

Received 26 July 2018 Accepted 30 July 2018

Edited by M. Zeller, Purdue University, USA

**Keywords:** crystal structure; NiFe hydrogenase; enzyme model; bioinorganic; sulfur ligand.

CCDC reference: 1859284

**Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN d ACCESS

# A new structural model for NiFe hydrogenases: an unsaturated analogue of a classic hydrogenase model leads to more enzyme-like Ni—Fe distance and interplanar fold

## Daniel J. Harrison,<sup>a</sup> Alan J. Lough<sup>b</sup> and Ulrich Fekl<sup>a</sup>\*

<sup>a</sup>Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and <sup>b</sup>Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. \*Correspondence e-mail: ulrich.fekl@utoronto.ca

The complex cation in the title compound,  $(\operatorname{carbonyl-}1\kappa C)(1\eta^5-\operatorname{pentamethyl-}$  $evclopentadienvl)(\mu$ -2.3,9,10-tetramethyl-1.4,8,11-tetrathiaundeca-2,9-diene-1,11-diido- $1\kappa^2 S, S''': 2\kappa^4 S, S', S'', S'''$ )ironnickel(*Fe*-*Ni*) hexafluorophosphate, [Fe- $Ni(C_{10}H_{15})(C_{11}H_{18}S_4)(CO)]PF_6$  or  $[Ni(L')FeCp^*(CO)]PF_6$ , is composed of the nickel complex fragment [Ni(L')] coordinated as a metalloligand (using S<sup>1</sup> and  $S^4$ ) to the [FeCp\*(CO)]<sup>+</sup> fragment, where  $(L')^{2-}$  is [S-C(Me)=C(Me)-S- $(CH_2)_3 - S - C(Me) = C(Me) - S^{2-}$  and where  $Cp^{*-}$  is cyclo- $C_5(Me)_5^{-}$  (pentamethylcyclopentadienyl). The ratio of hexafluorophosphate anion per complex cation is 1:1. The structure at 150 K has orthorhombic (*Pbcn*) symmetry. The atoms of the complex cation are located on general positions (multiplicity = 8), whereas there are two independent hexafluorophosphate anions, each located on a twofold axis (Wyckoff position 4c; multiplicity = 4). The structure of the new dimetallic cation  $[Ni(L')FeCp^*(CO)]^+$  can be described as containing a three-legged piano-stool environment for iron [Cp\*Fe(CO)'S<sub>2</sub>'] and an approximately square-planar 'S<sub>4</sub>' environment for Ni. The NiS<sub>2</sub>Fe diamondshaped substructure is notably folded at the S-S hinge: the angle between the NiS<sub>2</sub> plane and the FeS<sub>2</sub> plane normals is 64.85 (6) $^{\circ}$ . Largely because of this fold, the nickel-iron distance is relatively short, at 2.9195 (8) Å. The structural data for the complex cation, which contains a new unsaturated ' $S_4$ ' ligand (two C=C double bonds), provide an interesting comparison with the known NiFe hydrogenase models containing a saturated 'S<sub>4</sub>'-ligand analogue having the same number of carbon atoms in the ligand backbone, namely with the structures of  $[Ni(L)FeCp(CO)]^+$  (as the  $PF_6^-$  salt,  $CH_2Cl_2$  solvate) and  $[Ni(L)FeCp^*(CO)]^+$  (as the  $PF_6^-$  salt), where  $(L)^{2-}$  is  $[S-CH_2-CH_2-S (CH_2)_3 - S - CH_2 - CH_2 - S]^{2-}$  and  $Cp^-$  is cyclopentadienyl. The saturated analogues  $[Ni(L)FeCp(CO)]^+$  and  $[Ni(L)FeCp^*(CO)]^+$  have similar Ni-Fe distances: 3.1727 (6), 3.1529 (7) Å (two independent molecules in the unit cell) and 3.111 (5) Å, respectively, for the two complexes, whereas  $[Ni(L')FeCp^*(CO)]^+$  described here stands out with a much shorter Ni-Fe distance [2.9196 (8) Å]. Also, [Ni(L)FeCp(CO)]<sup>+</sup> and [Ni(L)FeCp\*(CO)]<sup>+</sup> show interplanar fold angles that are similar between the two: 39.56 (5), 41.99 (5) (independent molecules in the unit cell) and  $47.22(9)^{\circ}$ , respectively, whereas  $[Ni(L')FeCp^*(CO)]^+$  possesses a much more pronounced fold [64.85 (6)°]. Given that larger fold angles and shorter Ni-Fe distances are considered to be structurally closer to the enzyme, unsaturation in an 'S<sub>4</sub>'-ligand of the type (S –  $C_2-S-C_3-S-C_2-S)^{2-}$  seems to increase structural resemblance to the enzyme for structural models of the type  $[Ni('S_4')FeCp^R(CO)]^+$   $(Cp^R = Cp or$ Cp\*).

#### 1. Chemical context

Since the discovery and structural elucidation of nickel-iron hydrogenases, synthetic chemists have worked towards closer





Figure 1

Structure of the NiFe hydrogenase active site (left) and general model of the type  $[Ni(`S_4')Fe(Cp^R)(CO)]^+$  (right; 'S<sub>4</sub>' = synthetic tetrasulfur donor ligand).

and closer structural models for the NiFe hydrogen-splitting active site (Lubitz et al., 2014). This active site contains two terminal sulfur donors and two bridging sulfur donors coordinated to nickel, as well as a pseudo-octahedal coordination sphere around iron, which is completed by cyano and carbonyl ligands (Fig. 1, left). Several closely related models of the active site have been prepared by combining an Ni('S<sub>4</sub>') fragment (' $S_4$ ' = dianionic tetradentate sulfur ligand) with an  $[FeCp^{R}(CO)]^{+}$  fragment ( $Cp^{R} = Cp, C_{5}H_{5}$  or  $Cp^{*}, C_{5}Me_{5}$ ), as illustrated in Fig. 1 (right) (Canaguier et al., 2010; Yang et al., 2015; Zhu et al., 2005). These complexes have an overall mono-cationic charge, consistent with formal Ni<sup>II</sup> and Fe<sup>II</sup> oxidations states. The first 'S<sub>4</sub>' ligand used in this capacity featured a saturated two-three-two carbon linker, in  $L^{2-}$  =  $[S-CH_2-CH_2-S-(CH_2)_3-S-CH_2-CH_2-S]^{2-}$  (Fig. 2, left) (Yang et al., 2015; Zhu et al., 2005).



Figure 2

 $(S_4)$  ligands used for the structurally characterized NiFe hydrogenase models of the type  $[Ni((S_4))Fe(Cp^R)(CO)]^+$ .

Here, we present a new  $[Ni(`S_4`)FeCp^R(CO)]^+$  model based on an analogous but unsaturated  $`S_4`$  ligand, namely  $L'^{2-} = [S-C(Me)=C(Me)-S-(CH_2)_3-S-C(Me)=C(Me)-S]^{2-}$ (Fig. 2, middle), and assess the structural consequences of incorporating the unsaturated ligand. For comparison, we will also discuss a literature  $[Ni(`S_4`)Fe(Cp^R)(CO)]^+$  complex in which the  $`S_4`$  ligand has a four-carbon linker in the remote portion of the backbone  $(L''^{2-}, Fig. 2, right)$  (Canaguier *et al.*, 2010).

#### 2. Structural commentary

 $[Ni(L')FeCp^*(CO)]^+$  was obtained as solvent-free crystals containing the PF<sub>6</sub><sup>-</sup> counter-ion. A drawing showing both cation and anion in this salt is shown below (see Supramolecular features), and the intramolecular structural features of the cation are discussed first. The structure of  $[Ni(L')FeCp^*(CO)]^+$  is shown in Fig. 3. It contains a threelegged piano stool environment for iron and an approximately square-planar 'S<sub>4</sub>' environment for Ni (sum of bond angles around Ni1 = 359.83°). Selected metal-ligand distances are Ni1-S1 = 2.1616(11), Ni1-S2 = 2.1530(12), Ni1-S3 =2.1507 (11), Ni1-S4 = 2.1563 (12) Å, and Fe1-S1 = 2.3309(12), Fe1-S4 = 2.3602(12), Fe1-C11 = 1.768(5), Fe1-C1 = 2.080(4), Fe1-C2 = 2.107(4), Fe1-C3 =2.126 (4), Fe1-C4 = 2.138 (4), Fe1-C5 = 2.098 (4) Å. The intermetallic (Ni1-Fe1) distance is relatively short, i.e. 2.9195 (8) Å. The NiS<sub>2</sub>Fe diamond is markedly folded at the S-S hinge: the angle between the NiS<sub>2</sub> plane and the FeS<sub>2</sub> plane normals (dihedral angle;  $180^{\circ}$  – hinge angle) is 64.85 (6)°, and this fold largely accounts for the short nickeliron distance.

In the following discussion, we compare the structural features obtained with the unsaturated ligand  $L'^{2-}$  with those



(30% Displacement ellipsoid probability) drawing for  $[Ni(L')FeCp*(CO)]^+,$ observed as in the structure of  $[Ni(L')FeCp*(CO)][PF_6]$ . Generated using ORTEP-3 for Windows (Farrugia, 2012).

## research communications

of literature complexes using the saturated ligand  $L^{2-}$ . The structures of  $[Ni(L)FeCp(CO)]^+$ , as the  $PF_6^-$  salt/  $CH_2Cl_2$ solvate (Zhu et al., 2005), and  $[Ni(L)FeCp^*(CO)]^+$ , as the PF<sub>6</sub><sup>-</sup> salt (Yang et al., 2015), are known. Both saturated analogues  $[Ni(L)FeCp(CO)]^+$  and  $[Ni(L)FeCp^*(CO)]^+$  show Ni-Fe distances that are similar for the two, 3.1727 (6)/ 3.1529 (7) Å (two independent molecules in the unit cell) and 3.111 (5) Å, respectively, for the two complexes. The  $[Ni(L')FeCp^*(CO)]^+$  complex, on the other hand, has a much shorter Ni-Fe distance [2.9195 (8), see above]. Also,  $[Ni(L)FeCp(CO)]^+$  and  $[Ni(L)FeCp^*(CO)]^+$  show interplanar fold angles that are similar for the two,  $39.56(5)/41.99(5)^{\circ}$ (two independent molecules in the unit cell) and  $47.22 (9)^{\circ}$ , respectively, while  $[Ni(L')FeCp^*(CO)]^+$  has a much larger fold angle of 64.85 (6) $^{\circ}$  (see above). The large fold angle and short Ni-Fe distance observed in the complex with the unsaturated ligand L' match the structure of the enzymatic active site more closely than the angles/distances of the complexes containing the saturated ligand L. For eight structurally characterized enzymes, the dihedral angles range from 59 to 99° and the Ni-Fe distances range from 2.53 to 2.97 Å (one outlier being desulfovibrio fructosovorans with 46° and 3.23 Å; Zhu et al., 2005). We have thus provided evidence that unsaturation in an  $(S_4)$ -ligand of the type  $(S_2 - S_2 - S_2 - S_2 - S_2)^{2-}$  can increase structural resemblance to the enzyme in models of the type  $[Ni(S_4)FeCp^R(CO)]^+$ . Structural similarity to the enzyme in models was, in alternative approaches, also favoured when additional donor atoms were incorporated into the ligand chain (such as 'S<sub>3</sub>N<sub>2</sub>') or where two bidentate chelate ligands were used instead of one large 'S<sub>4</sub>' ligand. (Zhu et al., 2005) Within the context of linear 'S<sub>4</sub>' ligands, an  $[Ni(L'')FeCp^{*}(CO)]^{+}$  model with four carbon atoms, instead of three, in the remote portion of the backbone (see  $L''^{2-}$  in Fig. 2, right) provided an Ni–Fe distance and fold angle very similar to those of the L' analogue, of 2.9611 (8) Å and 62.48 (4)°, respectively (Canaguier et al., 2010). In terms of activity,  $[Ni(L'')FeCp^*(CO)]^+$  was shown to be active as a hydrogen-production catalyst (Canaguier et al., 2010), which suggests that the  $[Ni(L')Cp^*(CO)]^+$  complex, with the unsaturated ' $S_4$ ' ligand L', might warrant deeper investigation. We conclude that the introduction of unsaturation in the  $S_4$ ligand led to a better structural model relative to the unsaturated ligand, highlighting a new variant of the classic  $[Ni('S_4')FeCp^R(CO)]^+$ -type hydrogenase model.

### 3. Supramolecular features

The structure results from packing of discrete cations  $[Ni(L')FeCp^*(CO)]^+$  with hexafluorophosphate anions, without solvent molecules and without any solvent-accessible void. The ratio of hexafluorophosphate anion per complex cation is 1:1. The atoms of the complex cation are situated on general positions (multiplicity = 8), whereas there are two independent hexafluorophosphate anions, each situated on a twofold axis (Wyckoff position 4*c* in *Pbcn*; multiplicity = 4). A picture of the packing is shown in Fig. 4 (top, 30% probability ellipsoids), along with labeling of all non-H atoms in the unit

cell (bottom). There are no classical hydrogen bonds but there are C-H···F hydrogen bonds to hexafluorophosphate (C6– H6B···F4 = 2.55 Å; C15–H15B···F3<sup>i</sup> = 2.55 Å; C21– H21C···F4<sup>ii</sup> = 2.48 Å; C22–H22C···F1<sup>iii</sup> = 2.52 Å) and a C– H···O short contact (C14–H14A···O1 = 2.41 Å) [symmetry codes: (i) -x + 2, y,  $-z + \frac{3}{2}$ ; (ii) -x + 1, y,  $-z + \frac{3}{2}$ ; (iii)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ , z].

### 4. Database survey

The Cambridge Crystallographic Database (version 5.39 including updates up to February 2018; Groom et al., 2016) was surveyed. A search was performed aimed at finding Ni<sub>1</sub>Fe<sub>1</sub> complexes that contain at least one (possibly substituted) cyclopentadienyl unit, at least one carbonyl (CO) coordinated to iron, and a nickel center bonded to at least four sulfurs. The substructure that was used for the search contained a cyclo-C<sub>5</sub> unit (any type of bond allowed), a nickel atom bonded to four sulfur atoms (any type of bond allowed), as well as an Fe-C-O unit (any type of bond for Fe-C and for C-O). Out of the six hits, RULQEV, RULQOF and RULQUL are trimetallic (instead of dimetallic) complexes (and also do not contain a cyclopentadienyl but rather a saturated five-membered ring within a polycyclic structure). Since they are not very close analogues of  $[Ni(L')FeCp^*(CO)]^+$ , they are not discussed further. LAZVUE (Zhu et al., 2005) contains  $[Ni(L)FeCp(CO)]^+$  (as the  $PF_6^-$  salt,  $CH_2Cl_2$  solvate), MUDXOA (Yang et al., 2015) contains [Ni(L)FeCp\*(CO)]<sup>+</sup> (as the  $PF_6^-$  salt), and SUWWAJ (Canaguier *et al.*, 2010) contains  $[Ni(L'')FeCp^*(CO)]^+$  (as the BF<sub>4</sub><sup>-</sup> salt, CH<sub>2</sub>Cl<sub>2</sub> solvate). These three complex cations are discussed in detail above.

## 5. Synthesis and crystallization

The syntheses were performed in dried solvents under an inert atmosphere (nitrogen or argon; vacuum) using standard glovebox (MBraun) and Schlenk techniques. Deuterated NMR solvents were from Cambridge Isotopes. [Cp\*Fe(CO)<sub>2</sub>]<sub>2</sub> was acquired from Alfa Aesar. All other chemicals were obtained from Sigma–Aldrich. Photolysis was performed using a 160 W mercury vapour lamp (model: Westron Mega-Ray Self-Ballasted Zoologist).

 $Ni(S_2C_2Me_2)_2$ : This precursor for the nickel part of the complex was prepared as described in the literature (Schrauzer & Mayweg, 1965).

Ni(*L'*): Ni(*L'*), *i.e.* Ni(S–C(Me)=C(Me)–S–(CH<sub>2</sub>)<sub>3</sub>– S–C(Me)=C(Me)–S) was prepared by alkylation of Na<sub>2</sub>[Ni(S<sub>2</sub>C<sub>2</sub>Me<sub>2</sub>)<sub>2</sub>] using 1,3-dibromopropane. Na<sub>2</sub>[Ni(S<sub>2</sub>C<sub>2</sub>-Me<sub>2</sub>)] was prepared from Ni(S<sub>2</sub>C<sub>2</sub>Me<sub>2</sub>)<sub>2</sub> by reduction with excess sodium in THF (344 K, 18h, in sealed vessel), until the colour had changed from deep purple to brown–yellow. The subsequent alkylation of  $[Ni(S_2C_2Me_2)]^{2-}$  using 1,3-dibromopropane was performed analogously to the procedure described by Schrauzer and co-workers for the closely related Ni(S–C(Ph)=C(Ph)–S–(CH<sub>2</sub>)<sub>3</sub>–S–C(Ph)=C(Ph)–S). (Zhang *et al.*, 1992)



Figure 4

Drawings for packing (top) and labeling (bottom) of all non-H atoms in  $[Ni(L')FeCp*(CO)][PF_6]$ . Generated using *Mercury* (Macrae *et al.*, 2006). For the anion in the bottom part, generic atom labels without symmetry codes have been used.

# research communications

Table 1

| Experimental details.                                                    |                                                                                                              |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Crystal data                                                             |                                                                                                              |
| Chemical formula                                                         | [FeNi(C <sub>10</sub> H <sub>15</sub> )(C <sub>11</sub> H <sub>18</sub> S <sub>4</sub> )(CO)]PF <sub>6</sub> |
| M <sub>r</sub>                                                           | 701.25                                                                                                       |
| Crystal system, space group                                              | Orthorhombic, Pbcn                                                                                           |
| Temperature (K)                                                          | 150                                                                                                          |
| a, b, c (Å)                                                              | 15.4081 (3), 18.3762 (3),<br>19.2154 (3)                                                                     |
| $V(Å^3)$                                                                 | 5440.69 (16)                                                                                                 |
| Z                                                                        | 8                                                                                                            |
| Radiation type                                                           | Μο Κα                                                                                                        |
| $\mu (\text{mm}^{-1})$                                                   | 1.65                                                                                                         |
| Crystal size (mm)                                                        | $0.20\times0.18\times0.12$                                                                                   |
| Data collection                                                          |                                                                                                              |
| Diffractometer                                                           | Nonius KappaCCD                                                                                              |
| Absorption correction                                                    | Multi-scan (SORTAV; Blessing, 1995)                                                                          |
| $T_{\min}, T_{\max}$                                                     | 0.759, 0.850                                                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 38285, 6224, 3874                                                                                            |
| R <sub>int</sub>                                                         | 0.079                                                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.649                                                                                                        |
| Refinement                                                               |                                                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.052, 0.148, 1.07                                                                                           |
| No. of reflections                                                       | 6224                                                                                                         |
| No. of parameters                                                        | 335                                                                                                          |
| H-atom treatment                                                         | H-atom parameters constrained                                                                                |
| $\Delta \rho_{\text{min}} \Delta \rho_{\text{min}}$ (e Å <sup>-3</sup> ) | 1.120.73                                                                                                     |

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

 $[Cp*Fe(CO)_2(NCMe)][PF_6]$ : This precursor for the iron part of the complex was prepared according to the general procedure for  $[Cp*Fe(CO)_2(solvent)]^+$  given by Catheline & Astruc (1984), using MeCN (acetontrile) as the solvent.

 $[Ni(L')FeCp*(CO/NCMe)][PF_6]:$  Crude  $[Cp*Fe(CO)_2-$ (NCMe) [PF<sub>6</sub>] (210 mg, 0.48 mmol) was combined with 6 ml of acetonitrile and filtered through a glass filter frit. While purging with argon, the reaction was irradiated with UVvisible light (160 W, see above) for 16 h. Under an inert atmosphere, a solution of 155 mg (0.46 mmol) of Ni(L') in ca 7 ml of dichloromethane was added. The reaction mixture was heated under active argon flow to 325 K for 2 h. After cooling to room temperature, the volatiles were slowly removed under vacuum. The solid was dried under vacuum and stored in the glove-box. Yield of crude product: 253 mg (75%). <sup>1</sup>H NMR (200 MHz, 298 K, CD<sub>3</sub>CN) δ 1.60 [s, (CH<sub>3</sub>)<sub>5</sub>C<sub>5</sub>]; δ 1.91 (s, **CH<sub>3</sub>**-C-S);  $\delta$  1.96 (s, **CH<sub>3</sub>**-C-S);  $\delta$  2.31 (s, br, **CH<sub>3</sub>**CN-Fe);  $\delta 2.0-3.7 [m, br, S-(CH_2)_3-S]$ . Note that the sample thus prepared showed a <sup>1</sup>H NMR signal for metal-coordinated acetonitrile. The purpose of the prolonged photolysis was to remove all CO from iron, in order to selectively prepare  $[Ni(L')FeCp*(NCMe)][PF_6]$ . However, the sample obtained appeared to be a mixture of  $[Ni(L')FeCp^*(CO)][PF_6]$  and  $[Ni(L')FeCp^*(NCMe)][PF_6]$  and is thus referred to as  $[Ni(L')FeCp*(CO/NCMe)][PF_6]$ . Yet, crystallization from acetone yielded exclusively  $[Ni(L')FeCp*(CO)][PF_6]$ , in crystalline form.

Crystallization of  $[Ni(L')FeCp^*(CO)][PF_6]$ : 11 mg of  $[Ni(L')FeCp^*(CO/NCMe)][PF_6]$  were dissolved in 1.5 ml of acetone and filtered through 1 cm of Celite. Through solvent vapor diffusion, by placing the loosely capped vial into a larger vessel containing diethyl ether vapour (and some liquid), crystals of  $[Ni(L')FeCp^*(CO)][PF_6]$  were grown within two days at 308 K.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions and included in the refinment in a ridingmodel approximation with C-H distances of 0.98 and 0.99 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(C_{methyl})$ .

#### Acknowledgements

We thank Mitchell J. Kerr for preparing a sample of  $Ni(S_2C_2Me_2)_2$  used in the synthesis.

#### **Funding information**

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; University of Toronto.

#### References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Canaguier, S., Field, M., Oudart, Y., Pécaut, J., Fontecave, M. & Artero, V. (2010). *Chem. Commun.* 46, 5876–5878.
- Catheline, D. & Astruc, D. (1984). Organometallics, 3, 1094-1100.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. (2014). *Chem. Rev.* **114**, 4081–4148.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

- Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483– 1489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yang, D., Li, Y., Su, L., Wang, B. & Qu, J. (2015). Eur. J. Inorg. Chem. pp. 2965–2973.
- Zhang, C., Reddy, H. K., Chadha, R. K. & Schrauzer, G. N. (1992). J. Coord. Chem. 26, 117–126.
- Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280–18285.

# supporting information

Acta Cryst. (2018). E74, 1222-1226 [https://doi.org/10.1107/S2056989018010939]

A new structural model for NiFe hydrogenases: an unsaturated analogue of a classic hydrogenase model leads to more enzyme-like Ni—Fe distance and interplanar fold

## Daniel J. Harrison, Alan J. Lough and Ulrich Fekl

## **Computing details**

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $(Carbonyl-1\kappa C)(1\eta^{5}-pentamethylcyclopentadienyl)(\mu-2,3,9,10-tetramethyl-1,4,8,11-tetrathiaundeca-2,9-diene-1,11-diido-1\kappa^{2}S,S''':2\kappa^{4}S,S',S'',S''')ironnickel(Fe—Ni) hexafluorophosphate$ 

## Crystal data [FeNi(C<sub>10</sub>H<sub>15</sub>)(C<sub>11</sub>H<sub>18</sub>S<sub>4</sub>)(CO)]PF<sub>6</sub> $M_r = 701.25$ Orthorhombic, Pbcn a = 15.4081 (3) Å b = 18.3762 (3) Å c = 19.2154 (3) Å $V = 5440.69 (16) \text{ Å}^3$ Z = 8F(000) = 2880Data collection Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 9 pixels mm<sup>-1</sup> $\varphi$ scans and $\omega$ scans with $\kappa$ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min} = 0.759, T_{\rm max} = 0.850$

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.052$  $wR(F^2) = 0.148$ S = 1.076224 reflections  $D_x = 1.712 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 38285 reflections  $\theta = 2.6-27.5^{\circ}$  $\mu = 1.65 \text{ mm}^{-1}$ T = 150 KBlock, green  $0.20 \times 0.18 \times 0.12 \text{ mm}$ 

38285 measured reflections 6224 independent reflections 3874 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.079$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$  $h = -19 \rightarrow 19$  $k = -23 \rightarrow 23$  $l = -24 \rightarrow 24$ 

335 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0765P)^2 + 2.0266P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} = 0.002$   $\begin{array}{l} \Delta\rho_{\rm max} = 1.12 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|--------------|--------------|-----------------------------|
| Ni1  | 0.74296 (4) | 0.67056 (3)  | 0.52192 (3)  | 0.02311 (16)                |
| Fe1  | 0.56172 (4) | 0.71009 (3)  | 0.49879 (3)  | 0.02225 (17)                |
| S1   | 0.68117 (7) | 0.70012 (6)  | 0.42497 (5)  | 0.0256 (3)                  |
| S2   | 0.79921 (7) | 0.57496 (6)  | 0.47542 (5)  | 0.0281 (3)                  |
| S3   | 0.79344 (7) | 0.64527 (6)  | 0.62343 (5)  | 0.0268 (3)                  |
| S4   | 0.67593 (7) | 0.76476 (6)  | 0.56176 (5)  | 0.0256 (3)                  |
| O1   | 0.5610 (2)  | 0.55947 (17) | 0.54595 (17) | 0.0398 (8)                  |
| C1   | 0.4278 (3)  | 0.7053 (2)   | 0.5115 (2)   | 0.0248 (9)                  |
| C2   | 0.4585 (3)  | 0.7723 (2)   | 0.5392 (2)   | 0.0265 (10)                 |
| C3   | 0.4983 (3)  | 0.8115 (2)   | 0.4831 (2)   | 0.0303 (10)                 |
| C4   | 0.4907 (3)  | 0.7698 (2)   | 0.4222 (2)   | 0.0316 (10)                 |
| C5   | 0.4483 (3)  | 0.7029 (2)   | 0.4388 (2)   | 0.0276 (10)                 |
| C6   | 0.3751 (3)  | 0.6504 (2)   | 0.5513 (2)   | 0.0353 (11)                 |
| H6A  | 0.313257    | 0.661374     | 0.545916     | 0.053*                      |
| H6B  | 0.390791    | 0.652574     | 0.600690     | 0.053*                      |
| H6C  | 0.387078    | 0.601560     | 0.533256     | 0.053*                      |
| C7   | 0.4426 (3)  | 0.7979 (3)   | 0.6122 (2)   | 0.0357 (11)                 |
| H7A  | 0.380057    | 0.803763     | 0.619663     | 0.054*                      |
| H7B  | 0.471790    | 0.844604     | 0.619491     | 0.054*                      |
| H7C  | 0.465444    | 0.761895     | 0.645062     | 0.054*                      |
| C8   | 0.5361 (3)  | 0.8871 (2)   | 0.4870 (3)   | 0.0452 (13)                 |
| H8A  | 0.492333    | 0.922612     | 0.472476     | 0.068*                      |
| H8B  | 0.586638    | 0.890341     | 0.456183     | 0.068*                      |
| H8C  | 0.554009    | 0.897320     | 0.534968     | 0.068*                      |
| С9   | 0.5187 (4)  | 0.7927 (3)   | 0.3503 (2)   | 0.0456 (13)                 |
| H9A  | 0.475279    | 0.825676     | 0.330445     | 0.068*                      |
| H9B  | 0.524302    | 0.749593     | 0.320604     | 0.068*                      |
| H9C  | 0.574773    | 0.817703     | 0.353096     | 0.068*                      |
| C10  | 0.4183 (3)  | 0.6449 (3)   | 0.3899 (2)   | 0.0444 (13)                 |
| H10A | 0.355519    | 0.649373     | 0.382812     | 0.067*                      |
| H10B | 0.431411    | 0.596988     | 0.409703     | 0.067*                      |
| H10C | 0.448205    | 0.650298     | 0.345239     | 0.067*                      |
| C11  | 0.5660 (3)  | 0.6194 (3)   | 0.5293 (2)   | 0.0278 (10)                 |
| C12  | 0.6913 (3)  | 0.6181 (2)   | 0.3746 (2)   | 0.0286 (10)                 |
| C13  | 0.7413 (3)  | 0.5637 (2)   | 0.3961 (2)   | 0.0304 (10)                 |
| C14  | 0.7606 (3)  | 0.4963 (2)   | 0.5252 (2)   | 0.0278 (10)                 |

| H14A | 0.696377     | 0.496663     | 0.526437     | 0.033*      |
|------|--------------|--------------|--------------|-------------|
| H14B | 0.779375     | 0.450965     | 0.501772     | 0.033*      |
| C15  | 0.7957 (3)   | 0.4971 (2)   | 0.5998 (2)   | 0.0358 (11) |
| H15A | 0.786109     | 0.448644     | 0.620841     | 0.043*      |
| H15B | 0.859172     | 0.505579     | 0.598102     | 0.043*      |
| C16  | 0.7548 (3)   | 0.5546 (2)   | 0.6466 (2)   | 0.0328 (11) |
| H16A | 0.769533     | 0.544153     | 0.695734     | 0.039*      |
| H16B | 0.690822     | 0.552699     | 0.641829     | 0.039*      |
| C17  | 0.7331 (3)   | 0.7017 (2)   | 0.6814 (2)   | 0.0292 (10) |
| C18  | 0.6833 (3)   | 0.7532 (2)   | 0.6539 (2)   | 0.0267 (10) |
| C19  | 0.6439 (3)   | 0.6191 (3)   | 0.3059 (2)   | 0.0397 (12) |
| H19A | 0.673889     | 0.587331     | 0.272713     | 0.060*      |
| H19B | 0.642695     | 0.668917     | 0.287647     | 0.060*      |
| H19C | 0.584335     | 0.601759     | 0.312578     | 0.060*      |
| C20  | 0.7620 (3)   | 0.4947 (3)   | 0.3569 (2)   | 0.0411 (12) |
| H20A | 0.733297     | 0.495786     | 0.311395     | 0.062*      |
| H20B | 0.741350     | 0.452654     | 0.383458     | 0.062*      |
| H20C | 0.824947     | 0.490988     | 0.350310     | 0.062*      |
| C21  | 0.7475 (3)   | 0.6871 (3)   | 0.7574 (2)   | 0.0378 (12) |
| H21A | 0.737458     | 0.731855     | 0.783949     | 0.057*      |
| H21B | 0.807296     | 0.670606     | 0.764737     | 0.057*      |
| H21C | 0.707132     | 0.649328     | 0.773176     | 0.057*      |
| C22  | 0.6369 (3)   | 0.8090 (3)   | 0.6972 (2)   | 0.0381 (11) |
| H22A | 0.676793     | 0.828725     | 0.732196     | 0.057*      |
| H22B | 0.587285     | 0.786252     | 0.720573     | 0.057*      |
| H22C | 0.616285     | 0.848535     | 0.667210     | 0.057*      |
| P1   | 1.000000     | 0.50751 (9)  | 0.750000     | 0.0338 (4)  |
| P2   | 0.500000     | 0.56829 (10) | 0.750000     | 0.0361 (4)  |
| F1   | 0.9262 (3)   | 0.44789 (18) | 0.7508 (2)   | 0.0895 (14) |
| F2   | 0.92696 (19) | 0.56827 (15) | 0.75048 (16) | 0.0518 (8)  |
| F3   | 0.9995 (2)   | 0.5074 (2)   | 0.83285 (14) | 0.0700 (10) |
| F4   | 0.4168 (2)   | 0.5668 (2)   | 0.7027 (2)   | 0.0808 (11) |
| F5   | 0.5402 (3)   | 0.62895 (18) | 0.70149 (18) | 0.0727 (10) |
| F6   | 0.5418 (2)   | 0.50624 (17) | 0.70251 (16) | 0.0670 (10) |
|      |              |              |              |             |

| interne inspireentent put interes (ii) | Atomic | displacement | parameters | $(Å^2)$ |
|----------------------------------------|--------|--------------|------------|---------|
|----------------------------------------|--------|--------------|------------|---------|

|            | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|------------|------------|-------------|------------|--------------|--------------|-------------|
| Ni1        | 0.0223 (3) | 0.0268 (3)  | 0.0202 (3) | -0.0012 (2)  | -0.0002 (2)  | -0.0010 (2) |
| Fe1        | 0.0216 (4) | 0.0250 (3)  | 0.0201 (3) | 0.0001 (3)   | 0.0002 (2)   | 0.0023 (2)  |
| <b>S</b> 1 | 0.0247 (6) | 0.0316 (6)  | 0.0204 (5) | -0.0003 (5)  | 0.0005 (4)   | 0.0000 (4)  |
| S2         | 0.0229 (6) | 0.0327 (6)  | 0.0286 (6) | 0.0013 (5)   | 0.0008 (4)   | -0.0049 (4) |
| S3         | 0.0261 (6) | 0.0303 (6)  | 0.0242 (5) | -0.0011 (5)  | -0.0038 (4)  | -0.0004 (4) |
| S4         | 0.0269 (6) | 0.0269 (5)  | 0.0231 (5) | -0.0013 (5)  | -0.0007 (4)  | -0.0010 (4) |
| O1         | 0.036 (2)  | 0.0321 (18) | 0.051 (2)  | -0.0015 (15) | 0.0016 (16)  | 0.0102 (15) |
| C1         | 0.021 (2)  | 0.028 (2)   | 0.025 (2)  | 0.0042 (18)  | -0.0034 (17) | 0.0000 (17) |
| C2         | 0.022 (2)  | 0.030(2)    | 0.027 (2)  | 0.0050 (18)  | -0.0023 (18) | 0.0014 (18) |
| C3         | 0.018 (2)  | 0.029 (2)   | 0.044 (3)  | 0.0021 (19)  | 0.001 (2)    | 0.004 (2)   |
|            |            |             |            |              |              |             |

# supporting information

| C4  | 0.025 (3)   | 0.043 (3)   | 0.026 (2)   | 0.009 (2)    | 0.0030 (19)  | 0.011 (2)    |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C5  | 0.020 (2)   | 0.039 (3)   | 0.024 (2)   | 0.006 (2)    | -0.0028 (17) | -0.0011 (18) |
| C6  | 0.027 (3)   | 0.034 (2)   | 0.046 (3)   | -0.007 (2)   | 0.003 (2)    | 0.003 (2)    |
| C7  | 0.031 (3)   | 0.045 (3)   | 0.030 (2)   | 0.005 (2)    | 0.000 (2)    | -0.010 (2)   |
| C8  | 0.028 (3)   | 0.028 (2)   | 0.079 (4)   | -0.006 (2)   | 0.007 (3)    | 0.010 (2)    |
| C9  | 0.041 (3)   | 0.060 (3)   | 0.036 (3)   | 0.014 (3)    | 0.009 (2)    | 0.021 (2)    |
| C10 | 0.036 (3)   | 0.057 (3)   | 0.040 (3)   | 0.007 (3)    | -0.013 (2)   | -0.009 (2)   |
| C11 | 0.017 (2)   | 0.039 (3)   | 0.027 (2)   | 0.001 (2)    | 0.0023 (17)  | 0.001 (2)    |
| C12 | 0.027 (3)   | 0.033 (2)   | 0.025 (2)   | -0.002 (2)   | 0.0040 (18)  | -0.0060 (18) |
| C13 | 0.029 (3)   | 0.039 (3)   | 0.024 (2)   | 0.001 (2)    | 0.0034 (19)  | -0.0076 (19) |
| C14 | 0.023 (2)   | 0.023 (2)   | 0.037 (2)   | 0.0006 (18)  | -0.0029 (19) | -0.0038 (18) |
| C15 | 0.034 (3)   | 0.032 (2)   | 0.042 (3)   | 0.001 (2)    | -0.006 (2)   | 0.004 (2)    |
| C16 | 0.037 (3)   | 0.031 (2)   | 0.031 (2)   | 0.000 (2)    | -0.003 (2)   | 0.0036 (19)  |
| C17 | 0.029 (3)   | 0.035 (2)   | 0.023 (2)   | -0.008 (2)   | -0.0010 (19) | -0.0039 (19) |
| C18 | 0.028 (3)   | 0.030 (2)   | 0.021 (2)   | -0.007 (2)   | -0.0012 (18) | -0.0052 (17) |
| C19 | 0.041 (3)   | 0.052 (3)   | 0.026 (2)   | -0.009 (3)   | -0.002 (2)   | -0.006 (2)   |
| C20 | 0.046 (3)   | 0.045 (3)   | 0.033 (2)   | -0.001 (2)   | 0.003 (2)    | -0.014 (2)   |
| C21 | 0.044 (3)   | 0.045 (3)   | 0.025 (2)   | -0.003 (2)   | -0.005 (2)   | 0.002 (2)    |
| C22 | 0.039 (3)   | 0.048 (3)   | 0.027 (2)   | 0.003 (2)    | -0.005 (2)   | -0.010 (2)   |
| P1  | 0.0388 (11) | 0.0305 (9)  | 0.0321 (9)  | 0.000        | -0.0043 (7)  | 0.000        |
| P2  | 0.0311 (10) | 0.0423 (10) | 0.0350 (9)  | 0.000        | -0.0006 (8)  | 0.000        |
| F1  | 0.112 (4)   | 0.055 (2)   | 0.102 (3)   | -0.046 (2)   | 0.036 (3)    | -0.027 (2)   |
| F2  | 0.0310 (18) | 0.0563 (18) | 0.068 (2)   | 0.0122 (14)  | 0.0023 (14)  | 0.0122 (15)  |
| F3  | 0.060(2)    | 0.115 (3)   | 0.0349 (16) | 0.010 (2)    | -0.0033 (15) | 0.0145 (17)  |
| F4  | 0.061 (2)   | 0.090 (3)   | 0.092 (3)   | -0.011 (2)   | -0.039 (2)   | 0.017 (2)    |
| F5  | 0.090 (3)   | 0.0526 (19) | 0.075 (2)   | -0.0221 (19) | 0.016 (2)    | 0.0109 (17)  |
| F6  | 0.089 (3)   | 0.061 (2)   | 0.0507 (18) | 0.0087 (19)  | 0.0156 (18)  | -0.0130 (15) |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Ni1—S3  | 2.1507 (11) | C10—H10A | 0.9800    |
|---------|-------------|----------|-----------|
| Ni1—S2  | 2.1530 (12) | C10—H10B | 0.9800    |
| Ni1—S4  | 2.1563 (12) | C10—H10C | 0.9800    |
| Ni1—S1  | 2.1616 (11) | C12—C13  | 1.328 (6) |
| Ni1—Fe1 | 2.9195 (8)  | C12—C19  | 1.510 (6) |
| Fe1—C11 | 1.768 (5)   | C13—C20  | 1.509 (6) |
| Fe1—C1  | 2.080 (4)   | C14—C15  | 1.532 (6) |
| Fe1—C5  | 2.098 (4)   | C14—H14A | 0.9900    |
| Fe1—C2  | 2.107 (4)   | C14—H14B | 0.9900    |
| Fe1—C3  | 2.126 (4)   | C15—C16  | 1.524 (6) |
| Fe1—C4  | 2.138 (4)   | C15—H15A | 0.9900    |
| Fe1—S1  | 2.3309 (12) | C15—H15B | 0.9900    |
| Fe1—S4  | 2.3602 (12) | C16—H16A | 0.9900    |
| S1—C12  | 1.798 (4)   | C16—H16B | 0.9900    |
| S2—C13  | 1.778 (4)   | C17—C18  | 1.329 (6) |
| S2—C14  | 1.833 (4)   | C17—C21  | 1.501 (6) |
| S3—C17  | 1.783 (5)   | C18—C22  | 1.503 (6) |
| S3—C16  | 1.825 (4)   | C19—H19A | 0.9800    |
|         |             |          |           |

# supporting information

| S4—C18                   | 1.786 (4)             | C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
|--------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 01—C11                   | 1.149 (5)             | C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C1—C2                    | 1.423 (6)             | C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C1—C5                    | 1.432 (6)             | C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C1—C6                    | 1.504 (6)             | С20—Н20С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C2—C3                    | 1.434 (6)             | C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C2—C7                    | 1,499 (6)             | C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C3—C4                    | 1.404 (6)             | C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C3—C8                    | 1.508 (6)             | C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C4—C5                    | 1 429 (6)             | C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9800               |
| C4-C9                    | 1 507 (6)             | $C^{22}$ H <sup>22</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800               |
| $C_{5}$                  | 1 493 (6)             | $P1 = F1^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.579(3)             |
| C6—H6A                   | 0.9800                | P1F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.579(3)             |
| C6 H6B                   | 0.9800                | P1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.575(3)<br>1.585(3) |
|                          | 0.9800                | $\begin{array}{c} 1 1 1 2 \\ 2 1 2 2 \\ 1 2 1 2 \\ 2 1 2 1 \\ 2 2 1 \\ 2 2 1 \\ 2 2 2 \\ 2 2 2 2 \\ 2 2 2 2 \\ 2 2 2 2 \\ 2 2 2 2 2 \\ 2 2 2 2 2 \\ 2 2 2 2 2 2 \\ 2 2 2 2 2 2 2 \\ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $ | 1.585(3)             |
| C7 H7A                   | 0.9800                | $P_1 = P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.505(3)<br>1.502(3) |
| C7_H7P                   | 0.9800                | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.392(3)<br>1.502(3) |
| С/—П/В                   | 0.9800                | $P_1 = P_3^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.392(3)             |
| $C^{-}H^{-}C$            | 0.9800                | P2—F4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.572(3)             |
|                          | 0.9800                | P2—F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.572(3)             |
| C8—H8B                   | 0.9800                | P2—F5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.580 (3)            |
| C8—H8C                   | 0.9800                | P2—F5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.580 (3)            |
| C9—H9A                   | 0.9800                | P2—F6 <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.596 (3)            |
| С9—Н9В                   | 0.9800                | P2—F6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.596 (3)            |
| С9—Н9С                   | 0.9800                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| S2 N;1 S2                | 02 12 (4)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.5                |
| $S_{3}$ $S_{1}$ $S_{4}$  | 93.13(4)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| $S_{2} = N_{11} = S_{4}$ | 91.41(4)<br>174.28(5) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                |
| S2 N:1 S1                | 1/4.30(3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                |
| 53-N11-51                | 1/4.42(5)             | $H\delta B = C\delta = H\delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| S2—N11—S1                | 91.42 (4)             | C4 - C9 - H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                |
| S4—N11—S1                | 83.87 (4)             | C4—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                |
| S3—N11—Fel               | 122.53 (4)            | H9A—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                |
| S2—N11—Fel               | 121.66 (4)            | C4—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                |
| S4—N11—Fel               | 52.85 (3)             | H9A—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                |
| S1—N11—Fel               | 52.04 (3)             | H9B—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                |
| C11—Fe1—C1               | 87.63 (18)            | C5—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                |
| C11—Fe1—C5               | 98.85 (18)            | C5—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                |
| C1—Fe1—C5                | 40.08 (15)            | H10A—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                |
| C11—Fe1—C2               | 114.69 (18)           | C5—C10—H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                |
| C1—Fe1—C2                | 39.73 (15)            | H10A—C10—H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                |
| C5—Fe1—C2                | 66.92 (16)            | H10B—C10—H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                |
| C11—Fe1—C3               | 152.97 (19)           | O1-C11-Fe1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.2 (4)            |
| C1—Fe1—C3                | 66.26 (16)            | C13—C12—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124.2 (4)            |
| C5—Fe1—C3                | 66.07 (17)            | C13—C12—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.9 (3)            |
| C2—Fe1—C3                | 39.61 (16)            | C19—C12—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114.7 (3)            |
| C11—Fe1—C4               | 137.02 (19)           | C12—C13—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.9 (4)            |
| C1—Fe1—C4                | 66.05 (16)            | C12—C13—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118.0 (3)            |
| C5—Fe1—C4                | 39.42 (17)            | C20—C13—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114.8 (3)            |

| C2—Fe1—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65.71 (16)               | C15—C14—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.4 (3)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C3—Fe1—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.43 (17)               | C15—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.3                |
| C11—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.64 (14)               | S2—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3                |
| C1—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148.36 (12)              | C15—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.3                |
| C5—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.58 (12)              | S2—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3                |
| C2—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149.63 (12)              | H14A—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.0                |
| C3—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.20 (12)              | C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114.4 (4)            |
| C4—Fe1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.47 (12)               | C16—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.7                |
| C11—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.72 (14)              | C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.7                |
| C1—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.25 (11)              | C16—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.7                |
| C5—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 158.40 (12)              | C14—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.7                |
| C2—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.20 (12)               | H15A—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.6                |
| C3—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.43 (13)               | C15—C16—S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.7 (3)            |
| C4—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.08 (13)              | C15—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| S1—Fe1—S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.92 (4)                | S3—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| C11—Fe1—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71.28 (14)               | C15—C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C1—Fe1—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 157.04(11)               | S3-C16-H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| C5—Fe1—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149 87 (12)              | $H_{16A}$ $C_{16}$ $H_{16B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.1                |
| C2—Fe1—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143.21(12)               | C18 - C17 - C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126.8 (4)            |
| $C_{3}$ Fe1 Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.80(12)               | C18 - C17 - S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.0(4)<br>117.8(3) |
| C4—Fe1—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132.00(12)<br>136.25(12) | $C_{10} = C_{17} = S_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.0(3)<br>115.3(3) |
| $S1_Fe1_Ni1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.99 (3)                | $C_{17}$ $C_{18}$ $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.3(3)<br>122.7(4) |
| $S_{1}$ $E_{1}$ $N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.74 (3)                | C17 - C18 - C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122.7(4)<br>1211(3)  |
| $C_{12} = S_1 = N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.74(3)                 | $C_{1}^{2} = C_{18}^{18} = S_{4}^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.1(3)<br>1160(3)  |
| $C_{12}$ $S_1$ $E_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.40(15)               | $C_{22} = C_{10} = S_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.5                |
| $V_{12}$ $V$ | 117.49(15)<br>80.07(4)   | $C_{12}$ $C_{19}$ $H_{10R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.1(2)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| $C_{13} = S_2 = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.1(2)<br>104.38(15)   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                |
| $C_{13}$ $S_{2}$ $N_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.30(13)<br>107.22(14) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| C17 = S2 = C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.23(14)<br>102.0(2)   | H19A - C19 - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                |
| C17 = S2 = N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.0(2)                 | H19B - C19 - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                |
| C1(-S2-N1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.04(15)               | C13 - C20 - H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5                |
| C10 - S3 - N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.48 (15)              | C13—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C18 - S4 - IN11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.04 (15)              | H20A—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C18—S4—Fei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.33(15)               | $H_{20}$ $H$ | 109.5                |
| N11 - S4 - Fei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.41 (4)                | H20A—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| $C_2 = C_1 = C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.6 (4)                | H20B—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| $C_2 = C_1 = C_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.7 (4)                | C1/-C21-H2IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126.4 (4)                | C17—C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C2—C1—Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.2 (2)                 | H21A—C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C5—C1—Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.6 (2)                 | С17—С21—Н21С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C6—C1—Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.5 (3)                | H21A—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.2 (4)                | H21B—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.5 (4)                | С18—С22—Н22А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C3—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128.1 (4)                | C18—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C1-C2-Fe1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.1 (2)                 | H22A—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C3—C2—Fe1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.9 (2)                 | C18—C22—H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C7—C2—Fe1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.7 (3)                | H22A—C22—H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.5 (4)                | H22B—C22—H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |

| C4—C3—C8      | 125.2 (4)  | $F1^{i}$ — $P1$ — $F1$                         | 92.2 (3)             |
|---------------|------------|------------------------------------------------|----------------------|
| C2—C3—C8      | 126.1 (4)  | $F1^{i}$ $P1$ $F2$                             | 179.1 (2)            |
| C4—C3—Fe1     | 71.3 (2)   | F1—P1—F2                                       | 88.70 (19)           |
| C2—C3—Fe1     | 69.5 (2)   | $F1^{i}$ $P1$ $F2^{i}$                         | 88.70 (19)           |
| C8—C3—Fe1     | 128.5 (3)  | $F1 - F2^{i}$                                  | 179.11 (19)          |
| C3—C4—C5      | 108.8 (4)  | $F2$ — $P1$ — $F2^{i}$                         | 90.4 (2)             |
| C3—C4—C9      | 126.0 (4)  | $F1^{i}$ $P1$ $F3$                             | 90.73 (19)           |
| C5-C4-C9      | 125.2 (4)  | F1F3                                           | 89.21 (19)           |
| C3—C4—Fe1     | 70.3 (2)   | F2F3                                           | 89.51 (17)           |
| C5—C4—Fe1     | 68.8 (2)   | $F2^{i}$ P1 F3                                 | 90.56 (17)           |
| C9—C4—Fel     | 128.9(3)   | $F1^{i}$ $P1$ $F3^{i}$                         | 89 21 (19)           |
| C4-C5-C1      | 107.0(4)   | $F1 \longrightarrow P1 \longrightarrow F3^{i}$ | 90 73 (19)           |
| C4-C5-C10     | 127.9 (4)  | $F^2 - F^3$                                    | 90.56 (17)           |
| C1 - C5 - C10 | 124.6 (4)  | $F2^{i}$ $P1$ $F3^{i}$                         | 89 51 (17)           |
| C4-C5-Fel     | 71.8(2)    | $F_{3}$ $P_{1}$ $F_{3}^{i}$                    | 1799(3)              |
| C1-C5-Fe1     | 69 3 (2)   | $F4^{ii}$ P2 F4                                | 179.9(3)<br>178.0(3) |
| C10-C5-Fe1    | 1304(3)    | $F4^{ii}$ P2 $F5^{ii}$                         | 89 5 (2)             |
| C1 - C6 - H6A | 109 5      | $F4 - P2 - F5^{ii}$                            | 91.9(2)              |
| C1—C6—H6B     | 109.5      | $F4^{ii}$ P2 F5                                | 91.9(2)<br>91.9(2)   |
| H6A—C6—H6B    | 109.5      | F4—P2—F5                                       | 89.5 (2)             |
| C1—C6—H6C     | 109.5      | $F5^{ii}$ P2 F5                                | 90.2(3)              |
| Н6А—С6—Н6С    | 109.5      | $F4^{ii}$ P2 $F6^{ii}$                         | 89.2 (2)             |
| H6B—C6—H6C    | 109.5      | $F4 P2 F6^{ii}$                                | 89.4 (2)             |
| C2-C7-H7A     | 109.5      | $F5^{ii}$ $P2$ $F6^{ii}$                       | 90.47 (18)           |
| C2—C7—H7B     | 109.5      | F5F6 <sup>ii</sup>                             | 178 67 (19)          |
| H7A-C7-H7B    | 109.5      | $F4^{ii}$ P2 F6                                | 89.4 (2)             |
| C2-C7-H7C     | 109.5      | F4—P2—F6                                       | 89.2 (2)             |
| H7A-C7-H7C    | 109.5      | $F5^{ii}$ P2 F6                                | 178.66 (19)          |
| H7B-C7-H7C    | 109.5      | F5—P2—F6                                       | 90.47 (18)           |
| C3—C8—H8A     | 109.5      | $F6^{ii}$ P2 F6                                | 88.8 (3)             |
| C3—C8—H8B     | 109.5      |                                                |                      |
|               |            |                                                |                      |
| C5—C1—C2—C3   | 0.0 (5)    | C2—C1—C5—C10                                   | -173.1 (4)           |
| C6—C1—C2—C3   | -174.6 (4) | C6-C1-C5-C10                                   | 1.4 (7)              |
| Fe1—C1—C2—C3  | 61.0 (3)   | Fe1—C1—C5—C10                                  | 125.5 (4)            |
| C5—C1—C2—C7   | 174.4 (4)  | C2—C1—C5—Fe1                                   | 61.4 (3)             |
| C6-C1-C2-C7   | -0.2 (7)   | C6-C1-C5-Fe1                                   | -124.2 (4)           |
| Fe1—C1—C2—C7  | -124.5 (4) | Ni1—S1—C12—C13                                 | -10.7 (4)            |
| C5-C1-C2-Fe1  | -61.0 (3)  | Fe1—S1—C12—C13                                 | -96.8 (4)            |
| C6-C1-C2-Fe1  | 124.4 (4)  | Ni1—S1—C12—C19                                 | 173.1 (3)            |
| C1—C2—C3—C4   | 1.0 (5)    | Fe1—S1—C12—C19                                 | 86.9 (3)             |
| C7—C2—C3—C4   | -173.2 (4) | C19—C12—C13—C20                                | 1.5 (8)              |
| Fe1—C2—C3—C4  | 60.9 (3)   | S1—C12—C13—C20                                 | -174.4 (4)           |
| C1—C2—C3—C8   | 176.8 (4)  | C19—C12—C13—S2                                 | 174.9 (3)            |
| C7—C2—C3—C8   | 2.6 (8)    | S1—C12—C13—S2                                  | -1.0 (5)             |
| Fe1—C2—C3—C8  | -123.3 (5) | C14—S2—C13—C12                                 | 123.5 (4)            |
| C1-C2-C3-Fe1  | -59.9 (3)  | Ni1—S2—C13—C12                                 | 12.2 (4)             |
| C7—C2—C3—Fe1  | 125.9 (5)  | C14—S2—C13—C20                                 | -62.3 (4)            |
|               |            |                                                |                      |

| $C^2$ $C^3$ $C^4$ $C^5$ | -16(5)     | Ni1 S2 C13 C20             | -173.6(3)  |
|-------------------------|------------|----------------------------|------------|
| $C_2 = C_3 = C_4 = C_5$ | 1.0(3)     | $C_{12} = C_{13} = C_{20}$ | 173.0(3)   |
| 18 - 13 - 14 - 15       | -1//.4 (4) | C13 - S2 - C14 - C15       | -1/4.9(3)  |
| Fe1—C3—C4—C5            | 58.2 (3)   | Ni1—S2—C14—C15             | -65.9 (3)  |
| C2—C3—C4—C9             | 175.9 (4)  | S2-C14-C15-C16             | 72.5 (4)   |
| C8—C3—C4—C9             | 0.1 (7)    | C14—C15—C16—S3             | -73.0 (4)  |
| Fe1—C3—C4—C9            | -124.3 (5) | C17—S3—C16—C15             | 177.2 (3)  |
| C2-C3-C4-Fe1            | -59.7 (3)  | Ni1—S3—C16—C15             | 67.5 (3)   |
| C8—C3—C4—Fe1            | 124.4 (5)  | C16—S3—C17—C18             | -122.3 (4) |
| C3—C4—C5—C1             | 1.6 (5)    | Ni1—S3—C17—C18             | -10.4 (4)  |
| C9—C4—C5—C1             | -176.0 (4) | C16—S3—C17—C21             | 60.1 (4)   |
| Fe1-C4-C5-C1            | 60.7 (3)   | Ni1—S3—C17—C21             | 172.0 (3)  |
| C3—C4—C5—C10            | 173.4 (4)  | C21—C17—C18—C22            | 3.9 (7)    |
| C9—C4—C5—C10            | -4.2 (7)   | S3—C17—C18—C22             | -173.4 (3) |
| Fe1-C4-C5-C10           | -127.5 (5) | C21—C17—C18—S4             | 178.1 (4)  |
| C3-C4-C5-Fe1            | -59.1 (3)  | S3—C17—C18—S4              | 0.8 (5)    |
| C9-C4-C5-Fe1            | 123.3 (4)  | Ni1—S4—C18—C17             | 9.1 (4)    |
| C2-C1-C5-C4             | -1.0 (5)   | Fe1—S4—C18—C17             | 95.5 (4)   |
| C6—C1—C5—C4             | 173.5 (4)  | Ni1—S4—C18—C22             | -176.3 (3) |
| Fe1—C1—C5—C4            | -62.3 (3)  | Fe1—S4—C18—C22             | -89.9 (3)  |
|                         |            |                            |            |

Symmetry codes: (i) -*x*+2, *y*, -*z*+3/2; (ii) -*x*+1, *y*, -*z*+3/2.