviii}	176.43 (17)	As—O2—Tl2	60.21 (10)
O2 ^{xvii} —Al1—O4 ^{xviii}	88.17 (15)	Al1 ^{xxvii} —O2—Tl2	163.54 (15)
$O2^{xvi}$ —Al1—O4 ⁱ	88.17 (15)	AsB ^{xxx} —O2—Tl2	62.4 (6)
O2 ⁱⁱ —Al1—O4 ⁱ	92.20 (16)	Tl1 ⁱⁱ —O2—Tl2	61.76 (9)
O2 ^{xvii} —Al1—O4 ⁱ	176.43 (18)	Tl1—O2—Tl2	61.25 (6)
O4 ^{xviii} —Al1—O4 ⁱ	88.32 (17)	$Tl1^{i}$ —O2—Tl2	60.58 (8)
O2 ^{xvi} —Al1—O4 ^{xix}	176.43 (17)	As—O3—Tl2	131.46 (18)
O2 ⁱⁱ —Al1—O4 ^{xix}	88.16 (15)	As—O3—T11	105.45 (17)
O2 ^{xvii} —Al1—O4 ^{xix}	92.20 (15)	Tl2—O3—Tl1	93.5 (2)
$O4^{xviii}$ $A11 - O4^{xix}$	88.32 (17)	As—03—T11 ⁱⁱ	102.7 (3)
$O4^{i}$ All $O4^{xix}$	88.32 (17)	T12-03-T11 ⁱⁱ	92.38 (13)
$O2^{xvi}$ Al1 $-T12^{xxiii}$	124.31 (12)	T11—O3—T11 ⁱⁱ	5.0 (5)
$O2^{ii}$ —A11—T12 ^{xxiii}	124.31 (12)	$As = 03 = T11^{i}$	107.1 (3)
$O2^{xvii}$ Al1 $-T12^{xxiii}$	124.31 (12)	$T12 - O3 - T11^{i}$	89.8 (3)
$O4^{xviii}$ $A11$ $T12^{xxiii}$	53.56 (12)	$T_{11} = O_{3} = T_{11}$	3.9 (4)
$O4^{i}$ Al1 — Tl2 ^{xxiii}	53.56 (12)	$T_{11}^{ii} - O_{3} - T_{11}^{ii}$	4.5 (5)
$O4^{xix}$ Al1 $-T12^{xxiii}$	53.56 (12)	$As - 03 - Tl2^{xiii}$	83.17 (14)
$O2^{xvi}$ All $-Tl1^{xviii}$	32.98 (11)	$T12 - O3 - T12^{xiii}$	97.14 (11)
$O2^{ii}$ All Tl1 ^{xviii}	104.20 (15)	$T11 - O3 - T12^{xiii}$	156.2 (3)
$O2^{xvii}$ All $T11^{xviii}$	120.62(14)	$T11^{ii} - 03 - T12^{xiii}$	161.0(3)
$O4^{xviii}$ $A11$ $T11^{xviii}$	79.07 (14)	$T11^{i}$ O3 $T12^{xiii}$	158.83 (12)
$O4^{i}$ Al1 Tl1 x^{viii}	57.99 (12)	$AsB^{iii} - O4 - As^{iii}$	50 7 (10)
$O4^{xix}$ Al1 $-T11^{xviii}$	143.97 (14)	AsB^{iii} $O4$ $A11^{xxix}$	170.4(10)
$T12^{xxiii}$ A11 $T11^{xviii}$	92.86(3)	$As^{iii} - O4 - A11^{xxix}$	130.5(2)
Ω^{2xvi} All T^{11i}	120.61(14)	$AsB^{iii} - O4 - T12^{xxxi}$	88 9 (9)
$O2^{ii}$ All $-Tl1^{i}$	32.98 (11)	As^{iii} $O4$ $T12^{xxxi}$	84.96 (12)
$O2^{xvii}$ All Tll ⁱ	$104\ 20\ (15)$	$A11^{xxix} - O4 - T12^{xxxi}$	100.65(14)
$O4^{xviii}$ All Tll ⁱ	143 97 (14)	$AsB^{iii} - O4 - T11^{xxxii}$	76 1 (10)
$O4^{i}$ A11 T11 ⁱ	79.07 (14)	$As^{iii} - 04 - T11^{xxxii}$	121 76 (16)
$O4^{xix}$ $A11$ $T11^{i}$	57.99 (13)	$A11^{xxix} - O4 - T11^{xxxii}$	98 16 (12)
$T12^{xxiii}$ A11 $T11^{i}$	92.86(3)	$T12^{xxxi}$ $O4$ $T11^{xxxii}$	11960(12)
$T_{11}^{\text{xviii}} = A_{11}^{\text{xviii}} = T_{11}^{\text{i}}$	119 753 (11)	$A_{s}B^{iii} - O4 - T11^{xxviii}$	77.7 (10)
$O2^{xvi}$ All $Tl1^{xix}$	104 20 (16)	$As^{iii} - O4 - T11^{xxviii}$	1241(3)
$O2^{ii}$ All Tll ^{xix}	120 61 (14)	$A11^{xxix} - 04 - T11^{xxviii}$	96 88 (19)
$O^{2^{xvii}}$ All $-T^{11^{xix}}$	32.98 (12)	$T12^{xxxi}$ $O4$ $T11^{xxviii}$	117 56 (15)
$O4^{xviii}$ Al1 Tl1 ^{xix}	57 99 (13)	$T11^{xxxii} - 04 - T11^{xxviii}$	2 8 (3)
$O4^{i}$ All $-T11^{xix}$	143 97 (14)	AsB^{ii} $O4$ $T11xxiii$	74 5 (10)
$O4^{xix}$ Al1 $-T11^{xix}$	79.07 (15)	$As^{iii} - O4 - T11^{xxxiii}$	1205(2)
$T12^{xxiii}$ $A11$ $T11^{xix}$	92.86 (4)	$A11^{xxix} O4 T11^{xxiii}$	99.8 (2)
			···· (-)

T11 ^{xviii} —A11—T11 ^{xix}	119.753 (7)	Tl2 ^{xxxi} —O4—Tl1 ^{xxxiii}	118.95 (9)
Tl1 ⁱ —Al1—Tl1 ^{xix}	119.753 (6)	Tl1 ^{xxxii} —O4—Tl1 ^{xxxiii}	1.61 (17)
O2 ^{xvi} —Al1—Tl1 ^{xvi}	32.35 (12)	Tl1 ^{xxviii} —O4—Tl1 ^{xxxiii}	3.7 (4)
O2 ⁱⁱ —Al1—Tl1 ^{xvi}	106.6 (2)	AsB ⁱⁱⁱ —O4—Tl1	101.3 (10)
O2 ^{xvii} —Al1—Tl1 ^{xvi}	118.5 (2)	As ⁱⁱⁱ —O4—Tl1	53.74 (18)
O4 ^{xviii} —Al1—Tl1 ^{xvi}	76.73 (19)	Al1 ^{xxix} —O4—Tl1	77.44 (19)
O4 ⁱ —Al1—Tl1 ^{xvi}	59.94 (18)	Tl2 ^{xxxi} —O4—Tl1	103.75 (9)
O4 ^{xix} —Al1—Tl1 ^{xvi}	144.77 (15)	Tl1 ^{xxxii} —O4—Tl1	136.34 (9)
Tl2 ^{xxiii} —Al1—Tl1 ^{xvi}	92.78 (3)	Tl1 ^{xxviii} —O4—Tl1	138.6 (2)
Tl1 ^{xviii} —Al1—Tl1 ^{xvi}	2.9 (3)	Tl1 ^{xxxiii} —O4—Tl1	136.76 (8)
Tl1 ⁱ —Al1—Tl1 ^{xvi}	122.7 (3)	AsB ⁱⁱⁱ —O4—Tl1 ⁱ	98.2 (10)
Tl1 ^{xix} —Al1—Tl1 ^{xvi}	116.9 (3)	As ⁱⁱⁱ —O4—Tl1 ⁱ	51.25 (16)
O2 ^{xvi} —Al1—Tl1 ⁱⁱ	118.5 (2)	Al1 ^{xxix} —O4—Tl1 ⁱ	80.3 (2)
O2 ⁱⁱ —Al1—Tl1 ⁱⁱ	32.35 (12)	$Tl2^{xxxi}$ —O4— $Tl1^i$	105.06 (14)
O2 ^{xvii} —Al1—Tl1 ⁱⁱ	106.6 (2)	$T11^{xxxii}$ $O4$ $T11^{i}$	134.6 (3)
O4 ^{xviii} —Al1—Tl1 ⁱⁱ	144.77 (15)	Tl1 ^{xxviii} —O4—Tl1 ⁱ	136.94 (8)
O4 ⁱ —Al1—Tl1 ⁱⁱ	76.7 (2)	Tl1 ^{xxxiii} —O4—Tl1 ⁱ	134.9 (2)
O4 ^{xix} —Al1—Tl1 ⁱⁱ	59.94 (19)	Tl1—O4—Tl1 ⁱ	3.3 (4)
$T12^{xxiii}$ —A11—T11 ⁱⁱ	92.78 (3)	AsB ⁱⁱⁱ —O4—Tl2 ^{xxxiv}	53.0 (10)
$T11^{xviii}$ —A11—T11 ⁱⁱ	116.9 (3)	As ⁱⁱⁱ —O4—Tl2 ^{xxxiv}	97.70 (13)
$Tl1^{i}$ Al1 $-Tl1^{ii}$	2.9 (3)	Al1 ^{xxix} —O4—Tl2 ^{xxxiv}	130.13 (14)
$T11^{xix}$ —A11— $T11^{ii}$	122.7 (3)	$Tl2^{xxxi}$ —O4— $Tl2^{xxxiv}$	67.31 (5)
$T11^{xvi}$ $A11$ $T11^{ii}$	119.767 (7)	$T11^{xxxii}$ O4 $T12^{xxxiv}$	56.91 (9)
$O1^{ix}$ $Al2 - O1^{xv}$	92.72 (15)	Tl1 ^{xxviii} —O4—Tl2 ^{xxxiv}	55.99 (5)
$O1^{ix}$ $Al2 - O1^{xx}$	92.72 (15)	Tl1 ^{xxxiii} —O4—Tl2 ^{xxxiv}	55.69 (6)
O1 ^{xv} —Al2—O1 ^{xx}	92.72 (15)	$T11-O4-T12^{xxxiv}$	151.34 (16)
$O1^{ix}$ —Al2—O1 ⁱ	180.0	$Tl1^{i}$ —O4— $Tl2^{xxxiv}$	148.95 (14)
$O1^{xv}$ — $A12$ — $O1^i$	87.28 (15)	AsB ⁱⁱⁱ —O4—Tl1 ⁱⁱ	99.9 (10)
O1 ^{xx} —Al2—O1 ⁱ	87.28 (15)	As ⁱⁱⁱ —O4—Tl1 ⁱⁱ	52.32 (10)
O1 ^{ix} —Al2—O1 ^{xix}	87.28 (15)	Al1 ^{xxix} —O4—Tl1 ⁱⁱ	78.86 (11)
O1 ^{xv} —Al2—O1 ^{xix}	180.0	$Tl2^{xxxi}$ —O4— $Tl1^{ii}$	103.45 (10)
O1 ^{xx} —Al2—O1 ^{xix}	87.28 (15)	$T11^{xxxii}$ O4 $T11^{ii}$	136.45 (9)
O1 ⁱ —Al2—O1 ^{xix}	92.71 (15)	Tl1 ^{xxviii} —O4—Tl1 ⁱⁱ	138.7 (2)
O1 ^{ix} —Al2—O1 ^{xviii}	87.28 (15)	Tl1 ^{xxxiii} —O4—Tl1 ⁱⁱ	136.81 (8)
O1 ^{xv} —Al2—O1 ^{xviii}	87.28 (15)	T11—O4—T11 ⁱⁱ	1.42 (15)
O1 ^{xx} —Al2—O1 ^{xviii}	180.00 (17)	$T11^{i}$ —O4— $T11^{ii}$	2.3 (3)
O1 ⁱ —A12—O1 ^{xviii}	92.71 (15)	$Tl2^{xxxiv}$ —O4— $Tl1^{ii}$	149.95 (8)

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z; (iii) -x, -x+y, -z+3/2; (iv) y, x, -z+3/2; (v) x-y, -y, -z+3/2; (vi) -x+y, -x-1, z; (vii) -x+2/3, -y-2/3, -z+4/3; (viii) x-y-4/3, x-2/3, -z+4/3; (ix) y+2/3, -x+y+4/3, -z+4/3; (x) x-1/3, x-y-2/3, z-1/6; (xi) -y-1/3, -x+1/3, z-1/6; (xii) -x+y+2/3, y+1/3, z-1/6; (xii) -x-1/3, -y-2/3, -z+4/3; (xiv) y+2/3, -x+y+4/3, (xv) x-y-1/3, x+1/3, z-y-2/3, z-1/6; (xi) -y-1/3, -x+1/3, z-1/6; (xii) -x+y+2/3, y+1/3, z-1/6; (xii) -x+y+2/3, -y+1/3, -z+4/3; (xiv) y+2/3, -x+y+1/3, -z+4/3; (xv) x-y-1/3, x+1/3, -z+4/3; (xvi) -y, -y+1, z; (xviii) x+1, y+1, z; (xviii) x, y+1, z; (xvi) -x+y-1, z; (xvi) -x+2/3, -y+1/3, -z+4/3; (xvi) -x-1/3, -y+1/3, -z+4/3; (xvi) -x+y-1, -x-1, z; (xxii) -y+1/3, -x+2/3, z+1/6; (xiv) -x-1/3, -y+1/3, -z+4/3; (xvi) -x+y-1, -x-1, z; (xxii) x, y-1, z; (xxi) -y-1, x-y, z; (xxii) -y+1/3, -x-1/3, z+1/6; (xxii) -x+y+1, -x, z; (xxiii) -y+1, x-y, z; (xxiii) y+1, x, -z+3/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3····O4 ^{xxxv}	0.87 (4)	1.87 (5)	2.584 (5)	139 (6)

Symmetry code: (xxxv) y, x-1, -z+3/2.