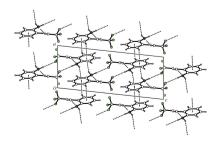

Received 13 July 2018 Accepted 10 September 2018

Edited by H. Ishida, Okayama University, Japan

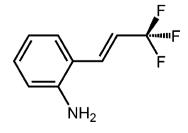
Keywords: crystal structure; 3,3,3-trifluoroprop-1-en; aniline; hydrogen bonding.

CCDC reference: 1866671

Supporting information: this article has supporting information at journals.iucr.org/e


Koji Kubono,^a Keita Tani,^a* Masaaki Omote,^b Futa Ogawa^b and Taisuke Matsumoto^c

^aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, ^bFaculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan, and ^cInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan. *Correspondence e-mail: ktani@cc.osaka-kyoiku.ac.jp


The molecule of the title compound, $C_9H_8F_3N$, adopts an *E* configuration with respect to the C==C double bond. The dihedral angle between the benzene ring and the prop-1-enyl group is 25.4 (3)°. In the crystal, molecules are linked *via* pairs of N-H···F hydrogen bonds into inversion dimers with an $R_2^2(16)$ ring motif. The dimers are linked by C-H···N hydrogen bonds, forming a ribbon structure along the *b*-axis direction. The ribbons are linked by N-H··· π and C-H··· π interactions, generating a three-dimensional network.

1. Chemical context

Fluorescein, rhodamine etc. are water-soluble fluorescent reagents. Their derivatives exhibit strong fluorescence in aqueous solution and so can be utilized as ion-probes and in bio-imaging (Aron et al., 2016; Li et al., 2016). However, complicated procedures are required to obtain them. It is therefore desirable to develop a new fluorescent reagent with a simple structure that can be obtained by a short-step synthetic process. The title compound has a quite simple structure and is a small molecule, consisting of aniline and 3,3,3-trifluoroprop-1-envl units, which emits strong fluorescence not only in organic solvents but also in an aqueous medium (H₂O/DMSO, 90:10, v/v). Since aniline derivatives with 2,4-bis(3,3,3-trifluoroprop-1-enyl) have been used as fluorogenic substrates for dipepeptidyl peptidase-4 (Ogawa et al., 2017), the title compound can be treated as a simple but essential component in emitting fluorescence. Hence, it is important to study the relationship between the fluorescent properties and the molecular structure of the title compound. We report here its molecular and crystal structure.

OPEN 3 ACCESS

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts an E configuration with respect to

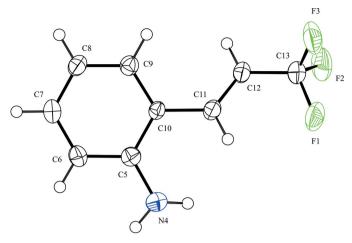


Figure 1

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

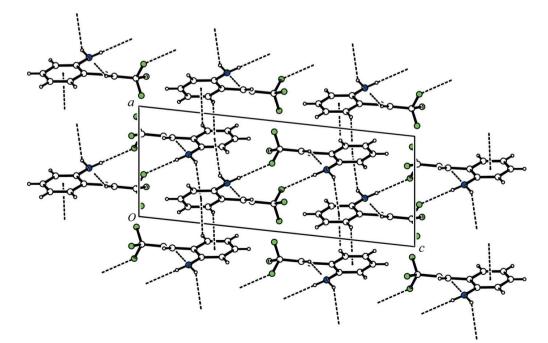
the C=C double bond. The dihedral angle between the benzene ring and the prop-1-enyl group is $25.4 (3)^{\circ}$. The C5-C10-C11-C12 and C9-C10-C11-C12 torsion angles are -158.9 (3) and 24.6 (4)°, respectively. The bond lengths and angles in the title compound are normal and agree with those in other trifluoropropenylaniline compounds (Shimizu *et al.*, 2009; Lin *et al.*, 2014).

3. Supramolecular features

In the crystal, two molecules are associated through a pair of intermolecular N-H···F hydrogen bonds (Table 1), forming a centrosymmetric dimer with an $R_2^2(16)$ ring motif (Fig. 2).

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.


$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N4-H4A\cdots F2^{i}$ $C12-H12\cdots N4^{ii}$ $N4-H4B\cdots Cg1^{iii}$ $C9-H9\cdots Cg1^{iv}$	0.90 (3)	2.46 (4)	3.352 (3)	169 (3)
	0.95	2.56	3.432 (4)	152
	0.88 (3)	2.59 (4)	3.315 (2)	140 (3)
	0.95	2.73	3.480 (3)	136

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

The dimers are further linked by $C-H\cdots N$ hydrogen bonds (Table 1), forming a ribbon with a C(6) chain motif along the *b*-axis direction. The ribbons are linked by $N-H\cdots \pi$ and $C-H\cdots \pi$ interactions (Table 1), generating a three-dimensional network.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39; May 2018; Groom *et al.*, 2016) gave 16 hits for 2-(3,3,3-trifluoroprop-1-en-1-yl)azabenzene derivatives, and gave 18 and 45 hits for (*E*)-3,3,3-trifluoroprop-1-enyl and 2-aminophenyl-1-enyl fragments, respectively. Of these structures, those that resemble the title compound are 4-[2-(3,3,3-trifluoroprop-1-en-1-yl)phenyl]morpholine (Lin *et al.*, 2014), *N*-acetyl-*N*-{2-[(*Z*)-2-chloro-3,3,3-trifluoroprop-1-enyl]phenyl]acetamide (Niu *et al.*, 2009) and (*E,E*)-1,4-dipiperidino-2,5-bis(3,3,3-trifluoroprop-1-enyl)benzene (Shimizu *et al.*, 2009).

Figure 2

A packing diagram of the title compound, viewed along the *b* axis. The N-H···F and C-H···N hydrogen bonds and N-H··· π and C-H··· π interactions are shown as dashed lines.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_9H_8F_3N$
$M_{\rm r}$	187.16
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	123
a, b, c (Å)	7.3925 (4), 6.2777 (3), 18.6065 (9)
β (°)	96.243 (7)
$V(Å^3)$	858.37 (8)
Ζ	4
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	1.16
Crystal size (mm)	$0.40 \times 0.26 \times 0.08$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.543, 0.912
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflec- tions	4753, 1566, 1178
$R_{ m int}$	0.049
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.175, 1.03
No. of reflections	1566
No. of parameters	126
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.49, -0.39

Computer programs: *RAPID-AUTO* (Rigaku, 2006), *SIR92* (Altomare *et al.*, 1993), *SHELXL2014*/7 (Sheldrick, 2015), *PLATON* (Spek, 2009) and *CrystalStructure* (Rigaku, 2016).

5. Synthesis and crystallization

The title compound was prepared by a modification of a reported procedure (Omote *et al.*, 2013). In a glove box purged with argon gas, iodoaniline (1.0 mmol), (2-methylallyl)palladium(II) chloride dimer (0.1mmol), CuF₂ (2.0 mmol) and 2,2'-bipyridyl (2.0 mmol) were placed in a flask. To the flask were added anhydrous DMF (6.0 ml) and (*E*)-trimethyl-(3,3,3-trifluoroprop-1-enyl)silane (2.0 mmol), and the mixture was stirred at 353 K. After the reaction mixture had been stirred for 4 h, it was poured into ice–water. The mixture was extracted with CH₂Cl₂, and the organic layer was dried over anhydrous MgSO₄. After the solid had been filtered off, the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography to give the product in 68% yield. Colourless single crystals were obtained by recrystallization from an ethyl acetate–hexane (1:10, v/v) solution (m.p. 321–322 K). ¹H NMR (CDCl₃) δ : 3.81 (2H, *s*), 6.13 (1H, *qd*, *J* = 15.9, 6.5 Hz), 6.72 (1H, *dd*, *J* = 8.2, 0.9 Hz), 6.80 (1H, *dt*, *J* = 7.5, 0.9 Hz), 7.18 (1H, *dt*, *J* = 7.8, 1.4 Hz), 7.24 (1H, *qd*, *J* = 15.9, 2.1 Hz), 7.29 (1H, *dd*, *J* = 7.8, 1.4 Hz). ¹³C NMR (CDCl₃) δ : 116.6 (*q*, *J* = 33.4 Hz), 116.8, 119.2, 119.4, 123.6 (*q*, *J* = 269.0 Hz), 127.9, 130.9, 133.3 (*q*, *J* = 6.8 Hz), 144.8. ¹⁹F NMR (CDCl₃) δ : 12.07 (3F, *dd*, *J* = 6.5, 2.2 Hz). MS *m*/*z* 187 (*M*⁺), HRMS calculated for C₉H₈F₃N 187.1617 (*M*⁺), found 187.0603.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The amino H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and refined using a riding model with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$. One outlier (511) was omitted in the last cycle of refinement.

Funding information

Funding for this research was provided by: the Cooperative Research Program of Network Joint Reserarch Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University) (No. 20181296).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Aron, A. T., Loehr, M. O., Bogena, J. & Chang, C. J. (2016). J. Am. Chem. Soc. 138, 14338–14346.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, D., Li, C.-Y., Li, Y.-F., Li, Z. & Xu, F. (2016). Anal. Chim. Acta, 934, 218–225.
- Lin, Q.-Y., Xu, X.-H. & Qing, F.-L. (2014). J. Org. Chem. 79, 10434– 10446.
- Niu, J.-J., Li, Z.-G. & Xu, J.-W. (2009). Acta Cryst. E65, o1305.
- Ogawa, F., Takeda, M., Miyanaga, K., Tani, K., Yamazawa, R., Ito, K., Tarui, A., Sato, A. & Omote, M. (2017). *Beilstein J. Org. Chem.* **13**, 2690–2697.
- Omote, M., Tanaka, M., Tanaka, M., Ikeda, A., Tarui, A., Sato, K. & Ando, A. (2013). J. Org. Chem. 78, 6196–6201.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shimizu, M., Takeda, Y., Higashi, M. & Hiyama, T. (2009). Angew. Chem. Int. Ed. 48, 3653–3656.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2018). E74, 1448-1450 [https://doi.org/10.1107/S2056989018012756]

Crystal Structure of (*E*)-2-(3,3,3-trifluoroprop-1-en-1-yl)aniline

Koji Kubono, Keita Tani, Masaaki Omote, Futa Ogawa and Taisuke Matsumoto

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2016).

F(000) = 384.00

 $\theta = 4.8 - 68.2^{\circ}$

 $\mu = 1.16 \text{ mm}^{-1}$

Platelet, colourless

 $0.40 \times 0.26 \times 0.08 \text{ mm}$

T = 123 K

 $D_{\rm x} = 1.448 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54187$ Å

Cell parameters from 4006 reflections

(E)-2-(3,3,3-trifluoroprop-1-en-1-yl)aniline

Crystal data

C₉H₈F₃N $M_r = 187.16$ Monoclinic, $P2_1/c$ a = 7.3925 (4) Å b = 6.2777 (3) Å c = 18.6065 (9) Å $\beta = 96.243$ (7)° V = 858.37 (8) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	1566 independent reflections 1178 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.049$
ω scans	$\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 4.8^\circ$
Absorption correction: multi-scan	$h = -8 \longrightarrow 8$
(ABSCOR; Higashi, 1995)	$k = -6 \rightarrow 7$
$T_{\min} = 0.543, \ T_{\max} = 0.912$	$l = -22 \rightarrow 22$
4753 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.175$ S = 1.031566 reflections 126 parameters 0 restraints Primary atom site location: structure-invariant direct methods θ_{max} = 68.2°, θ_{min} = 4.8°
h = -8→8
k = -6→7
l = -22→22
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent

and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1029P)^2 + 0.1188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.2762 (3)	-0.0078 (3)	0.52691 (8)	0.0597 (7)
F2	0.3860 (2)	-0.3171 (3)	0.51696 (8)	0.0569 (6)
F3	0.0979 (2)	-0.2730 (4)	0.50888 (9)	0.0661 (7)
N4	0.3895 (3)	0.4055 (4)	0.31939 (13)	0.0343 (6)
C5	0.3078 (3)	0.2521 (4)	0.27331 (13)	0.0272 (6)
C6	0.2853 (3)	0.2886 (4)	0.19799 (12)	0.0293 (6)
H6	0.3289	0.4171	0.1791	0.035*
C7	0.2009 (3)	0.1398 (4)	0.15202 (13)	0.0311 (6)
H7	0.1863	0.1670	0.1015	0.037*
C8	0.1362 (4)	-0.0502 (4)	0.17775 (12)	0.0311 (6)
H8	0.0788	-0.1528	0.1453	0.037*
С9	0.1567 (3)	-0.0871 (4)	0.25119 (12)	0.0276 (6)
H9	0.1123	-0.2164	0.2691	0.033*
C10	0.2413 (3)	0.0608 (4)	0.30004 (11)	0.0220 (6)
C11	0.2527 (3)	0.0253 (4)	0.37877 (12)	0.0276 (6)
H11	0.2651	0.1475	0.4090	0.033*
C12	0.2471 (3)	-0.1615 (4)	0.41076 (12)	0.0310 (6)
H12	0.2410	-0.2856	0.3814	0.037*
C13	0.2497 (4)	-0.1887 (4)	0.48945 (13)	0.0346 (7)
H4A	0.448 (4)	0.362 (6)	0.3618 (18)	0.070 (11)*
H4B	0.448 (5)	0.497 (5)	0.2944 (18)	0.067 (11)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1045 (18)	0.0494 (12)	0.0245 (8)	0.0050 (11)	0.0032 (10)	-0.0071 (8)
F2	0.0673 (13)	0.0635 (13)	0.0370 (10)	0.0222 (10)	-0.0073 (9)	0.0154 (8)
F3	0.0571 (12)	0.1073 (17)	0.0329 (9)	-0.0274 (11)	-0.0002 (8)	0.0251 (10)
N4	0.0379 (14)	0.0297 (13)	0.0346 (13)	-0.0050 (11)	0.0003 (11)	-0.0022 (11)
C5	0.0267 (13)	0.0255 (13)	0.0292 (13)	0.0036 (11)	0.0021 (10)	-0.0008 (11)
C6	0.0319 (14)	0.0290 (14)	0.0271 (13)	0.0045 (12)	0.0035 (10)	0.0050 (11)
C7	0.0310 (14)	0.0389 (16)	0.0236 (12)	0.0041 (12)	0.0035 (10)	0.0037 (11)
C8	0.0332 (15)	0.0355 (15)	0.0239 (13)	-0.0023 (12)	0.0000 (11)	-0.0043 (11)
С9	0.0295 (13)	0.0276 (14)	0.0254 (12)	0.0026 (12)	0.0009 (10)	0.0004 (11)
C10	0.0211 (13)	0.0241 (13)	0.0201 (11)	0.0020 (10)	-0.0010 (9)	-0.0007 (10)
C11	0.0295 (15)	0.0293 (14)	0.0232 (12)	0.0010 (11)	-0.0008 (10)	-0.0024 (10)

supporting information

C12	0.0388 (15)	0.0315 (15)	0.0218 (12)	0.0012 (12)	-0.0008 (11)	0.0002 (11)
C13	0.0400 (16)	0.0373 (16)	0.0254 (13)	0.0004 (13)	-0.0013 (11)	0.0035 (11)

Geometric parameters (Å, °)

F1—C13	1.336 (3)	С7—Н7	0.9500
F2—C13	1.348 (3)	C8—C9	1.378 (3)
F3—C13	1.326 (3)	C8—H8	0.9500
N4—C5	1.383 (3)	C9—C10	1.398 (3)
N4—H4A	0.90 (3)	С9—Н9	0.9500
N4—H4B	0.88 (3)	C10—C11	1.475 (3)
C5—C10	1.409 (3)	C11—C12	1.318 (3)
C5—C6	1.412 (3)	C11—H11	0.9500
C6—C7	1.371 (3)	C12—C13	1.472 (3)
С6—Н6	0.9500	C12—H12	0.9500
С7—С8	1.389 (4)		
C5—N4—H4A	118 (2)	С10—С9—Н9	119.1
C5—N4—H4B	109 (2)	C9—C10—C5	119.0 (2)
H4A—N4—H4B	116 (3)	C9—C10—C11	121.2 (2)
N4—C5—C10	121.3 (2)	C5—C10—C11	119.7 (2)
N4—C5—C6	119.9 (2)	C12—C11—C10	125.6 (2)
C10—C5—C6	118.7 (2)	C12—C11—H11	117.2
C7—C6—C5	120.3 (2)	C10—C11—H11	117.2
С7—С6—Н6	119.8	C11—C12—C13	123.7 (2)
С5—С6—Н6	119.8	C11—C12—H12	118.1
С6—С7—С8	121.4 (2)	C13—C12—H12	118.1
С6—С7—Н7	119.3	F3—C13—F1	106.1 (2)
С8—С7—Н7	119.3	F3—C13—F2	106.1 (2)
С9—С8—С7	118.7 (2)	F1C13F2	104.4 (2)
С9—С8—Н8	120.6	F3—C13—C12	113.4 (2)
С7—С8—Н8	120.6	F1—C13—C12	113.9 (2)
C8—C9—C10	121.8 (2)	F2—C13—C12	112.1 (2)
С8—С9—Н9	119.1		
N4—C5—C6—C7	-178.5 (2)	N4—C5—C10—C11	2.2 (4)
C10—C5—C6—C7	-0.3 (4)	C6-C5-C10-C11	-176.1 (2)
С5—С6—С7—С8	-0.3 (4)	C9—C10—C11—C12	24.6 (4)
С6—С7—С8—С9	0.5 (4)	C5-C10-C11-C12	-158.9 (3)
C7—C8—C9—C10	-0.3 (4)	C10-C11-C12-C13	-176.8 (2)
C8—C9—C10—C5	-0.2 (4)	C11—C12—C13—F3	115.4 (3)
C8—C9—C10—C11	176.3 (2)	C11—C12—C13—F1	-6.2 (4)
N4—C5—C10—C9	178.7 (2)	C11—C12—C13—F2	-124.5 (3)
C6C5C10C9	0.5 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4A····F2 ⁱ	0.90 (3)	2.46 (4)	3.352 (3)	169 (3)
C12—H12···N4 ⁱⁱ	0.95	2.56	3.432 (4)	152
N4—H4 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.88 (3)	2.59 (4)	3.315 (2)	140 (3)
C9—H9…Cg1 ^{iv}	0.95	2.73	3.480 (3)	136

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) -*x*, *y*-1/2, -*z*+1/2.