

Received 23 July 2018 Accepted 15 August 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; resonance-assisted hydrogen bonds; refinement constraints; 2-hydroxy-3,5-dinitrobenzoic acid; 2-hydroxy-3,5dinitrobenzoate; 2-carboxy-4,6-dinitrophenolate; 3,5-dinitro-2-oxidobenzoate.

CCDC references: 1063245; 1862187; 1862188; 1862189; 1862190; 1862191; 1862192; 1862193; 1862194; 1862195; 1862196; 1862197; 1862198

Supporting information: this article has supporting information at journals.iucr.org/e

A resonance-assisted intramolecular hydrogen bond in compounds containing 2-hydroxy-3,5-dinitrobenzoic acid and its various deprotonated forms: redetermination of several related structures

Jan Fábry*

Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic. *Correspondence e-mail: fabry@fzu.cz

A large number of structural determinations of compounds containing 2-hydroxy-3,5-dinitrobenzoic acid (I) and its various deprotonated forms, 2-hydroxy-3,5-dinitrobenzoate (II) or 2-carboxy-4,6-dinitrophenolate (III), are biased. The reason for the bias follows from incorrectly applied constraints or restraints on the *bridging hydrogen*, which is involved in the intramolecular hydrogen bond between the neighbouring carboxylic/carboxylate and oxo/ hydroxy groups. This hydrogen bond belongs to the category of resonanceassisted hydrogen bonds. The present article suggests corrections for the following structure determinations that have been published in Acta Crystallographica: DUJZAK, JEVNAA, LUDFUL, NUQVEB, QIQJAD, SAFGUD, SEDKET, TIYZIM, TUJPEV, VABZIJ, WADXOR, YAXPOE [refcodes are taken from the Cambridge Structural Database [CSD; Groom et al. (2016). Acta Cryst. B72, 171-179]. The structural features of the title molecules in all the retrieved structures, together with structures that contain 3,5-dinitro-2oxidobenzoate (IV), are discussed. Attention is paid to the localization of the above-mentioned bridging hydrogen, which can be situated closer to the O atom of the carboxylate/carboxylic group or that of the hydroxy/oxo group. In some cases, it is disordered between the two O atoms. The position of the bridging hydrogen seems to be dependent on the pK_a (base) although with exceptions. A stronger basicity enhances the probability of the presence of a phenolate (III). The present article examines the problem of the refinement of such a *bridging* hydrogen as well as that of the hydrogen atoms involved in the hydroxy and primary and secondary amine groups. It appears that the best model, in many cases, is obtained by fixing the hydrogen-atom position found in the difference electron-density map while refining its isotropic displacement parameter.

OPEN d ACCESS

1. Chemical context

2-Hydroxy-3,5-dinitrobenzoic acid (I; alternatively 3,5-dinitrosalicylic acid, DNSA), 2-hydroxy-3,5-dinitrobenzoate (II; alternatively 3,5-dinitrosalicylate), 2-carboxy-4,6-dinitrophenolate (III) and 3,5-dinitro-2-oxidobenzoate (IV), are molecules that have interesting structural and chemical features. Such molecules have been studied because of the proton transfer from the carboxylic group, which is dependent on its environment (*e.g.* Smith *et al.*, 2007). Thus, three deprotonated forms of molecule I have been observed. The last one, IV, is deprived of all of the hydrogen atoms while the others differ in the localization of the hydrogen atom involved in the intramolecular hydrogen bond between the O atoms of the carboxylate/carboxylic and the hydroxy/oxo groups. In the different structures, this hydrogen atom may be closer to either oxygen atom, depending on the properties of each particular structure. In some cases, this hydrogen atom may even be disordered. In the following, it will be referred to as a *bridging hydrogen*.

Such a bridging hydrogen is a part of a resonance-assisted moiety (Gilli & Gilli, 2009) composed of six atoms with the pertinent bonds being D1, D2, D3, D4, D11 and D12, as shown in Fig. 1a. However, the delocalized bonds can be further extended within the molecule, especially to the C=O/C-OH bond (D1/D5 in Fig. 1a). Resonance-assisted hydrogen bonds tend to be stronger and therefore the bridging hydrogen should be displaced towards the hydrogen-bond centre. On the other hand, $O \cdots H \cdots O$ hydrogen bonds with a *bridging* hydrogen that is situated about its centre are usually observed for strong intramolecular hydrogen bonds with the O···O distances being shorter than 2.5 Å (Gilli & Gilli, 2009), while the $O \cdots H \cdots O$ angles tend to be close to 180° (Jeffrey, 1995). The O_{carboxylate/carboxylicgroup}····O_{hydroxy/oxo group} distance can be as short as 2.41 Å in some 2-hydroxy-3,5-dinitrobenzoates (II) or 2-carboxy-4,6-dinitrophenolates (III); however, the $O \cdots H \cdots O$ angle, which is *ca* 160°, situates it in a category of its own.

The above-mentioned features of the intramolecular $O \cdots H \cdots O$ hydrogen bond in the molecules considered herein have been ignored on many occasions by incorrectly applied constraints or severe restraints on the O–H distances, 0.82 or 0.84 Å, together with angle constraints/restraints equal to 109° as proposed by *SHELXL* (Sheldrick, 2008, 2015).

A robust indication whether the *bridging hydrogen* has been positioned correctly follows from the bond distances C=O/C-O of the involved carboxylate/carboxylic and hydroxyl/oxo groups, although there are a few exceptions in which the *bridging hydrogen* is attached to the oxygen forming a slightly shorter C–O distance. These exceptions will be mentioned briefly below. Thus, it seems that a considerable number of the structures containing the molecules **I–IV** could have been determined more correctly with a more realistic description of the pertinent hydrogen bond in these molecular fragments.

A search of the Cambridge Structural Database (CSD, Version 3.58, last update May 2017; Groom *et al.*, 2016) indicated that 27 structures out of 53 reported as 2-hydroxy-3,5-dinitrobenzoates (**II**) seem to be suspect; 21 structures out of 70 reported as 2-carboxy-4,6-dinitrophenolates (**III**) seem to be suspect, and nine structures out of 15 that contain a molecule of 2-hydroxy-3,5-dinitrobenzoic acid (**I**) also appear to be suspect. Figs. 2*a* and 2*b* illustrate this situation for 2-hydroxy-3,5-dinitrobenzoates (**III**) and 2-carboxy-4,6-dinitrophenolates (**III**), respectively.

It is plausible to expect that the environment affects the position of the *bridging hydrogen*. Therefore, it can be assumed that the proton transfer stemming from the carboxyl group will affect its position.

The data for the suspect structures published in *Acta Crystallographica* were retrieved from the journal's web page

ANG1 - dihedral angle between plane of NO₂ group (D14) and the benzene ring ANG2 - dihedral angle between plane of NO₂ group (D15) and the benzene ring

Figure 1 Definition of bonds and various angles in I–IV.

Table 1Experimental details.

	DUJZAK	JEVNAA	LUDFUL	NUQVEB
Crystal data				
Chemical formula	$[Ag(C_0H_7NO)_2](C_7H_3N_2O_7)$	$[Zn(C_{3}H_{4}N_{2})_{4}](C_{7}H_{3}N_{2}O_{7})_{2}$	$C_7H_4N_2O_7 \cdot C_{12}H_8N_2$	$C_6H_9N_2^+ \cdot C_7H_3N_2O_7^-$
M_r	625.30	791.93	408.33	336.27
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $C2/c$	Monoclinic, $P2_1/a$	Triclinic, $P\overline{1}$
Temperature (K)	293	293	293	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.0154 (18), 7.6122 (15), 17.138 (3)	25.0809 (15), 6.7251 (4), 18.9145 (10)	14.8002 (15), 7.4029 (16), 16.0091 (16)	5.8673 (7), 8.0991 (9), 15.2437 (17)
$lpha,eta,\gamma(^\circ)$	90, 104.38 (3), 90	90, 97.658 (6), 90	90, 96.395 (8), 90	86.844 (3), 84.252 (3), 81.209 (3)
$V(Å^3)$	1139.3 (4)	3161.9 (3)	1743.1 (5)	711.69 (14)
Z	2	4	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.95	0.87	0.12	0.13
Crystal size (mm)	$0.20\times0.15\times0.11$	$0.20 \times 0.18 \times 0.10$	$0.36 \times 0.34 \times 0.26$	$0.29\times0.14\times0.08$
Data collection				
Diffractometer	Bruker SMART CCD area- detector	Bruker APEXII area-detector	Enraf-Nonius CAD-4	Bruker APEX DUO CCD area-detector
Absorption correction	-	Multi-scan (<i>SADABS</i> ; Bruker, 1999)	-	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	_	0.846, 0.918	_	0.963, 0.990
No. of measured, independent and observed $[I > 3\sigma(I)]$ reflections	10841, 4602, 4225	20634, 3635, 2152	8396, 4202, 1587	12709, 4943, 3677
Rint	0.022	0.058	0.056	0.023
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.651	0.651	0.661	0.756
Refinement				
R factors and goodness of fit	$R[F > 3\sigma(F)] = 0.023,$ wR(F) = 0.053, S = 1.34	$R[F > 3\sigma(F)] = 0.036,$ wR(F) = 0.075, S = 1.23	$R[F > 3\sigma(F)] = 0.044,$ wR(F) = 0.083, S = 1.08	$R[F > 3\sigma(F)] = 0.042,$ wR(F) = 0.109, S = 2.06
No. of reflections	4602	3635	4202	4943
No. of parameters	356	244	274	222
No. of restraints	0	0	0	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.44, -0.30	0.23, -0.23	0.29, -0.31	0.40, -0.32
Absolute structure	1800 of Friedel pairs used in the refinement	=	=	=
Absolute structure parameter	0.004 (17)	_	_	-

	QIQJAD	SAFGUD	SEDKET	TIYZIM
Crystal data				
Chemical formula	$C_9H_8Cl_2N_5^+ \cdot C_7H_3N_2O_7^ C_3H_7NO$	$[Ag(C_{12}H_6N_2O_2)](C_7H_3N_2O_7)$	$C_5H_9N_2^+ \cdot C_7H_3N_2O_7^-$	$C_6H_{12}N_3^+ \cdot C_7H_3N_2O_7^-$
M _r	557.31	755.36	324.26	353.30
Crystal system, space group	Triclinic, P1	Monoclinic, $P2_1/c$	Monoclinic, $P2_1$	Triclinic, $P\overline{1}$
Temperature (K)	294	174	293	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.0227 (5), 10.5507 (5), 12.5359 (6)	11.757 (2), 18.297 (4), 13.223 (3)	8.1183 (7), 6.0636 (5), 14.1453 (11)	7.0109 (4), 10.6617 (8), 10.7454 (7)
$lpha,eta,\gamma(^\circ)$	81.858 (1), 71.888 (1), 70.009 (1)	90, 103.91 (3), 90	90, 91.904 (1), 90	93.075 (6), 95.863 (5), 104.944 (6)
$V(Å^3)$	1183.1 (1)	2761.1 (11)	695.93 (10)	769.30 (9)
Z	2	4	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Cu Ka
$\mu \text{ (mm}^{-1})$	0.34	0.81	0.13	1.09
Crystal size (mm)	$0.16 \times 0.14 \times 0.08$	$0.3 \times 0.24 \times 0.2$	$0.40\times0.27\times0.11$	$0.22 \times 0.14 \times 0.12$
Data collection				
Diffractometer	Bruker SMART APEX CCD area-detector	Oxford Diffraction Gemini R Ultra	Bruker SMART CCD	Agilent Xcalibur (Eos, Gemini)
Absorption correction	Multi-scan (SADABS; Bruker, 2001)	Multi-scan (SADABS; Bruker, 2002)	Multi-scan (SADABS; Bruker, 2002)	Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012)
T_{\min}, T_{\max}	0.93, 0.97	0.780, 0.910	0.959, 0.986	0.925, 1.000
No. of measured, independent and observed $[I > 3\sigma(I)]$ reflections	13936, 5507, 4441	12726, 5013, 3100	3523, 2301, 1444	4664, 2953, 2426

OIOJAD SAFGUD SEDKET TIYZIM 0.040 0.019 0.052 0.026 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.661 0.603 0.595 0.618 Refinement $R[F > 3\sigma(F)] = 0.041,$ R factors and goodness of fit $R[F > 3\sigma(F)] = 0.056,$ $R[F > 3\sigma(F)] = 0.062,$ $R[F > 3\sigma(F)] = 0.041,$ wR(F) = 0.147, S = 3.41wR(F) = 0.118, S = 1.64wR(F) = 0.088, S = 1.16wR(F) = 0.100, S = 1.645507 No. of reflections 5013 2301 2953 No. of parameters 340 444 212 229 0 0 No. of restraints 0 0 H-atom treatment H atoms treated by a H-atom parameters H atoms treated by a H atoms treated by a mixture of independent and mixture of independent and mixture of independent constrained constrained refinement constrained refinement and constrained refinement 0.21, -0.18 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.80, -0.360.76, -0.630.11 - 0.10Absolute structure 955 Friedel pairs used in the refinement 0.5 Absolute structure parameter TUJPEV (VABZIJ) WADXOR YAXPOF Crystal data Chemical formula $C_{10}H_{12}N_3O_3S^+ \cdot C_7H_3N_2O_7^ C_8H_{13}N_2O^+ \cdot C_7H_3N_2O_7^- \cdot H_2O_7$ $C_9H_{17}N_2^+ \cdot C_7H_3N_2O_7^ C_{26}H_{29}N_2^+ \cdot C_7H_3N_2O_7^-$ М 481 41 398 33 380 35 596.63 Crystal system, space group Triclinic, $P\overline{1}$ Triclinic, P1 Monoclinic, P21/n Monoclinic, P21/c Temperature (K) 296 100 200 200 6.6691 (3), 11.3831 (4), a, b, c (Å) 8.5551 (1), 10.5000 (2), 6.1537 (3), 19.1541 (14), 14.5648 (3), 12.9374 (3), 12.2900 (5) 16.1619 (3) 12.7576 (3) 14.5527 (11) 106.463 (1), 100.913 (1), 89.727 (2), 76.771 (2), 90, 98.343 (6), 90 90, 103,900 (1), 90 *α*, *β*, *γ* (°) 108.272 (1) 76.930(2) $V(Å^3)$ 993.72 (3) 883.62 (6) 1697.2 (2) 2956.22 (11) Z 2 2 4 4 Radiation type Μο Κα Μο Κα Μο Κα Μο Κα μ (mm⁻¹) 0.23 0.13 0.10 0.12 Crystal size (mm) $0.20 \times 0.20 \times 0.16$ $0.52 \times 0.13 \times 0.10$ $0.30 \times 0.13 \times 0.10$ $0.51\times0.26\times0.17$ Data collection Diffractometer Bruker Kappa APEXII CCD Bruker SMART APEXII Oxford Diffraction Gemini-S Bruker APEXII CCD CCD area-detector CCD-detector Multi-scan (SADABS; Multi-scan (SADABS; Multi-scan (CrysAlis PRO; Multi-scan (SADABS; Absorption correction Bruker, 2004) Bruker, 2009) Agilent, 2014) Bruker, 2008) 0.955, 0.964 0.937, 0.987 0.920, 0.990 T_{\min}, T_{\max} 0.932. 1.000 29552, 7344, 5724 No. of measured, independent 24261, 6717, 4398 17014, 4061, 3042 7800, 3339, 1976 and observed $[I > 3\sigma(I)]$ reflections 0.030 0.030 0.034 0.015 $R_{\rm int}$ $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.758 0.650 0.617 0.667 Refinement $R[F^2 > 2\sigma(F^2)] = 0.046,$ R factors and goodness of fit $R[F > 3\sigma(F)] = 0.044,$ $R[F > 3\sigma(F)] = 0.038,$ $R[F > 3\sigma(F)] = 0.054,$ wR(F) = 0.104, S = 1.95wR(F) = 0.086, S = 1.77 $wR(F^2) = 0.095, S = 1.33$ wR(F) = 0.190, S = 1.80No. of reflections 6717 4061 3339 7344 258 268 399 No. of parameters 301 0 No. of restraints 0 2 0 H-atom treatment H atoms treated by a mixture of independent and mixture of independent and mixture of independent and mixture of independent constrained refinement constrained refinement constrained refinement and constrained refinement 0.63, -0.28 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å⁻³) 0.31, -0.350.46, -0.230.36. -0.24Absolute structure _ Absolute structure parameter _

and recalculated. Tables 1 and 2 contain an overview of those structures, which were successfully redetermined. In the following, these structures are referred to by their CSD refcodes; for the pertinent chemical names, see Table 2.

Notably, JEVNAA turns out not to be a substituted benzoate but a phenolate. NUQVEB though reported as a substituted benzoate turns out to be present in a disordered benzoate and a phenolate form. QIQJAD though reported as a disordered benzoate and a phenolate turns out to be a substituted benzoate. SAFGUD was reported as a substituted benzoate but turns out to be a phenolate. WADXOR was reported as a substituted benzoate that is disordered over two positions but it turns out to be present both in a dominant benzoate as well as in a minor phenolate form. Finally,

Table 1 (continued)

REFCODE	Chemical name original/corrected if necessary
	Dis(quinglin 8 allailuar(I) 2 hudrony 25 dinitrahangaata
JEVNAA ^b	Bis(quinoini-a-or)shver(1) 2-hydroxy-3,5-dnihtobenzoate Tetrakis(1H-imidazole-N ³)zinc(II) bis(2-hydroxy-3,5-dnihto- benzoate / tetrakis(1H-imidazole-N ³)zinc(II) bis(2-carb- oxy-4.6-dinitrophenolate)
LUDFUL ^c	1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-di- nitrobenzoate / phenazine 2-hydroxy-3,5-dinitrobenzoic acid
NUQVEB ^d	2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate) / 2-amino-5-methylpyridinium 2-hydroxy-3,5-dinitro- benzoate) (0.38) / 2-amino-5-methylpyridinium 2-carboxy- 4,6-dinitrophenolate (0.62)
QIQJAD ^e	 S-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5- dinitro-2-hydroxybenzoate N,N-dimethylformamide solvate / 3,5-dinitro-2-hydroxybenzoate (0.55) 2-carboxy- 4,6-dinitrophenolate (0.45) N,N-dimethylformamide monosolvate / 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4- triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-di- methylformamide monosolvate
SAFGUD ^f	Bis(1,10-phenanthroline-5,6-dione-2 <i>N</i> , <i>N</i> ')silver(I) 2-hydroxy- 3,5-dinitrobenzoate / bis(1,10-phenanthroline-5,6-dione- 2 <i>N</i> , <i>N</i> ')silver(I) 2-carboxy-4 6-dinitrophenolate
SEDKET ^g	3,5-Dimethylpyrazolium 2-carboxy-4,6-dinitrobenolate / 3,5-dimethylpyrazolium 2-hydroxy-3,5-dinitrobenzoate
TIYZI <i>M^h</i>	3-(1 <i>H</i> -Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitro- phenolate
TUJPEV ⁱ	4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium 3,5-di- nitrosalicylate
VABZIJ ^{<i>j</i>}	2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolatemonohydrate
WADXO <i>R^k</i>	1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-di- nitrobenzoate / 2,3,4,6,7,8,9,10-octahydropyrimido[1,2- <i>a</i>] azepin-1-ium 2-hydroxy-3,5-dinitrobenzoate (0.73) / 2,3,4,6,7,8,9,10-octahydropyrimido[1,2- <i>a</i>]azepin-1-ium 2-carboxy-4,6-2-carboxy-4,6-dinitrophenolate (0.37)
YAXPOE ^l	4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1- ium 2-carboxy-4.6-dinitrophenolate

Notes: (a) Zhang & Jian (2009); (b) Huang et al. (2007); (c) Senthil Kumar et al. (2002); (d) Hemamalini & Fun (2010a); (e) Sridhar et al. (2013); (f) Wang et al. (2012); (g) Wei et al. (2012); (h) Yamuna et al. (2014); (i) Malathy et al. (2015); (j) Hemamalini & Fun (2010b); (k) Smith & Lynch (2016); (l) Dayananda et al. (2012).

SEDKET was originally determined as a substituted phenolate but it turns out to be a benzoate.

Some of the retrieved structures were difficult or impossible to recalculate with sufficient accuracy: HILPOI (trimethoprimium 3,5-dinitrosalicylate; Subashini *et al.*, 2007) because of an abnormally low proportion of observed reflections (moreover the *bridging hydrogen* H6*a* is situated out of the plane between the carboxylate and hydroxy oxygen atoms, which seems to indicate an error) and VUZNEK (3,4-diaminopyridinium 2-carboxy-4,6-dinitrophenolate; Hemamalini & Fun, 2010*b*) because of the disorder present in the structure.

2. Refinement of the title structures

For each structure, two methods have been applied for the refinement of the hydrogen atoms involved in hydrogen bonding. In *Method 1*, the positions of the *bridging hydrogens* as well as those of the hydroxy, primary and secondary amine and ammonium hydrogen atoms were fixed after their localization in the difference electron-density maps while their

displacement parameters were refined. In *Method 2*, the positional parameters of the latter hydrogen atoms were refined while their displacement parameters were constrained in the usual manner: $U_{iso}(H) = 1.2U_{eq}(N_{amine})$ or $U_{iso}(H) = 1.5U_{eq}(O_{hydroxy})$ or $U_{iso}(H) = 1.5U_{eq}(N_{ammonium})$.

The appropriate sections of the difference electron-density maps of the title structures (see supplementary Fig. S1) show regions with the hydroxy, amine and ammonium hydrogen atoms. These sections comprise the maps that were obtained after the refinement of the models without the pertinent hydrogen atoms as well as the maps that were calculated by either refinement method. It can be seen from the supplementary Fig. S1 that one of the reasons that hinders the correct localization of the hydrogen atoms involved in the hydrogen bonds is an apparent non-spherical electron density of the donor and acceptor atoms. Thus, hydrogen-atom localization by X-ray diffraction is hindered not only by its weak scattering power, but also by the polarization of its electron density resulting from the proximity of the acceptor and by the asphericity of the electron density of the donor and acceptor atoms. Therefore, refinement Method 1 was given preference. The hydrogen bonds in the title structures are listed in Table 3, which shows that there might be quite a large difference between the results with the fixed and the refined positional parameters of such hydrogen atoms. In the following, a detailed description of the refinement of the recalculated structures is given:

DUJZAK (Zhang & Jian, 2009): $C-H_{aryl}$ were constrained to be equal to 0.93 Å while $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$. The position of the *bridging hydrogen* H3*b* as well as those of the hydroxy hydrogen atoms H1*aa* and H2*aa* were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

JEVNAA (Huang *et al.*, 2007): C-H_{aryl} were constrained to be equal to 0.93 Å while $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$. The position of the *bridging hydrogen* H1*a* as well as those of the secondary amine hydrogen atoms H2*a* and H4*a* were located in the difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

LUDFUL (Senthil Kumar *et al.*, 2002): $C-H_{aryl}$ were constrained to be equal to 0.93 Å while $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$. The position of the *bridging hydrogen* H3*a* as well as that of the hydroxy hydrogen atom H1*a* were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

NUQVEB (Hemamalini & Fun, 2010*a*): The subroutine *TwinRotMax* of *PLATON* (Spek, 2009) indicated non-merohedral twinning: h2 = -h1; k2 = -k1; l2 = -0.488 h1 - 0.153k1 + l1. The refinement was carried out on the non-overlapped reflections only. The refined value of the second domain fraction converged to the value -0.0006 (4). Therefore the value of the second domain fraction was set to 0 and was not refined further. C-H_{aryl} and C-H_{methyl} were constrained to be equal to 0.95 and 0.98 Å, respectively. $U_{iso}(H_{aryl}) =$

166.48 (15) 165 (4)	$N3a - H3ab \cdots O3b^{ix}$	0.901 (1)	2.072 (1)
103(4) 155.88(12)		0.91	2.06
155.00(12) 160(3)	$N3a - H3ac \cdots O1b^x$	0.893 (1)	2.061 (1)
100 (3)		0.91	2.03
	$N3a - H3ac \cdot \cdot \cdot O7b^x$	0.893 (1)	2.484 (1)
160.4(1)		0.91	2.46
160.4(1)			
165.9(1)	TUJPEV		
169(2)	$O6-H6a\cdots O5$	1.184 (1)	1.295 (1)
109(2) 1506(1)		1.24 (2)	1.21 (2)
150.0(1) 165(2)	$N1-H1a\cdots O6^{xi}$	1.002(1)	2.068 (1)
105 (2)		0.89	2.24
	$N1-H1b\cdots N3^{v}$	0.793 (1)	2.292 (1)
151.7(1)		0.89	2.20
151.7(1) 156(2)	$N1-H1c\cdots O4^{v}$	0.832 (2)	1.831 (1)
150(2) 163.2(1)		0.89	1.77
105.2(1)	$N2-H2a\cdots O5$	0.970(1)	1.844 (1)
100 (2)		0.827 (17)	1.986 (16)
161 55 (6)	VABZIJ		
101.55(0) 163(2)	$N3-H1n3\cdots O6^{x}$	0.973 (1)	1.754 (1)
103(2) 163 52(6)		0.91 (1)	1.823 (14)
103.32(0) 163(2)	$N4-H1n4\cdotsO1w$	0.909(1)	1.840(1)
103(2) 172.84(6)		0.91 (2)	1.833 (15)
172.04(0) 176.5(12)	$O1w - H2w1 \cdots O1^{xii}$	0.917 (1)	1.890(1)
170.3(12) 138.40(6)		0.82 (2)	1.995 (19)
136.40(0) 127.2(11)	$O1w-H1w1-O3^{iii}$	0.915(1)	2.040(1)
157.5 (11)		0.89 (2)	2.064 (18)
150.02(0) 150.2(11)	$O7-H7\cdots O1$	1.019(1)	1.433 (1)
130.3(11) 174.92(6)		0.96 (2)	1.505 (16)
1/4.85(0) 172.2(12)			
1/5.5 (15)	WADXOR		
	$N8a - H8a \cdots O11b$	0.960(2)	1.933 (2)
1749(1)		0.91 (2)	1.96 (2)
1/4.0(1) 175(2)	$O11b - H21b \cdots O21b$	1.145 (2)	1.303 (6)
1/3(3) 1760(1)		1.07 (9)	1.48 (9)
170.9(1)	$O2b - H2b \cdots O12b$	1.103 (2)	1.385 (2)
1/3(3) 1775(1)		0.91 (3)	1.61 (3)
1/1.3(1) 171(2)		. ,	
1/1(2)	YAXPOE		
	$\begin{array}{c} 166.48 \ (15) \\ 165 \ (4) \\ 155.88 \ (12) \\ 160 \ (3) \\ \end{array}$ $\begin{array}{c} 160.4 \ (1) \\ 160 \ (2) \\ 165.9 \ (1) \\ 169 \ (2) \\ 150.6 \ (1) \\ 165 \ (2) \\ \end{array}$ $\begin{array}{c} 151.7 \ (1) \\ 156 \ (2) \\ 163.2 \ (1) \\ 166 \ (2) \\ \end{array}$ $\begin{array}{c} 161.55 \ (6) \\ 163 \ (2) \\ 163.2 \ (1) \\ 166 \ (2) \\ \end{array}$ $\begin{array}{c} 161.55 \ (6) \\ 163 \ (2) \\ 163.2 \ (1) \\ 166 \ (2) \\ \end{array}$ $\begin{array}{c} 161.55 \ (6) \\ 163 \ (2) \\ 172.84 \ (6) \\ 177.284 \ (6) \\ 177.3 \ (1) \\ 174.83 \ (6) \\ 173.3 \ (13) \\ \end{array}$ $\begin{array}{c} 174.8 \ (1) \\ 175 \ (3) \\ 177.5 \ (1) \\ 171 \ (2) \\ 171 \ (2) \\ 171 \ (2) \\ 171 \ (2) \\ \end{array}$	166.48 (15) $N3a - H3ab \cdots O3b^{ix}$ 165 (4) $N3a - H3ac \cdots O1b^x$ 155.88 (12) $N3a - H3ac \cdots O1b^x$ 160 (3) $N3a - H3ac \cdots O1b^x$ 160 (3) $N3a - H3ac \cdots O1b^x$ 160 (4 (1) 160 (2) 160 (2) TUJPEV 165.9 (1) $O6 - H6a \cdots O5$ 169 (2) $O6 - H6a \cdots O5$ 150.6 (1) $N1 - H1a \cdots O6^{xi}$ 165 (2) $N1 - H1c \cdots O4^v$ 156 (2) $N2 - H2a \cdots O5$ 166 (2) $VABZIJ$ 163.2 (1) $N2 - H2a \cdots O5$ 163 (2) $N4 - H1n4 \cdots O1w$ 172.84 (6) $O1w - H2w1 \cdots O1^{xii}$ 172.84 (6) $O1w - H1w1 - O3^{iii}$ 173.3 (11) $O7 - H7 \cdots O1$ 174.83 (6) $N3a - H8a \cdots O11b$ 174.83 (6) $O1b - H2b \cdots O21b$ 175 (3) $O11b - H21b \cdots O21b$ 176.9 (1) $O2b - H2b \cdots O12b$ 177.5 (1) $O17 - H7 \cdots O1$	166.48 (15) $N3a - H3ab \cdots O3b^{ix}$ $0.901 (1)$ 165 (4) 0.91 155.88 (12) $N3a - H3ac \cdots O1b^x$ $0.893 (1)$ 160 (3) $N3a - H3ac \cdots O1b^x$ $0.893 (1)$ 0.91 0.91 0.91 $N3a - H3ac \cdots O7b^x$ $0.893 (1)$ 0.91 $160.4 (1)$ 0.91 0.91 $160.4 (1)$ 0.91 0.91 $160.4 (1)$ 0.91 0.91 $160.4 (1)$ 0.91 0.91 160.2 TUJPEV $0.893 (1)$ $165 (2)$ $06 - H6a \cdots O5$ $1.184 (1)$ $155 (2)$ $N1 - H1a \cdots O6^{xi}$ $1.002 (1)$ $155 (2)$ $N1 - H1c \cdots O4^x$ $0.832 (2)$ $163 (2)$ $N2 - H2a \cdots O5$ $0.970 (1)$ $163 (2)$ $N3 - H1a3 \cdots O6^x$ $0.973 (1)$ $163 (2)$ $N4 - H1n4 \cdots O1w$ $0.909 (1)$ $163 (2)$ $0.91 (2)$ $0.91 (2)$ $172.84 (6)$ $01w - H2w1 \cdots O1^{xii}$ $0.917 (1)$ $173.3 (11)$ $07 - H7 \cdots O1$ $1.019 (1)$ $174.8 (1)$ $07 - H7 \cdots O1$

 $N1\!-\!H71\!\cdots\!O1^{iv}$

 $N1\!-\!H71\!\cdots\!O2^{iv}$

O7−H7···O1

Table 3 (continued)

D-H

0.982(1)

1.02 (2)

0.904(1)

0.901(1)

0.901(1)

0.91

0.91

0.91

 $D - H \cdot \cdot \cdot A$

TIYZIM

 $O2b - H2b \cdots O1b$

 $N3a - H3aa \cdot \cdot \cdot N1aa^{viii}$

 $N3a - H3ab \cdots O2b^{ix}$

N3a-H3ab···O2 b^{ix}

 $D \cdot \cdot \cdot A$

2.4473 (16)

2.4476 (16)

2.797 (2)

2.797 (2)

3.1297 (17)

3.1298 (17)

3.1297 (17)

3.1297 (18)

2.9537 (17) 2.9542 (17)

2.815 (2)

2.815 (2)

2.9712 (19)

2.9706 (19)

2.4268 (16)

2.4280 (17)

3.0655 (17)

3.0694 (17)

3.0393 (15)

3.0382 (15)

2.7852 (15) 2.7900 (16)

2.7182 (14)

2.7214 (14) 2.7348 (15)

2.7323 (16)

2.7886 (14)

2.7906 (15)

2.9352 (14)

2.9357 (15)

2.4340 (13) 2.4358 (13)

2.864(2)

2.869 (2)

2.433 (6)

2.430 (6)

2.471 (2)

2.475 (3)

2.813 (2)

2.812(2)

3.032(2)

3.034 (2)

2.505 (2)

2.504 (2)

2.663 (2)

2.660 (2)

 $D - H \cdot \cdot \cdot A$

156.3 (1)

159.6 (1)

121.4 (1)

121.4 (1)

141.5 (1)

114.7 (1)

156.58 (6)

165.3 (14)

173.55 (7)

157.3 (1)

177.1 (1)

164.0 (18)

170.48 (8) 170.8 (15)

167.76 (8)

172.0 (15)

166.21 (6)

162.7 (16)

165.84 (7)

168.0 (17) 165.94 (7)

162.0 (16)

162.83 (11)

174.1 (17)

167.3 (3)

166.81 (13)

150.01 (8) 154.0 (19)

133.62 (8)

131.8 (17)

148.96 (9)

142 (2)

145 (7)

159 (3)

156 (2)

162

120

120 165.8 (1)

165

144

116

155

157

175 162.64 (9)

 $H \cdot \cdot \cdot A$

1.516(1)

1.48 (2)

1.932 (1)

2.565(1)

2.565 (1)

1.92

2.58

2 58

Table 3

Hydrogen bonds (Å, $^{\circ}$) in the redetermined structures.

The upper entries for each hydrogen bond refer to refinement Method 1: fixed hydrogen-atom positions, which were obtained from the difference electrondensity maps, and refined displacement parameters. The lower entries refer to refinement Method 2: refined hydrogen-atom positions and constrained displacement parameters.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
DIIIZAK				
$01 - H1aa \cdots 08$	0.759(2)	1.859 (2)	2,606 (3)	167.96 (14)
01 11100 00	0.97(4)	1.64 (4)	2.603 (3)	175 (3)
$O2-H2aa\cdots O9$	0.922 (2)	1.727 (2)	2.631 (3)	166.48 (15)
	0.75 (4)	1.90 (4)	2.636 (3)	165 (4)
$O3-H3b\cdots O9$	1.040 (2)	1.495 (2)	2.481 (3)	155.88 (12)
	1.11 (4)	1.41 (4)	2.480 (3)	160 (3)
JEVNAA O2 H1a O1	1.020(2)	1 406 (2)	2 408 (2)	160.4.(1)
$02-\Pi u \cdots 01$	1.039(2)	1.490(2)	2.498(2)	100.4(1) 160(2)
N2 H_{2a} O3	0.09(2)	1.03(3) 1.800(2)	2.303(2)	100(2) 165.0(1)
$112 - 112a \cdots 05$	0.907(2)	2.02(2)	2.838(3)	105.9(1) 169(2)
$N4 - H4a \cdots O1^{i}$	0.04(2)	1.02(2)	2.043(3)	150.6(1)
	0.86 (2)	1.95 (2)	2.792 (2)	165 (2)
		. /	. ,	. /
LUDFUL	4 0 50 (4)			
$O3-H3a\cdots O2$	1.059 (1)	1.530(1)	2.513 (2)	151.7 (1)
01 111 112	1.06 (2)	1.51 (2)	2.516 (2)	156 (2)
$OI-HIa\cdots N3$	1.163(1)	1.416 (1)	2.552 (2)	163.2(1)
	1.14 (2)	1.44 (2)	2.552 (2)	166 (2)
NUQVEB				
O7−H1 <i>o</i> 7···O1	0.919(1)	1.531 (1)	2.4202 (12)	161.55 (6)
	1.14 (2)	1.31 (2)	2.4178 (12)	163 (2)
O1−H1 <i>o</i> 1···O7	0.931 (1)	1.513 (1)	2.4202 (12)	163.52 (6)
	1.31 (2)	1.14 (2)	2.4178 (12)	163 (2)
$N2-H2a\cdots O7^n$	0.892 (1)	2.079 (1)	2.9655 (14)	172.84 (6)
	0.87 (1)	2.095 (14)	2.9674 (14)	176.5 (12)
$N2-H2b\cdots O1^{m}$	0.846 (1)	2.165 (1)	2.8526 (14)	138.40 (6)
	0.88 (2)	2.146 (14)	2.852 (1)	137.3 (11)
$N2-H2b\cdots O2^{m}$	0.846 (1)	2.413 (1)	3.1741 (14)	150.02 (6)
NA DA OVI	0.88 (2)	2.384 (14)	3.1736 (15)	150.3 (11)
$N1 - H1 \cdots O6^{n}$	0.898(1)	1.783 (1)	2.6781 (13)	174.83 (6)
	0.90(1)	1.764 (14)	2.0775 (14)	1/5.5 (15)
QIQJAD				
$N3-H3n \cdot \cdot \cdot O2$	0.862 (2)	1.994 (2)	2.854 (2)	174.8 (1)
	0.81 (3)	2.05 (3)	2.854 (3)	175 (3)
$N3-H4n\cdots O8^{iv}$	0.863 (2)	2.059 (1)	2.921 (2)	176.9 (1)
	0.85 (2)	2.07 (2)	2.920 (2)	173 (3)
$N2-H2n\cdots O1$	0.897 (2)	1.831 (2)	2.728 (2)	177.5 (1)
NIG 115 NI (V	0.81 (3)	1.93 (3)	2.731 (2)	171 (2)
$N5-H5n\cdots N4^{\circ}$	0.866(1)	2.141 (1)	2.9992 (19)	1/1.1(1)
N5 UC OOVI	0.84(2)	2.17(2)	2.999 (2)	1/1(2)
$N_3 - \Pi_0 n_1 \cdots 0_8$	0.805(2)	2.041(2)	2.760(2)	140.2(1)
03 H30 01	0.78(2)	2.12(3) 1562(1)	2.704(2) 2.4572(18)	141(2) 1613(1)
05-115001	0.920 (1)	1.49 (3)	2.4569 (19)	161.5 (1)
SAFGUD				
$O8-H7\cdots O7$	1.155 (4)	1.346 (4)	2.462 (6)	159.6 (3)
	1.05 (7)	1.57 (7)	2.452 (7)	138 (6)
SEDKET				
$\Omega_1 - H^2 a \dots \Omega^2$	1 22 (5)	1.34(5)	2 476 (3)	149(5)
01 1120 02	1.22(3) 1.27(3)	1.29 (3)	2.477 (3)	151 (3)
$O2-H2a\cdots O1$	1.34 (5)	1.22 (5)	2.476 (3)	149 (5)
01	1.29 (3)	1.27 (3)	2.477 (3)	151 (3)
$N1 - H1 \cdots O1^{vii}$	1.11 (5)	1.92 (5)	2.799 (4)	133 (3)
-	0.99 (4)	2.00 (3)	2.804 (4)	137 (3)
$N1 - H1 \cdots O7^{vii}$	1.11 (5)	1.94 (5)	2.850 (4)	137 (3)
	0.99 (4)	2.03 (3)	2.855 (4)	140 (3)
$N2-H2\cdots O3$	0.96 (3)	1.77 (3)	2.685 (4)	158 (3)
	0.99 (3)	1.75 (3)	2.684 (4)	157 (3)

Symmetry codes: (i) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + 1, -y + 1, -z$; (iii) $-x + 1, -y, -z$;
$(iv) - x + 1, -y + 1, -z + 1; (v) - x + 1, -y + 2, -z + 1; (vi) x - 1, y + 1, z; (vii) - x + 1, y + \frac{1}{2}, -y + 1, -y + \frac{1}{2}, -y + 1, -y + \frac{1}{2}, -y + 1, -y + \frac{1}{2}, -y + $
-z + 1; (viii) $-x, -y, -z$; (ix) $x + 1, y, z$; (x) $-x, -y + 1, -z + 1$; (xi) $-x, -y + 2, -z + 1$;
(xii) $x, y + 1, z$.
$1.2U_{eq}(C_{aryl})$ and $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$. The positions
of the disordered bridging hydrogens H1o1 and H1o7 as well
as those of the primary (H2a, H2b) and the secondary amine
hydrogen atoms (H1a) were located in a difference electron-
density map. Their positional parameters were fixed during
the refinement while their isotropic displacement parameters
were refined; in the case of the bridging hydrogens H1o1 and

1.954 (1)

1.98(2)

2.302 (2)

2.36 (2)

1.668(1)

1.71 (3)

0.945(1)

0.90(2)

0.945(1)

0.90(2)

0.924 (2)

0.92 (3)

H1o7, their isotropic displacement parameters were refined to be equal while their occupational parameters were refined under the condition that their sum was equal to 1.

QIQJAD (Sridhar *et al.*, 2013): The subroutine *Twin*-*RotMax* of *PLATON* (Spek, 2009) indicated non-merohedral twinning: h2 = -1.018h1 + 0.054k1; k2 = -0.673h1 + 1.018k1; l2 = -0.039h1 + 0.116k1 - l1. The refined value of the second domain fraction converged to the value 0.028 (13). Therefore the value of the second domain fraction was set to 0 and was not refined further. $C-Hsp^2$ and $C-H_{methyl}$ were constrained to equal to 0.93 and 0.96 Å, respectively. $U_{iso}(Hsp^2) =$ $1.2U_{eq}(Csp^2)$ and $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$. The positions of the *bridging hydrogen* H3*o* and those of the primary (H3*n*, H4*n*, H5*n*, H6*n*) as well as of the secondary (H2*n*) amine hydrogen atoms were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

SAFGUD (Wang *et al.*, 2012): C-H_{aryl} were constrained to be equal to 0.93 Å while $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$. The *bridging hydrogen* H7 was located in a difference electrondensity map and its position was fixed while its isotropic displacement parameter $U_{iso}(H7)$ was refined.

SEDKET (Wei *et al.*, 2012): The non-centrosymmetric structure is composed of the light atoms only (the heaviest atom is O) and the data collection was carried out with Mo $K\alpha$ radiation. The article by Wei *et al.* (2012) does not indicate whether the Friedel pairs were merged and nor does it contain the value of the Flack parameter. The Flack parameter was set to 0.5 without being refined in the present model. C-H_{aryl} and C-H_{methyl} were constrained to be equal to 0.93 and 0.96 Å, respectively. $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$ and $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$. The position of the *bridging hydrogen* H2*a* as well as those of the secondary amine hydrogen atoms H1 and H2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

TIYZIM (Yamuna *et al.* (2014): C–H_{aryl} and C–H_{methylene} were constrained to be equal to 0.95 and 0.99 Å, respectively. $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$ and $U_{iso}(H_{methylene}) = 1.5U_{eq}(C_{methylene})$. The position of the *bridging hydrogen* H2*b* as well as those of the ammonium hydrogen atoms (H3*aa*, H3*ab*, H3*ac*) were found in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H3*ab*, H3*ac*,), their displacement parameters were constrained to be equal to that of H3*aa*.

TUJPEV (Malathy *et al.*, 2015): $C-H_{aryl}$ were constrained to be equal to 0.93 Å while $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$. $C-H_{methyl}$ were constrained to be equal to 0.96 Å while $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$. The position of the *bridging hydrogen* H6*a* as well as those of the secondary amine group H2*a* and of the ammonium hydrogen atoms H1*a*, H1*b* and H1*c* were found in a difference-electron map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H1b, H1c), their displacement parameters were constrained to be equal to that of H1a.

VABZIJ (Hemamalini & Fun, 2010*c*): $C-H_{aryl}$, $C-H_{methyl}$, $C-H_{methine}$ were constrained to be equal to 0.93, 0.96 and 0.98 Å, respectively. $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$, $U_{iso}(H_{methine}) = 1.2U_{eq}(C_{methine})$, $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$. The position of the *bridging hydrogen* H7 as well as those of the secondary amine hydrogen atom H1*n*4 and of the water hydrogen atoms H1*w*1 and H1*w*2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their displacement parameters were refined.

WADXOR (Smith & Lynch, 2016): The non-centrosymmetric structure is composed of light atoms only (the heaviest atoms present in the structure are oxygens) and the data collection was carried out with Mo $K\alpha$ radiation. The original article reported the refined Flack parameter to be equal to -0.1 (13); however, the refinement using JANA2006 (Petříček et al., 2014) did not converge and therefore the Flack parameter was set to 0.5 without being refined. C-H_{arvl} and C- $H_{methylene}$ were constrained to be equal to 0.95 and 0.99 Å, respectively, except for the distances between the methylene atom C11 and the attached hydrogen atoms H12a and H13a, which were restrained to 0.99 (1) Å (Müller, 2009). [The reason for the different treatment of the latter methylene group was its vicinity to the disordered methylene groups centered on C10 and C12a.] $U_{iso}(H_{arvl}) = 1.2U_{eq}(C_{arvl})$ and $U_{\rm iso}({\rm H}_{\rm methylene}) = 1.2 U_{\rm eq}({\rm C}_{\rm methylene})$. There were two types of occupational disorder present in the structure. The first one was related to the fragments with the methylene carbon atoms C9a, C10a and the attached respective pairs of hydrogen atoms H91a, H92a and H10a, H11a, as well as to C13a and C12a with the attached respective pairs of hydrogen atoms H16a, H17a and H14a, H15a. The occupation parameter of C13 was refined while those of the related atoms were either set equal to that of C13 (i.e. C12a and attached hydrogen atoms) or its complement to 1 (C9a and C10a and attached hydrogen atoms). The displacement parameters of the disordered pairs of atoms C9a and C13a as well as C10a and C12a were set to be equal, *i.e.* that of C13a equalled that of C9a while that of C10a equalled that of C12a. The second type of occupational disorder referred to the fragments C2b-H61b, C2b-O2b-H2b and C6b-H6b, C6b-O21b-H21b. This means that the occupation parameters of H61b, H21b were set equal to the refined occupational parameter of O21b while being complements to 1 for H6b, O2b, H2b. The positions of the bridging hydrogens H2b and H21b as well as that of the primary amine hydrogen atom H8a were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of bridging hydrogens H2b and H21b, their isotropic displacement parameters were constrained to be equal.

YAXPOE (Dayananda *et al.*, 2012): $C-H_{aryl}$ and $C-H_{methylene}$ were constrained to equal to 0.95 and 0.99 Å, respectively. $U_{iso}(H_{aryl}) = 1.2U_{eq}(C_{aryl})$ and $U_{iso}(H_{methylene}) = 1.5U_{eq}(C_{methylene})$. The *bridging hydrogen* H7 was located in a difference electron-density map. Its positional parameters

were fixed while $U_{iso}(H7a)$ was refined. A high instability factor Δ in the weighting scheme (0.0064) was applied in order to avoid a large number of reflections with $(I_{obs} - I_{calc})/\sigma(w) > 10$ where $\sigma(w) = [\sigma^2(I) + \Delta I^2]^{-1/2}$. [This condition generates A alerts for $\Delta = 0.0004$, which has been used in other refinements of the title structure, when running *checkCIF* (Spek, 2009).] The residual electron-density map contains peaks which are difficult to interpret (see supplementary Fig. S1).

3. Discussion of the interdependence of bond lengths and angles

For this discussion, the definition of the various bonds and angles in the moieties of **I–IV** (shown in the scheme), are illustrated in Figs. 1*a* and 1*b*, respectively. As already pointed out, the dependence D2 on D4 and D1 on D3 (Fig. 2) has shown that a large number of structures are biased by incorrectly applied constraints or restraints on the *bridging hydrogen*. However, a dubious or incorrect localization of the

Figure 2

The dependence of bond distances: (a) D2 on D4 for structures that were originally determined as 2-hydroxy-3,5-dinitrobenzoate (II), or as containing 2-hydroxy-3,5-dinitrobenzoic acid (I); (b) D1 on D3 for the structures that were determined as 2-carboxy-4,6-dinitrophenolate (III). Colour code for symbols: black squares are the data retrieved from the CSD; red circles are the corrected title structures; green and blue triangles are the original and the corrected structure of LUDFUL, which contains a molecule of 2-hydroxy-3,5-dinitrobenzoic acid (I).

Figure 3

The dependence of distances: (a) D13 on (q1 + q2); (b) D13 on D2 - D1; (c) D13 on D12-D11; (d) D2 - D1 on (q1 + q2); (e) D13 on (q1 + q2), also for the structures with 3,5-dinitro-2-oxidobenzoate (**IV**), which are shown as blue triangles. Colour code for symbols: green triangles refer to the structures with 2-hydroxy-3,5-dinitrobenzoic acid (**I**), black squares are the structures with 2-hydroxy-3,5-dinitrobenzoate (**II**), and red circles are the structures with 2-carboxy-4,6-dinitrophenolates (**III**).

bridging hydrogen or the acid hydrogen is believed to affect the positions of the non-hydrogen atoms only minutely, and therefore even the biased structures can be considered further. The parameters q1 = D2 - D1 and q2 = D12 - D11 express the electron delocalization within the fragment D1-D12-D11-D2. The introduction of the parameters q1 and q2 follows an analogous discussion of resonance-assisted hydrogen bonds in the enol forms of β -diketone fragments (Gilli *et al.*, 1989, 2009). Fig. 3a shows that the distance where the structures with 2-carboxy-4,6-dinitrophenolates (III; red circles) transform into 2-hydroxy-3,5-dinitrobenzoates (II; black squares) corresponds to the shortest distance $D13_{\min} \simeq 2.41$ Å, which in turn corresponds to $(q1 + q2) \simeq 0.08$ Å. This implies that this is the region where the bridging hydrogen has the greatest tendency to be situated about the centre of the $O \cdot \cdot \cdot O$ intramolecular hydrogen bond or disordered about it. A very similar dependence is shown in Fig. 3b, where only distances D1 and D3 are compared. The observed dependence means that the elongation of one C-O bond takes place mostly at the cost of the shortening of the neighbouring C=O bond; in other words, the distance between these two O atoms,

 $D13 \simeq [(D13_{min})^2 + (D2 - D1)^2]^{1/2}$ (Fig. 1). Table 4 lists the structures in which the title molecules are present in different forms. In the recalculated structure of SEDKET (Table 2) and *e.g.* the reported structures of KEZJIJ (Song *et al.*, 2007) and KEZJIJ01 (Smith *et al.*, 2007) that refer to the structure determination of 2-(pyridin-2-yl)pyridinium 2-carboxy-4,6-dinitrophenolate, the *bridging hydrogen* is attached to the O atom having the shorter C–O bond distance.

Fig. 3a and 3b also show that the *bridging hydrogen* cannot be situated near the centre of the intramolecular $O \cdots O$ hydrogen bond in structures with 2-hydroxy-3,5-dinitrobenzoic acid (I). Fig. 3c shows a similar dependence of D13 on (D12 - D11). It can be seen that the adjacent C-C conjugated bonds are less, but still sensitive to the bonding of the hydroxy hydrogen atom to one of the neighbouring C-O groups. These properties indicate that the $O \cdots H \cdots O$ hydrogen bonding with the pertinent $O \cdots O$ distance D13 belongs to the category of resonance-assisted hydrogen bonds (Gilli *et al.*, 1989, 2009; Sobczyk *et al.*, 2005).

Fig. 3*d* compares both dependences shown in Figs. 3*a* and 3*b*. It can be seen that the dependence of (D2 - D1) on (q1 + q2) is fairly linear. The dependence seems to show the narrowest spread for the 2-hydroxy-3,5-dinitrobenzoates (**H**),

Figure 4

The dependence of bond distances: (a) D1 on (q1 + q2); (b) D12 on (q1 + q2); (c) D11 on (q1 + q2); (d) D2 on (q1 + q2); (e) D6 on (q1 + q2); (f) D10 on (q1 + q2). The colour code for the symbols is the same as in Fig. 3.

The dependence of bond distances: (a) D5 on (q1 + q2); (b) D7 on (q1 + q2); (c) D14 on (q1 + q2). The dependence of dihedral angles: (e) ANG1 on (q1 + q2); (f) ANG2 on (q1 + q2). [ANG1 and ANG2 are the dihedral angles of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.] The colour code of the symbols is the same as in Fig. 3.

which are represented by the black squares. Importantly, the line for each class of molecules intercepts the D2 - D1 axis at different values. The structures that contain 2-hydroxy-3,5dinitrobenzoic acid (I) molecules (green triangles) are clearly separated from the rest of the structures although they show a similar trend. Figs. 3a-3d also show outliers that do not fit the overall trends and which are most probably the structures determined as 2-hydroxy-3,5-dinitrobenzoates (II) instead of 2-carboxy-4,6-dinitrophenolates (III) and vice versa. Fig. 3e shows the same as Fig. 3a except for the addition of a few known structures that contain a 3,5-dinitro-2-oxidobenzoate (IV), which are indicated by blue triangles. Their positions can be explained by the fact that the carboxylate groups are substantially inclined to the benzene ring in such compounds, which causes elongation of the distance between the carboxylate and oxo group, and these molecules will not be considered further.

The alternation of the inclinations (Fig. 4a-4d) of the dependences of D1, D12, D11, and D2 on (q1 + q2) are in agreement with the delocalization of the electron density in these bonds. The 2-hydroxy-3,5-dinitrobenzoic acid (I) mol-

ecules (green triangles) and the 2-hydroxy-3,5-dinitrobenzoates (**II**; black squares) are situated apart from the 2-carboxy-4,6-dinitrophenolates (**III**; red circles) in the given figures. The fact that D1 tends to be shortest in 2-hydroxy-3,5dinitrobenzoic acid (**I**) molecules (Fig. 4a) can be explained by the elongation of bond D5 in the latter molecules because of the attachment of the hydrogen atom and the concomitant shortening of D1. The bond lengths D1 (Fig. 4a) are equal to 1.28–1.30 Å at $(q1 + q2) \simeq 0.08$ where the highest probability for the occurrence of a symmetric intramolecular O···H···O hydrogen bond takes place. The corresponding values of D12, D11, D2, D6 and D10 are 1.49 Å (Fig. 4b), 1.43 Å (Fig. 4c), 1.30 Å (Fig. 4d), 1.37–1.39 Å (Fig. 4e) and 1.41–1.43 Å (Fig. 4f).

Fig. 5*a* shows the dependence of D5 on (q1 + q2). Comparing Fig. 5*a* to Fig. 4*a*, which shows the dependence of

Figure 6

(a) Dependence of the $O \cdots H \cdots O$ angle ANG3 on (q1 + q2); (b) dependence of ANG4 on (q1 + q2); (c) dependence of ANG5 on (q1 + q2). Colour code for symbols: green triangles refer to the structures with 2-hydroxy-3,5-dinitrobenzoic acid (I), black squares are the structures with 2-hydroxy-3,5-dinitrobenzoate (II), and red circles are the structures with 2-carboxy-4,6-dinitrophenolate (III); blue triangles, squares and circles are the recalculated structures with 2-hydroxy-3,5-dinitrobenzoate (II) and 2-carboxy-4,6-dinitrophenolate (III) and 2-carboxy-4,6-dinitrophenolate (III) and 2-carboxy-4,6-dinitrophenolate (III).

D1 on (q1 + q2), an indirect proportionality of both dependences can be observed. The bond length D5 is equal to 1.22–1.24 Å for $(q1 + q2) \simeq 0.08$ Å. The dependence of D5 on (q1 + q2) (Fig. 5a) is similar to that of bond D12 (Fig. 4b) in 2-hydroxy-3,5-dinitrobenzoates (II) and 2-carboxy-4,6-dinitrobenzoic acid (I), but not in molecules of 2-hydroxy-3,5-dinitrobenzoic acid (I) molecules are in line with other forms of the title molecules for the dependences in Fig. 5c and Fig. 4d. Bond D7 is rather distant from the carboxylic group (Fig. 5b) and the delocalization within the pyridine ring is no longer clear. The same holds for bonds D14 and D15 (Figs. 5c and 5d). Figs. 5e and 5f show the inclinations, ANG1 and ANG2, of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.

Fig. 6*a*-6*c* show dependences in which the localization of the *bridging hydrogen* takes place. It seems that the most obtuse angles of $O \cdots H \cdots O(ANG3)$ occur for (q1 + q2) in the range <0.06-0.10> Å, *i.e.* for the shortest distances of D13 (2.41 Å). It is questionable whether the position of a *bridging hydrogen* in the transition zone between 2-hydroxy-3,5-dinitrobenzoates (II) and 2-carboxy-4,6-dinitrophenolates (III) facilitates its positional disorder, which occurs *e.g.* in NUQVEB, because of the impossibility of angle *ANG3* approaching 180°. The dependence of the angles *ANG4* and *ANG5* (Fig. 1*b*) shows once more the effect of incorrectly applied constraints, which are manifested by values close to 109.54° (*cf.* Figs. 2*a* and 2*b*).

The previous discussion has shown the correlations of D1 and D5 on (q1 + q2) (Figs. 4a and 5a, respectively), and the indirect dependence of D1 on D5. Therefore, the position of the *bridging hydrogen* is expected to be related to the environment of the molecules, *i.e.* to be dependent on $\Delta pK_a = pK_a(\text{base}) - pK_a(\text{acid})$. The value of ΔpK_a is correlated with the occurrence of a structure where the base and the acid components are not ionized, thus forming a cocrystal ($\Delta < 0$), or ionized forming a salt ($\Delta pK_a > 3$) (Childs *et al.*, 2007). It is difficult to predict the form in which the acid and the base are present for $0 < \Delta pK_a < 3$ (Childs *et al.*, 2007).

In Table 4, the structures are ordered according to ascending values of the pK_a values of the bases, *i.e.* according to increasing basicity. The corresponding values of $\Delta p K_a$ are compared with (q1 + q2) and D13. The pK_a of 2-hydroxy-3,5dinitrobenzoic acid (I; 3,5-dinitrosalicylic acid) is reported as 2.18 (Smith & Wermuth, 2014; Hemamalini & Fun, 2010a), although a value of 1.53 has been reported in the literature (https://www.chemicalbook.com/ProductMSDSDetail CB9172047_EN.htm). The weakest bases given at the top of Table 4 are not able to deprotonate the title molecule, which remains in the form of 2-hydroxy-3,5-dinitrobenzoic acid (I). On the other hand, the bases with the largest values of pK_a (see the bottom of Table 3) are able to deprive the title molecule of the hydroxy and acid hydrogen atoms, so in such cases the resulting molecule would be in the form of 3,5-dinitro-2oxidobenzoate (IV). The compounds with moderate basicities are able to deprotonate the acid hydrogen atom but not the bridging hydrogen; hence, the resulting forms are 2-hydroxyTable 4

Overview of selected structures with different forms of the molecules: 2-hydroxy-3,5-dinitrobenzoic acid (I); 2-hydroxy-3,5-dinitrobenzoate (II); 2-carboxy-4,6-dinitrophenolate (III); 3,5-dinitro-2-oxidobenzoate (IV).

The structures are ordered by ascending pK_a value of the base. The corresponding values of (q1 + q2), D13, D1, D2 and D5 (cf. Fig. 1) are also given.

	Refcode	Base and its form present in the structure	pK _a	$\Delta p K_a$	Туре	$\begin{array}{c} (q1+q2) \\ (\rm \AA) \end{array}$	D13 (Å)	D1 (Å)	D2 (Å)	D5 (Å)	Remarks
1	GORXAM ^a	1,4-dioxane	-3.9	-6.08	I	0.204	2.547	1.219	1.337	1.307	Two independent molecules
2	GORXEQ ^a	1,4-dioxane	-3.9	-6.08	I	0.235	2.601	1.206	1.343	1.319	
3 4	GORXEQ01 ^a AJEBOG ^b	1,4-dioxane 4-cyano- pyridinium	-3.9 1.92	-6.08 -0.26	I III	0.197 0.003	2.531 2.523	1.222 1.324	1.346 1.28	1.302 1.213	
5	ABULAM ^c	2-amino- anilinium	<2	<-0.18	ш	0.011	2.447	1.309	1.282	1.219	
6	PIDCAI ^c	2-amino- anilinium	<2	<-0.18	ш	0.009	2.44	1.314	1.285	1.229	Wrongly attached hydrogen due to C—O distances. Originally determined as type II but it should be III
7	PERBAR ^d	3-carbamoyl- pyridinium	3.35	1.2	П	0.17	2.452	1.287	1.329	1.239	Wrongly attached hydrogen due to C=O distances. Originally determined as type II but it is probably III. Disorder present in the structure.
8	GIFMUE ^e	1-naphthyl- ammonium	3.92	1.74	ш	0.011	2.488	1.31	1.279	1.224	
9	MIPROS ^f	8-amino- quinolinium	3.95	1.77	п	0.072	2.408	1.278	1.300	1.237	The <i>bridging hydrogen</i> is situated about the centre.
10	ABUKUF ^g	4-chloro- anilinium	3.98	1.80	П	0.094	2.435	1.276	1.297	1.242	
11	YIVHIW ^h	4-iodo- anilinium	4.18	1.63	II	0.129	2.461	1.285	1.321	1.228	
12	GIFNUF ⁱ	1,10-phenan- throlinium	4.27	2.09	П	0.096	2.428	1.280	1.297	1.232	Determined as the type III but it is probably II (Fig. 1). The chemical name was correct.
13	FOXHAD ⁱ	2-(pyridin-2-yl)- pyridinium	4.33	2.15	II	0.047	2.42	1.307	1.292	1.228	100 K; the reported hydrogen H3 is situated out of the plane formed by C···O bonds and is superficial.
14	KEZJIJ ⁱ	2-(pyridin-2-yl)- pyridinium	4.33	2.15	III	0.07	2.422	1.293	1.296	1.231	C=O distances are about equal. The recalculation has shown that the <i>bridging hydrogen</i> is about the centre of the hydrogen bond, slightly closer to atom O2 which forms a shorter C=O bond
15	KEZJIJ01 ^j	2-(pyridin-2-yl)- pyridinium	4.33	2.15	III	0.066	2.423	1.295	1.299	1.221	C=O distances are about equal, the hydrogen is attached to the O atom forming a shorter C=O bond.
16	FICXIZ ^k	cytosinium	4.60	2.42	II	0.098	2.423	1.285	1.310	1.234	The type according to the C=O distances should be II ; the <i>bridging hydrogen</i> was wrongly attached.
17 18	ABUJUE ¹ ABUKOZ ^m	anilinium 4-fluoro-	4.60 4.65	2.42 2.47	II II	0.129 0.142	2.448 2.465	1.280 1.273	1.323 1.325	1.231 1.252	
19	GIFMOY ⁿ	quinolinium	4.85	2.67	III	0.05	2.414	1.294	1.285	1.235	The title molecule has similarly long C=O
20	ZAJHAT ^o	2-ammino- benzoic acid	4.96	2.78	П	0.135	2.461	1.282	1.324	1.227	
21	AJEBIA ^p	pyridinium	5.23	3.05	I and II	0.142	2.458	1.250	1.308	1.257	Two independent molecules
22	$EGABOF^q$	2-methyl-	5.71	3.53	II	0.285	2.411	1.207	1.359	1.244	Outlier
23	AJECEX01 ^r	2,6-diamino- pyridin-1-ium	6.13	3.95	п	0.072 0.121	2.435 2.464	1.298 1.295	1.309 1.332	1.241 1.237	One of the title molecules has similarly long C=O distances.
24	AJECIB ^s	2-amino-	6.82	4.64	П	0.114	2.466	1.277	1.308	1.241	
25	TUMWAB ^t	1 <i>H</i> -imidazol- 3-ium	6.95	4.77	ш	-0.01	2.457	1.320	1.279	1.214	
26 27	LUMJOU ^u SEDKET ^v	hydrazinium 3,5-dimethyl- pyrazolium	8.12 9	5.94 6.82	III III	0.014 0.037	2.459 2.481	1.318 1.300	1.275 1.282	1.211 1.224	
28	$\begin{array}{c} SEDKET^\nu \\ (corrected) \end{array}$	3,5-dimethyl- pyrazolium	9	6.82	II	0.027	2.476	1.305	1.277	1.229	The <i>bridging hydrogen</i> after recalculation is closer to oxygen O1, which forms the shorter C=O bond (C12-O1)
29	LUDDET ^w	benzyl- ammonium	9.33	7.15	III	0.002	2.483	1.305	1.269	1.218	
30	LUDDET01 ^w	benzyl- ammonium	9.33	7.15	III			1.311 1.311	1.275 1.279	1.217 1.219	

Та	Table 4 (continued)										
	Refcode	Base and its form present in the structure	pK _a	$\Delta p K_a$	Туре	(q1 + q2) (Å)	D13 (Å)	D1 (Å)	D2 (Å)	D5 (Å)	Remarks
31	INELUI ^x	1-phenylethyl- ammonium	9.79	7.61	ш	0.009 0.009	2.467 2.482	1.309 1.320	1.272 1.277	1.221 1.214	
32	MILLOI ^y	dicyclohexyl- ammonium	10.4	8.22	ш	0.028	2.464	1.289	1.273	1.225	The C=O distances of the title molecule are similar.
33	ACIFAT ^z	4-sulfamoyl- anilinium	10.6	8.42	Ш	0.028	2.462	1.315	1.287	1.209	
34	EGUTIJ ^{aa}	methyl- ammonium	10.6	8.42	III	0.011	2.481	1.314	1.276	1.218	
35	EGUTOP ^{bb}	triethyl- ammonium	10.78	8.6	II	0.082	2.429	1.275	1.286	1.248	
36	EGUTOP01 ^{bb}	triethyl- ammonium	10.78	8.6	II	0.072	2.419	1.275	1.288	1.242	
37	FOGZIL ^{cc}	diethyl- ammonium	11.09	8.91	Ш	0.004	2.489	1.308	1.270	1.217	
38	XEBFAM ^{dd}	piperidinium C ₅ H ₁₁ N	11.28	9.1	II and IV	0.078 0.061	2.586 2.736	1.219 1.234	1.278 1.253	1.255 1.271	One molecule of DNSA (I) is fully ionized, the other is in form II.
39	YEJZAO ^{ee}	guanidinium	12.5	10.32	Π	0.079	2.415	1.291	1.305	1.235	
40	YEJZAO01 ^{ee}	guanidinium	12.5	10.32	II	0.073	2.415	1.292	1.300	1.239	

References for the pKa values: (a) https://chemaxon.com/products/calculators-and-predictors#pka; (b) https://www.chemicalbook.com/ProductMSDSDetailCB0688145_EN.htm; (c) Dean (1987); (d) https://pubchem.ncbi.nlm.nih.gov/compound/nicotinamide#section=pKa; (e) https://labs.chem.ucsb.edu/zhang/liming/pdf/pKas_of_Organic_Acids_and_Bases.pdf; (f) http://binarystore.wiley.com/store/10.1002/jcc.23068/asset/supinfo/JCC_23068_sm_SuppInfo.pdf?v=1&s=e864a51d58b4cdc175f6b69c92ceddb546201e3b; (g) http://sites.chem.colostate. edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (h) http://sites.chem.colostate.edu/diverdi/all_courses/ CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (i) http://chemicalland21.com/specialtychem/finechem/1,10-PHENANTHRO-LINE.htm; (j) https://www.chemicalbook.com/ProductMSDSDetailCB5195697_EN.htm; (k) http://www.drugfuture.com/chemdata/cytosine.html; (l) https://pubchem.ncbi.nlm.nih.gov/ compound/aniline#section=pKa; (m) http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20 bases.pdf; (n) Hosmane & Liebman (2009); (o) http://www.csun.edu/~hcchm003/321/Ka.pdf; (p) https://pubchem.ncbi.nlm.nih.gov/compound/pyridine#section=Dissociation-Constants; (q) https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23068; (r) https://www.chemicalbook.com/ProductMSDSDetailCB0236195_EN.htm; (s) https://pubchem.ncbi.nlm.nih.gov/ compound/2-aminopyridine#section=Dissociation-Constants; (t) https://pubchem.ncbi.nlm.nih.gov/compound/imidazole#section=pKa; (u) http://evans.rc.fas.harvard.edu/pdf/evans_p-Ka_table.pdf; (v) https://www.chemicalbook.com/ProductMSDSDetailCB2707394_EN.htm; (w) https://pubchem.ncbi.nlm.nih.gov/compound/benzylamine#section=pKa; (x) https:// www.drugbank.ca/drugs/DB04325; (z) https://pubchem.ncbi.nlm.nih.gov/compound/dicyclohexylamine#section=Dissociation-Constants; (z) https://pubchem.ncbi.nlm.nih.gov/ $compound/sulfanilamide \# section = Dissociation-Constants; (aa) https://pubchem.ncbi.nlm.nih.gov/compound/methylamine \# section = pK_a; (ab) https://pubchem.ncbi.nlm.nih.gov/compound/methylamine # section = pK_a; (ab) https://pubchem.ncbi.nlm.nih.gov/compound/methylamine #$ compound/triethylamine#section=Dissociation-Constants; (ac) https://pubchem.ncbi.nlm.nih.gov/compound/diethylamine#section=Dissociation-Constants; (ad) https://pubchem.ncbi.nlm.nih.gov/compound/piperidine#section=Dissociation-Constants: (ae) https://pubchem.ncbi.nlm.nih.gov/compound/guanidine#section=pKa.References to publications with the chemical names of the determined compounds (original and corrected ones if necessary): (1) Senthil Kumar et al. (1999): 3,5-dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (1:1)]; (2) Senthil Kumar et al. (1999): 3,5-dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (2:1); (3) Senthil Kumar et al. (1999): 3,5dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (2:1); (4) Smith et al. (2003a): 4-cyanopyridinium 3,5-dinitrosalicylate, 4-cyanopyridinium 3,5-dinitrosalicylate 2-carboxy-4,6-dinitrophenolate; (5) Smith et al. (2011): 2-aminoanilinium 2-carboxy-4,6-dinitrophenolate; (6) Khan et al. (2013): 2-aminoanilinium 2-hydroxy-3,5-dinitrobenzoate, 2aminoanilinium 2-carboxy-4,6-dinitrophenolate; (7) Jin et al. (2013): 3-carbamoylpyridinium 2-carboxy-4,6-dinitrophenolate, 3-carbamoylpyridinium 2-hydroxy-3,5-dinitrobenzoate; (8) Smith et al. (2007): 1-naphthylammonium 3,5-dinitrosalicylate, 1-naphthylammonium 2-carboxy-4,6-dinitrophenolate; (9) Smith et al. (2001b): 8-aminoquinolinium 3,5-dinitrosalicylate; (10) Smith et al. (2011): 4-chloroanilinium 2-hydroxy-3,5-dinitrobenzoate; (11) Jones et al. (2014): (4-iodoanilinium 2-hydroxy-3,5-dinitrobenzoate; (12) Smith et al. (2007): 1,10-Phenanthrolinium 3,5-dinitrosalicylate; (13) Singh et al. (2014): 2-(pyridin-2-yl)pyridinium 2-hydroxy-3,5-dinitrobenzoate; (14) Song et al. (2007): 2,2'-bipyridinium 2-carboxy-4,6-dinitrophenolate; (15) Smith et al. (2007): 2,2'-bipyridinium 2-carboxy-4,6-dinitrophenolate; (16) Smith et al. (2005a): cytosinium 3,5-dinitrosalicylate, cytosinium 2-carboxy-4,6-dinitrophenolate; (17) Smith et al. (2011): anilinium 2-hydroxy-3,5-dinitrobenzoate; (18) Smith et al. (2011): 4-fluoroanilinium 2-hydroxy-3,5-dinitrobenzoate; (19) Smith et al. al. (2007): quinolinium 3,5-dinitrosalicylate, quinolinium 2-carboxy-4,6-dinitrophenolate; (20) Smith et al. (1995): 3,5-dinitrosalicylic acid 2-aminobenzoic acid, 2-ammoniumbenzoic acid 2-carboxy-4,6-dinitrophenolate; (21) Smith et al. (2003a): pyridinium 3,5-dinitrosalicylate 3,5-dinitrosalicylic acid; (22) Zhang et al. (2014): 2-methylquinolinium 2-hydroxy-3,5dinitrobenzoate; (23) Gao et al. (2015): 2,6-diaminopyridin-1-ium 2-hydroxy-3,5-dinitrobenzoate; (24) Smith et al. (2003a): 2-aminopyrimidinium 3,5-dinitrosalicylate ethanol solvate, 2-aminopyrimidinium 3,5-dinitrosalicylate ethanol (2:2:1); (25) Jin et al. (2015b): 1H-imidazol-3-ium 2-carboxy-4,6-dinitrophenolate; (26) Fu et al. (2015): hydrazinium 2-carboxy-4,6dinitrophenolate; (27) Wei et al. (2012): (3,5-Dimethylpyrazolium 2-carboxy-4,6-dinitrophenolate); (28) this work: (3,5-dimethylpyrazolium 2-hydroxy-3,5-dinitrobenzoate; (29) Smith et al. (2002b): benzylammonium 3,5-dinitrosalicylate, benzylammonium 2-carboxy-4,6-dinitrophenolate; (30) Jin et al. (2015a): benzylammonium 2-carboxy-4,6-dinitrophenolate; (31) Smith et al. (2003b): (S)-(-)-1-phenylethylaminium 3,5-dinitrosalicylate, (S)-(-)-1-phenylethylaminium 2-carboxy-4,6-dinitrophenolate; (32) Ng et al. (2001): dicyclohexylammonium 2carboxy-4,6-dinitrophenolate; (33) Smith et al. (2001c): 4-ammoniobenzenesulfonamide 3,5-dinitrosalicylate, 4-ammoniobenzenesulfonamide 2-carboxy-4,6-dinitrophenolate; (34) Smith et al. (2002a): methylammonium 3,5-dinitrosalicylate, methylammonium 2-carboxy-4,6-dinitrophenolate; (35) Smith et al. (2002a): triethylammonium 3,5-dinitrosalicylate; (36) Rajkumar & Chandramohan (2017): triethylammonium 2-hydroxy-3,5-dinitrobenzoate; (37) Smith et al. (2005b): diethylammonium 3,5-dinitrosalicylate, diethylammonium 2-carboxy-4,6-(38) al. (2006): tris(piperidinium) bis(3,5-dinitrosalicylate) monohydrate, 2-hydroxy-3,5-dinitrobenzoate dinitrophenolate: Smith et tris(piperidinium) 2-olate-3,5-dinitrobenzoate monohydrate; (39) Smith et al. (2001a): guanidinium 3,5-dinitrosalicylate; (40) Fu et al. (2015): guanidinium 3,5-dinitrosalicylate.

3,5-dinitrobenzoate (II) or 2-carboxy-4,6-dinitrophenolate (III). These structures appear in the intermediate region of Table 4. A more radical transfer of the acid hydrogen atom should cause a more significant shortening of bond D5, which should be concomitant with the elongation of bond D1. Such an elongation of bond D1 (*cf.* Fig. 1*a*) should support the formation of a 2-carboxy-4,6-dinitrophenolate (III).

4. Summary

(1) The *bridging hydrogen* in the molecules discussed (**I–III**) is involved in a resonance-assisted hydrogen bond, which is part

of a hexagonal $R_1^1(6)$ ring. The system of conjugated bonds in the title molecules, however, comprises more atoms than the ring in which the *bridging hydrogen* is involved. In particular, the whole carboxylate/carboxylic group affects the discussed intramolecular $O \cdots H \cdots O$ hydrogen bond.

(2) The transition region between the forms of 2-hydroxy-3,5-dinitrobenzoates (II) and 2-carboxy-4,6-dinitrophenolates (III) takes place for C–O (D1) \simeq 1.28–1.30 Å, C–O (D2) \simeq 1.30 Å, O···O distance D13 \simeq 2.41 Å and (q1 + q2) \simeq 0.08 Å. Simultaneously, the highest probability for the presence of the *bridging hydrogen* to be in the centre of the hydrogen bond is expected in this transition region. However, the hydrogen atom can also be disordered over two positions as occurs in NUQVEB.

(3) The *bridging hydrogen* in the discussed intramolecular hydrogen bond can be situated at the centre between both oxygen atoms with approximately equal C–O bond distances. Therefore, the *bridging hydrogen* can not be situated at the centre of the intramolecular $O \cdot \cdot H \cdot \cdot O$ hydrogen bond in compounds containing 2-hydroxy-3,5-dinitrobenzoic acid (**I**).

(4) In some rare cases (*e.g.* recalculated SEDKET, KEZJIJ and KEZJIJ01), the *bridging hydrogen* is bonded to the oxygen atom that forms the shorter C-O bond distance (Table 3). It would be of interest to see how the localization of the *bridging hydrogen* develops with changing temperature in such cases.

(5) Table 4 shows the occurrence of the different forms of the molecules (see scheme) and the dependence on basicity. Alhough it would be expected that the increasing basicity should support the occurrence of 2-carboxy-4,6-dinitrophenolates (III) and, of course, for very strong bases, 3,5-dinitro-2-oxidobenzoates (IV), there are many exceptions to this rule.

(6) The positioning of the hydrogen atoms can be affected by the asphericity of the electron density of the donor and acceptor atoms.

(7) It is essential to calculate difference electron-density maps in order to locate correctly the *bridging hydrogen* atom, and any other hydrogen atoms involved in hydrogen bonding.

(8) The present overview has shown that the application of constraints and restraints is frequently incorrect.

Funding information

The author expresses gratitude for the support provided by Project NPU I – LO1603 of the Ministry of Education of the Czech Republic to the Institute of Physics of the Academy of Sciences of the Czech Republic.

References

- Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.
- Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, 01165–01166.
- Dean, J. A. (1987). *Handbook of Organic Chemistry*, pp. 8–46 New York, NY: McGraw-Hill Book Co.
- Fu, X., Liu, X., Sun, P., Zhang, S., Yang, Q., Wei, Q., Xie, G., Chen, S. & Fan, X. (2015). J. Anal. Appl. Pyrolysis, 114, 79–90.
- Gao, X., Zhang, H., Wen, X., Liu, B., Jin, S. & Wang, D. (2015). J. Mol. Struct. 1093, 82–95.
- Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.
- Gilli, G. & Gilli, P. (2009). *The Nature of the Hydrogen Bond*, pp. 81–147. New York: Oxford University Press.
- Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 34, 34–44.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, 01194-01195.
- Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2950o2951.

- Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, 02747.
- Hosmane, R. S. & Liebman, J. F. (2009). Struct. Chem. 20, 693–697.
- Huang, F., Song, W.-D. & Li, S.-D. (2007). Acta Cryst. E63, m388– m389.
- Jeffrey, G. A. (1995). Crystallogr. Rev. 4, 213-254.
- Jin, S., Lin, Z., Wang, D., Chen, G., Ji, Z., Huang, T. & Zhou, Y. (2015a). J. Chem. Crystallogr. 45, 159–168.
- Jin, S., Wang, D., Linhe, Q., Fu, M., Wu, S. & Ren, J. (2013). J. Chem. Crystallogr. 43, 258–265.
- Jin, S., Zhang, H., Liu, H., Wen, X., Li, M. & Wang, D. (2015b). J. Mol. Struct. 1096, 157–170.
- Jones, C. L., Wilson, C. C. & Thomas, L. H. (2014). *CrystEngComm*, **16**, 5849–5858.
- Khan, I. M., Ahmad, A. & Ullah, M. F. (2013). Spectrochim. Acta A, **102**, 82–87.
- Malathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618–620.
- Müller, P. (2009). Crystallogr. Rev. 15, 57-83.
- Ng, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29–37.
- Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
- Rajkumar, M. & Chandramohan, A. (2017). J. Mol. Struct. 1134, 762–769.
- Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074.
- Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002). Acta Cryst. E58, 0865–0866.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, N., Khan, I. M., Ahmad, A. & Javed, S. (2014). J. Mol. Liq. 191, 142–150.
- Smith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, 0640–0642.
- Smith, G. & Lynch, D. E. (2016). Acta Cryst. E72, 382-386.
- Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149.
- Smith, G. & Wermuth, U. D. (2014). Acta Cryst. E70, 430-434.
- Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002a). Aust. J. Chem. 55, 349–356.
- Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001b). Aust. J. Chem. 54, 165–170.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2002b). Acta Cryst. E58, 0845–0847.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2005*a*). Acta Cryst. E**61**, 0746–0748.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, 0610–0613.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003*a*). *Aust. J. Chem.* **56**, 707–713.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662.
- Smith, G., Wermuth, U. D. & White, J. M. (2001c). Acta Cryst. E57, o1036–o1038.
- Smith, G., Wermuth, U. D. & White, J. M. (2003b). Acta Cryst. E59, 01977–01979.
- Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, 01836–01838.
- Sobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513–3560.
- Song, W.-D., Guo, X.-X. & Yu, L. (2007). Acta Cryst. E63, o1890– 01891.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sridhar, B., Nanubolu, J. B. & Ravikumar, K. (2013). Acta Cryst. C69, 1164–1169.

- Subashini, A., Samuel, E., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, 04049.
- Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, m76.
- Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, 03117.
- Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). *Acta Cryst.* E**70**, o318–o319.
- Zhang, C.-L. & Jian, F.-F. (2009). Acta Cryst. E65, m1521.
- Zhang, J., Jin, S., Tao, L., Liu, B. & Wang, D. (2014). J. Mol. Struct. 1072, 208–220.

Acta Cryst. (2018). E74, 1344-1357 [https://doi.org/10.1107/S2056989018011544]

A resonance-assisted intramolecular hydrogen bond in compounds containing 2-hydroxy-3,5-dinitrobenzoic acid and its various deprotonated forms: redetermination of several related structures

Jan Fábry

Computing details

Data collection: SMART (Bruker, 1997) for DUJZAK; SMART (Bruker, 1999) for JEVNAA; CAD-4 Software (Enraf-Nonius, 1989) for LUDFUL; APEX2 (Bruker, 2009) for NUQVEB, VABZIJ; SMART (Bruker, 2001) for QIQJAD; SMART (Bruker, 2007) for SAFGUD; SMART (Bruker, 2002) for SEDKET; CrysAlis PRO (Agilent, 2012) for TIYZIM; APEX2 (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; APEX2 (Bruker, 2010) for YAXPOE. Cell refinement: SAINT (Bruker, 1997) for DUJZAK; SAINT (Bruker, 1999) for JEVNAA; CAD-4 Software (Enraf-Nonius, 1989) for LUDFUL; SAINT (Bruker, 2009) for NUQVEB, VABZIJ; SAINT (Bruker, 2001) for QIQJAD; SAINT (Bruker, 2007) for SAFGUD; SAINT (Bruker, 2002) for SEDKET; CrysAlis PRO (Agilent, 2012) for TIYZIM; SAINT (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; SAINT (Bruker, 2010) for YAXPOE. Data reduction: SAINT (Bruker, 1997) for DUJZAK; SAINT (Bruker, 1999) for JEVNAA; Xtal3.5 (Hall et al., 1995) for LUDFUL; SAINT (Bruker, 2009) for NUQVEB, VABZIJ; SAINT (Bruker, 2001) for QIQJAD; SAINT (Bruker, 2007) for SAFGUD; SAINT (Bruker, 2002) for SEDKET; CrysAlis RED (Agilent, 2012) for TIYZIM; SAINT (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; SAINT (Bruker, 2010) for YAXPOE. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for DUJZAK, JEVNAA, LUDFUL, QIQJAD, SEDKET, TUJPEV, YAXPOE; SHELXTL (Sheldrick, 2008) for NUQVEB, VABZIJ; SHELXS-97 (Sheldrick, 2008) for SAFGUD; SUPERFLIP (Palatinus & Chapuis, 2007) for TIYZIM; SIR92 (Altomare et al., 1993) for WADXOR. Program(s) used to refine structure: JANA2016 (Petricek et al., 2014) for DUJZAK; JANA2006 (Petricek et al., 2014) for JEVNAA, LUDFUL, NUQVEB, QIQJAD, SAFGUD, TIYZIM, TUJPEV, VABZIJ, YAXPOE; JANA2006 (Petricek, 2014) for SEDKET.

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK)

Crystal data

$[Ag(C_9H_7NO)_2](C_7H_3N_2O_7)$
$M_r = 625.30$
Monoclinic, $P2_1$
Hall symbol: P 2yb
<i>a</i> = 9.0154 (18) Å
<i>b</i> = 7.6122 (15) Å
c = 17.138 (3) Å
$\beta = 104.38 \ (3)^{\circ}$
V = 1139.3 (4) Å ³
Z = 2

F(000) = 628 $D_x = 1.823 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4356 reflections $\theta = 3.6-27.6^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.20 \times 0.15 \times 0.11 \text{ mm}$ Data collection

Bruker SMART CCD area-detector diffractometer	4225 reflections with $I > 3\sigma(I)$ $R_{int} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
Graphite monochromator	$h = -11 \rightarrow 11$
φ and ω scans	$k = -9 \longrightarrow 8$
10841 measured reflections	$l = -22 \rightarrow 22$
4602 independent reflections	
Refinement	
Refinement on F^2	Hydrogen site location: difference Fourier map
$R[F > 3\sigma(F)] = 0.023$	H atoms treated by a mixture of independent
wR(F) = 0.053	and constrained refinement
S = 1.34	Weighting scheme based on measured s.u.'s $w =$
4602 reflections	$1/(\sigma^2(I) + 0.0004I^2)$
356 parameters	$(\Delta/\sigma)_{\rm max} = 0.025$
0 restraints	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
48 constraints	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: 1800 of Friedel pairs used in the refinement
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.004 (17)
map	-

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Number of fixed parameters 9.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.062197 (18)	0.74282 (3)	0.668863 (11)	0.01868 (5)	
01	-0.0993 (2)	0.4630 (2)	0.64021 (12)	0.0202 (6)	
02	0.1741 (2)	0.5061 (2)	0.77196 (12)	0.0214 (6)	
N1	-0.1154 (2)	0.7667 (3)	0.55616 (13)	0.0177 (7)	
N2	0.2685 (2)	0.8371 (3)	0.75427 (14)	0.0163 (7)	
C1	-0.1280 (3)	0.9181 (4)	0.51463 (18)	0.0222 (9)	
H1a	-0.061241	1.009276	0.535386	0.0267*	
C2	-0.2362 (3)	0.9448 (4)	0.44205 (18)	0.0243 (9)	
H2a	-0.240923	1.051917	0.415439	0.0291*	
C3	-0.3354 (3)	0.8130 (4)	0.41016 (19)	0.0209 (9)	
H3a	-0.407848	0.829471	0.361612	0.0251*	
C4	-0.3270 (3)	0.6506 (4)	0.45167 (18)	0.0169 (8)	
C5	-0.4264 (3)	0.5079 (4)	0.42259 (17)	0.0209 (9)	
H5a	-0.500744	0.518344	0.37429	0.0251*	
C6	-0.4131 (3)	0.3554 (4)	0.46539 (17)	0.0217 (9)	

H6a	-0.477402	0.261662	0.445311	0.026*
C7	-0.3036 (3)	0.3371 (3)	0.53948 (17)	0.0184 (8)
H7a	-0.297965	0.232672	0.568204	0.0221*
C8	-0.2057 (3)	0.4717 (3)	0.56954 (16)	0.0148 (8)
C9	-0.2139 (3)	0.6331 (3)	0.52566 (16)	0.0141 (8)
C10	0.3159 (3)	0.9993 (4)	0.74633 (17)	0.0188 (9)
H10a	0.256892	1.069872	0.706108	0.0225*
C11	0.4512 (3)	1.0703 (4)	0.79567 (18)	0.0220 (9)
H11a	0.480885	1.184529	0.787703	0.0264*
C12	0.5373 (3)	0.9693 (4)	0.85495 (18)	0.0210 (9)
H12a	0.627346	1.01397	0.887796	0.0252*
C13	0.4907 (3)	0.7960 (3)	0.86712 (16)	0.0171 (8)
C14	0.5743 (3)	0.6845 (4)	0.92853 (17)	0.0200 (8)
H14a	0.665083	0.723938	0.962749	0.024*
C15	0.5225 (3)	0.5197 (4)	0.93771 (17)	0.0206 (8)
H15a	0.577789	0.447807	0.978539	0.0247*
C16	0.3863 (3)	0.4570 (3)	0.88620 (16)	0.0173 (8)
H16a	0.35178	0.344669	0.8937	0.0208*
C17	0.3043 (3)	0.5596 (3)	0.82528 (16)	0.0142 (8)
C18	0.3541 (2)	0.7340 (5)	0.81443 (13)	0.0140 (6)
O3	0.1402 (2)	-0.0134 (3)	0.92525 (13)	0.0259 (7)
O4	-0.4152 (2)	-0.3755 (3)	0.69139 (13)	0.0284 (7)
05	-0.3271 (2)	-0.5961 (3)	0.76858 (13)	0.0271 (7)
O6	0.1238 (2)	-0.5247 (2)	0.98352 (12)	0.0211 (6)
O7	0.1679 (2)	-0.2659 (4)	1.03546 (11)	0.0286 (6)
08	-0.0981 (2)	0.1498 (2)	0.70180 (12)	0.0237 (7)
O9	0.06657 (19)	0.2138 (2)	0.81885 (11)	0.0196 (6)
N3	-0.3217 (2)	-0.4436 (3)	0.74764 (14)	0.0173 (7)
N4	0.1088 (2)	-0.3645 (3)	0.98085 (13)	0.0152 (7)
C19	-0.1970 (3)	-0.3339 (4)	0.79254 (18)	0.0130 (8)
C20	-0.1027 (3)	-0.3992 (3)	0.86303 (15)	0.0126 (7)
H20a	-0.114934	-0.512855	0.880295	0.0151*
C21	0.0095 (2)	-0.2908 (3)	0.90660 (15)	0.0114 (8)
C22	0.0326 (3)	-0.1188 (3)	0.88194 (16)	0.0130 (8)
C23	-0.0605 (3)	-0.0603 (3)	0.80708 (16)	0.0129 (7)
C24	-0.1770 (3)	-0.1678 (3)	0.76332 (17)	0.0132 (8)
H24a	-0.240539	-0.128661	0.715089	0.0159*
C25	-0.0307 (3)	0.1145 (3)	0.77245 (16)	0.0148 (8)
H1aa	-0.091407	0.377732	0.663815	0.047 (14)*
H2aa	0.145536	0.395004	0.783901	0.043 (11)*
H3b	0.135279	0.095353	0.887993	0.17 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.01622 (8)	0.01722 (9)	0.01945 (10)	-0.00339 (11)	-0.00154 (6)	0.00024 (11)
01	0.0219 (9)	0.0127 (9)	0.0199 (10)	-0.0063 (8)	-0.0065 (8)	0.0058 (8)
O2	0.0185 (9)	0.0173 (9)	0.0231 (11)	-0.0065 (8)	-0.0049 (8)	0.0030 (8)

N1	0.0190 (9)	0.0152 (14)	0.0181 (11)	-0.0003 (11)	0.0033 (8)	0.0008 (10)
N2	0.0145 (10)	0.0161 (11)	0.0187 (12)	-0.0018 (9)	0.0049 (9)	0.0005 (9)
C1	0.0254 (14)	0.0145 (12)	0.0263 (16)	-0.0042 (12)	0.0056 (12)	0.0044 (11)
C2	0.0325 (15)	0.0177 (13)	0.0239 (16)	0.0069 (13)	0.0093 (12)	0.0104 (11)
C3	0.0214 (13)	0.0247 (13)	0.0154 (15)	0.0059 (12)	0.0021 (12)	0.0023 (11)
C4	0.0136 (12)	0.0220 (14)	0.0150 (15)	0.0026 (11)	0.0031 (10)	0.0005 (12)
C5	0.0160 (12)	0.0289 (15)	0.0156 (14)	0.0005 (12)	-0.0002 (10)	-0.0035 (12)
C6	0.0156 (12)	0.0247 (14)	0.0217 (16)	-0.0092 (12)	-0.0009 (11)	-0.0062 (11)
C7	0.0179 (12)	0.0175 (14)	0.0187 (14)	-0.0039 (11)	0.0026 (10)	0.0018 (11)
C8	0.0139 (12)	0.0146 (12)	0.0140 (13)	0.0001 (11)	0.0000 (9)	-0.0001 (10)
C9	0.0147 (12)	0.0142 (12)	0.0132 (13)	-0.0002 (11)	0.0032 (9)	0.0016 (10)
C10	0.0208 (13)	0.0176 (13)	0.0198 (15)	-0.0021 (12)	0.0084 (11)	0.0021 (11)
C11	0.0259 (14)	0.0166 (13)	0.0254 (16)	-0.0085 (12)	0.0099 (12)	-0.0039 (11)
C12	0.0180 (12)	0.0226 (14)	0.0235 (15)	-0.0108 (12)	0.0074 (11)	-0.0101 (12)
C13	0.0138 (11)	0.0232 (14)	0.0156 (14)	-0.0032 (10)	0.0064 (10)	-0.0059 (10)
C14	0.0118 (11)	0.0285 (14)	0.0182 (15)	-0.0034 (11)	0.0010 (10)	-0.0071 (10)
C15	0.0143 (12)	0.0281 (15)	0.0175 (15)	0.0038 (12)	0.0002 (10)	0.0017 (11)
C16	0.0160 (12)	0.0146 (12)	0.0208 (15)	-0.0018 (11)	0.0035 (10)	-0.0001 (10)
C17	0.0107 (11)	0.0149 (12)	0.0165 (14)	-0.0020 (10)	0.0025 (9)	-0.0031 (10)
C18	0.0115 (9)	0.0160 (11)	0.0156 (11)	0.0014 (17)	0.0052 (8)	0.0001 (15)
O3	0.0215 (10)	0.0236 (11)	0.0279 (12)	-0.0066 (9)	-0.0029 (9)	0.0016 (9)
O4	0.0212 (10)	0.0283 (11)	0.0267 (12)	-0.0044 (9)	-0.0110 (8)	-0.0010 (9)
05	0.0295 (10)	0.0195 (10)	0.0288 (12)	-0.0130 (9)	0.0004 (9)	0.0016 (9)
06	0.0213 (9)	0.0158 (9)	0.0236 (11)	0.0028 (8)	0.0007 (8)	0.0059 (8)
O7	0.0340 (9)	0.0225 (9)	0.0194 (9)	0.0057 (15)	-0.0121 (7)	-0.0015 (13)
08	0.0304 (11)	0.0156 (10)	0.0204 (11)	-0.0061 (9)	-0.0028 (8)	0.0051 (8)
09	0.0209 (8)	0.0129 (12)	0.0223 (10)	-0.0061 (8)	0.0003 (7)	0.0009 (8)
N3	0.0141 (10)	0.0190 (11)	0.0169 (12)	-0.0064 (10)	0.0001 (9)	-0.0044 (9)
N4	0.0115 (10)	0.0169 (11)	0.0154 (12)	0.0012 (9)	-0.0003 (8)	0.0025 (9)
C19	0.0080 (11)	0.0164 (12)	0.0135 (15)	-0.0043 (10)	0.0009 (10)	-0.0044 (11)
C20	0.0158 (12)	0.0082 (11)	0.0137 (13)	-0.0009 (10)	0.0036 (9)	0.0004 (9)
C21	0.0098 (9)	0.0122 (17)	0.0103 (11)	0.0048 (10)	-0.0012 (8)	0.0021 (9)
C22	0.0086 (11)	0.0150 (13)	0.0147 (14)	-0.0009 (10)	0.0015 (9)	-0.0033 (10)
C23	0.0133 (11)	0.0110 (12)	0.0134 (13)	-0.0001 (10)	0.0015 (9)	-0.0007 (9)
C24	0.0120 (12)	0.0135 (13)	0.0142 (15)	0.0018 (11)	0.0033 (10)	0.0004 (11)
C25	0.0153 (12)	0.0109 (11)	0.0177 (14)	0.0006 (10)	0.0029 (10)	0.0010 (10)

Geometric parameters (Å, °)

01-C8	1.347 (3)	C13—C14	1.415 (4)	
O1—H1aa	0.7585 (19)	C13—C18	1.415 (3)	
O2—C17	1.359 (3)	C14—H14a	0.93	
O2—H2aa	0.922 (2)	C14—C15	1.361 (4)	
N1-C1	1.344 (4)	C15—H15a	0.93	
N1—C9	1.365 (3)	C15—C16	1.406 (3)	
N2-C10	1.325 (4)	C16—H16a	0.93	
N2—C18	1.371 (4)	C16—C17	1.365 (4)	
C1—H1a	0.93	C17—C18	1.429 (5)	

C1—C2	1.392 (4)	O3—C22	1.333 (3)
C2—H2a	0.93	O3—H3b	1.040 (2)
C2—C3	1.364 (4)	O4—N3	1.227 (3)
С3—Н3а	0.93	O5—N3	1.219 (3)
C3—C4	1.419 (4)	O6—N4	1.226 (3)
C4—C5	1.418 (4)	O7—N4	1.215 (3)
C4—C9	1.423 (4)	08—C25	1.242 (3)
C5—H5a	0.93	09-025	1.275(3)
C5—C6	1 362 (4)	09—H3b	1.275(3) 1 4952(19)
C6—H6a	0.93	N3-C19	1.1502(15) 1.458(3)
C6-C7	1 408 (4)	N4_C21	1.438(3)
C7 $H72$	0.03	C_{19} C_{20}	1.475(3)
C7 C8	1.367(A)	$C_{19} = C_{20}$	1.383(4)
$C^{2} = C^{3}$	1.307(4)	$C_{19} = C_{24}$	1.388 (4)
C10_U10c	1.455 (4)	C20—1120a	0.33
C10—H10a	0.95	C_{20}	1.373(3)
	1.408 (4)	C_{21}	1.408 (4)
CII—HIIa	0.93	C22—C23	1.419 (3)
C11—C12	1.354 (4)	C23—C24	1.394 (3)
C12—H12a	0.93	C23—C25	1.508 (4)
C12—C13	1.416 (4)	C24—H24a	0.93
C8—O1—H1aa	118.2 (2)	C13—C14—C15	120.2 (2)
C17—O2—H2aa	111.60 (19)	H14a—C14—C15	119.88
C1—N1—C9	118.3 (2)	C14—C15—H15a	119.61
C10—N2—C18	118.4 (2)	C14—C15—C16	120.8 (2)
N1—C1—H1a	118.43	H15a—C15—C16	119.61
N1—C1—C2	123.1 (2)	C15—C16—H16a	119.71
H1a—C1—C2	118.43	C15—C16—C17	120.6 (2)
C1—C2—H2a	120.19	H16a—C16—C17	119.71
C1—C2—C3	119.6 (3)	O2-C17-C16	123.8 (2)
$H_{2a} = C_{2a} = C_{3a}$	120.19	02-017-018	116.0(2)
C_2 — C_3 — H_3a	120.26	C16-C17-C18	120.2(2)
$C_{2} - C_{3} - C_{4}$	119 5 (2)	N_{2} - C18 - C13	120.2(2) 1218(3)
$H_{32} - C_{3} - C_{4}$	120.27	N_{2} C18 C17	121.0(3) 1196(2)
$C_{3} - C_{4} - C_{5}$	120.27	C_{13} C_{18} C_{17}	119.0(2) 118.6(2)
$C_3 - C_4 - C_9$	122.0(2) 117.8(2)	$C_{22} = 0_{3} = H_{3b}$	102.89(19)
$C_{5} - C_{4} - C_{9}$	119.5 (2)	$C_{22} = 05 = 1130$ $C_{25} = 09 = 113b$	102.89(17) 102.84(17)
C_{3}	119.5 (2)	04 N3 05	102.84(17) 124.3(2)
$C_4 = C_5 = C_6$	120 1200(2)	04 N3 C19	124.3(2)
	120.0 (2)	04 - N5 - C19	117.3(2)
$H_{3a} = C_{3a} = C_{0a}$	120	05-N5-C19	118.2(2)
C_{5} C_{6} C_{7}	119.4	06 - N4 - C21	124.2(2)
	121.2 (2)	00 - N4 - C21	110.00 (19)
	119.4	U/-N4-U21	119.1 (2)
	119.72	$N_{2} = C_{19} = C_{20}$	118.7 (2)
	120.6 (2)	N3-C19-C24	118.9 (2)
H/a - C/ - C8	119.72	C20—C19—C24	122.3 (2)
01	123.5 (2)	C19—C20—H20a	121.04
01	116.5 (2)	C19—C20—C21	117.9 (2)

C7—C8—C9	120.0 (2)	H20a—C20—C21	121.04
N1—C9—C4	121.7 (2)	N4—C21—C20	116.7 (2)
N1—C9—C8	119.6 (2)	N4—C21—C22	120.67 (19)
C4—C9—C8	118.7 (2)	C20—C21—C22	122.7 (2)
N2-C10-H10a	118.33	O3—C22—C21	122.3 (2)
N2-C10-C11	123.3 (2)	O3—C22—C23	120.0 (2)
H10a—C10—C11	118.33	C21—C22—C23	117.7 (2)
C10-C11-H11a	120.58	C22—C23—C24	120.0 (2)
C10-C11-C12	118.8 (3)	C22—C23—C25	120.6 (2)
H11a—C11—C12	120.58	C24—C23—C25	119.4 (2)
C11—C12—H12a	119.87	C19—C24—C23	119.2 (2)
C11—C12—C13	120.3 (2)	C19—C24—H24a	120.38
H12a—C12—C13	119.87	C23—C24—H24a	120.38
C12—C13—C14	123.1 (2)	O8—C25—O9	125.0 (2)
C12—C13—C18	117.4 (2)	O8—C25—C23	118.9 (2)
C14—C13—C18	119.6 (3)	O9—C25—C23	116.1 (2)
C13—C14—H14a	119.88	O3—H3b—O9	155.88 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
C11—H11 <i>a</i> ···O5 ⁱ	0.93	2.48	3.335 (4)	152
O1—H1 <i>aa</i> …O8	0.7585 (19)	1.859 (2)	2.606 (3)	167.96 (14)
O2—H2aa…O9	0.922 (2)	1.727 (2)	2.631 (3)	166.48 (15)
O3—H3 <i>b</i> …O9	1.040 (2)	1.4952 (19)	2.481 (3)	155.88 (12)

Symmetry code: (i) x+1, y+2, z.

Tetrakis(1*H*-imidazole- κN^3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA)

Crystal data

$[Zn(C_{3}H_{4}N_{2})_{4}](C_{7}H_{3}N_{2}O_{7})_{2}$	F(000) = 1616
$M_{r} = 791.93$	$D_x = 1.664 \text{ Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -C 2yc	Cell parameters from 3242 reflections
a = 25.0809 (15) Å	$\theta = 2.1-26.9^{\circ}$
b = 6.7251 (4) Å	$\mu = 0.87 \text{ mm}^{-1}$
b = 0.7231 (4) A c = 18.9145 (10) Å $\beta = 97.658 (6)^{\circ}$ $V = 3161.9 (3) \text{ Å}^{3}$ Z = 4	$\mu = 0.87 \text{ mm}^2$ T = 293 K Platelet, yellow $0.20 \times 0.18 \times 0.10 \text{ mm}$
Data collection	
Bruker APEX-II area-detector	20634 measured reflections
diffractometer	3635 independent reflections
Radiation source: fine-focus sealed tube	2152 reflections with $I > 3\sigma(I)$
Graphite monochromator	$R_{int} = 0.058$
φ and ω scans	$\theta_{max} = 27.6^{\circ}, \theta_{min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -32 \rightarrow 31$
(SADABS; Bruker, 1999)	$k = -8 \rightarrow 8$
$T_{\min} = 0.846, T_{\max} = 0.918$	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F > 3\sigma(F)] = 0.036$	Hydrogen site location: difference Fourier map
wR(F) = 0.075	H atoms treated by a mixture of independent
S = 1.23	and constrained refinement
3635 reflections	Weighting scheme based on measured s.u.'s $w =$
244 parameters	$1/(\sigma^2(I) + 0.0004I^2)$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.007$
32 constraints	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: B-C type 1 Lorentzian
	isotropic (Becker & Coppens, 1974)
	Extinction coefficient: 1400 (500)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 9

Fractional	atomic	coordinates	and i	isatran	ic or	eauivalent	isotroni	c dis	nlacomont	narameters	$(Å^2$?)
Fractional	uiomic	coorainaies	unu i	souop	u o i	eguivaieni	isonopu	c uis	placement	purumeters	(л	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.47960 (10)	0.4200 (3)	0.62639 (13)	0.0460 (10)	
H1	0.444004	0.398202	0.633096	0.0552*	
C2	0.50386 (10)	0.3369 (4)	0.57533 (13)	0.0484 (10)	
H2	0.488745	0.248295	0.540565	0.0581*	
C3	0.56018 (9)	0.5299 (3)	0.63970 (12)	0.0401 (9)	
H3	0.591591	0.597819	0.656666	0.0481*	
C4	0.59325 (9)	0.9065 (4)	0.83991 (12)	0.0404 (9)	
H4	0.591722	0.823229	0.87885	0.0485*	
N4	0.62879 (7)	1.0508 (3)	0.83789 (11)	0.0471 (8)	
C6	0.57665 (9)	1.0451 (4)	0.73735 (13)	0.0444 (9)	
H6	0.560952	1.074705	0.691199	0.0533*	
C7	0.73999 (9)	0.4553 (3)	0.34225 (11)	0.0329 (8)	
C8	0.79245 (9)	0.5059 (3)	0.36676 (12)	0.0342 (8)	
H8	0.817639	0.51762	0.335092	0.0411*	
C9	0.80717 (8)	0.5388 (3)	0.43803 (12)	0.0311 (8)	
C10	0.77048 (8)	0.5210 (3)	0.48978 (12)	0.0302 (8)	
C11	0.71702 (8)	0.4593 (3)	0.46099 (11)	0.0282 (7)	
C12	0.70286 (9)	0.4300 (3)	0.38898 (12)	0.0323 (8)	
H12	0.667845	0.392676	0.371656	0.0388*	
C13	0.67545 (9)	0.4249 (3)	0.50834 (12)	0.0333 (8)	
N1	0.51487 (7)	0.5429 (3)	0.66784 (9)	0.0373 (7)	
N2	0.55523 (8)	0.4075 (3)	0.58408 (10)	0.0438 (8)	

N3	0.56024 (7)	0.8957 (3)	0.77961 (9)	0.0354 (7)
C5	0.61854 (9)	1.1406 (4)	0.77303 (14)	0.0479 (10)
Н5	0.637064	1.247402	0.75675	0.0575*
N5	0.72386 (8)	0.4225 (3)	0.26644 (10)	0.0427 (8)
N6	0.86351 (7)	0.5897 (3)	0.46068 (11)	0.0403 (8)
01	0.78238 (6)	0.5518 (2)	0.55681 (8)	0.0378 (6)
O2	0.68832 (6)	0.4695 (2)	0.57640 (8)	0.0420 (6)
03	0.63104 (6)	0.3579 (2)	0.48669 (8)	0.0426 (6)
O4	0.67630 (7)	0.3835 (3)	0.24643 (8)	0.0575 (7)
05	0.75772 (7)	0.4340 (3)	0.22570 (9)	0.0662 (8)
06	0.89634 (7)	0.5475 (3)	0.42013 (9)	0.0658 (8)
07	0.87622 (6)	0.6730 (3)	0.51757 (9)	0.0568 (7)
Znl	0.5	0.70908 (6)	0.75	0.03866 (15)
H1a	0.728641	0.508268	0.579335	0.108 (11)*
H2a	0.580668	0.367714	0.552562	0.088 (9)*
H4a	0.657593	1.098579	0.870594	0.106 (11)*

Atomic displacement parameters (\mathring{A}^2)

	T 7 11	I 122	I /33	I 112	1713	1723
	0	0	U	0.2	U	0
C1	0.0323 (14)	0.0558 (17)	0.0507 (17)	-0.0069 (12)	0.0086 (12)	-0.0071 (13)
C2	0.0460 (16)	0.0536 (18)	0.0448 (17)	-0.0064 (13)	0.0033 (12)	-0.0116 (13)
C3	0.0327 (13)	0.0485 (16)	0.0396 (16)	-0.0053 (11)	0.0071 (11)	0.0037 (12)
C4	0.0366 (14)	0.0491 (16)	0.0343 (15)	0.0066 (12)	0.0004 (11)	0.0062 (12)
N4	0.0332 (12)	0.0568 (15)	0.0484 (15)	-0.0016 (10)	-0.0048 (10)	-0.0044 (11)
C6	0.0416 (15)	0.0568 (17)	0.0336 (15)	-0.0015 (12)	0.0004 (12)	0.0077 (13)
C7	0.0344 (13)	0.0369 (14)	0.0264 (14)	0.0024 (10)	0.0002 (10)	-0.0008 (10)
C8	0.0332 (13)	0.0366 (14)	0.0337 (15)	0.0009 (10)	0.0073 (10)	0.0030 (10)
C9	0.0254 (12)	0.0287 (13)	0.0382 (15)	-0.0031 (9)	0.0003 (10)	-0.0001 (10)
C10	0.0338 (13)	0.0219 (12)	0.0342 (14)	0.0035 (9)	0.0013 (10)	0.0006 (10)
C11	0.0288 (12)	0.0245 (12)	0.0310 (14)	0.0011 (9)	0.0030 (10)	-0.0013 (10)
C12	0.0281 (12)	0.0306 (14)	0.0370 (15)	0.0009 (9)	-0.0002 (10)	0.0004 (10)
C13	0.0338 (13)	0.0312 (14)	0.0356 (15)	0.0037 (10)	0.0067 (11)	-0.0026 (10)
N1	0.0341 (11)	0.0433 (13)	0.0357 (12)	-0.0029 (9)	0.0086 (9)	-0.0001 (9)
N2	0.0437 (12)	0.0526 (14)	0.0371 (13)	0.0034 (10)	0.0126 (10)	-0.0035 (10)
N3	0.0321 (10)	0.0442 (12)	0.0288 (11)	0.0016 (9)	0.0003 (9)	0.0042 (9)
C5	0.0393 (15)	0.0540 (18)	0.0499 (18)	-0.0090 (12)	0.0040 (12)	0.0069 (14)
N5	0.0414 (13)	0.0517 (14)	0.0338 (13)	0.0032 (10)	0.0004 (10)	-0.0005 (10)
N6	0.0327 (11)	0.0435 (13)	0.0438 (14)	-0.0038 (9)	0.0023 (10)	0.0059 (10)
01	0.0362 (9)	0.0445 (10)	0.0308 (10)	-0.0009 (7)	-0.0026 (7)	-0.0054 (7)
O2	0.0399 (10)	0.0552 (11)	0.0313 (10)	-0.0055 (8)	0.0056 (7)	-0.0066 (8)
03	0.0325 (9)	0.0561 (11)	0.0400 (10)	-0.0091 (8)	0.0079 (7)	-0.0084 (8)
O4	0.0395 (10)	0.0890 (14)	0.0408 (11)	-0.0047 (9)	-0.0063 (8)	-0.0048(9)
05	0.0499 (11)	0.1146 (17)	0.0361 (11)	-0.0057 (10)	0.0133 (9)	-0.0036 (10)
O6	0.0351 (10)	0.1012 (16)	0.0635 (13)	-0.0075 (10)	0.0156 (9)	-0.0121 (11)
07	0.0430 (10)	0.0799 (14)	0.0453 (11)	-0.0182 (9)	-0.0029 (8)	-0.0108 (10)
Zn1	0.0355 (2)	0.0455 (3)	0.0352 (3)	0	0.00566 (17)	0

Geometric parameters (Å, °)

C1—H1	0.93	С8—Н8	0.93
C1—C2	1.331 (4)	C8—C9	1.367 (3)
C1—N1	1.377 (3)	C9—C10	1.435 (3)
С2—Н2	0.93	C9—N6	1.462 (3)
C2—N2	1.362 (3)	C10—C11	1.440 (3)
С3—Н3	0.93	C10—O1	1.280 (3)
C3—N1	1.320 (3)	C11—C12	1.375 (3)
C3—N2	1.328 (3)	C11—C13	1.480 (3)
C4—H4	0.93	C12—H12	0.93
C4—N4	1.322 (3)	C13—O2	1.319 (3)
C4—N3	1.319 (3)	C13—O3	1.220 (3)
N4—C5	1.361 (3)	N2—H2a	0.967 (2)
N4—H4a	0.9427 (18)	С5—Н5	0.93
С6—Н6	0.93	N5—O4	1.231 (3)
C6—N3	1.381 (3)	N5—O5	1.223 (3)
C6—C5	1.335 (3)	N6—O6	1.231 (3)
C7—C8	1.378 (3)	N6—07	1.217 (3)
C7—C12	1.377 (3)	O1—H1a	1.4955 (15)
C7—N5	1.454 (3)	O2—H1a	1.0386 (15)
H1—C1—C2	124.94	C9—C10—O1	125.18 (18)
H1—C1—N1	124.94	C11—C10—O1	120.2 (2)
C2—C1—N1	110.1 (2)	C10-C11-C12	121.4 (2)
C1—C2—H2	126.81	C10—C11—C13	120.78 (19)
C1—C2—N2	106.4 (2)	C12—C11—C13	117.85 (18)
H2-C2-N2	126.81	C7—C12—C11	120.69 (19)
H3-C3-N1	124.28	C7—C12—H12	119.65
H3-C3-N2	124.28	С11—С12—Н12	119.66
N1-C3-N2	111.44 (19)	$C_{11} - C_{13} - O_{2}$	117.03 (18)
H4—C4—N4	124 35	$C_{11} - C_{13} - O_{3}$	122.6 (2)
H4—C4—N3	124.35	02-C13-03	120.3(2)
N4—C4—N3	111 3 (2)	C1-N1-C3	104 66 (19)
C4-N4-C5	107 74 (19)	$C_2 = N_2 = C_3$	107.4(2)
C4—N4—H4a	133.8 (2)	$C_2 = N_2 = H_2 a$	1213(2)
C5—N4—H4a	1185(2)	$C_3 = N_2 = H_2 a$	1313(2)
H6—C6—N3	125.29	C4—N3—C6	105.04 (18)
H6-C6-C5	125.29	N4	106 5 (2)
N3—C6—C5	109 4 (2)	N4-C5-H5	126 75
C8-C7-C12	120.8(2)	C6-C5-H5	126.75
C8-C7-N5	119.8 (2)	C7—N5—O4	117.82 (19)
C12-C7-N5	119 40 (19)	C7—N5—O5	119 10 (18)
C7—C8—H8	120.27	04—N5—05	123 08 (19)
C7 - C8 - C9	119 5 (2)	C9—N6—O6	117 66 (19)
H8-C8-C9	120.27	C9—N6—O7	119 73 (19)
C8 - C9 - C10	123.06 (18)	06—N6—07	122.61 (18)
C8 - C9 - N6	116.8 (2)	C10-01-H1a	98 67 (13)
	110.0 (2)		JU.U/ (13)

C10—C9—N6	120.16 (19)	C13—O2—H1a	102.66 (16)
C9—C10—C11	114.56 (19)	O1—H1a—O2	160.37 (10)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···· A	D—H···A
C4—H4…O3 ⁱ	0.93	2.47	3.327 (3)	154
O2—H1a…C10	1.0386 (15)	2.110 (2)	2.820 (3)	123.5 (1)
O2—H1 <i>a</i> …O1	1.0386 (15)	1.4955 (15)	2.498 (2)	160.4 (1)
N2—H2 <i>a</i> ···O3	0.967 (2)	1.8902 (16)	2.838 (3)	165.87 (12)
N4—H4 a ···O1 ⁱⁱ	0.9427 (18)	1.9236 (14)	2.784 (2)	150.60 (13)
N4—H4 <i>a</i> ···O7 ⁱⁱ	0.9427 (18)	2.4336 (18)	2.873 (3)	108.36 (13)

Symmetry codes: (i) x, -y+1, z+1/2; (ii) -x+3/2, y+1/2, -z+3/2.

3,5-Dinitrosalicylic acid-phenazine (1/1) (LUDFUL)

Crystal data

 $C_7H_4N_2O_7 \cdot C_{12}H_8N_2$ $M_r = 408.33$ Monoclinic, $P2_1/a$ a = 14.8002 (15) Å b = 7.4029 (16) Å c = 16.0091 (16) Å $\beta = 96.395$ (8)° V = 1743.1 (5) Å³ Z = 4F(000) = 840

Data collection

Enraf-Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator w scans 8396 measured reflections 4202 independent reflections 1587 reflections with $I > 3\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F > 3\sigma(F)] = 0.044$ wR(F) = 0.083S = 1.084202 reflections 274 parameters 0 restraints 40 constraints Primary atom site location: structure-invariant direct methods $D_x = 1.556 \text{ Mg m}^{-3}$ Melting point: 471 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 5-12^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 293 KRhombic, yellow $0.36 \times 0.34 \times 0.26 \text{ mm}$

 $R_{int} = 0.056$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = 0 \rightarrow 19$ $k = -9 \rightarrow 9$ $l = -21 \rightarrow 21$ 3 standard reflections every 150 reflections intensity decay: 2%

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s w = $1/(\sigma^2(I) + 0.0004I^2)$ $(\Delta/\sigma)_{max} = 0.006$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³ Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) Extinction coefficient: 5100 (500)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 6

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
03	0.98761 (10)	0.2874 (2)	0.46747 (9)	0.0599 (6)	
01	0.85079 (8)	0.4309 (2)	0.24121 (9)	0.0539 (6)	
C1	0.98636 (12)	0.4161 (3)	0.33159 (12)	0.0373 (7)	
O7	1.12739 (10)	0.6537 (3)	0.15665 (10)	0.0716 (7)	
C4	1.17200 (13)	0.4785 (3)	0.36328 (13)	0.0421 (8)	
H4a	1.234071	0.501018	0.373432	0.0506*	
C5	1.12429 (13)	0.5256 (3)	0.28746 (12)	0.0378 (7)	
O2	0.84456 (9)	0.3110 (2)	0.36758 (9)	0.0632 (7)	
C2	1.03254 (14)	0.3661 (3)	0.40995 (13)	0.0430 (8)	
C3	1.12654 (13)	0.3980 (3)	0.42348 (12)	0.0423 (8)	
N1	1.18089 (15)	0.3455 (3)	0.50174 (12)	0.0665 (9)	
C7	0.88704 (14)	0.3818 (3)	0.31414 (14)	0.0457 (9)	
C6	1.03232 (13)	0.4947 (3)	0.27113 (12)	0.0386 (7)	
H6a	1.001506	0.526882	0.219465	0.0463*	
O6	1.25212 (10)	0.6448 (3)	0.23814 (10)	0.0804 (8)	
O4	1.14445 (14)	0.2742 (3)	0.55587 (13)	0.1291 (12)	
N2	1.17129 (12)	0.6128 (3)	0.22290 (12)	0.0504 (8)	
05	1.26041 (12)	0.3839 (3)	0.51002 (10)	0.0996 (10)	
N3	0.68389 (10)	0.3729 (2)	0.18982 (10)	0.0388 (6)	
N4	0.50803 (11)	0.3575 (3)	0.10509 (11)	0.0517 (7)	
C17	0.57960 (14)	0.2988 (3)	0.06927 (13)	0.0505 (9)	
C19	0.61248 (13)	0.4326 (3)	0.22726 (12)	0.0377 (7)	
C8	0.74378 (15)	0.2489 (3)	0.06912 (15)	0.0552 (9)	
H8a	0.802687	0.252957	0.096215	0.0663*	
C16	0.66987 (13)	0.3064 (3)	0.11118 (13)	0.0405 (8)	
C18	0.52369 (13)	0.4267 (3)	0.18296 (13)	0.0413 (8)	
C12	0.45074 (14)	0.4976 (3)	0.22251 (15)	0.0533 (9)	
H12a	0.392387	0.498106	0.194132	0.064*	
C14	0.55304 (15)	0.5655 (3)	0.34545 (14)	0.0522 (9)	
H14a	0.561295	0.610201	0.400052	0.0627*	
C13	0.46523 (15)	0.5645 (3)	0.30108 (15)	0.0555 (10)	
H13a	0.416606	0.610633	0.326453	0.0666*	
C15	0.62592 (14)	0.5020 (3)	0.30951 (13)	0.0442 (8)	
H15a	0.683759	0.504497	0.338918	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.6400 (2)	0.1763 (4)	-0.05197 (16)	0.0789 (12)
H10a	0.631177	0.131533	-0.10654	0.0946*
C11	0.56781 (17)	0.2291 (3)	-0.01395 (15)	0.0689 (11)
H11a	0.509671	0.219906	-0.042373	0.0827*
C9	0.72833 (18)	0.1879 (3)	-0.01060 (16)	0.0685 (12)
H9a	0.777245	0.152877	-0.038619	0.0822*
H3a	0.919191	0.279002	0.440153	0.138 (12)*
H1a	0.773139	0.402666	0.229166	0.105 (8)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O3	0.0634 (10)	0.0734 (13)	0.0442 (9)	-0.0001 (9)	0.0122 (8)	0.0094 (9)
01	0.0315 (8)	0.0749 (13)	0.0545 (10)	-0.0027 (8)	0.0009 (7)	0.0096 (9)
C1	0.0315 (11)	0.0413 (14)	0.0394 (12)	0.0004 (10)	0.0046 (10)	-0.0033 (11)
O7	0.0556 (10)	0.1066 (17)	0.0520 (10)	-0.0111 (10)	0.0040 (8)	0.0199 (11)
C4	0.0326 (11)	0.0468 (15)	0.0457 (13)	0.0043 (11)	-0.0016 (11)	-0.0111 (12)
C5	0.0325 (11)	0.0414 (15)	0.0398 (12)	0.0028 (10)	0.0059 (10)	-0.0035 (11)
O2	0.0445 (9)	0.0836 (14)	0.0637 (10)	-0.0069 (9)	0.0161 (8)	0.0161 (10)
C2	0.0493 (13)	0.0426 (15)	0.0377 (12)	0.0029 (12)	0.0073 (11)	-0.0033 (12)
C3	0.0449 (12)	0.0468 (16)	0.0337 (12)	0.0128 (11)	-0.0024 (10)	-0.0056 (12)
N1	0.0646 (15)	0.090 (2)	0.0420 (13)	0.0141 (14)	-0.0078 (12)	-0.0014 (13)
C7	0.0413 (13)	0.0461 (16)	0.0509 (14)	-0.0004 (12)	0.0098 (11)	-0.0019 (13)
C6	0.0334 (11)	0.0433 (14)	0.0381 (12)	0.0051 (10)	-0.0003 (10)	-0.0035 (11)
06	0.0328 (8)	0.1225 (17)	0.0871 (12)	-0.0130 (10)	0.0128 (8)	0.0119 (12)
O4	0.1041 (16)	0.197 (3)	0.0807 (15)	-0.0108 (16)	-0.0151 (13)	0.0758 (17)
N2	0.0369 (11)	0.0590 (15)	0.0567 (13)	-0.0011 (11)	0.0116 (10)	-0.0046 (12)
O5	0.0575 (11)	0.177 (2)	0.0581 (11)	0.0108 (14)	-0.0193 (9)	-0.0056 (13)
N3	0.0310 (9)	0.0431 (12)	0.0419 (10)	-0.0041 (9)	0.0024 (8)	0.0009 (10)
N4	0.0446 (11)	0.0533 (14)	0.0545 (12)	0.0017 (10)	-0.0065 (9)	-0.0035 (11)
C17	0.0538 (14)	0.0491 (17)	0.0469 (14)	0.0046 (13)	-0.0024 (12)	-0.0024 (13)
C19	0.0354 (12)	0.0362 (14)	0.0412 (13)	-0.0040 (11)	0.0029 (10)	0.0023 (11)
C8	0.0564 (15)	0.0521 (18)	0.0588 (16)	0.0030 (13)	0.0136 (13)	-0.0013 (13)
C16	0.0459 (13)	0.0339 (14)	0.0419 (13)	-0.0006 (11)	0.0057 (11)	0.0018 (11)
C18	0.0352 (11)	0.0378 (15)	0.0504 (13)	-0.0009 (11)	0.0032 (10)	-0.0008 (12)
C12	0.0355 (13)	0.0510 (17)	0.0730 (17)	0.0020 (12)	0.0041 (12)	-0.0052 (14)
C14	0.0630 (15)	0.0471 (17)	0.0484 (14)	-0.0037 (14)	0.0143 (13)	-0.0049 (13)
C13	0.0457 (14)	0.0512 (18)	0.0728 (18)	0.0032 (13)	0.0208 (13)	-0.0040 (15)
C15	0.0419 (13)	0.0481 (16)	0.0418 (13)	-0.0029 (12)	0.0012 (11)	0.0047 (12)
C10	0.107 (2)	0.078 (2)	0.0504 (16)	0.009 (2)	0.0051 (17)	-0.0198 (16)
C11	0.0775 (19)	0.071 (2)	0.0533 (17)	0.0057 (16)	-0.0147 (14)	-0.0148 (15)
C9	0.089 (2)	0.060 (2)	0.0602 (18)	0.0060 (17)	0.0270 (15)	-0.0069 (16)

Geometric parameters (Å, °)

03—C2	1.329 (3)	N4—C17	1.332 (3)
O3—H3a	1.0592 (14)	N4—C18	1.344 (3)
O1—C7	1.282 (3)	C17—C16	1.428 (3)

O1—H1a	1.1628 (13)	C17—C11	1.421 (3)
C1—C2	1.410 (3)	C19—C18	1.423 (3)
C1—C7	1.487 (3)	C19—C15	1.407 (3)
C1—C6	1.373 (3)	C8—H8a	0.93
O7—N2	1.219 (2)	C8—C16	1.413 (3)
C4—H4a	0.93	C8—C9	1.349 (3)
C4—C5	1.379 (3)	C18—C12	1.412 (3)
C4—C3	1.371 (3)	C12—H12a	0.93
C5—C6	1.376 (3)	C12—C13	1.347 (3)
C5—N2	1.570(3)	C14—H14a	0.93
02-07	1.139(3) 1.234(3)	C14 $C13$	1.410(3)
$C_2 = C_1^2$	1.234(3)	C14 $C15$	1.410(3)
C2-C3	1.464(3)	$C_{14} = C_{15}$	0.03
CJ—NI NI O4	1.404(3)	C15—H15a	0.93
N1-04	1.194(3)	C10_H10a	0.93
	1.204 (3)		0.93
	0.93		1.346 (4)
06—N2	1.217 (2)	C10—C9	1.400 (4)
N3—C19	1.346 (3)	C11—H11a	0.93
N3—C16	1.346 (3)	С9—Н9а	0.93
С2—О3—Н3а	105.60 (13)	C16—C17—C11	117.8 (2)
C7—O1—H1a	113.94 (15)	N3—C19—C18	119.68 (18)
C2—C1—C7	119.58 (18)	N3—C19—C15	120.03 (17)
C2—C1—C6	120.63 (17)	C18—C19—C15	120.28 (19)
C7—C1—C6	119.79 (17)	H8a—C8—C16	120.23
H4a—C4—C5	120.49	H8a—C8—C9	120.23
H4a—C4—C3	120.49	C16—C8—C9	119.5 (2)
C5—C4—C3	119.01 (18)	N3—C16—C17	119.52 (18)
C4—C5—C6	121.58 (19)	N3—C16—C8	120.61 (17)
C4—C5—N2	119.83 (17)	C17—C16—C8	119.86 (19)
C6—C5—N2	118.58 (17)	N4—C18—C19	121.90 (19)
С7—О2—Н3а	102.24 (13)	N4—C18—C12	119.74 (18)
O3—C2—C1	120.09 (17)	C19—C18—C12	118.35 (19)
Q3—C2—C3	122.05 (17)	C18—C12—H12a	119.82
C1-C2-C3	117.84 (19)	C18 - C12 - C13	120.35 (19)
C4-C3-C2	121 34 (18)	H_{12a} C_{12} C_{13}	119.82
C4-C3-N1	116 79 (18)	H14a $C14$ $C13$	119.52
$C_2 - C_3 - N_1$	121 86 (19)	H_{143} C_{14} C_{15}	119.52
$C_2 = C_3 = N_1 = O_4$	121.00(1)) 1193(2)	C_{13} C_{14} C_{15}	119.52 121.0(2)
$C_3 N_1 O_5$	119.3(2) 118.0(2)	$C_{12} = C_{13} = C_{14}$	121.0(2) 121.0(2)
$C_3 = N_1 = O_5$	110.0(2) 122.7(2)	$C_{12} = C_{13} = C_{14}$	121.0(2)
04 - NI - 05	122.7(2) 115 20 (10)	C_{12} C_{13} C	119.52
01 - 07 - 02	113.30(19) 122.02(19)	C10 - C15 - C14	119.52
$C_1 = C_7 = O_2$	123.93(10) 120.76(10)	$C_{19} = C_{13} = C_{14}$	119.03 (18)
$C_1 = C_1 = C_2$	120.70(18)	C19—C15—H15a	120.48
C1 = C6 = C5	119.39 (17)	U14—U15—H15a	120.48
	120.21		119.51
С5—С6—Н6а	120.2	H10a—C10—C9	119.51
O7—N2—C5	118.45 (16)	C11—C10—C9	121.0 (2)

O7—N2—O6	122.87 (19)	C17—C11—C10	120.6 (2)
C5—N2—O6	118.66 (17)	C17—C11—H11a	119.71
C19—N3—C16	119.31 (15)	C10-C11-H11a	119.71
C19—N3—H1a	119.38 (14)	C8—C9—C10	121.3 (3)
C16—N3—H1a	120.79 (14)	С8—С9—Н9а	119.37
C17—N4—C18	117.41 (17)	С10—С9—Н9а	119.37
N4—C17—C16	122.14 (19)	O3—H3a—O2	151.72 (10)
N4—C17—C11	120.09 (19)	O1—H1a—N3	163.24 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	<i>D</i> —H··· <i>A</i>
C13—H13a····O4 ⁱ	0.93	2.49	3.334 (3)	151
O3—H3 <i>a</i> ···O2	1.0592 (14)	1.5297 (14)	2.5132 (19)	151.72 (10)
O1—H1 <i>a</i> …N3	1.1628 (13)	1.4160 (14)	2.5515 (19)	163.24 (10)

Symmetry code: (i) -x+3/2, y+1/2, -z+1.

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB)

Crystal data

 $C_6H_9N_2^+ C_7H_3N_2O_7^ M_r = 336.27$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 5.8673 (7) Å*b* = 8.0991 (9) Å *c* = 15.2437 (17) Å $\alpha = 86.844 \ (3)^{\circ}$ $\beta = 84.252 (3)^{\circ}$ $\gamma = 81.209 (3)^{\circ}$ $V = 711.69 (14) Å^3$

Data collection

Bruker APEX DUO CCD area-detector	12709 measured reflections
diffractometer	4943 independent reflection
Radiation source: fine-focus sealed tube	3677 reflections with $I > 3\sigma$
Graphite monochromator	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2009)	$k = -12 \rightarrow 11$
$T_{\min} = 0.963, \ T_{\max} = 0.990$	<i>l</i> = −22→23

Refinement

Refinement on F^2 Least-squares matrix: full $R[F > 3\sigma(F)] = 0.042$ wR(F) = 0.109S = 2.064943 reflections 222 parameters 0 restraints 34 constraints

Z = 2F(000) = 348 $D_{\rm x} = 1.569 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5139 reflections $\theta = 2.7 - 32.4^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.29 \times 0.14 \times 0.08 \text{ mm}$

IS (I)

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s w = $1/(\sigma^2(I) + 0.0004I^2)$

$$(\Delta/\sigma)_{\rm max} = 0.009$$

 $\Delta\rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 15

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.50355 (15)	0.28624 (11)	0.24318 (6)	0.0153 (3)	
N2	0.82331 (16)	0.41649 (12)	0.19964 (6)	0.0182 (3)	
C1	0.67739 (18)	0.36376 (13)	0.26429 (7)	0.0152 (3)	
C2	0.35124 (18)	0.22197 (14)	0.30471 (7)	0.0165 (3)	
H2	0.233313	0.167725	0.285731	0.0198*	
C3	0.36539 (18)	0.23424 (14)	0.39257 (7)	0.0180 (3)	
C4	0.54266 (19)	0.31918 (15)	0.41642 (7)	0.0200 (3)	
H4	0.556083	0.332079	0.477169	0.024*	
C5	0.69461 (19)	0.38301 (14)	0.35491 (7)	0.0186 (3)	
Н5	0.811136	0.439959	0.372833	0.0223*	
C6	0.2014 (2)	0.16274 (17)	0.46143 (8)	0.0262 (4)	
H6a	0.118019	0.252439	0.498084	0.0394*	
H6b	0.090144	0.110743	0.432458	0.0394*	
H6c	0.289083	0.078457	0.498608	0.0394*	
O1	0.17284 (13)	0.61818 (10)	0.14277 (5)	0.0201 (2)	
O2	0.10549 (15)	0.60964 (11)	0.31689 (5)	0.0252 (3)	
O3	0.28472 (15)	0.76461 (12)	0.38855 (5)	0.0275 (3)	
O4	0.93312 (14)	0.99538 (11)	0.26216 (6)	0.0242 (3)	
O5	0.99966 (15)	1.02486 (11)	0.11988 (6)	0.0279 (3)	
O6	0.55543 (14)	0.76370 (11)	-0.07523 (5)	0.0224 (3)	
O7	0.26607 (14)	0.63258 (10)	-0.01549 (5)	0.0199 (2)	
N3	0.25052 (15)	0.70323 (12)	0.31961 (6)	0.0172 (3)	
N4	0.89095 (16)	0.97282 (12)	0.18597 (6)	0.0190 (3)	
C7	0.33912 (17)	0.70052 (13)	0.15501 (7)	0.0141 (3)	
C8	0.38900 (17)	0.74506 (13)	0.23906 (7)	0.0144 (3)	
C9	0.56997 (17)	0.83259 (13)	0.24874 (7)	0.0156 (3)	
Н9	0.601439	0.859704	0.305724	0.0187*	
C10	0.70326 (17)	0.87968 (13)	0.17493 (7)	0.0154 (3)	
C11	0.66121 (18)	0.84357 (13)	0.09021 (7)	0.0157 (3)	
H11	0.753695	0.879143	0.040052	0.0188*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12 C13	0.48279 (17) 0 43623 (18)	0.75522 (13) 0.71649 (13)	0.08058(7) -0.01006(7)	0.0139(3) 0.0165(3)	
H107	0.20768	0.615457	0.041923	0.044 (6)*	0.62 (3)
H101	0.186813	0.613081	0.081569	0.044 (6)*	0.38 (3)
H2a	0.809476	0.397973	0.143402	0.035 (4)*	
H2b	0.928572	0.469891	0.211657	0.048 (5)*	
H1	0.481117	0.276133	0.186443	0.032 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0166 (4)	0.0168 (5)	0.0130 (4)	-0.0032 (3)	-0.0023 (3)	-0.0006 (3)
N2	0.0194 (4)	0.0221 (5)	0.0147 (4)	-0.0085 (4)	-0.0004 (3)	-0.0009 (4)
C1	0.0166 (5)	0.0137 (5)	0.0152 (5)	-0.0012 (4)	-0.0022 (4)	-0.0004 (4)
C2	0.0142 (5)	0.0162 (5)	0.0192 (5)	-0.0026 (4)	-0.0015 (4)	-0.0007 (4)
C3	0.0182 (5)	0.0180 (5)	0.0168 (5)	-0.0011 (4)	0.0004 (4)	0.0009 (4)
C4	0.0239 (5)	0.0239 (6)	0.0127 (5)	-0.0043 (5)	-0.0035 (4)	-0.0007 (4)
C5	0.0201 (5)	0.0201 (6)	0.0169 (5)	-0.0054 (4)	-0.0041 (4)	-0.0004 (4)
C6	0.0238 (6)	0.0324 (7)	0.0219 (6)	-0.0077 (5)	0.0028 (4)	0.0047 (5)
01	0.0192 (4)	0.0259 (4)	0.0176 (4)	-0.0108 (3)	-0.0027 (3)	-0.0010 (3)
O2	0.0275 (4)	0.0281 (5)	0.0220 (4)	-0.0141 (4)	0.0034 (3)	-0.0013 (3)
O3	0.0290 (5)	0.0434 (6)	0.0120 (4)	-0.0097 (4)	-0.0019 (3)	-0.0062 (4)
O4	0.0215 (4)	0.0234 (4)	0.0302 (5)	-0.0036 (3)	-0.0110 (3)	-0.0066 (4)
05	0.0227 (4)	0.0276 (5)	0.0354 (5)	-0.0122 (4)	-0.0009 (3)	0.0022 (4)
O6	0.0280 (4)	0.0278 (5)	0.0128 (4)	-0.0102 (4)	0.0001 (3)	-0.0006 (3)
O7	0.0229 (4)	0.0252 (4)	0.0139 (4)	-0.0096 (3)	-0.0034 (3)	-0.0010 (3)
N3	0.0168 (4)	0.0200 (5)	0.0145 (4)	-0.0020 (4)	-0.0017 (3)	-0.0002 (4)
N4	0.0154 (4)	0.0150 (5)	0.0275 (5)	-0.0027 (4)	-0.0051 (4)	-0.0025 (4)
C7	0.0135 (4)	0.0136 (5)	0.0150 (5)	-0.0010 (4)	-0.0022 (4)	-0.0010 (4)
C8	0.0145 (5)	0.0155 (5)	0.0128 (5)	-0.0016 (4)	0.0000 (4)	-0.0003 (4)
C9	0.0144 (5)	0.0156 (5)	0.0169 (5)	0.0000 (4)	-0.0038 (4)	-0.0031 (4)
C10	0.0128 (4)	0.0131 (5)	0.0210 (5)	-0.0030 (4)	-0.0035 (4)	-0.0018 (4)
C11	0.0148 (5)	0.0137 (5)	0.0179 (5)	-0.0009 (4)	-0.0007 (4)	-0.0005 (4)
C12	0.0145 (4)	0.0141 (5)	0.0132 (5)	-0.0020 (4)	-0.0018 (4)	-0.0009 (4)
C13	0.0190 (5)	0.0153 (5)	0.0151 (5)	-0.0021 (4)	-0.0026 (4)	-0.0012 (4)

Geometric parameters (Å, °)

N1—C1	1.3498 (15)	O1—H101	0.9310 (8)
N1—C2	1.3674 (14)	O2—N3	1.2280 (14)
N1—H1	0.8977 (9)	O3—N3	1.2338 (13)
N2—C1	1.3353 (14)	O4—N4	1.2402 (14)
N2—H2a	0.8921 (9)	O5—N4	1.2273 (13)
N2—H2b	0.8456 (10)	O6—C13	1.2340 (13)
C1—C5	1.4139 (15)	O7—C13	1.3022 (15)
С2—Н2	0.95	O7—H1o7	0.9185 (8)
С2—С3	1.3602 (16)	N3—C8	1.4564 (13)
C3—C4	1.4174 (17)	N4—C10	1.4544 (15)

C3—C6	1.5049 (16)	C7—C8	1.4197 (15)
C4—H4	0.95	C7—C12	1.4357 (14)
C4—C5	1.3643 (16)	C8—C9	1.3874 (16)
С5—Н5	0.95	С9—Н9	0.95
С6—Н6а	0.98	C9—C10	1.3750 (15)
C6—H6b	0.98	C10—C11	1.3934 (16)
С6—Н6с	0.98	C11—H11	0.95
Н6а—Н6b	1.6003	C11—C12	1.3787 (16)
Н6а—Н6с	1.6003	C12—C13	1.4939 (15)
Н6b—Н6с	1.6003	H2a—H2b	1.4990 (2)
O1—C7	1.2964 (14)		
C1—N1—C2	123.29 (9)	O2—N3—O3	122.52 (9)
C1—N1—H1	120.41 (9)	O2—N3—C8	119.61 (9)
C2—N1—H1	116.29 (10)	O3—N3—C8	117.87 (10)
C1—N2—H2a	120.74 (11)	O4—N4—O5	123.30 (10)
C1—N2—H2b	120.05 (10)	O4—N4—C10	118.02 (9)
H2a—N2—H2b	119.20 (10)	O5—N4—C10	118.69 (10)
N1—C1—N2	118.98 (10)	O1—C7—C8	124.03 (9)
N1—C1—C5	117.27 (9)	O1—C7—C12	119.84 (10)
N2—C1—C5	123.75 (11)	C8—C7—C12	116.12 (10)
N1—C2—H2	119.38	N3—C8—C7	121.67 (10)
N1—C2—C3	121.25 (11)	N3—C8—C9	116.48 (9)
H2—C2—C3	119.38	C7—C8—C9	121.84 (9)
C2—C3—C4	116.54 (10)	С8—С9—Н9	120.37
C2—C3—C6	122.15 (11)	C8—C9—C10	119.26 (10)
C4—C3—C6	121.31 (10)	H9—C9—C10	120.37
C3—C4—H4	118.95	N4—C10—C9	118.68 (10)
C3—C4—C5	122.10 (10)	N4	119.25 (9)
H4—C4—C5	118.95	C9—C10—C11	122.05 (10)
C1—C5—C4	119.51 (11)	C10-C11-H11	120.64
С1—С5—Н5	120.24	C10-C11-C12	118.72 (9)
С4—С5—Н5	120.24	H11—C11—C12	120.64
С3—С6—Н6а	109.47	C7—C12—C11	121.98 (10)
С3—С6—Н6b	109.47	C7—C12—C13	119.00 (10)
С3—С6—Н6с	109.47	C11—C12—C13	119.02 (9)
Н6а—С6—Н6b	109.47	O6—C13—O7	123.12 (10)
Н6а—С6—Н6с	109.47	O6—C13—C12	120.31 (10)
H6b—C6—H6c	109.47	O7—C13—C12	116.57 (9)
C7—O1—H1o7	98.33 (6)	O1—H1o7—O7	161.55 (6)
C7—O1—H1o1	101.65 (8)	O7—H1o7—H1o1	166.67 (6)
C13—O7—H1o7	104.71 (9)	O1—H101—O7	163.52 (6)
C13—O7—H1o1	99.43 (7)	O1—H1o1—H1o7	171.56 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···O4 ⁱ	0.95	2.47	3.4107 (16)	169

C4—H4···O3 ⁱⁱ	0.95	2.38	3.2397 (15)	151
С5—Н5…О2 ^{ііі}	0.95	2.43	3.2361 (16)	143
O7—H107…O1	0.9185 (8)	1.5313 (8)	2.4202 (12)	161.55 (6)
O1—H101···O7	0.9310 (8)	1.5130 (8)	2.4202 (12)	163.52 (6)
N2—H2a···O7 ^{iv}	0.8921 (9)	2.0783 (9)	2.9655 (14)	172.84 (6)
N2—H2b···O1 ⁱⁱⁱ	0.8456 (10)	2.1644 (9)	2.8526 (14)	138.40 (6)
N2—H2 <i>b</i> ···O2 ⁱⁱⁱ	0.8456 (10)	2.4133 (10)	3.1741 (14)	150.02 (6)
N1—H1····O6 ^{iv}	0.8977 (9)	1.7828 (9)	2.6781 (13)	174.83 (6)

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*.

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate *N*,*N*-dimethylformamide monosolvate (QIQJAD)

Crystal data C₉H₈Cl₂N₅⁺·C₇H₃N₂O₇⁻·C₃H₇NO $M_r = 557.31$ Triclinic, *P*I Hall symbol: -P 1 a = 10.0227 (5) Å b = 10.5507 (5) Å c = 12.5359 (6) Å a = 81.858 (1)° $\beta = 71.888$ (1)° $\gamma = 70.009$ (1)° V = 1183.1 (1) Å³

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.93, T_{\max} = 0.97$

Refinement

Refinement on F^2 $R[F > 3\sigma(F)] = 0.056$ wR(F) = 0.147 S = 3.415507 reflections 340 parameters 0 restraints 48 constraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 572 $D_x = 1.564 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 6413 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 294 KPlate, colourless $0.16 \times 0.14 \times 0.08 \text{ mm}$

13936 measured reflections 5507 independent reflections 4441 reflections with $I > 3\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -12 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$ $(\Delta/\sigma)_{max} = 0.020$ $\Delta\rho_{max} = 0.80$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Number of fixed parameters: 18

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.32107 (18)	1.06764 (19)	0.15844 (16)	0.0464 (7)	
C2	0.2718 (2)	1.0232 (2)	0.08378 (15)	0.0485 (7)	
C3	0.2713 (2)	1.0903 (2)	-0.02046 (16)	0.0529 (8)	
C4	0.3231 (2)	1.2001 (2)	-0.04951 (19)	0.0621 (9)	
H4	0.323127	1.245173	-0.11886	0.0745*	
C5	0.3741 (2)	1.2420 (2)	0.02358 (19)	0.0632 (10)	
Н5	0.410127	1.314857	0.001937	0.0758*	
C6	0.3745 (2)	1.1807 (2)	0.12857 (17)	0.0537 (8)	
H6	0.40816	1.211924	0.177727	0.0645*	
C7	0.32753 (18)	0.99894 (19)	0.26974 (15)	0.0437 (7)	
C8	0.35068 (19)	0.8912 (2)	0.47363 (15)	0.0449 (7)	
C9	0.19780 (18)	0.99408 (18)	0.36291 (15)	0.0418 (7)	
N1	0.45735 (16)	0.95248 (17)	0.28531 (13)	0.0488 (6)	
N2	0.46755 (16)	0.89842 (17)	0.38722 (13)	0.0484 (6)	
N3	0.37354 (18)	0.8352 (2)	0.56859 (14)	0.0613 (8)	
N4	0.21299 (15)	0.93978 (16)	0.46191 (12)	0.0454 (6)	
N5	0.06397 (16)	1.04599 (17)	0.35102 (13)	0.0504 (7)	
C11	0.21444 (7)	0.88366 (6)	0.11855 (5)	0.0685 (3)	
Cl2	0.20368 (7)	1.04039 (8)	-0.11161 (5)	0.0772 (3)	
C10	0.7671 (2)	0.7509 (2)	0.50260 (17)	0.0495 (8)	
C11	0.92521 (19)	0.68875 (18)	0.50532 (16)	0.0456 (8)	
C12	1.0399 (2)	0.68056 (19)	0.40501 (17)	0.0482 (8)	
C13	1.1855 (2)	0.6217 (2)	0.4120 (2)	0.0565 (9)	
C14	1.2169 (3)	0.5728 (2)	0.5120 (2)	0.0650 (11)	
H14	1.31429	0.535992	0.515021	0.078*	
C15	1.1014 (3)	0.5795 (2)	0.6070 (2)	0.0608 (10)	
C16	0.9560 (2)	0.63637 (19)	0.60559 (18)	0.0537 (9)	
H16	0.879592	0.639442	0.671313	0.0645*	
N6	1.3082 (2)	0.6096 (2)	0.3083 (2)	0.0763 (10)	
N7	1.1324 (3)	0.5213 (2)	0.7146 (3)	0.0870 (14)	
01	0.74835 (14)	0.79734 (16)	0.40757 (12)	0.0638 (7)	
O2	0.66684 (16)	0.75284 (17)	0.58991 (13)	0.0695 (7)	
O3	1.01381 (16)	0.72881 (16)	0.30779 (13)	0.0651 (7)	
O4	1.3027 (2)	0.5624 (2)	0.22939 (18)	0.0962 (10)	
05	1.4096 (2)	0.6460 (3)	0.3106 (2)	0.1311 (14)	
O6	1.2621 (3)	0.4654 (3)	0.7114 (2)	0.1272 (14)	
O7	1.0297 (3)	0.5356 (3)	0.7980 (2)	0.1153 (15)	
C17	0.8968 (2)	0.2419 (2)	0.13898 (19)	0.0638 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17	0.997049	0.225753	0.10284	0.0765*	
C18	0.6486 (3)	0.3564 (4)	0.1366 (3)	0.1002 (16)	
H18a	0.600566	0.362237	0.079827	0.1503*	
H18b	0.612084	0.441665	0.171497	0.1503*	
H18c	0.628154	0.287766	0.192178	0.1503*	
C19	0.8613 (4)	0.3905 (3)	-0.0204 (2)	0.0959 (16)	
H19a	0.812684	0.38463	-0.07367	0.1439*	
H19b	0.842404	0.483699	-0.008394	0.1439*	
H19c	0.965894	0.347377	-0.048929	0.1439*	
N8	0.8043 (2)	0.32305 (17)	0.08649 (14)	0.0588 (8)	
08	0.86513 (17)	0.18476 (18)	0.23111 (12)	0.0693 (7)	
H3n	0.459992	0.808642	0.579383	0.067 (7)*	
H4n	0.300684	0.831649	0.62665	0.058 (6)*	
H2n	0.560448	0.867423	0.392878	0.069 (7)*	
H5n	-0.01125	1.040769	0.406749	0.056 (6)*	
H6n	0.043449	1.086703	0.2906	0.052 (6)*	
НЗо	0.911378	0.756483	0.330791	0.131 (12)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0300 (8)	0.0541 (11)	0.0483 (10)	-0.0081 (8)	-0.0060 (7)	-0.0055 (8)
C2	0.0354 (9)	0.0578 (11)	0.0464 (10)	-0.0118 (8)	-0.0044 (8)	-0.0068 (8)
C3	0.0364 (9)	0.0682 (13)	0.0443 (10)	-0.0090 (9)	-0.0049 (8)	-0.0047 (9)
C4	0.0457 (11)	0.0737 (15)	0.0546 (12)	-0.0053 (10)	-0.0119 (9)	-0.0038 (11)
C5	0.0580 (13)	0.0599 (13)	0.0701 (14)	-0.0224 (11)	-0.0153 (11)	0.0054 (11)
C6	0.0442 (10)	0.0589 (12)	0.0502 (11)	-0.0107 (9)	-0.0112 (9)	0.0032 (9)
C7	0.0323 (9)	0.0527 (11)	0.0433 (10)	-0.0115 (8)	-0.0076 (7)	-0.0053 (8)
C8	0.0316 (8)	0.0564 (11)	0.0446 (10)	-0.0113 (8)	-0.0096 (7)	-0.0050 (8)
C9	0.0305 (8)	0.0502 (10)	0.0430 (9)	-0.0112 (7)	-0.0074 (7)	-0.0072 (8)
N1	0.0326 (8)	0.0622 (10)	0.0469 (9)	-0.0126 (7)	-0.0079 (6)	-0.0007 (7)
N2	0.0282 (7)	0.0679 (10)	0.0450 (9)	-0.0113 (7)	-0.0098 (6)	-0.0005 (7)
N3	0.0343 (8)	0.0949 (14)	0.0468 (9)	-0.0152 (9)	-0.0110 (7)	0.0078 (9)
N4	0.0293 (7)	0.0618 (10)	0.0417 (8)	-0.0119 (7)	-0.0077 (6)	-0.0027 (7)
N5	0.0307 (7)	0.0730 (11)	0.0421 (9)	-0.0106 (7)	-0.0102 (7)	-0.0001 (8)
Cl1	0.0784 (4)	0.0786 (4)	0.0600 (3)	-0.0419 (3)	-0.0150 (3)	-0.0059 (3)
Cl2	0.0721 (4)	0.1162 (5)	0.0522 (3)	-0.0373 (4)	-0.0190 (3)	-0.0090 (3)
C10	0.0386 (10)	0.0504 (11)	0.0597 (12)	-0.0073 (8)	-0.0180 (9)	-0.0107 (9)
C11	0.0404 (10)	0.0417 (10)	0.0597 (12)	-0.0103 (8)	-0.0219 (9)	-0.0067 (8)
C12	0.0395 (10)	0.0464 (10)	0.0641 (12)	-0.0136 (8)	-0.0218 (9)	-0.0030 (9)
C13	0.0384 (10)	0.0512 (11)	0.0826 (15)	-0.0101 (8)	-0.0220 (10)	-0.0101 (10)
C14	0.0504 (12)	0.0533 (12)	0.1065 (19)	-0.0093 (10)	-0.0465 (13)	-0.0135 (12)
C15	0.0692 (15)	0.0506 (12)	0.0797 (15)	-0.0144 (10)	-0.0492 (13)	-0.0036 (10)
C16	0.0578 (12)	0.0501 (11)	0.0625 (13)	-0.0162 (9)	-0.0287 (10)	-0.0069 (9)
N6	0.0372 (10)	0.0779 (14)	0.1062 (18)	-0.0082 (9)	-0.0156 (10)	-0.0157 (12)
N7	0.113 (2)	0.0759 (15)	0.1066 (19)	-0.0325 (14)	-0.0800 (17)	0.0073 (14)
O1	0.0374 (7)	0.0841 (11)	0.0645 (9)	-0.0093 (7)	-0.0222 (7)	0.0067 (8)
O2	0.0428 (8)	0.0946 (12)	0.0601 (9)	-0.0074 (8)	-0.0121 (7)	-0.0108 (8)

O3 O4 O5 O6 O7 C17 C18 C19 N8	0.0427 (8) 0.0575 (10) 0.0520 (11) 0.1283 (19) 0.142 (2) 0.0454 (11) 0.0568 (15) 0.123 (3) 0.0593 (11)	0.0802 (10) 0.1277 (17) 0.164 (2) 0.1273 (18) 0.159 (2) 0.0753 (15) 0.129 (3) 0.0831 (19) 0.0601 (11)	0.0653 (9) 0.0882 (13) 0.181 (2) 0.142 (2) 0.0879 (15) 0.0575 (13) 0.120 (2) 0.0697 (17) 0.0548 (10)	$\begin{array}{c} -0.0151 (7) \\ -0.0110 (11) \\ -0.0480 (13) \\ 0.0037 (15) \\ -0.0849 (19) \\ -0.0065 (10) \\ -0.0180 (16) \\ -0.0251 (18) \\ -0.0096 (9) \\ \end{array}$	-0.0148 (7) -0.0135 (9) 0.0026 (13) -0.1080 (17) -0.0675 (16) -0.0078 (10) -0.0417 (16) -0.0229 (9)	$\begin{array}{c} 0.0074 \ (8) \\ -0.0195 \ (12) \\ -0.0623 \ (18) \\ -0.0100 \ (15) \\ 0.0370 \ (15) \\ -0.0085 \ (11) \\ -0.009 \ (2) \\ 0.0120 \ (14) \\ -0.0033 \ (8) \end{array}$
N8	0.0593 (11)	0.0937 (12)	0.0548 (10)	-0.0096(9)	-0.0229(9)	-0.0033 (8)
O8	0.0558 (9)		0.0520 (9)	-0.0195(8)	-0.0165(7)	0.0097 (8)

Geometric parameters (Å, °)

C1—C2	1.382 (3)	C13—C14	1.374 (4)	
C1—C6	1.427 (3)	C13—N6	1.471 (3)	
C1—C7	1.488 (3)	C14—H14	0.93	
C2—C3	1.396 (3)	C14—C15	1.369 (3)	
C3—C4	1.385 (4)	C15—C16	1.378 (3)	
C4—H4	0.93	C15—N7	1.479 (4)	
C4—C5	1.362 (4)	C16—H16	0.93	
С5—Н5	0.93	N6—O4	1.192 (4)	
C5—C6	1.382 (3)	N6—O5	1.213 (4)	
С6—Н6	0.93	N7—O6	1.221 (4)	
С7—С9	1.464 (2)	N7—O7	1.202 (4)	
C7—N1	1.291 (2)	O3—H3o	0.9258 (14)	
C8—N2	1.342 (2)	C17—H17	0.93	
C8—N3	1.303 (3)	C17—N8	1.305 (3)	
C8—N4	1.345 (2)	C17—O8	1.226 (3)	
C9—N4	1.322 (2)	C18—H18a	0.96	
C9—N5	1.312 (2)	C18—H18b	0.96	
N1—N2	1.343 (2)	C18—H18c	0.96	
N2—H2n	0.8973 (16)	C18—N8	1.425 (3)	
N3—H3n	0.8624 (18)	H18a—H18b	1.5677	
N3—H4n	0.8630 (15)	H18a—H18c	1.5677	
N5—H5n	0.8658 (14)	H18b—H18c	1.5677	
N5—H6n	0.8630 (16)	C19—H19a	0.96	
C10-C11	1.503 (3)	C19—H19b	0.96	
C10—O1	1.267 (3)	C19—H19c	0.96	
C10—O2	1.231 (2)	C19—N8	1.470 (3)	
C11—C12	1.405 (2)	H19a—H19b	1.5677	
C11—C16	1.382 (3)	H19a—H19c	1.5677	
C12—C13	1.402 (3)	H19b—H19c	1.5677	
C12—O3	1.321 (3)			
C2—C1—C6	120.20 (18)	C11—C12—O3	122.09 (17)	
C2—C1—C7	122.86 (19)	C13—C12—O3	120.57 (17)	
C6—C1—C7	116.9 (2)	C12—C13—C14	122.17 (18)	
C1—C2—C3	120.2 (2)	C12—C13—N6	118.7 (2)	

C2—C3—C4	119.6 (2)	C14—C13—N6	119.10 (19)
C3—C4—H4	120.02	C13—C14—H14	120.79
C3—C4—C5	120.0 (2)	C13—C14—C15	118.4 (2)
H4—C4—C5	120.02	H14—C14—C15	120.79
C4—C5—H5	118.63	C14—C15—C16	122.1 (2)
C4—C5—C6	122.7 (2)	C14—C15—N7	119.4 (2)
H5—C5—C6	118.63	C16—C15—N7	118.5 (2)
C1—C6—C5	117.3 (2)	C11—C16—C15	119.19 (18)
С1—С6—Н6	121.37	C11—C16—H16	120.41
С5—С6—Н6	121.36	C15—C16—H16	120.41
C1—C7—C9	124.50 (16)	C13—N6—O4	118.2 (2)
C1—C7—N1	115.60 (15)	C13—N6—O5	117.0 (3)
C9—C7—N1	119.58 (16)	O4—N6—O5	124.8 (2)
N2—C8—N3	118.61 (17)	C15—N7—O6	116.6 (2)
N2—C8—N4	120.57 (17)	C15—N7—O7	118.1 (3)
N3—C8—N4	120.81 (16)	O6—N7—O7	125.3 (3)
C7—C9—N4	120.53 (16)	С10—О1—Н3о	101.27 (12)
C7—C9—N5	120.93 (16)	С12—О3—Н3о	99.28 (14)
N4—C9—N5	118.52 (15)	H17—C17—N8	116.69
C7—N1—N2	117.85 (14)	H17—C17—O8	116.69
C8—N2—N1	123.77 (16)	N8—C17—O8	126.6 (2)
C8—N2—H2n	122.42 (17)	H18a—C18—H18b	109.47
N1—N2—H2n	113.82 (14)	H18a—C18—H18c	109.47
C8—N3—H3n	122.28 (17)	H18a—C18—N8	109.47
C8—N3—H4n	121.07 (18)	H18b—C18—H18c	109.47
H3n—N3—H4n	116.2 (2)	H18b—C18—N8	109.47
C8—N4—C9	117.69 (14)	H18c—C18—N8	109.47
C9—N5—H5n	119.55 (17)	H19a—C19—H19b	109.47
C9—N5—H6n	124.81 (16)	H19a—C19—H19c	109.47
H5n—N5—H6n	115.64 (18)	H19a—C19—N8	109.47
C11—C10—O1	115.76 (15)	H19b—C19—H19c	109.47
C11—C10—O2	119.27 (19)	H19b—C19—N8	109.47
O1—C10—O2	124.96 (19)	H19c—C19—N8	109.47
C10-C11-C12	119.51 (18)	C17—N8—C18	120.7 (2)
C10-C11-C16	119.71 (16)	C17—N8—C19	119.5 (2)
C12—C11—C16	120.74 (18)	C18—N8—C19	119.6 (2)
C11—C12—C13	117.3 (2)	O1—H3o—O3	161.33 (12)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C19—H19a…O4 ⁱ	0.96	2.47	3.401 (4)	163
N3—H3 <i>n</i> ···O2	0.8624 (18)	1.9939 (16)	2.854 (2)	174.78 (11)
N3—H4 <i>n</i> ···O8 ⁱⁱ	0.8630 (15)	2.0586 (14)	2.921 (2)	176.91 (12)
N2—H2 <i>n</i> ···O1	0.8973 (16)	1.8310 (15)	2.728 (2)	177.45 (12)
N5—H5 n ···N4 ⁱⁱⁱ	0.8658 (14)	2.1409 (13)	2.9992 (19)	171.06 (11)

N5—H6 <i>n</i> ···O8 ^{iv}	0.8630 (16)	2.0412 (16)	2.760 (2)	140.22 (10)
O3—H3 <i>o</i> …O1	0.9258 (14)	1.5621 (12)	2.4572 (18)	161.33 (12)

Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x-1, y+1, z.

Bis(1,10-phenanthroline-5,6-dione- $\kappa^2 N$, N')silver(I) 3,5-dinitrosalicylate (SAFGUD)

Crystal data

 $[Ag(C_{12}H_6N_2O_2)](C_7H_3N_2O_7)$ $M_r = 755.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.757 (2) Åb = 18.297 (4) Å c = 13.223 (3) Å $\beta = 103.91 (3)^{\circ}$ $V = 2761.1 (11) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Gemini R Ultra	12726 mea
diffractometer	5013 indep
Radiation source: fine-focus sealed tube	3100 reflec
Graphite monochromator	$R_{\rm int} = 0.052$
v scans	$\theta_{\rm max} = 25.4$
Absorption correction: multi-scan	$h = -14 \rightarrow$
(SADABS; Bruker, 2002)	$k = -17 \rightarrow 2$
$T_{\min} = 0.780, \ T_{\max} = 0.910$	$l = -15 \rightarrow 1$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F > 3\sigma(F)] = 0.062$ Hydrogen site location: inferred from wR(F) = 0.118neighbouring sites S = 1.64H-atom parameters constrained 5013 reflections 444 parameters $1/(\sigma^2(I) + 0.0004I^2)$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.016$ $\Delta \rho_{\rm max} = 0.76 \text{ e} \text{ Å}^{-3}$ 56 constraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods isotropic (Becker & Coppens, 1974)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters 3

F(000) = 1512 $D_{\rm x} = 1.817 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5197 reflections $\theta = 3.2 - 25.4^{\circ}$ $\mu = 0.81 \text{ mm}^{-1}$ T = 174 KPrism, yellow $0.3 \times 0.24 \times 0.2 \text{ mm}$

asured reflections pendent reflections ctions with $I > 3\sigma(I)$ 2 $\theta^{\circ}, \theta_{\min} = 3.2^{\circ}$ -11 22 3

Weighting scheme based on measured s.u.'s w =Extinction correction: B-C type 1 Lorentzian Extinction coefficient: 2400 (800)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.21070 (4)	0.44031 (3)	0.52479 (4)	0.0538 (2)	
CI	0.4796 (5)	0.5138 (3)	0.6221 (4)	0.043 (2)	
H1	0.440696	0.558209	0.60689	0.0511*	
C2	0.5975 (6)	0.5153 (3)	0.6692 (4)	0.046 (2)	
H2	0.637009	0.559483	0.684873	0.0553*	
C3	0.6551 (5)	0.4500 (3)	0.6925 (4)	0.046 (2)	
H3	0.734391	0.449118	0.725729	0.0547*	
C4	0.5946 (5)	0.3859 (3)	0.6661 (4)	0.035 (2)	
C5	0.6523 (8)	0.3141 (4)	0.6884 (5)	0.068 (3)	
C6	0.5912 (10)	0.2510 (4)	0.6718 (6)	0.093 (5)	
C7	0.4628 (6)	0.2534 (3)	0.6228 (4)	0.042 (2)	
C8	0.3994 (7)	0.1881 (3)	0.6033 (4)	0.052 (3)	
H8	0.435089	0.143184	0.6224	0.0623*	
С9	0.2837 (7)	0.1928 (4)	0.5555 (5)	0.063 (3)	
H9	0.238665	0.150616	0.540161	0.0756*	
C10	0.2345 (6)	0.2592 (3)	0.5304 (5)	0.052 (3)	
H10	0.155582	0.26107	0.496188	0.0629*	
C11	0.4065 (5)	0.3197 (3)	0.5966 (4)	0.032 (2)	
C12	0.4742 (5)	0.3885 (3)	0.6197 (4)	0.033 (2)	
C13	0.0851 (5)	0.4150 (3)	0.2774 (5)	0.054 (3)	
H13	0.109147	0.367048	0.293174	0.0649*	
C14	0.0376 (5)	0.4324 (4)	0.1743 (5)	0.060 (3)	
H14	0.029151	0.397085	0.122358	0.0717*	
C15	0.0032 (5)	0.5033 (3)	0.1508 (5)	0.051 (3)	
H15	-0.030371	0.516779	0.082274	0.0617*	
C16	0.0190 (5)	0.5550 (3)	0.2306 (4)	0.040 (2)	
C17	-0.0145 (5)	0.6317 (3)	0.2063 (5)	0.051 (3)	
C18	-0.0094 (5)	0.6826 (3)	0.2940 (5)	0.053 (3)	
C19	0.0474 (5)	0.6578 (3)	0.4023 (5)	0.042 (2)	
C20	0.0689 (5)	0.7058 (3)	0.4858 (5)	0.052 (3)	
H20	0.048099	0.754726	0.475014	0.063*	
C21	0.1204 (6)	0.6817 (4)	0.5833 (5)	0.058 (3)	
H21	0.134626	0.713123	0.64029	0.0692*	
C22	0.1503 (5)	0.6091 (4)	0.5941 (5)	0.054 (3)	
H22	0.186352	0.59254	0.660553	0.0653*	
C23	0.0818 (5)	0.5847 (3)	0.4195 (4)	0.036 (2)	
C24	0.0637 (4)	0.5318 (3)	0.3326 (4)	0.032 (2)	
C25	0.6150 (6)	0.4142 (3)	0.9276 (4)	0.041 (2)	
C26	0.5079 (6)	0.4527 (3)	0.8869 (4)	0.040 (2)	
C27	0.4074 (5)	0.4101 (3)	0.8426 (4)	0.037 (2)	
C28	0.4091 (5)	0.3351 (3)	0.8456 (4)	0.041 (2)	
H28	0.341998	0.308064	0.817616	0.0498*	
C29	0.5156 (6)	0.3004 (3)	0.8924 (4)	0.041 (2)	
C30	0.6177 (5)	0.3387 (3)	0.9323 (4)	0.043 (2)	
H30	0.687051	0.314123	0.961804	0.0515*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.2956 (6) 0.4179 (4) 0.2929 (4) 0.0989 (4) 0.1317 (4) 0.7267 (6) 0.5168 (6)	0.4467 (4) 0.4525 (2) 0.3229 (2) 0.4627 (2) 0.5603 (2) 0.4510 (4)	0.7881 (5) 0.5968 (3) 0.5519 (3) 0.3563 (3) 0.5163 (3) 0.9628 (4)	0.047 (3) 0.0338 (17) 0.0387 (18) 0.0413 (18) 0.0405 (18)
0.4179 (4) 0.2929 (4) 0.0989 (4) 0.1317 (4) 0.7267 (6) 0.5168 (6)	0.4525 (2) 0.3229 (2) 0.4627 (2) 0.5603 (2) 0.4510 (4)	0.5968 (3) 0.5519 (3) 0.3563 (3) 0.5163 (3) 0.9628 (4)	0.0338 (17) 0.0387 (18) 0.0413 (18) 0.0405 (18)
0.2929 (4) 0.0989 (4) 0.1317 (4) 0.7267 (6) 0.5168 (6)	0.3229 (2) 0.4627 (2) 0.5603 (2) 0.4510 (4)	0.5519 (3) 0.3563 (3) 0.5163 (3) 0.9628 (4)	0.0387 (18) 0.0413 (18) 0.0405 (18)
0.0989 (4) 0.1317 (4) 0.7267 (6) 0.5168 (6)	0.4627 (2) 0.5603 (2) 0.4510 (4)	0.3563 (3) 0.5163 (3) 0.9628 (4)	0.0413 (18) 0.0405 (18)
0.1317 (4) 0.7267 (6) 0.5168 (6)	0.5603 (2) 0.4510 (4)	0.5163 (3)	0.0405 (18)
0.7267 (6)	0.4510 (4)	0.9628 (4)	
0 5169 (6)		0.9028 (4)	0.059 (3)
0.5108 (0)	0.2209 (3)	0.9002 (4)	0.055 (3)
0.7646 (5)	0.3117 (3)	0.7273 (4)	0.092 (3)
0.6406 (5)	0.1892 (3)	0.6987 (4)	0.102 (3)
-0.0421 (4)	0.6544 (2)	0.1169 (3)	0.069 (2)
-0.0501 (5)	0.7444 (2)	0.2776 (4)	0.081 (2)
0.8168 (5)	0.4145 (3)	0.9750 (4)	0.090 (3)
0.7298 (5)	0.5169 (3)	0.9762 (4)	0.084 (2)
0.5025 (4)	0.5233 (2)	0.8850 (3)	0.0617 (19)
0.2936 (4)	0.5168 (3)	0.7945 (3)	0.066 (2)
0.2137 (4)	0.4111 (3)	0.7370 (3)	0.064 (2)
0.4286 (5)	0.1877 (2)	0.8580 (4)	0.070 (2)
0.6096 (5)	0.1916 (2)	0.9512 (4)	0.068 (2)
0.388884	0.531747	0.83591	0.019 (12)*
	$\begin{array}{c} 0.5168 \ (6) \\ 0.7646 \ (5) \\ 0.6406 \ (5) \\ -0.0421 \ (4) \\ -0.0501 \ (5) \\ 0.8168 \ (5) \\ 0.7298 \ (5) \\ 0.5025 \ (4) \\ 0.2936 \ (4) \\ 0.2137 \ (4) \\ 0.4286 \ (5) \\ 0.6096 \ (5) \\ 0.388884 \end{array}$	0.7207(6) $0.4516(4)$ $0.5168(6)$ $0.2209(3)$ $0.7646(5)$ $0.3117(3)$ $0.6406(5)$ $0.1892(3)$ $-0.0421(4)$ $0.6544(2)$ $-0.0501(5)$ $0.7444(2)$ $0.8168(5)$ $0.4145(3)$ $0.7298(5)$ $0.5169(3)$ $0.5025(4)$ $0.5233(2)$ $0.2936(4)$ $0.4111(3)$ $0.4286(5)$ $0.1877(2)$ $0.6096(5)$ $0.1916(2)$ 0.388884 0.531747	0.7267(6) $0.4510(4)$ $0.9628(4)$ $0.5168(6)$ $0.2209(3)$ $0.9002(4)$ $0.7646(5)$ $0.3117(3)$ $0.7273(4)$ $0.6406(5)$ $0.1892(3)$ $0.6987(4)$ $-0.0421(4)$ $0.6544(2)$ $0.1169(3)$ $-0.0501(5)$ $0.7444(2)$ $0.2776(4)$ $0.8168(5)$ $0.4145(3)$ $0.9750(4)$ $0.7298(5)$ $0.5169(3)$ $0.9762(4)$ $0.5025(4)$ $0.5233(2)$ $0.8850(3)$ $0.2936(4)$ $0.5168(3)$ $0.7945(3)$ $0.2137(4)$ $0.1877(2)$ $0.8580(4)$ $0.6096(5)$ $0.1916(2)$ $0.9512(4)$ 0.388884 0.531747 0.83591

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0474 (4)	0.0492 (3)	0.0603 (3)	0.0150 (3)	0.0038 (2)	0.0149 (3)
C1	0.054 (5)	0.035 (4)	0.041 (3)	-0.006(3)	0.014 (3)	0.001 (3)
C2	0.052 (5)	0.041 (4)	0.048 (4)	-0.010 (3)	0.018 (3)	-0.001 (3)
C3	0.031 (4)	0.063 (4)	0.043 (3)	-0.004(3)	0.008 (3)	-0.008 (3)
C4	0.036 (4)	0.034 (3)	0.035 (3)	0.015 (3)	0.013 (3)	0.004 (3)
C5	0.085 (7)	0.078 (6)	0.048 (4)	0.014 (5)	0.031 (4)	0.006 (4)
C6	0.201 (12)	0.037 (5)	0.065 (5)	0.012 (6)	0.081 (7)	0.001 (4)
C7	0.033 (4)	0.059 (5)	0.035 (3)	0.007 (3)	0.008 (3)	0.001 (3)
C8	0.088 (6)	0.023 (3)	0.051 (4)	0.010 (4)	0.029 (4)	0.005 (3)
C9	0.074 (6)	0.053 (5)	0.067 (5)	-0.009(4)	0.025 (4)	-0.008 (4)
C10	0.039 (4)	0.054 (4)	0.064 (4)	-0.003 (4)	0.012 (3)	-0.014 (4)
C11	0.043 (4)	0.026 (3)	0.029 (3)	0.006 (3)	0.010 (3)	0.002 (2)
C12	0.043 (4)	0.031 (3)	0.028 (3)	-0.004 (3)	0.014 (3)	0.002 (2)
C13	0.052 (5)	0.034 (4)	0.071 (5)	-0.002(3)	0.005 (4)	-0.001 (3)
C14	0.055 (5)	0.055 (5)	0.064 (4)	0.000 (4)	0.003 (4)	-0.024 (4)
C15	0.046 (4)	0.057 (4)	0.045 (4)	-0.004(3)	0.000 (3)	-0.002 (3)
C16	0.029 (3)	0.038 (3)	0.051 (4)	0.000 (3)	0.004 (3)	0.005 (3)
C17	0.039 (4)	0.054 (4)	0.055 (4)	0.002 (3)	0.001 (3)	0.021 (4)
C18	0.036 (4)	0.042 (4)	0.077 (5)	-0.003 (3)	0.004 (3)	0.005 (4)
C19	0.035 (4)	0.032 (3)	0.057 (4)	0.003 (3)	0.007 (3)	0.002 (3)
C20	0.046 (4)	0.031 (3)	0.079 (5)	0.000 (3)	0.012 (4)	-0.010 (4)
C21	0.049 (5)	0.055 (5)	0.067 (5)	0.002 (4)	0.010 (4)	-0.013 (4)
C22	0.046 (4)	0.070 (5)	0.042 (4)	-0.003 (4)	0.001 (3)	-0.006 (4)
C23	0.027 (3)	0.034 (3)	0.046 (3)	0.002 (3)	0.006 (3)	0.000 (3)
C24	0.019 (3)	0.031 (3)	0.046 (3)	-0.001 (2)	0.007 (2)	0.004 (3)

C25	0.058 (5)	0.037 (4)	0.028 (3)	-0.010 (3)	0.010 (3)	-0.004 (3)
C26	0.062 (5)	0.032 (3)	0.030 (3)	0.001 (3)	0.018 (3)	-0.002 (3)
C27	0.039 (4)	0.038 (4)	0.035 (3)	0.002 (3)	0.012 (3)	0.006 (3)
C28	0.057 (5)	0.041 (4)	0.030 (3)	-0.007 (3)	0.018 (3)	-0.002 (3)
C29	0.068 (5)	0.029 (3)	0.032 (3)	0.004 (3)	0.024 (3)	0.005 (3)
C30	0.047 (4)	0.047 (4)	0.036 (3)	0.005 (3)	0.014 (3)	0.002 (3)
C31	0.057 (5)	0.041 (4)	0.048 (4)	0.011 (4)	0.023 (3)	0.008 (3)
N1	0.036 (3)	0.031 (3)	0.033 (2)	0.005 (2)	0.008 (2)	0.001 (2)
N2	0.033 (3)	0.037 (3)	0.044 (3)	-0.001 (2)	0.006 (2)	-0.002 (2)
N3	0.040 (3)	0.029 (3)	0.051 (3)	0.001 (2)	0.004 (2)	-0.003 (2)
N4	0.035 (3)	0.043 (3)	0.041 (3)	0.003 (2)	0.004 (2)	0.006 (2)
N5	0.057 (4)	0.072 (5)	0.044 (3)	-0.015 (4)	0.003 (3)	-0.009 (3)
N6	0.090 (5)	0.039 (4)	0.044 (3)	0.004 (3)	0.033 (3)	0.004 (3)
01	0.083 (4)	0.104 (4)	0.088 (4)	0.034 (4)	0.022 (3)	0.021 (3)
O2	0.095 (5)	0.085 (4)	0.115 (5)	0.014 (4)	0.002 (4)	-0.007 (4)
03	0.066 (3)	0.071 (3)	0.065 (3)	0.002 (3)	0.004 (3)	0.026 (3)
04	0.101 (4)	0.040 (3)	0.095 (4)	0.019 (3)	0.007 (3)	0.017 (3)
05	0.052 (4)	0.100 (4)	0.111 (4)	-0.002 (3)	0.006 (3)	-0.031 (3)
06	0.091 (4)	0.051 (3)	0.090 (4)	-0.024 (3)	-0.015 (3)	0.003 (3)
07	0.088 (4)	0.042 (3)	0.057 (3)	-0.005 (2)	0.021 (3)	-0.002 (2)
08	0.069 (4)	0.060 (3)	0.072 (3)	0.017 (3)	0.022 (3)	0.009 (2)
09	0.042 (3)	0.084 (4)	0.066 (3)	0.006 (3)	0.012 (2)	-0.002 (3)
O10	0.107 (5)	0.039 (3)	0.067 (3)	-0.016 (3)	0.025 (3)	-0.001 (2)
011	0.089 (4)	0.042 (3)	0.081 (3)	0.016 (3)	0.036 (3)	0.022 (2)

Geometric parameters (Å, °)

Ag1—N1	2.404 (4)	C16—C24	1.392 (7)
Ag1—N2	2.348 (5)	C17—C18	1.476 (9)
Ag1—N3	2.335 (4)	C17—O3	1.220 (8)
Ag1—N4	2.376 (5)	C18—C19	1.498 (8)
C1—H1	0.93	C18—O4	1.227 (8)
C1—C2	1.376 (8)	C19—C20	1.386 (8)
C1—N1	1.334 (7)	C19—C23	1.400 (8)
С2—Н2	0.93	C20—H20	0.93
C2—C3	1.373 (8)	C20—C21	1.359 (9)
С3—Н3	0.93	C21—H21	0.93
C3—C4	1.372 (8)	C21—C22	1.373 (9)
C4—C5	1.475 (10)	C22—H22	0.93
C4—C12	1.402 (8)	C22—N4	1.341 (8)
C5—C6	1.349 (12)	C23—C24	1.478 (7)
C5—O1	1.298 (10)	C23—N4	1.349 (7)
C6—C7	1.493 (13)	C24—N3	1.344 (7)
C6—O2	1.283 (10)	C25—C26	1.430 (9)
С7—С8	1.399 (9)	C25—C30	1.384 (8)
C7—C11	1.385 (8)	C25—N5	1.450 (9)
С8—Н8	0.93	C26—C27	1.418 (8)
С8—С9	1.357 (10)	C26—O7	1.293 (7)

С9—Н9	0.93	C27—C28	1.373 (8)
C9—C10	1.353 (9)	C27—C31	1.496 (8)
C10—H10	0.93	C28—H28	0.93
C10—N2	1.347 (8)	C28—C29	1.407 (8)
C11—C12	1.481 (7)	C29—C30	1.380 (8)
C11—N2	1.326 (7)	C29—N6	1.458 (8)
C12—N1	1.344 (7)	С30—Н30	0.93
С13—Н13	0.93	C31—O8	1.286 (8)
C13—C14	1.381 (9)	C31—O9	1.223 (8)
C13—N3	1.339 (8)	N5—O5	1.230 (9)
C14—H14	0.93	N5—O6	1.218 (8)
C14—C15	1.373 (9)	N6—O10	1.216 (8)
C15—H15	0.93	N6—O11	1.257 (8)
C15—C16	1.396 (8)	O7—H7	1.346 (4)
C16—C17	1.473 (8)	O8—H7	1.155 (4)
H1—C1—C2	118.04	C19—C18—O4	120.9 (6)
H1-C1-N1	118.04	C18—C19—C20	121.6 (5)
C2-C1-N1	123.9 (5)	C18—C19—C23	119.3 (5)
C1—C2—H2	120.88	C20—C19—C23	119.1 (5)
C1—C2—C3	118.2 (5)	С19—С20—Н20	119.84
H2—C2—C3	120.88	C19—C20—C21	120.3 (6)
С2—С3—Н3	120.34	H20—C20—C21	119.84
C2—C3—C4	119.3 (5)	C20—C21—H21	121.42
Н3—С3—С4	120.34	C20—C21—C22	117.2 (6)
C3—C4—C5	121.7 (6)	H21—C21—C22	121.42
C3—C4—C12	119.3 (5)	C21—C22—H22	117.46
C5—C4—C12	119.0 (5)	C21—C22—N4	125.1 (5)
C4—C5—C6	121.9 (8)	H22—C22—N4	117.46
C4—C5—O1	118.9 (7)	C19—C23—C24	121.2 (5)
C6—C5—O1	119.2 (8)	C19—C23—N4	120.8 (5)
C5—C6—C7	119.3 (7)	C24—C23—N4	118.0 (5)
C5—C6—O2	121.4 (9)	C16—C24—C23	120.2 (5)
C7—C6—O2	119.3 (7)	C16—C24—N3	122.5 (5)
C6—C7—C8	119.6 (6)	C23—C24—N3	117.2 (4)
C6—C7—C11	120.4 (6)	C26—C25—C30	121.2 (5)
C8—C7—C11	120.0 (6)	C26—C25—N5	122.7 (5)
С7—С8—Н8	121.23	C30—C25—N5	116.1 (6)
C7—C8—C9	117.5 (6)	C25—C26—C27	117.1 (5)
Н8—С8—С9	121.23	C25—C26—O7	122.2 (5)
С8—С9—Н9	120.26	C27—C26—O7	120.5 (5)
C8—C9—C10	119.5 (6)	C26—C27—C28	122.1 (5)
H9—C9—C10	120.26	C26—C27—C31	120.1 (5)
С9—С10—Н10	118.01	C28—C27—C31	117.8 (5)
C9—C10—N2	124.0 (6)	C27—C28—H28	121
H10—C10—N2	118.01	C27—C28—C29	118.0 (5)
C7—C11—C12	119.5 (5)	H28—C28—C29	121
C7—C11—N2	121.3 (5)	C28—C29—C30	122.6 (5)

C12—C11—N2	119.2 (5)	C28—C29—N6	118.3 (5)
C4—C12—C11	119.8 (5)	C30—C29—N6	119.1 (5)
C4—C12—N1	121.2 (5)	C25—C30—C29	118.7 (5)
C11—C12—N1	118.9 (5)	С25—С30—Н30	120.65
H13—C13—C14	117.83	С29—С30—Н30	120.65
H13—C13—N3	117.83	C27—C31—O8	116.2 (5)
C14—C13—N3	124.3 (5)	C27—C31—O9	120.8 (6)
C13—C14—H14	121.04	O8—C31—O9	122.9 (6)
C13—C14—C15	117.9 (6)	C1—N1—C12	117.9 (4)
H14—C14—C15	121.04	C10—N2—C11	117.6 (5)
C14—C15—H15	120.29	C13—N3—C24	117.3 (5)
C14—C15—C16	119.4 (5)	C22—N4—C23	117.5 (5)
H15—C15—C16	120.29	C25—N5—O5	118.4 (6)
C15—C16—C17	120.1 (5)	C25—N5—O6	120.0 (6)
C15—C16—C24	118.5 (5)	O5—N5—O6	121.6 (6)
C17—C16—C24	121.4 (5)	C29—N6—O10	118.3 (5)
C16—C17—C18	118.1 (5)	C29—N6—O11	117.2 (5)
C16—C17—O3	122.0 (6)	O10—N6—O11	124.5 (5)
C18—C17—O3	119.9 (6)	С26—О7—Н7	99.4 (4)
C17—C18—C19	119.0 (5)	С31—О8—Н7	103.7 (4)
C17—C18—O4	120.1 (6)	O7—H7—O8	159.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C2—H2…O10 ⁱ	0.93	2.49	3.180 (7)	131
C8—H8····O7 ⁱⁱ	0.93	2.32	3.220 (7)	162
С9—Н9…Об ^{іі}	0.93	2.49	3.243 (9)	138
С13—Н13…О4 ^{ііі}	0.93	2.47	3.209 (7)	137
С22—Н22…О8	0.93	2.36	3.251 (7)	160
O7—H7…C31	1.346 (4)	1.922 (7)	2.833 (8)	119.1 (3)
O7—H7…O8	1.346 (4)	1.155 (4)	2.462 (6)	159.6 (3)
O8—H7…C26	1.155 (4)	2.013 (6)	2.781 (7)	120.3 (3)
O8—H7…O7	1.155 (4)	1.346 (4)	2.462 (6)	159.6 (3)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) -*x*, *y*-1/2, -*z*+1/2.

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET)

Crystal data	
$C_5H_9N_2^+ C_7H_3N_2O_7^-$	F(000) = 336
$M_r = 324.26$	$D_{\rm x} = 1.547 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.1183 (7) Å	Cell parameters from 1025 reflections
b = 6.0636(5) Å	$\theta = 2.5 - 22.6^{\circ}$
c = 14.1453 (11) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 91.904 (1)^{\circ}$	T = 293 K
$V = 695.93 (10) Å^3$	Block, colorless
Z = 2	$0.40 \times 0.27 \times 0.11 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.959, T_{max} = 0.986$	3523 measured reflections 2301 independent reflections 1444 reflections with $I > 3\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -7 \rightarrow 7$ $l = -16 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F > 3\sigma(F)] = 0.041$ wR(F) = 0.088 S = 1.16 2301 reflections 212 parameters 0 restraints 37 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$ $(\Delta/\sigma)_{max} = 0.033$ $\Delta\rho_{max} = 0.11$ e Å ⁻³ $\Delta\rho_{min} = -0.10$ e Å ⁻³ Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) Extinction coefficient: 3100 (400) Absolute structure: 955 of Friedel pairs used in the refinement Absolute structure parameter: 0.5
Hydrogen site location: difference Fourier map	L

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Number of fixed parameters 10.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.2262 (4)	0.7164 (5)	0.2338 (2)	0.0464 (11)	
N2	0.2203 (3)	0.6196 (5)	0.3198 (2)	0.0478 (11)	
C6	0.3519 (4)	0.7226 (6)	0.5525 (2)	0.0412 (12)	
N3	0.2179 (3)	1.3158 (5)	0.7705 (2)	0.0509 (12)	
N4	0.5552 (4)	0.7120 (5)	0.8913 (2)	0.0501 (12)	
01	0.5417 (3)	0.5285 (4)	0.70239 (16)	0.0462 (9)	
O2	0.4266 (3)	0.5357 (4)	0.53811 (15)	0.0582 (10)	
O3	0.2657 (3)	0.8100 (4)	0.49006 (14)	0.0507 (8)	
O4	0.1415 (3)	1.4013 (4)	0.70419 (18)	0.0652 (10)	
05	0.2270 (3)	1.3968 (4)	0.85025 (18)	0.0709 (11)	
O6	0.5263 (4)	0.7839 (5)	0.96960 (17)	0.0853 (12)	
O7	0.6549 (4)	0.5664 (5)	0.87980 (17)	0.0719 (12)	

C1	0.1300 (5)	0.6431 (8)	0.0685 (2)	0.0762 (19)
H1a	0.132119	0.800298	0.060733	0.1144*
H1b	0.027525	0.586015	0.043068	0.1144*
H1c	0.219699	0.578396	0.035744	0.1144*
C2	0.1466 (4)	0.5878 (6)	0.1713 (2)	0.0469 (13)
C3	0.0892 (4)	0.4058 (7)	0.2187 (3)	0.0553 (14)
H3	0.029651	0.288588	0.192446	0.0663*
C4	0.1373 (4)	0.4313 (6)	0.3133 (2)	0.0481 (13)
C5	0.1093 (5)	0.2896 (7)	0.3966 (3)	0.0669 (16)
H5a	0.025142	0.183251	0.380914	0.1003*
H5b	0.20964	0.214551	0.414477	0.1003*
H5c	0.074882	0.379302	0.448238	0.1003*
C12	0.4691 (4)	0.7102 (6)	0.7196 (2)	0.0372 (12)
C7	0.3736 (3)	0.8233 (6)	0.6477 (2)	0.0348 (11)
C8	0.2972 (4)	1.0181 (6)	0.6641 (2)	0.0380 (12)
H8	0.239805	1.089516	0.615013	0.0456*
C9	0.3044 (4)	1.1108 (6)	0.7534 (2)	0.0381 (11)
C10	0.3902 (4)	1.0091 (6)	0.8274 (2)	0.0403 (12)
H10	0.393751	1.071121	0.887603	0.0483*
C11	0.4704 (4)	0.8133 (6)	0.8100 (2)	0.0380 (11)
H2a	0.507 (5)	0.485 (9)	0.620 (3)	0.145 (19)*
H1	0.289 (6)	0.878 (9)	0.225 (3)	0.130 (19)*
H2	0.258 (4)	0.707 (6)	0.373 (2)	0.063 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0502 (18)	0.049 (2)	0.0399 (18)	0.0006 (15)	-0.0027 (14)	-0.0034 (15)
N2	0.0497 (19)	0.051 (2)	0.0422 (18)	-0.0046 (17)	-0.0047 (14)	-0.0066 (17)
C6	0.0393 (19)	0.047 (2)	0.037 (2)	-0.0016 (18)	0.0053 (16)	-0.0027 (18)
N3	0.0500 (19)	0.043 (2)	0.060 (2)	-0.0003 (17)	0.0048 (16)	-0.0031 (18)
N4	0.065 (2)	0.046 (2)	0.0387 (19)	0.0015 (17)	-0.0037 (16)	0.0042 (16)
01	0.0564 (15)	0.0414 (15)	0.0407 (14)	0.0091 (13)	-0.0027 (11)	-0.0072 (12)
O2	0.0704 (17)	0.0626 (18)	0.0414 (14)	0.0205 (15)	-0.0036 (12)	-0.0156 (14)
O3	0.0581 (14)	0.0600 (17)	0.0333 (13)	0.0050 (14)	-0.0083 (11)	0.0013 (12)
O4	0.0703 (17)	0.0521 (17)	0.0721 (18)	0.0185 (15)	-0.0141 (14)	0.0031 (15)
O5	0.092 (2)	0.0593 (19)	0.0617 (17)	0.0072 (16)	0.0048 (14)	-0.0187 (15)
O6	0.148 (3)	0.075 (2)	0.0326 (16)	0.035 (2)	-0.0069 (15)	-0.0032 (15)
O7	0.092 (2)	0.072 (2)	0.0510 (16)	0.0308 (19)	-0.0083 (14)	0.0090 (16)
C1	0.086 (3)	0.096 (4)	0.047 (2)	-0.014 (3)	-0.009 (2)	-0.007(2)
C2	0.043 (2)	0.054 (3)	0.0434 (19)	0.005 (2)	-0.0046 (17)	-0.009 (2)
C3	0.049 (2)	0.057 (3)	0.060 (2)	-0.004 (2)	-0.0075 (18)	-0.022 (2)
C4	0.039 (2)	0.044 (2)	0.062 (2)	0.0027 (19)	0.0037 (17)	-0.003 (2)
C5	0.066 (3)	0.060 (3)	0.074 (3)	0.000(2)	-0.002 (2)	0.012 (2)
C12	0.0351 (19)	0.041 (2)	0.036 (2)	-0.0079 (18)	0.0025 (15)	0.0010 (17)
C7	0.0342 (17)	0.039 (2)	0.0316 (17)	-0.0052 (17)	0.0004 (13)	0.0031 (16)
C8	0.041 (2)	0.038 (2)	0.0349 (19)	-0.0032 (18)	-0.0036 (15)	0.0039 (17)
C9	0.041 (2)	0.032 (2)	0.0416 (19)	-0.0045 (17)	0.0020 (15)	-0.0015 (17)

C10	0.049 (2)	0.039 (2)	0.0325 (19)	-0.0038 (18)	0.0020 (16)	-0.0017 (17)
C11	0.0419 (19)	0.041 (2)	0.0312 (17)	-0.0038 (19)	-0.0025 (14)	0.0049 (17)

Geometric parameters (Å, °)

N1—N2	1.353 (4)	H1a—H1b	1.5677
N1—C2	1.330 (5)	H1a—H1c	1.5677
N1—H1	1.11 (5)	H1b—H1c	1.5677
N2—C4	1.327 (5)	C2—C3	1.380 (5)
N2—H2	0.96 (3)	C3—H3	0.93
C6—O2	1.304 (4)	C3—C4	1.389 (5)
C6—O3	1.229 (4)	C4—C5	1.482 (5)
C6—C7	1.484 (4)	C5—H5a	0.96
N3—O4	1.223 (4)	C5—H5b	0.96
N3—O5	1.231 (4)	C5—H5c	0.96
N3—C9	1.452 (5)	H5a—H5b	1.5677
N4—O6	1.220 (4)	Н5а—Н5с	1.5677
N4—O7	1.213 (4)	H5b—H5c	1.5677
N4—C11	1.457 (4)	C12—C7	1.433 (4)
O1—C12	1.277 (4)	C12—C11	1.422 (4)
O1—H2a	1.22 (5)	C7—C8	1.358 (5)
O2—H2a	1.34 (5)	C8—H8	0.93
C1—H1a	0.96	C8—C9	1.382 (4)
C1—H1b	0.96	C9—C10	1.384 (4)
C1—H1c	0.96	C10—H10	0.93
C1—C2	1.494 (5)	C10—C11	1.380 (5)
N2—N1—C2	108.2 (3)	N2—C4—C3	106.8 (3)
N2—N1—H1	121 (2)	N2—C4—C5	122.3 (3)
C2—N1—H1	131 (2)	C3—C4—C5	130.9 (3)
N1—N2—C4	110.1 (3)	C4—C5—H5a	109.47
N1—N2—H2	117 (2)	C4—C5—H5b	109.47
C4—N2—H2	132 (2)	C4—C5—H5c	109.47
O2—C6—O3	121.3 (3)	H5a—C5—H5b	109.47
O2—C6—C7	117.2 (3)	H5a—C5—H5c	109.47
O3—C6—C7	121.5 (3)	H5b—C5—H5c	109.47
O4—N3—O5	123.2 (3)	O1—C12—C7	121.3 (3)
O4—N3—C9	118.1 (3)	O1—C12—C11	124.1 (3)
O5—N3—C9	118.7 (3)	C7—C12—C11	114.5 (3)
O6—N4—O7	122.1 (3)	C6—C7—C12	119.5 (3)
O6—N4—C11	117.8 (3)	C6—C7—C8	118.1 (3)
O7—N4—C11	120.1 (3)	C12—C7—C8	122.3 (3)
C12—O1—H2a	106 (2)	C7—C8—H8	119.87
C6—O2—H2a	106 (2)	C7—C8—C9	120.3 (3)
H1a—C1—H1b	109.47	Н8—С8—С9	119.87
H1a—C1—H1c	109.47	N3—C9—C8	119.6 (3)
H1a—C1—C2	109.47	N3—C9—C10	119.3 (3)
H1b—C1—H1c	109.47	C8—C9—C10	121.0 (3)

H1b—C1—C2	109.47	C9—C10—H10	120.77	
H1c—C1—C2	109.47	C9—C10—C11	118.5 (3)	
N1-C2-C1	122.8 (3)	H10—C10—C11	120.77	
N1—C2—C3	108.1 (3)	N4—C11—C12	120.9 (3)	
C1—C2—C3	129.1 (3)	N4-C11-C10	115.7 (3)	
С2—С3—Н3	126.58	C12—C11—C10	123.3 (3)	
C2—C3—C4	106.8 (3)	O1—H2a—O2	149 (5)	
Н3—С3—С4	126.58			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H··· A
C1—H1 <i>a</i> ···O7 ⁱ	0.96	2.49	3.176 (5)	128
C5—H5 <i>a</i> ···O4 ⁱⁱ	0.96	2.47	3.395 (5)	162
C10—H10…O6 ⁱⁱⁱ	0.93	2.47	3.369 (4)	164
O1—H2a···O2	1.22 (5)	1.34 (5)	2.476 (3)	149 (5)
O2—H2 <i>a</i> …O1	1.34 (5)	1.22 (5)	2.476 (3)	149 (5)
N1—H1···O1 ⁱ	1.11 (5)	1.92 (5)	2.799 (4)	133 (3)
N1—H1····O7 ⁱ	1.11 (5)	1.94 (5)	2.850 (4)	137 (3)
N2—H2···O3	0.96 (3)	1.77 (3)	2.685 (4)	158 (3)

Symmetry codes: (i) -x+1, y+1/2, -z+1; (ii) -x, y-3/2, -z+1; (iii) -x+1, y+1/2, -z+2.

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM)

Crystal data

 $C_6H_{12}N_3^+ \cdot C_7H_3N_2O_7^ M_r = 353.30$ Triclinic, $P\overline{1}$ a = 7.0109 (4) Å b = 10.6617 (8) Å c = 10.7454 (7) Å $\alpha = 93.075 \ (6)^{\circ}$ $\beta = 95.863 (5)^{\circ}$ $\gamma = 104.944 \ (6)^{\circ}$ V = 769.30 (9) Å³

Data collection

Agilent Xcalibur (Eos, Gemini)	4664 measured refle
diffractometer	2953 independent re
Graphite monochromator	2426 reflections with
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.026$
ω scans	$\theta_{\rm max} = 72.5^{\circ}, \ \theta_{\rm min} = 4$
Absorption correction: multi-scan	$h = -8 \rightarrow 5$
(CrysAlis PRO and CrysAlis RED; Agilent,	$k = -12 \rightarrow 13$
2012)	$l = -13 \rightarrow 13$
$T_{\min} = 0.925, \ T_{\max} = 1.000$	
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F > 3\sigma(F)] = 0.041$

Z = 2F(000) = 368 $D_{\rm x} = 1.525 {\rm ~Mg} {\rm ~m}^{-3}$ Cu *K* α radiation, $\lambda = 1.54184$ Å Cell parameters from 2218 reflections $\theta = 4.2 - 72.3^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 173 KIrregular, yellow $0.22 \times 0.14 \times 0.12 \text{ mm}$

ections eflections th $I > 3\sigma(I)$ 4.2°

wR(F) = 0.100S = 1.642953 reflections

229 parameters	Weighting scheme based on measured s.u.'s $w =$
0 restraints	$1/(\sigma^2(I) + 0.0004I^2)$
46 constraints	$(\Delta/\sigma)_{\rm max} = 0.013$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: difference Fourier map	Extinction correction: B-C type 1 Lorentzian
H atoms treated by a mixture of independent	isotropic (Becker & Coppens, 1974)
and constrained refinement	Extinction coefficient: 740 (130)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Number of fixed parameters: 12

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1b	-0.19161 (17)	0.67539 (12)	0.52684 (11)	0.0294 (4)	
O2b	-0.38292 (17)	0.47166 (12)	0.40838 (12)	0.0313 (4)	
O3b	-0.25511 (17)	0.37712 (12)	0.26158 (12)	0.0312 (4)	
O4b	0.41258 (19)	0.58639 (13)	0.16853 (13)	0.0365 (5)	
O5b	0.59776 (18)	0.75622 (13)	0.28239 (14)	0.0382 (5)	
O6b	0.3446 (2)	0.93719 (14)	0.62658 (15)	0.0474 (5)	
O7b	0.02822 (19)	0.91655 (13)	0.61477 (13)	0.0410 (5)	
N1b	0.1720 (2)	0.88469 (14)	0.58118 (14)	0.0301 (5)	
N2b	0.4396 (2)	0.67347 (14)	0.25363 (14)	0.0281 (5)	
C1b	-0.0455 (2)	0.68023 (16)	0.46268 (15)	0.0225 (5)	
C2b	-0.0572 (2)	0.57873 (15)	0.36597 (15)	0.0217 (5)	
C3b	0.0987 (2)	0.57933 (16)	0.29810 (15)	0.0228 (5)	
H3b	0.086172	0.512562	0.233219	0.0273*	
C4b	0.2738 (2)	0.67709 (16)	0.32422 (15)	0.0238 (5)	
C5b	0.2967 (2)	0.77664 (16)	0.41630 (15)	0.0244 (5)	
H5b	0.418494	0.842618	0.433677	0.0292*	
C6b	0.1392 (2)	0.77850 (16)	0.48267 (15)	0.0244 (5)	
C7b	-0.2405 (2)	0.46767 (16)	0.33986 (15)	0.0245 (5)	
Nla	-0.2235 (2)	0.05127 (14)	-0.17301 (14)	0.0305 (5)	
N2a	-0.0146 (2)	0.22579 (13)	-0.06967 (13)	0.0239 (4)	
N3a	0.3467 (2)	0.20531 (13)	0.28160 (13)	0.0254 (4)	
Cla	-0.0395 (2)	0.12591 (16)	-0.15749 (16)	0.0272 (6)	
H1a	0.06324	0.111094	-0.202772	0.0327*	
C2a	-0.3211 (3)	0.10665 (17)	-0.08987 (17)	0.0314 (6)	
H2a	-0.457443	0.07432	-0.079116	0.0377*	
C3a	-0.1954 (3)	0.21356 (17)	-0.02572 (17)	0.0294 (6)	
H3a	-0.225845	0.269084	0.03706	0.0353*	
C4a	0.1719 (2)	0.32466 (17)	-0.02832 (15)	0.0268 (5)	
H4aa	0.242014	0.351332	-0.101965	0.0322*	
H4ab	0.142708	0.403798	0.008481	0.0322*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5a	0.3076 (2)	0.27759 (16)	0.06668 (16)	0.0271 (5)	
H5aa	0.324487	0.193134	0.033664	0.0326*	
H5ab	0.440667	0.340434	0.079114	0.0326*	
C6a	0.2253 (2)	0.26206 (16)	0.19085 (15)	0.0279 (6)	
H6aa	0.218227	0.347891	0.227027	0.0335*	
H6ab	0.08712	0.206021	0.17726	0.0335*	
H2b	-0.339134	0.554144	0.46148	0.075 (9)*	
H3aa	0.329781	0.119532	0.260701	0.045 (4)*	
H3ab	0.475827	0.248704	0.284554	0.045 (4)*	
H3ac	0.313145	0.21209	0.359189	0.045 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Olb	0.0268 (6)	0.0307 (7)	0.0277 (6)	0.0010 (5)	0.0098 (5)	-0.0050 (5)
O2b	0.0247 (6)	0.0313 (7)	0.0327 (7)	-0.0024 (5)	0.0088 (5)	-0.0060 (5)
O3b	0.0283 (6)	0.0285 (7)	0.0317 (7)	0.0002 (5)	0.0047 (5)	-0.0082 (5)
O4b	0.0371 (7)	0.0325 (7)	0.0413 (8)	0.0085 (6)	0.0167 (6)	-0.0042 (6)
O5b	0.0231 (6)	0.0380 (8)	0.0506 (9)	0.0010 (6)	0.0111 (6)	0.0014 (6)
O6b	0.0352 (7)	0.0408 (8)	0.0552 (10)	-0.0009 (6)	-0.0052 (7)	-0.0197 (7)
O7b	0.0398 (7)	0.0333 (7)	0.0470 (8)	0.0034 (6)	0.0162 (6)	-0.0121 (6)
N1b	0.0326 (8)	0.0241 (8)	0.0301 (8)	0.0012 (6)	0.0060 (6)	-0.0023 (6)
N2b	0.0260 (7)	0.0259 (7)	0.0343 (8)	0.0074 (6)	0.0092 (6)	0.0063 (6)
C1b	0.0234 (8)	0.0236 (8)	0.0201 (8)	0.0054 (6)	0.0034 (6)	0.0027 (6)
C2b	0.0218 (8)	0.0215 (8)	0.0207 (8)	0.0036 (6)	0.0019 (6)	0.0029 (6)
C3b	0.0265 (8)	0.0220 (8)	0.0208 (8)	0.0077 (7)	0.0043 (6)	0.0017 (6)
C4b	0.0220 (8)	0.0254 (8)	0.0260 (8)	0.0080 (7)	0.0064 (7)	0.0057 (7)
C5b	0.0220 (8)	0.0220 (8)	0.0269 (8)	0.0015 (6)	0.0023 (7)	0.0050 (7)
C6b	0.0276 (8)	0.0210 (8)	0.0230 (8)	0.0045 (7)	0.0018 (7)	-0.0001 (6)
C7b	0.0247 (8)	0.0261 (8)	0.0216 (8)	0.0051 (7)	0.0021 (6)	0.0007 (6)
Nla	0.0292 (8)	0.0252 (8)	0.0349 (8)	0.0050 (6)	0.0011 (6)	-0.0007 (6)
N2a	0.0247 (7)	0.0234 (7)	0.0229 (7)	0.0054 (6)	0.0034 (5)	0.0002 (6)
N3a	0.0268 (7)	0.0229 (7)	0.0245 (7)	0.0041 (6)	0.0021 (6)	-0.0026 (6)
Cla	0.0286 (9)	0.0260 (9)	0.0278 (9)	0.0087 (7)	0.0051 (7)	-0.0018 (7)
C2a	0.0269 (9)	0.0316 (10)	0.0352 (10)	0.0047 (7)	0.0073 (7)	0.0060 (8)
C3a	0.0301 (9)	0.0311 (9)	0.0289 (9)	0.0095 (7)	0.0092 (7)	0.0016 (7)
C4a	0.0277 (8)	0.0248 (8)	0.0248 (8)	0.0009 (7)	0.0052 (7)	0.0000 (7)
C5a	0.0237 (8)	0.0295 (9)	0.0260 (9)	0.0030 (7)	0.0055 (7)	-0.0021 (7)
C6a	0.0301 (9)	0.0306 (9)	0.0261 (9)	0.0125 (7)	0.0053 (7)	0.0016 (7)

Geometric parameters (Å, °)

O1b—C1b	1.284 (2)	N1a—C2a	1.376 (3)
O2b—C7b	1.308 (2)	N2a—C1a	1.348 (2)
O2b—H2b	0.9820 (12)	N2a—C3a	1.375 (2)
O3b—C7b	1.222 (2)	N2a—C4a	1.4622 (19)
O4b—N2b	1.232 (2)	N3a—C6a	1.483 (2)
O5b—N2b	1.2248 (17)	N3a—H3aa	0.9042 (14)

O6b—N1b	1.2313 (18)	N3a—H3ab	0.9009 (13)
O7b—N1b	1.225 (2)	N3a—H3ac	0.8932 (14)
N1b—C6b	1.464 (2)	C1a—H1a	0.95
N2b—C4b	1.458 (2)	C2a—H2a	0.95
C1b—C2b	1.440 (2)	C2a—C3a	1.351 (2)
C1b—C6b	1.428 (2)	СЗа—НЗа	0.95
C2b—C3b	1.373 (2)	C4a—H4aa	0.99
C2b—C7b	1.496 (2)	C4a—H4ab	0.99
C3b—H3b	0.95	C4a—C5a	1.517 (2)
C3b—C4b	1.382 (2)	C5a—H5aa	0.99
C4b—C5b	1.378 (2)	C5a—H5ab	0.99
C5b—H5b	0.95	C5a—C6a	1.507 (2)
C5b—C6b	1.378 (2)	C6a—H6aa	0.99
N1a—C1a	1.318 (2)	C6a—H6ab	0.99
C1b—O1b—H2b	99.82 (10)	C6a—N3a—H3ab	109.46 (13)
C7b—O2b—H2b	106.90 (11)	C6a—N3a—H3ac	111.76 (15)
O6b—N1b—O7b	123.30 (15)	H3aa—N3a—H3ab	110.21 (16)
O6b—N1b—C6b	117.72 (16)	H3aa—N3a—H3ac	106.71 (14)
O7b—N1b—C6b	118.97 (13)	H3ab—N3a—H3ac	107.27 (13)
O4b—N2b—O5b	123.59 (16)	N1a—C1a—N2a	111.91 (16)
O4b—N2b—C4b	117.89 (12)	N1a—C1a—H1a	124.04
O5b—N2b—C4b	118.52 (14)	N2a—C1a—H1a	124.04
O1b—C1b—C2b	120.19 (13)	N1a—C2a—H2a	124.86
O1b—C1b—C6b	124.76 (15)	N1a—C2a—C3a	110.28 (15)
C2b—C1b—C6b	115.00 (15)	H2a—C2a—C3a	124.86
C1b—C2b—C3b	121.54 (13)	N2a—C3a—C2a	106.10 (16)
C1b—C2b—C7b	119.88 (15)	N2a—C3a—H3a	126.95
C3b—C2b—C7b	118.56 (14)	С2а—С3а—Н3а	126.95
C2b—C3b—H3b	120.01	N2a—C4a—H4aa	109.47
C2b—C3b—C4b	119.99 (15)	N2a—C4a—H4ab	109.47
H3b—C3b—C4b	120.01	N2a—C4a—C5a	112.62 (14)
N2b—C4b—C3b	119.03 (14)	H4aa—C4a—H4ab	106.12
N2b—C4b—C5b	119.24 (13)	H4aa—C4a—C5a	109.47
C3b—C4b—C5b	121.73 (16)	H4ab—C4a—C5a	109.47
C4b—C5b—H5b	120.69	C4a—C5a—H5aa	109.47
C4b—C5b—C6b	118.62 (13)	C4a—C5a—H5ab	109.47
Н5b—С5b—С6b	120.69	C4a—C5a—C6a	111.50 (15)
N1b—C6b—C1b	120.26 (15)	H5aa—C5a—H5ab	107.36
N1b—C6b—C5b	116.59 (13)	H5aa—C5a—C6a	109.47
C1b—C6b—C5b	123.09 (15)	H5ab—C5a—C6a	109.47
O2b—C7b—O3b	121.86 (14)	N3a—C6a—C5a	112.35 (15)
O2b—C7b—C2b	115.78 (14)	N3a—C6a—H6aa	109.47
O3b—C7b—C2b	122.33 (16)	N3a—C6a—H6ab	109.47
C1a—N1a—C2a	105.01 (14)	С5а—С6а—Н6аа	109.47
C1a—N2a—C3a	106.69 (13)	C5a—C6a—H6ab	109.47
C1a—N2a—C4a	125.73 (15)	H6aa—C6a—H6ab	106.43
C3a—N2a—C4a	127.56 (14)	O1b—H2b—O2b	156.29 (9)
	× /		

C6a—N3a—H3aa	111.33 ((12)
--------------	----------	------

Hvdrogen-bond	geometry	(Å,	°)
ingen ogen ooner	Secureny	(,	

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C4 a —H4 aa ···O4 b^{i}	0.99	2.53	3.359 (2)	141
O2 <i>b</i> —H2 <i>b</i> ···O1 <i>b</i>	0.9820 (12)	1.5161 (11)	2.4473 (16)	156.29 (9)
O2 <i>b</i> —H2 <i>b</i> ···C1 <i>b</i>	0.9820 (12)	2.1471 (15)	2.7833 (18)	121.00 (8)
N3 <i>a</i> —H3 <i>aa</i> …N1 <i>a</i> ⁱⁱ	0.9042 (14)	1.9318 (14)	2.797 (2)	159.6 (1)
N3a—H3ab····O2b ⁱⁱⁱ	0.9009 (13)	2.5650 (12)	3.1297 (17)	121.35 (10)
N3 <i>a</i> —H3 <i>ab</i> ···O3 <i>b</i> ⁱⁱⁱ	0.9009 (13)	2.0721 (11)	2.9537 (17)	165.79 (10)
N3a—H3ac····O1b ^{iv}	0.8932 (14)	2.0610 (13)	2.815 (2)	141.47 (11)
$N3a$ — $H3ac$ ····O7 b^{iv}	0.8932 (14)	2.4844 (13)	2.9712 (19)	114.74 (8)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*, -*z*; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1.

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV)

Crystal data

$\begin{array}{l} C_{10}H_{12}N_{3}O_{3}S^{+}C_{7}H_{3}N_{2}O_{7}^{-} \\ M_{r} = 481.41 \\ \text{Triclinic, } P1 \\ \text{Hall symbol: -P 1} \\ a = 8.5551 (1) \text{ Å} \\ b = 10.5000 (2) \text{ Å} \\ c = 12.7576 (3) \text{ Å} \\ a = 106.463 (1)^{\circ} \\ \beta = 100.913 (1)^{\circ} \\ \gamma = 108.272 (1)^{\circ} \\ V = 993.72 (3) \text{ Å}^{3} \end{array}$	Z = 2 F(000) = 496 $D_x = 1.609 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6718 reflections $\theta = 1.8-32.6^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K Prism, yellow $0.20 \times 0.20 \times 0.16 \text{ mm}$
Data collectionBruker Kappa APEXII CCD diffractometerRadiation source: fine-focus sealed tubeGraphite monochromator ω and φ scanAbsorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.955, T_{max} = 0.964$	24261 measured reflections 6717 independent reflections 4398 reflections with $I > 3\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 32.6^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -19 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F > 3\sigma(F)] = 0.044$ wR(F) = 0.104S = 1.956717 reflections 301 parameters 0 restraints 48 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$ $(\Delta/\sigma)_{max} = 0.013$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Number of fixed parameters: 9

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	-0.02012 (4)	0.65156 (4)	0.38514 (3)	0.03475 (15)
01	-0.12136 (12)	0.56298 (10)	0.26952 (9)	0.0472 (5)
O2	-0.09555 (13)	0.65440 (11)	0.47594 (9)	0.0468 (5)
O3	0.47434 (14)	0.55510(13)	0.32058 (11)	0.0626 (6)
N1	0.29155 (15)	1.24477 (12)	0.38430 (11)	0.0434 (6)
N2	0.13845 (14)	0.60248 (12)	0.42019 (10)	0.0376 (5)
N3	0.39246 (16)	0.57705 (15)	0.40555 (12)	0.0536 (6)
C1	0.07464 (15)	0.82919 (13)	0.38935 (12)	0.0322 (5)
C2	0.21693 (19)	0.93183 (16)	0.47844 (13)	0.0511 (7)
C3	0.28732 (19)	1.06857 (16)	0.47796 (14)	0.0514 (7)
C4	0.21467 (16)	1.10142 (13)	0.38945 (12)	0.0344 (6)
C5	0.07052 (18)	1.00124 (15)	0.30229 (13)	0.0444 (7)
C6	0.00046 (17)	0.86380 (15)	0.30181 (13)	0.0421 (6)
C7	0.24788 (17)	0.58299 (13)	0.35471 (13)	0.0355 (6)
C8	0.2306 (2)	0.56568 (16)	0.23936 (14)	0.0473 (7)
C9	0.3761 (2)	0.55015 (16)	0.22381 (16)	0.0511 (8)
C10	0.4452 (3)	0.5287 (2)	0.12416 (18)	0.0766 (11)
O4	0.51685 (14)	0.76882 (14)	0.75724 (10)	0.0657 (6)
05	0.25004 (13)	0.72390 (11)	0.65907 (9)	0.0495 (5)
O6	0.03442 (11)	0.74382 (11)	0.75483 (8)	0.0431 (4)
07	-0.13539 (17)	0.8490 (2)	0.89544 (14)	0.0980 (10)
O8	-0.12065 (16)	0.7660 (2)	1.03000 (12)	0.0975 (9)
O9	0.46550 (16)	0.90412 (15)	1.25865 (10)	0.0717 (7)
O10	0.66293 (15)	0.90569 (15)	1.17611 (11)	0.0749 (7)
N4	-0.06158 (16)	0.80710 (17)	0.96062 (13)	0.0598 (7)
N5	0.51466 (16)	0.88865 (13)	1.17407 (12)	0.0488 (6)
C11	0.31789 (15)	0.78551 (13)	0.85956 (12)	0.0326 (5)
C12	0.14714 (16)	0.77857 (13)	0.85292 (12)	0.0328 (5)
C13	0.10840 (16)	0.80786 (15)	0.95755 (13)	0.0389 (6)
C14	0.22578 (17)	0.84024 (15)	1.06095 (13)	0.0403 (6)
C15	0.38931 (16)	0.84763 (14)	1.06263 (12)	0.0365 (6)
C16	0.43735 (16)	0.82163 (13)	0.96389 (12)	0.0356 (6)
C17	0.36856 (18)	0.75728 (15)	0.75210 (13)	0.0400 (6)
Hla	0.188848	1.256572	0.342213	0.088 (4)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1b	0.353568	1.297412	0.446823	0.088 (4)*	
H1c	0.348288	1.238627	0.338232	0.088 (4)*	
H2	0.265121	0.908789	0.538567	0.0613*	
H2a	0.186499	0.630039	0.50234	0.068 (5)*	
H3	0.383907	1.138439	0.537561	0.0617*	
Н5	0.020222	1.025766	0.243815	0.0533*	
H6	-0.096798	0.794538	0.242417	0.0506*	
H8	0.139615	0.565054	0.185878	0.0568*	
H10a	0.551947	0.608597	0.142286	0.1149*	
H10b	0.362955	0.522551	0.058321	0.1149*	
H10c	0.46505	0.441064	0.1077	0.1149*	
H14	0.194965	0.856742	1.128171	0.0484*	
H16	0.549353	0.82833	0.967386	0.0428*	
H6a	0.115577	0.727699	0.69023	0.132 (9)*	

Atomic displacement parameters $(Å^2)$

S1 $0.03683 (17)$ $0.03321 (18)$ $0.0360 (2)$ $0.01370 (13)$ $0.01260 (1)$ O1 $0.0462 (5)$ $0.0373 (5)$ $0.0422 (7)$ $0.0089 (4)$ $0.0009 (5)$ O2 $0.0524 (6)$ $0.0510 (6)$ $0.0532 (7)$ $0.0246 (5)$ $0.0309 (5)$ O3 $0.0518 (6)$ $0.0718 (8)$ $0.0660 (9)$ $0.0313 (6)$ $0.0248 (6)$ N1 $0.0510 (7)$ $0.0374 (6)$ $0.0502 (9)$ $0.0178 (5)$ $0.0268 (6)$ N2 $0.0476 (6)$ $0.0413 (6)$ $0.0327 (7)$ $0.0235 (5)$ $0.0154 (5)$ N3 $0.0495 (7)$ $0.0628 (9)$ $0.0487 (9)$ $0.0283 (6)$ $0.0112 (5)$ C2 $0.0588 (9)$ $0.0433 (9)$ $0.0382 (9)$ $0.0107 (7)$ $-0.0053 (7)$ C3 $0.0520 (9)$ $0.0380 (8)$ $0.0432 (10)$ $0.0029 (7)$ $-0.0033 (7)$ C4 $0.0400 (7)$ $0.0320 (7)$ $0.0393 (9)$ $0.0172 (6)$ $0.0208 (6)$ C5 $0.0478 (8)$ $0.0446 (8)$ $0.0433 (9)$ $0.0132 (5)$ $0.0118 (6)$ C6 $0.0392 (7)$ $0.0397 (8)$ $0.0403 (9)$ $0.0118 (6)$ $0.0004 (6)$ C7 $0.0414 (7)$ $0.0275 (7)$ $0.0374 (9)$ $0.0132 (5)$ $0.0131 (6)$ C8 $0.0553 (9)$ $0.0379 (8)$ $0.0574 (12)$ $0.0169 (7)$ $0.0325 (9)$ C10 $0.0921 (14)$ $0.0731 (13)$ $0.0819 (15)$ $0.0351 (12)$ $0.0607 (13)$	U^{23}
O1 $0.0462 (5)$ $0.0373 (5)$ $0.0422 (7)$ $0.0089 (4)$ $0.0009 (5)$ $O2$ $0.0524 (6)$ $0.0510 (6)$ $0.0532 (7)$ $0.0246 (5)$ $0.0309 (5)$ $O3$ $0.0518 (6)$ $0.0718 (8)$ $0.0660 (9)$ $0.0313 (6)$ $0.0248 (6)$ $N1$ $0.0510 (7)$ $0.0374 (6)$ $0.0502 (9)$ $0.0178 (5)$ $0.0268 (6)$ $N2$ $0.0476 (6)$ $0.0413 (6)$ $0.0327 (7)$ $0.0235 (5)$ $0.0154 (5)$ $N3$ $0.0495 (7)$ $0.0628 (9)$ $0.0487 (9)$ $0.0283 (6)$ $0.0112 (5)$ $C2$ $0.0588 (9)$ $0.0433 (9)$ $0.0382 (9)$ $0.0107 (7)$ $-0.0053 (7)$ $C3$ $0.0520 (9)$ $0.0380 (8)$ $0.0432 (10)$ $0.0029 (7)$ $-0.0033 (7)$ $C4$ $0.0400 (7)$ $0.0320 (7)$ $0.0393 (9)$ $0.0172 (6)$ $0.0208 (6)$ $C5$ $0.0478 (8)$ $0.0446 (8)$ $0.0403 (9)$ $0.0118 (6)$ $0.0004 (7)$ $C6$ $0.0392 (7)$ $0.0397 (8)$ $0.0403 (9)$ $0.0118 (6)$ $0.0004 (6)$ $C7$ $0.0414 (7)$ $0.0275 (7)$ $0.0374 (9)$ $0.0132 (5)$ $0.0131 (6)$ $C8$ $0.0553 (9)$ $0.0506 (9)$ $0.0426 (10)$ $0.0238 (7)$ $0.0203 (7)$ $C9$ $0.0605 (9)$ $0.0379 (8)$ $0.0574 (12)$ $0.0169 (7)$ $0.0325 (9)$ $C10$ $0.0921 (14)$ $0.0731 (13)$ $0.0819 (15)$ $0.0351 (12)$ $0.0607 (13)$	4) 0.01423 (16)
02 0.0524 (6) 0.0510 (6) 0.0532 (7) 0.0246 (5) 0.0309 (5) 03 0.0518 (6) 0.0718 (8) 0.0660 (9) 0.0313 (6) 0.0248 (6) $N1$ 0.0510 (7) 0.0374 (6) 0.0502 (9) 0.0178 (5) 0.0268 (6) $N2$ 0.0476 (6) 0.0413 (6) 0.0327 (7) 0.0235 (5) 0.0154 (5) $N3$ 0.0495 (7) 0.0628 (9) 0.0487 (9) 0.0283 (6) 0.0154 (6) $C1$ 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5) $C2$ 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) -0.0053 (7) $C3$ 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) -0.0033 (7) $C4$ 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6) $C5$ 0.0478 (8) 0.0446 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6) $C7$ 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6) $C8$ 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7) $C9$ 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) $C10$ 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13)	0.0087 (5)
O3 0.0518 (6) 0.0718 (8) 0.0660 (9) 0.0313 (6) 0.0248 (6)N1 0.0510 (7) 0.0374 (6) 0.0502 (9) 0.0178 (5) 0.0268 (6)N2 0.0476 (6) 0.0413 (6) 0.0327 (7) 0.0235 (5) 0.0154 (5)N3 0.0495 (7) 0.0628 (9) 0.0487 (9) 0.0283 (6) 0.0154 (6)C1 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5)C2 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) -0.0053 (7)C3 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) -0.0033 (7)C4 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6)C5 0.0478 (8) 0.0446 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6)C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6)C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7)C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9)C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13)	0.0276 (6)
N1 $0.0510(7)$ $0.0374(6)$ $0.0502(9)$ $0.0178(5)$ $0.0268(6)$ N2 $0.0476(6)$ $0.0413(6)$ $0.0327(7)$ $0.0235(5)$ $0.0154(5)$ N3 $0.0495(7)$ $0.0628(9)$ $0.0487(9)$ $0.0283(6)$ $0.0154(6)$ C1 $0.0350(6)$ $0.0317(7)$ $0.0316(8)$ $0.0143(5)$ $0.0112(5)$ C2 $0.0588(9)$ $0.0433(9)$ $0.0382(9)$ $0.0107(7)$ $-0.0053(7)$ C3 $0.0520(9)$ $0.0380(8)$ $0.0432(10)$ $0.0029(7)$ $-0.0033(7)$ C4 $0.0400(7)$ $0.0320(7)$ $0.0393(9)$ $0.0172(6)$ $0.0208(6)$ C5 $0.0478(8)$ $0.0446(8)$ $0.0438(10)$ $0.0195(7)$ $0.0064(7)$ C6 $0.0392(7)$ $0.0397(8)$ $0.0403(9)$ $0.0118(6)$ $0.0004(6)$ C7 $0.0414(7)$ $0.0275(7)$ $0.0374(9)$ $0.0132(5)$ $0.0131(6)$ C8 $0.0553(9)$ $0.0506(9)$ $0.0574(12)$ $0.0169(7)$ $0.0325(9)$ C10 $0.0921(14)$ $0.0731(13)$ $0.0819(15)$ $0.0351(12)$ $0.0254(5)$	0.0153 (7)
N2 0.0476 (6) 0.0413 (6) 0.0327 (7) 0.0235 (5) 0.0154 (5)N3 0.0495 (7) 0.0628 (9) 0.0487 (9) 0.0283 (6) 0.0154 (6)C1 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5)C2 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) -0.0053 (7)C3 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) -0.0033 (7)C4 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6)C5 0.0478 (8) 0.0446 (8) 0.0438 (10) 0.0195 (7) 0.0064 (7)C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6)C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6)C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7)C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9)C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13)	0.0202 (6)
N3 0.0495 (7) 0.0628 (9) 0.0487 (9) 0.0283 (6) 0.0154 (6)C1 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5)C2 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) -0.0053 (7)C3 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) -0.0033 (7)C4 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6)C5 0.0478 (8) 0.0446 (8) 0.0438 (10) 0.0195 (7) 0.0064 (7)C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6)C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6)C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7)C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9)C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0254 (5)	0.0169 (6)
C1 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5)C2 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) -0.0053 (7)C3 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) -0.0033 (7)C4 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6)C5 0.0478 (8) 0.0446 (8) 0.0438 (10) 0.0195 (7) 0.0064 (7)C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6)C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6)C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7)C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9)C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0274 (6)	0.0136 (7)
C2 $0.0588(9)$ $0.0433(9)$ $0.0382(9)$ $0.0107(7)$ $-0.0053(7)$ C3 $0.0520(9)$ $0.0380(8)$ $0.0432(10)$ $0.0029(7)$ $-0.0033(7)$ C4 $0.0400(7)$ $0.0320(7)$ $0.0393(9)$ $0.0172(6)$ $0.0208(6)$ C5 $0.0478(8)$ $0.0446(8)$ $0.0438(10)$ $0.0195(7)$ $0.0064(7)$ C6 $0.0392(7)$ $0.0397(8)$ $0.0403(9)$ $0.0118(6)$ $0.0004(6)$ C7 $0.0414(7)$ $0.0275(7)$ $0.0374(9)$ $0.0132(5)$ $0.0131(6)$ C8 $0.0553(9)$ $0.0506(9)$ $0.0426(10)$ $0.0238(7)$ $0.0203(7)$ C9 $0.0605(9)$ $0.0379(8)$ $0.0574(12)$ $0.0169(7)$ $0.0325(9)$ C10 $0.0921(14)$ $0.0731(13)$ $0.0819(15)$ $0.0351(12)$ $0.0234(5)$	0.0120 (6)
C3 $0.0520(9)$ $0.0380(8)$ $0.0432(10)$ $0.0029(7)$ $-0.0033(7)$ C4 $0.0400(7)$ $0.0320(7)$ $0.0393(9)$ $0.0172(6)$ $0.0208(6)$ C5 $0.0478(8)$ $0.0446(8)$ $0.0438(10)$ $0.0195(7)$ $0.0064(7)$ C6 $0.0392(7)$ $0.0397(8)$ $0.0403(9)$ $0.0118(6)$ $0.0004(6)$ C7 $0.0414(7)$ $0.0275(7)$ $0.0374(9)$ $0.0132(5)$ $0.0131(6)$ C8 $0.0553(9)$ $0.0506(9)$ $0.0426(10)$ $0.0238(7)$ $0.0203(7)$ C9 $0.0605(9)$ $0.0379(8)$ $0.0574(12)$ $0.0169(7)$ $0.0325(9)$ C10 $0.0921(14)$ $0.0731(13)$ $0.0819(15)$ $0.0351(12)$ $0.0254(5)$) 0.0197 (8)
C4 $0.0400(7)$ $0.0320(7)$ $0.0393(9)$ $0.0172(6)$ $0.0208(6)$ C5 $0.0478(8)$ $0.0446(8)$ $0.0438(10)$ $0.0195(7)$ $0.0064(7)$ C6 $0.0392(7)$ $0.0397(8)$ $0.0403(9)$ $0.0118(6)$ $0.0004(6)$ C7 $0.0414(7)$ $0.0275(7)$ $0.0374(9)$ $0.0132(5)$ $0.0131(6)$ C8 $0.0553(9)$ $0.0506(9)$ $0.0426(10)$ $0.0238(7)$ $0.0203(7)$ C9 $0.0605(9)$ $0.0379(8)$ $0.0574(12)$ $0.0169(7)$ $0.0325(9)$ C10 $0.0921(14)$ $0.0731(13)$ $0.0819(15)$ $0.0351(12)$ $0.0254(5)$) 0.0129 (8)
C5 0.0478 (8) 0.0446 (8) 0.0438 (10) 0.0195 (7) 0.0064 (7) C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6) C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6) C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7) C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13)	0.0153 (6)
C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6) C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6) C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7) C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13) C4 0.0483 (6) 0.0981 (10) 0.0513 (8) 0.0274 (6) 0.0254 (5)	0.0235 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0159 (7)
C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7) C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13) C4 0.0483 (6) 0.0981 (10) 0.0513 (8) 0.0274 (6) 0.0254 (5)	0.0113 (6)
C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13) C4 0.0483 (6) 0.0981 (10) 0.0513 (8) 0.0274 (6) 0.0254 (5)	0.0194 (8)
C10 $0.0921(14)$ $0.0731(13)$ $0.0819(15)$ $0.0351(12)$ $0.0607(13)$	0.0141 (8)
0.4 $0.0482(6)$ $0.0081(10)$ $0.0512(8)$ $0.0274(6)$ $0.0254(5)$) 0.0275 (13)
0.0435(0) $0.0981(10)$ $0.0515(8)$ $0.0274(0)$ $0.0234(3)$	0.0227 (7)
O5 0.0578 (6) 0.0613 (7) 0.0295 (6) 0.0241 (5) 0.0132 (5)	0.0156 (5)
O6 0.0404 (5) 0.0525 (6) 0.0322 (6) 0.0196 (4) 0.0028 (4)	0.0136 (5)
O7 0.0700 (8) 0.1711 (16) 0.0831 (11) 0.0810 (10) 0.0212 (8)	0.0529 (11)
08 0.0537 (7) 0.1721 (16) 0.0566 (9) 0.0299 (9) 0.0287 (7)	0.0359 (10)
O9 0.0770 (8) 0.0950 (10) 0.0308 (7) 0.0267 (7) 0.0041 (6)	0.0211 (7)
010 0.0480 (7) 0.0991 (10) 0.0639 (9) 0.0302 (6) -0.0064 (6) 0.0241 (8)
N4 0.0396 (7) 0.0856 (11) 0.0419 (9) 0.0249 (7) 0.0082 (6)	0.0084 (8)
N5 0.0478 (7) 0.0458 (7) 0.0405 (9) 0.0147 (6) -0.0044 (6) 0.0138 (7)
C11 0.0346 (6) 0.0281 (6) 0.0318 (8) 0.0107 (5) 0.0078 (5)	0.0096 (6)
C12 0.0351 (6) 0.0301 (7) 0.0291 (8) 0.0112 (5) 0.0039 (5)	0.0104 (6)
C13 0.0330 (6) 0.0444 (8) 0.0356 (9) 0.0154 (6) 0.0079 (6)	0.0108 (7)
C14 0.0424 (7) 0.0454 (8) 0.0301 (8) 0.0162 (6) 0.0100 (6)	0.0112 (7)

C15	0.0370 (7)	0.0341 (7)	0.0297 (8)	0.0107 (5)	-0.0009 (6)	0.0104 (6)
C16	0.0321 (6)	0.0324 (7)	0.0393 (9)	0.0124 (5)	0.0061 (6)	0.0120 (6)
C17	0.0411 (7)	0.0393 (8)	0.0385 (9)	0.0139 (6)	0.0130 (6)	0.0143 (7)

Geometric	parameters	(Å,	9	
-----------	------------	-----	---	--

S1—01	1.4228 (9)	C9—C10	1.491 (3)
S1—O2	1.4264 (13)	C10—H10a	0.96
S1—N2	1.6264 (14)	C10—H10b	0.96
O3—N3	1.402 (2)	C10—H10c	0.96
О3—С9	1.333 (2)	O4—C17	1.223 (2)
N1-C4	1.468 (2)	O5—C17	1.2827 (18)
N1—H1a	1.0015 (14)	O5—H6a	1.2945 (12)
N1—H1b	0.7932 (11)	O6—C12	1.3010 (16)
N1—H1c	0.8315 (15)	O6—H6a	1.1837 (11)
N2C7	1.391 (2)	O7—N4	1.211 (3)
N2—H2a	0.9703 (12)	O8—N4	1.214 (2)
N3—C7	1.312 (2)	O9—N5	1.218 (2)
C1—C2	1.3764 (15)	O10—N5	1.218 (2)
C1—C6	1.374 (2)	N4—C13	1.460 (2)
C2—C3	1.374 (2)	N5—C15	1.4638 (19)
С2—Н2	0.93	C11—C12	1.425 (2)
C3—C4	1.367 (2)	C11—C16	1.3841 (19)
С3—Н3	0.93	C11—C17	1.493 (2)
C4—C5	1.3668 (15)	C12—C13	1.409 (2)
C5—C6	1.376 (2)	C13—C14	1.376 (2)
С5—Н5	0.93	C14—C15	1.372 (2)
С6—Н6	0.93	C14—H14	0.93
С7—С8	1.403 (2)	C15—C16	1.379 (2)
С8—С9	1.348 (3)	C16—H16	0.93
С8—Н8	0.93		
O1—S1—O2	120.50 (6)	C8—C9—C10	133.88 (19)
01—S1—N2	108.78 (6)	C9	109.47
O2—S1—N2	104.15 (7)	C9-C10-H10b	109.47
N3—O3—C9	108.94 (14)	C9-C10-H10c	109.47
C4—N1—H1a	102.59 (10)	H10a—C10—H10b	109.47
C4—N1—H1b	107.06 (15)	H10a—C10—H10c	109.47
C4—N1—H1c	107.83 (13)	H10b—C10—H10c	109.47
H1a—N1—H1b	124.65 (16)	C17—O5—H6a	105.28 (11)
H1a—N1—H1c	103.41 (14)	C12—O6—H6a	102.01 (10)
H1b—N1—H1c	110.21 (14)	O7—N4—O8	123.34 (17)
S1—N2—C7	124.43 (12)	O7—N4—C13	118.74 (17)
S1—N2—H2a	113.65 (11)	O8—N4—C13	117.91 (17)
C7—N2—H2a	116.39 (12)	O9—N5—O10	124.03 (14)
O3—N3—C7	104.86 (14)	O9—N5—C15	118.56 (14)
C2-C1-C6	120.38 (14)	O10—N5—C15	117.41 (15)
C1—C2—C3	119.57 (16)	C12—C11—C16	120.99 (14)

C1—C2—H2	120.22	C12—C11—C17	118.93 (12)
С3—С2—Н2	120.22	C16—C11—C17	120.07 (13)
C2—C3—C4	119.68 (12)	O6—C12—C11	121.05 (14)
С2—С3—Н3	120.16	O6—C12—C13	122.90 (13)
С4—С3—Н3	120.16	C11—C12—C13	116.03 (12)
N1—C4—C3	120.80 (10)	N4—C13—C12	120.40 (13)
N1-C4-C5	118.09 (15)	N4—C13—C14	116.57 (15)
C3—C4—C5	121.09 (14)	C12—C13—C14	123.02 (14)
C4—C5—C6	119.44 (16)	C13—C14—C15	118.50 (15)
С4—С5—Н5	120.28	C13—C14—H14	120.75
С6—С5—Н5	120.28	C15—C14—H14	120.75
C1—C6—C5	119.80 (11)	N5-C15-C14	117.72 (14)
С1—С6—Н6	120.1	N5-C15-C16	120.43 (13)
С5—С6—Н6	120.1	C14—C15—C16	121.82 (13)
N2—C7—N3	117.05 (14)	C11—C16—C15	119.61 (13)
N2—C7—C8	131.01 (14)	C11—C16—H16	120.19
N3—C7—C8	111.93 (15)	C15—C16—H16	120.19
C7—C8—C9	104.20 (16)	O4—C17—O5	124.29 (16)
С7—С8—Н8	127.9	O4—C17—C11	119.59 (13)
С9—С8—Н8	127.9	O5—C17—C11	116.11 (13)
O3—C9—C8	110.05 (18)	O5—H6a—O6	156.58 (6)
O3—C9—C10	116.07 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1a···O6 ⁱ	1.0015 (14)	2.0683 (10)	3.0655 (17)	173.55 (7)
N1—H1 <i>b</i> ····N3 ⁱⁱ	0.7932 (11)	2.2920 (11)	3.0393 (15)	157.33 (11)
N1—H1c····O4 ⁱⁱ	0.8315 (15)	1.8318 (14)	2.663 (2)	177.12 (7)
N2—H2 <i>a</i> ···O5	0.9703 (12)	1.8440 (10)	2.7852 (15)	162.64 (9)
O5—H6a…O6	1.2945 (12)	1.1837 (11)	2.4268 (16)	156.58 (6)
O5—H6a···C12	1.2945 (12)	1.9326 (15)	2.7490 (19)	115.40 (6)
O6—H6a···O5	1.1837 (11)	1.2945 (12)	2.4268 (16)	156.58 (6)
O6—H6a···C17	1.1837 (11)	2.0485 (15)	2.8249 (19)	119.42 (7)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ)

$C_8H_{13}N_2O^+ \cdot C_7H_3N_2O_7^- \cdot H_2O$	Z = 2
$M_r = 398.33$	F(000) = 416
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.497 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6691 (3) Å	Cell parameters from 6994 reflections
b = 11.3831 (4) Å	$\theta = 2.4 - 31.6^{\circ}$
c = 12.2900 (5) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\alpha = 89.727 \ (2)^{\circ}$	T = 100 K
$\beta = 76.771 \ (2)^{\circ}$	Block, yellow
$\gamma = 76.930 \ (2)^{\circ}$	$0.52 \times 0.13 \times 0.10 \text{ mm}$
V = 883.62 (6) Å ³	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.937, T_{max} = 0.987$ Refinement	17014 measured reflections 4061 independent reflections 3042 reflections with $I > 3\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 12$ $l = -15 \rightarrow 15$
Refinement on F^2 $R[F > 3\sigma(F)] = 0.038$ wR(F) = 0.086 S = 1.77 4061 reflections 258 parameters 0 restraints 52 constraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$ $(\Delta/\sigma)_{\text{max}} = 0.014$ $\Delta\rho_{\text{max}} = 0.46$ e Å ⁻³ $\Delta\rho_{\text{min}} = -0.23$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 15

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.30546 (16)	-0.17099 (9)	0.14963 (8)	0.0232 (4)	
O2	0.56653 (17)	-0.35718 (9)	0.01361 (9)	0.0316 (4)	
03	0.48656 (18)	-0.36691 (9)	-0.14697 (9)	0.0311 (4)	
O4	0.36254 (16)	-0.00313 (9)	-0.33889 (8)	0.0235 (4)	
05	0.23753 (16)	0.16995 (9)	-0.24573 (8)	0.0255 (4)	
O6	0.07250 (15)	0.19153 (8)	0.16330 (8)	0.0204 (4)	
07	0.14533 (16)	0.02234 (9)	0.25238 (8)	0.0215 (4)	
08	0.31889 (16)	0.38510 (9)	0.41956 (8)	0.0221 (4)	
N1	0.30174 (18)	0.05930 (11)	-0.25094 (10)	0.0185 (4)	
N2	0.48606 (19)	-0.31064 (11)	-0.06125 (10)	0.0213 (4)	
N3	0.11898 (17)	0.64252 (10)	0.66449 (9)	0.0147 (4)	
N4	0.23841 (17)	0.58259 (10)	0.47936 (9)	0.0144 (4)	
C1	0.3103 (2)	-0.11910 (12)	0.05547 (11)	0.0151 (5)	
C2	0.3895 (2)	-0.18160 (12)	-0.05145 (11)	0.0154 (5)	

C3	0.3838 (2)	-0.12419 (13)	-0.15034 (12)	0.0160 (5)
H3a	0.432743	-0.167918	-0.218686	0.0192*
C4	0.3044 (2)	-0.00126 (13)	-0.14615 (11)	0.0150 (5)
C5	0.2281 (2)	0.06626 (13)	-0.04539 (11)	0.0148 (5)
H5a	0.176964	0.149404	-0.044656	0.0177*
C6	0.2290 (2)	0.00871 (12)	0.05379 (11)	0.0140 (5)
C7	0.1429 (2)	0.08121 (13)	0.16123 (11)	0.0159 (5)
C8	0.2598 (2)	0.45829 (12)	0.49910 (12)	0.0158 (5)
C9	0.2070 (2)	0.43367 (13)	0.61582 (11)	0.0160 (5)
H9a	0.221191	0.354014	0.636387	0.0192*
C10	0.1376 (2)	0.52320 (12)	0.69587 (11)	0.0157 (5)
C11	0.1694 (2)	0.67095 (12)	0.55875 (11)	0.0141 (5)
C12	0.1445 (2)	0.80006 (12)	0.52928 (11)	0.0153 (5)
H12a	0.110348	0.85057	0.598371	0.0184*
C13	-0.0374 (2)	0.83589 (13)	0.47019 (13)	0.0224 (5)
H13a	-0.054927	0.919318	0.452627	0.0335*
H13b	-0.165759	0.824046	0.518462	0.0335*
H13c	-0.005734	0.786763	0.402409	0.0335*
C14	0.3509 (2)	0.82298 (12)	0.45745 (12)	0.0195 (5)
H14a	0.461527	0.800548	0.496897	0.0292*
H14b	0.331515	0.907081	0.442205	0.0292*
H14c	0.389104	0.775688	0.38823	0.0292*
C15	0.0772 (2)	0.50600 (13)	0.81821 (12)	0.0221 (5)
H15a	-0.068894	0.545223	0.847126	0.0332*
H15b	0.163895	0.540389	0.855439	0.0332*
H15c	0.097793	0.421295	0.830953	0.0332*
O1w	0.32852 (17)	0.60955 (9)	0.25340 (8)	0.0272 (4)
H1n3	0.061415	0.706878	0.722609	0.037 (5)*
H1n4	0.270467	0.602234	0.406704	0.034 (5)*
H2w1	0.339729	0.675124	0.210779	0.053 (6)*
H1w1	0.381611	0.539911	0.20932	0.055 (6)*
H7	0.211364	-0.063754	0.220331	0.078 (7)*

Atomic displacement parameters $(Å^2)$

	T 711	1722	T 733	T 712	T 713	173
	Un	022	U^{ss}	U^{12}	U^{15}	U^{23}
01	0.0305 (6)	0.0178 (6)	0.0185 (6)	-0.0038 (5)	-0.0018 (5)	0.0031 (4)
O2	0.0431 (7)	0.0219 (6)	0.0232 (6)	0.0045 (5)	-0.0063 (5)	0.0044 (5)
03	0.0489 (7)	0.0181 (6)	0.0229 (6)	-0.0036 (5)	-0.0053 (5)	-0.0086 (5)
O4	0.0291 (6)	0.0274 (6)	0.0138 (6)	-0.0083 (5)	-0.0030 (5)	-0.0009 (5)
05	0.0347 (6)	0.0178 (6)	0.0235 (6)	-0.0045 (5)	-0.0072 (5)	0.0058 (5)
O6	0.0244 (6)	0.0142 (6)	0.0187 (6)	-0.0013 (4)	-0.0004 (4)	-0.0029 (4)
O7	0.0284 (6)	0.0175 (6)	0.0140 (5)	-0.0009 (5)	0.0003 (4)	-0.0003 (4)
08	0.0321 (6)	0.0137 (5)	0.0176 (6)	-0.0026 (5)	-0.0027 (5)	-0.0025 (4)
N1	0.0182 (6)	0.0202 (7)	0.0186 (7)	-0.0071 (6)	-0.0047 (5)	0.0034 (6)
N2	0.0240 (7)	0.0161 (7)	0.0198 (7)	-0.0035 (6)	0.0019 (6)	0.0001 (6)
N3	0.0168 (6)	0.0123 (6)	0.0136 (6)	-0.0024 (5)	-0.0017 (5)	-0.0006 (5)
N4	0.0172 (6)	0.0117 (6)	0.0129 (6)	-0.0026 (5)	-0.0014 (5)	0.0011 (5)

C1	0.0133 (7)	0.0177 (8)	0.0148 (7)	-0.0064 (6)	-0.0014 (6)	0.0022 (6)
C2	0.0158 (7)	0.0118 (7)	0.0176 (8)	-0.0030 (6)	-0.0017 (6)	-0.0008 (6)
C3	0.0159 (7)	0.0184 (8)	0.0140 (8)	-0.0070 (6)	-0.0012 (6)	-0.0029 (6)
C4	0.0146 (7)	0.0196 (8)	0.0125 (7)	-0.0073 (6)	-0.0030 (6)	0.0033 (6)
C5	0.0121 (7)	0.0137 (7)	0.0188 (8)	-0.0046 (6)	-0.0026 (6)	0.0007 (6)
C6	0.0113 (7)	0.0154 (7)	0.0154 (7)	-0.0048 (6)	-0.0015 (6)	-0.0005 (6)
C7	0.0130 (7)	0.0171 (8)	0.0170 (8)	-0.0048 (6)	-0.0008 (6)	0.0000 (6)
C8	0.0145 (7)	0.0132 (7)	0.0193 (8)	-0.0022 (6)	-0.0036 (6)	0.0001 (6)
C9	0.0177 (7)	0.0110 (7)	0.0187 (8)	-0.0031 (6)	-0.0036 (6)	0.0032 (6)
C10	0.0137 (7)	0.0154 (8)	0.0182 (8)	-0.0033 (6)	-0.0041 (6)	0.0029 (6)
C11	0.0106 (7)	0.0152 (7)	0.0161 (8)	-0.0028 (6)	-0.0026 (6)	-0.0012 (6)
C12	0.0178 (7)	0.0114 (7)	0.0155 (7)	-0.0034 (6)	-0.0014 (6)	-0.0007 (6)
C13	0.0218 (8)	0.0140 (8)	0.0321 (9)	-0.0033 (6)	-0.0089 (7)	0.0052 (7)
C14	0.0210 (8)	0.0141 (8)	0.0218 (8)	-0.0048 (6)	-0.0012 (6)	0.0004 (6)
C15	0.0269 (8)	0.0194 (8)	0.0188 (8)	-0.0047 (7)	-0.0034 (6)	0.0019 (6)
O1w	0.0471 (7)	0.0134 (6)	0.0163 (6)	-0.0043 (5)	-0.0005 (5)	0.0003 (5)

Geometric parameters (Å, °)

01—C1	1.2939 (17)	C4—C5	1.3881 (18)
O1—H7	1.4329 (9)	С5—Н5а	0.93
O2—N2	1.2279 (17)	C5—C6	1.3816 (19)
O3—N2	1.2346 (17)	C6—C7	1.4844 (18)
O4—N1	1.2304 (15)	C8—C9	1.439 (2)
O5—N1	1.2321 (15)	С9—Н9а	0.93
O6—C7	1.2355 (16)	C9—C10	1.3449 (19)
O7—C7	1.3040 (17)	C10—C15	1.4889 (19)
O7—H7	1.0191 (9)	C11—C12	1.4936 (19)
O8—C8	1.2198 (17)	C12—H12a	0.98
N1-C4	1.4597 (18)	C12—C13	1.531 (2)
N2—C2	1.4576 (17)	C12—C14	1.5318 (19)
N3—C10	1.3963 (18)	C13—H13a	0.96
N3—C11	1.3236 (17)	C13—H13b	0.96
N3—H1n3	0.9729 (11)	C13—H13c	0.96
N4—C8	1.4152 (18)	C14—H14a	0.96
N4—C11	1.3303 (17)	C14—H14b	0.96
N4—H1n4	0.9085 (11)	C14—H14c	0.96
C1—C2	1.4259 (18)	C15—H15a	0.96
C1—C6	1.4349 (19)	C15—H15b	0.96
C2—C3	1.381 (2)	C15—H15c	0.96
С3—Н3а	0.93	O1w—H2w1	0.9169 (10)
C3—C4	1.3763 (19)	O1w—H1w1	0.9146 (10)
С1—О1—Н7	96.54 (8)	N4—C8—C9	113.60 (12)
С7—О7—Н7	101.27 (9)	С8—С9—Н9а	119.24
04—N1—05	124.04 (12)	C8—C9—C10	121.51 (13)
O4—N1—C4	118.12 (11)	H9a—C9—C10	119.24
O5—N1—C4	117.84 (11)	N3—C10—C9	118.95 (12)

O2—N2—O3	123.42 (12)	N3—C10—C15	116.00 (11)
O2—N2—C2	119.16 (12)	C9—C10—C15	125.06 (13)
O3—N2—C2	117.39 (12)	N3—C11—N4	118.76 (12)
C10—N3—C11	122.45 (11)	N3—C11—C12	120.45 (12)
C10—N3—H1n3	118.37 (11)	N4—C11—C12	120.78 (12)
C11—N3—H1n3	119.14 (11)	C11—C12—H12a	108.71
C8—N4—C11	124.69 (12)	C11—C12—C13	109.61 (13)
C8—N4—H1n4	116.55 (11)	C11—C12—C14	111.42 (10)
C11—N4—H1n4	118.72 (12)	H12a—C12—C13	108.78
O1—C1—C2	124.06 (12)	H12a—C12—C14	106.87
O1—C1—C6	120.40 (11)	C13—C12—C14	111.36 (12)
C2—C1—C6	115.53 (12)	С12—С13—Н13а	109.47
N2—C2—C1	120.85 (12)	С12—С13—Н13ь	109.47
N2—C2—C3	116.56 (11)	C12—C13—H13c	109.47
C1—C2—C3	122.58 (12)	H13a—C13—H13b	109.47
С2—С3—Н3а	120.52	H13a—C13—H13c	109.47
C2—C3—C4	118.97 (12)	H13b-C13-H13c	109.47
H3a—C3—C4	120.52	C12—C14—H14a	109.47
N1—C4—C3	118.77 (12)	C12—C14—H14b	109.47
N1-C4-C5	119.38 (12)	C12—C14—H14c	109.47
C3—C4—C5	121.85 (13)	H14a—C14—H14b	109.47
C4—C5—H5a	120.33	H14a—C14—H14c	109.47
C4—C5—C6	119.34 (12)	H14b—C14—H14c	109.47
Н5а—С5—С6	120.33	C10—C15—H15a	109.47
C1—C6—C5	121.71 (12)	C10—C15—H15b	109.47
C1—C6—C7	119.30 (12)	C10-C15-H15c	109.47
C5—C6—C7	118.99 (12)	H15a—C15—H15b	109.47
O6—C7—O7	122.20 (12)	H15a—C15—H15c	109.47
O6—C7—C6	121.26 (12)	H15b—C15—H15c	109.47
O7—C7—C6	116.54 (12)	H2w1—O1w—H1w1	110.00 (10)
O8—C8—N4	119.14 (12)	O1—H7—O7	165.94 (7)
O8—C8—C9	127.26 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
C12—H12a····O7 ⁱ	0.98	2.42	3.3068 (15)	151
N3—H1 <i>n</i> 3···O6 ⁱ	0.9729 (11)	1.7539 (9)	2.7182 (14)	170.48 (8)
N4—H1 <i>n</i> 4···O1 <i>w</i>	0.9085 (11)	1.8401 (10)	2.7348 (15)	167.76 (8)
O1w—H2w1···O1 ⁱⁱ	0.9169 (10)	1.8895 (10)	2.7886 (14)	166.21 (6)
O1w—H1w1···O3 ⁱⁱⁱ	0.9146 (10)	2.0399 (10)	2.9352 (14)	165.84 (7)
O7—H7…O1	1.0191 (9)	1.4329 (9)	2.4340 (13)	165.94 (7)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y, -z.

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR)

F(000) = 800

 $\theta = 3.5 - 26.6^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Needle, vellow

 $0.30 \times 0.13 \times 0.10$ mm

7800 measured reflections 3339 independent reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 3.4^\circ$

1976 reflections with $I > 3\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.034$

 $h = -7 \rightarrow 7$

 $k = -23 \rightarrow 23$

 $l = -17 \rightarrow 17$

 $D_{\rm x} = 1.489 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1891 reflections

Crystal data

C₉H₁₇N₂⁺·C₇H₃N₂O₇⁻ $M_r = 380.35$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yabc a = 6.1537 (3) Å b = 19.1541 (14) Å c = 14.5527 (11) Å $\beta = 98.343$ (6)° V = 1697.2 (2) Å³ Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Graphite monochromator Detector resolution: 16.067 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.920, T_{\max} = 0.990$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.095$ H atoms treated by a mixture of independent S = 1.33and constrained refinement 3339 reflections Weighting scheme based on measured s.u.'s w =268 parameters $1/(\sigma^2(I) + 0.0004I^2)$ 2 restraints $(\Delta/\sigma)_{\rm max} = 0.005$ $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ 98 constraints $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) Extinction coefficient: 2200 (700)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters : 10

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O2b	0.8418 (3)	0.56169 (11)	0.78950 (14)	0.0440 (8)	0.727 (4)
H61b	0.852107	0.560819	0.76707	0.0359*	0.273 (4)

O21b	0.7735 (8)	0.6569 (3)	0.4912 (4)	0.048 (2)	0.273 (4)
H6b	0.805712	0.644967	0.507207	0.0328*	0.727 (4)
O11b	0.5083 (2)	0.68884 (8)	0.59278 (11)	0.0444 (6)	
O12b	0.5447 (2)	0.64534 (8)	0.73586 (12)	0.0524 (7)	
O31b	1.1108 (3)	0.45706 (10)	0.81717 (14)	0.0829 (9)	
O32b	1.4073 (3)	0.47245 (10)	0.75770 (13)	0.0775 (8)	
O51b	1.3288 (3)	0.55869 (9)	0.44602 (12)	0.0603 (7)	
O52b	1.0707 (3)	0.63212 (10)	0.39870 (12)	0.0680 (8)	
N3b	1.2111 (3)	0.48284 (10)	0.76049 (14)	0.0472 (8)	
N5b	1.1654 (3)	0.59180 (10)	0.45701 (14)	0.0418(7)	
Clb	0.8002 (3)	0.60956 (10)	0.63903 (15)	0.0264(7)	
C2b	0.9062(3)	0.56604 (11)	0.70954(15)	0.0299(7)	
C3b	1 0952 (3)	0 53063 (10)	0.69140 (15)	0.0309(7)	
C4b	1.0902(3) 1.1814(3)	0 53946 (10)	0.61042(15)	0.0309(7)	
C5b	1.0736(3)	0 58234 (10)	0.54290(14)	0.0233(7)	
C6b	0.8810(3)	0.61681 (10)	0.51230(11) 0.55538(15)	0.0271(7) 0.0273(7)	
Clib	0.6010(3)	0.65080(11)	0.65583(18)	0.0273(7)	
Nla	-0.1521(2)	0.82026 (8)	0.63826(12)	0.0391(6)	
N8a	0.1321(2) 0.1721(2)	0.32020 (0)	0.65020(12) 0.67283(12)	0.0273(0) 0.0373(7)	
C2a	-0.3261(3)	0.70019(9)	0.57022(15)	0.0370(8)	
C2a	-0.2602(3)	0.03003(11) 0.91805(11)	0.57622(15) 0.52679(15)	0.0370(8)	
C4a	-0.1188(3)	0.91009(11) 0.90791(11)	0.32077(15)	0.0401(8)	
C5a	0.0933(3)	0.86805 (11)	0.48032(14)	0.0417(8)	
C5a	0.0935(3)	0.30305(11) 0.70367(11)	0.48032(14) 0.51423(14)	0.0401(8)	
C0a C7a	0.0011(3)	0.79307(11) 0.70087(10)	0.51423(14) 0.61288(14)	0.0344(3)	
C7a C9a	0.0220(3) 0.1304(8)	0.79087(10) 0.7480(3)	0.01288(14) 0.7604(4)	0.0208(7) 0.0377(17)	0.687 (4)
C9a	0.1394(0) 0.0234(5)	0.7480(3)	0.7094(4)	0.0377(17) 0.0388(12)	0.087(4)
Clua	-0.1865(3)	0.0112(2) 0.82224(12)	0.8000(2) 0.73606(16)	0.0388(12) 0.0375(8)	0.087 (4)
	-0.1803(3)	0.02334(13)	0.75000(10)	0.0373(8)	0.212(4)
C13a	0.192(2)	0.7733(0)	0.7752(10) 0.7062(6)	0.0377(17)	0.313(4)
U12a	-0.0433(12)	0.7700(3)	0.7902(0)	0.0308 (12)	0.313 (4)
П 4 0	1.313123	0.310393	0.001144	$0.03/1^{\circ}$	
Hða	0.304017	0.743029	0.052700	$0.073(8)^{*}$	0.696
	0.119313	0.852595	0.800333	0.0400*	0.080
H21a	-0.458595	0.859249	0.600103	0.0444*	
H22a	-0.3/3911	0.816372	0.520773	0.0444*	
H31a	-0.393523	0.944805	0.502041	0.0481*	
H32a	-0.182575	0.948658	0.575716	0.0481*	
H41a	-0.084564	0.95395	0.425285	0.0501*	
H42a	-0.20539	0.883982	0.39/103	0.0501*	
H5Ia	0.180506	0.866/59	0.428286	0.0482*	
H52a	0.186838	0.894538	0.52943	0.0482*	
H6la	0.191356	0.765112	0.506561	0.0413*	
H62a	-0.063947	0.77162	0.474177	0.0413*	
H91a	0.046176	0.706149	0.772504	0.0452*	0.687 (4)
H92a	0.283833	0.74265	0.808712	0.0452*	0.687 (4)
Hlla	-0.009873	0.803439	0.864351	0.0466*	0.686
H12a	-0.318 (2)	0.7965 (9)	0.7425 (13)	0.045*	
H13a	-0.230 (3)	0.8711 (6)	0.7485 (13)	0.045*	

H14a	-0.105082	0.7226	0.782436	0.0466*	0.313 (4)
H15a	-0.047311	0.780768	0.862598	0.0466*	0.313 (4)
H16a	0.27893	0.735519	0.809131	0.0452*	0.313 (4)
H17a	0.251697	0.820686	0.789237	0.0452*	0.313 (4)
H21b	0.621837	0.678052	0.538628	0.082 (11)*	0.273 (4)
H2b	0.702896	0.598291	0.774475	0.082 (11)*	0.727 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O2b	0.0481 (12)	0.0570 (16)	0.0296 (15)	0.0087 (11)	0.0152 (10)	0.0091 (11)
O21b	0.045 (3)	0.053 (4)	0.046 (4)	0.006 (3)	0.006 (3)	0.023 (3)
O11b	0.0369 (8)	0.0391 (10)	0.0583 (12)	0.0136 (7)	0.0102 (8)	0.0073 (9)
O12b	0.0488 (9)	0.0643 (12)	0.0488 (12)	0.0091 (8)	0.0232 (8)	-0.0030 (9)
O31b	0.0796 (13)	0.0853 (16)	0.0753 (16)	-0.0256 (11)	-0.0175 (11)	0.0533 (13)
O32b	0.0728 (12)	0.0903 (16)	0.0642 (14)	0.0483 (11)	-0.0074 (10)	0.0050 (11)
O51b	0.0542 (10)	0.0650 (12)	0.0694 (13)	0.0077 (9)	0.0350 (9)	-0.0110 (10)
O52b	0.0926 (13)	0.0722 (14)	0.0455 (12)	0.0171 (11)	0.0314 (10)	0.0241 (10)
N3b	0.0575 (13)	0.0347 (13)	0.0432 (15)	0.0005 (11)	-0.0137 (11)	-0.0004 (10)
N5b	0.0476 (11)	0.0400 (13)	0.0414 (13)	-0.0046 (10)	0.0193 (10)	-0.0067 (10)
C1b	0.0265 (10)	0.0220 (11)	0.0303 (13)	-0.0029 (9)	0.0024 (9)	-0.0023 (10)
C2b	0.0337 (11)	0.0267 (12)	0.0294 (14)	-0.0061 (10)	0.0050 (10)	-0.0023 (10)
C3b	0.0361 (11)	0.0233 (12)	0.0304 (14)	0.0002 (9)	-0.0053 (10)	0.0025 (10)
C4b	0.0257 (10)	0.0240 (12)	0.0413 (15)	-0.0013 (9)	-0.0005 (10)	-0.0053 (11)
C5b	0.0295 (10)	0.0254 (12)	0.0274 (13)	-0.0052 (9)	0.0073 (9)	-0.0017 (10)
C6b	0.0298 (10)	0.0218 (12)	0.0290 (13)	-0.0028 (9)	-0.0003 (9)	0.0007 (10)
C11b	0.0297 (11)	0.0296 (13)	0.0464 (16)	-0.0042 (10)	0.0070 (11)	-0.0061 (12)
Nla	0.0249 (8)	0.0327 (11)	0.0305 (11)	0.0026 (8)	0.0041 (8)	0.0000 (9)
N8a	0.0332 (9)	0.0493 (12)	0.0291 (12)	0.0137 (9)	0.0037 (8)	0.0056 (9)
C2a	0.0243 (10)	0.0400 (14)	0.0451 (15)	0.0063 (10)	-0.0002 (10)	-0.0020 (12)
C3a	0.0374 (12)	0.0331 (14)	0.0465 (16)	0.0071 (10)	-0.0044 (11)	0.0000 (11)
C4a	0.0450 (12)	0.0397 (15)	0.0370 (15)	-0.0028 (11)	-0.0060 (11)	0.0087 (11)
C5a	0.0368 (11)	0.0526 (16)	0.0319 (14)	-0.0008 (11)	0.0079 (10)	0.0091 (12)
C6a	0.0355 (11)	0.0411 (15)	0.0262 (13)	0.0079 (10)	0.0032 (9)	-0.0057 (11)
C7a	0.0283 (10)	0.0224 (12)	0.0291 (13)	-0.0012 (9)	0.0025 (9)	-0.0030 (10)
C9a	0.040 (3)	0.041 (4)	0.0304 (18)	-0.001 (2)	-0.001 (2)	0.004 (3)
C10a	0.049 (2)	0.042 (2)	0.0270 (17)	-0.0043 (18)	0.0083 (15)	-0.0029 (19)
C11a	0.0367 (12)	0.0426 (15)	0.0364 (15)	0.0003 (11)	0.0161 (11)	-0.0056 (12)
C13a	0.040 (3)	0.041 (4)	0.0304 (18)	-0.001 (2)	-0.001 (2)	0.004 (3)
C12a	0.049 (2)	0.042 (2)	0.0270 (17)	-0.0043 (18)	0.0083 (15)	-0.0029 (19)

Geometric parameters (Å, °)

O2b—C2b	1.285 (3)	C2a—H22a	0.99
O2b—H2b	1.103 (2)	C3a—C4a	1.518 (3)
H61b—C2b	0.95	C3a—H31a	0.99
O21b—C6b	1.311 (6)	C3a—H32a	0.99
O21b—H21b	1.303 (6)	C4a—C5a	1.520 (3)

H6b—C6b	0.95	C4a—H41a	0.99
O11b—C11b	1.248 (3)	C4a—H42a	0.99
O11b—H21b	1.1454 (16)	C5a—C6a	1.530 (3)
O12b—C11b	1.272 (3)	C5a—H51a	0.99
O12b—H2b	1.3846 (15)	C5a—H52a	0.99
O31b—N3b	1.205 (3)	C6a—C7a	1.490 (3)
O32b—N3b	1.230 (3)	C6a—H61a	0.99
O51b—N5b	1.219 (3)	C6a—H62a	0.99
O52b—N5b	1.230 (3)	C9a—C10a	1.508 (6)
N3b—C3b	1.466 (3)	C9a—C13a	0.581 (13)
N5b—C5b	1.456 (3)	C9a—C12a	1.323 (10)
C1b—C2b	1.407 (3)	C9a—H91a	0.99
C1b—C6b	1.387 (3)	С9а—Н92а	0.99
C1b—C11b	1.497 (3)	C9a—H16a	0.9922
C2b—C3b	1.404 (3)	C10a—C11a	1.501 (4)
C3b—C4b	1.371 (3)	C10a—C13a	1.358 (14)
C4b—C5b	1.375 (3)	C10a—H10a	0.99
C4b—H4b	0.95	C10a—H11a	0.99
C5b—C6b	1.392 (3)	C10a—H15a	1.207
N1a—C2a	1.471 (2)	C11a—C12a	1.530 (8)
N1a—C7a	1.313 (2)	C11a—H12a	0.977 (15)
N1a—C11a	1.470 (3)	C11a—H13a	0.978 (13)
N8a—C7a	1.311 (2)	C13a—C12a	1.534 (16)
N8a—C9a	1.467 (6)	C13a—H92a	0.9083
N8a—C13a	1.498 (15)	C13a—H16a	0.99
N8a—H8a	0.9604 (17)	C13a—H17a	0.99
C2a—C3a	1.514 (3)	C12a—H14a	0.99
C2a—H21a	0.99	C12a—H15a	0.99
H6b—O21b—H21b	102.88	N8a—C9a—C13a	81.6 (16)
C11b—O12b—H2b	98.61 (14)	N8a—C9a—C12a	118.3 (5)
O31b—N3b—O32b	124.0 (2)	N8a—C9a—H91a	109.47
O31b—N3b—C3b	118.6 (2)	N8a—C9a—H92a	109.47
O32b—N3b—C3b	117.4 (2)	N8a—C9a—H14a	114.78
O51b—N5b—O52b	123.6 (2)	N8a—C9a—H16a	111.65
O51b—N5b—C5b	118.57 (18)	C10a—C9a—H91a	109.47
O52b—N5b—C5b	117.83 (18)	C10a—C9a—H92a	109.47
C2b—C1b—C6b	120.82 (17)	C13a—C9a—C12a	99.9 (15)
C2b—C1b—C11b	119.6 (2)	C13a—C9a—H91a	168.74
C6b—C1b—C11b	119.51 (18)	C13a—C9a—H14a	137.56
O2b—C2b—C1b	121.84 (19)	C12a—C9a—H92a	126.91
O2b—C2b—C3b	120.77 (19)	C12a—C9a—H16a	127.82
H61b—C2b—C1b	121.37	H91a—C9a—H92a	111.59
H61b—C2b—C3b	121.37	H14a—C9a—H16a	126.91
C1b—C2b—C3b	117.3 (2)	H14a—C9a—H17a	129.78
N3b—C3b—C2b	120.4 (2)	H16a—C9a—H17a	77.55
N3b—C3b—C4b	117.12 (18)	C9a—C10a—C11a	109.8 (3)
C2b—C3b—C4b	122.44 (18)	C11a—C10a—C13a	122.2 (6)

C3b—C4b—C5b	118.75 (18)	C11a—C10a—H10a	109.47
C3b—C4b—H4b	120.62	C11a—C10a—H11a	109.47
C5b—C4b—H4b	120.62	C11a—C10a—H17a	132.02
N5b—C5b—C4b	118.74 (17)	C13a—C10a—H11a	116.43
N5b—C5b—C6b	119.80 (17)	C13a—C10a—H15a	108.54
C4b—C5b—C6b	121.5 (2)	C12a—C10a—H17a	124.07
O_{21b} C_{6b} C_{1b}	118.4 (3)	H10a $C10a$ $H11a$	109.16
O_{21b} C_{6b} C_{5b}	122.4(3)	H10a— $C10a$ — $H15a$	132.06
H6b-C6b-C1b	120.41	H11a—C10a—H17a	117.48
H6b—C6b—C5b	120.11	H15a— $C10a$ —H17a	127.34
C1b-C6b-C5b	119 17 (18)	N_{1a} C_{11a} C_{10a}	111.6(2)
$O_{11} = C_{11} = O_{12}$	123.9(2)	N1a $-C11a$ $-C12a$	111.0(2) 112.2(4)
O11b-C11b-C1b	123.9(2) 119.4(2)	N1a $C11a$ $H12a$	112.2(4) 108.1(11)
O12b-C11b-C1b	119.4 (2)	N1a $C11a$ $H12a$	107.3(12)
C_{22} N12 C_{72}	121.83(17)	$C10_{2}$ $C11_{2}$ $H12_{2}$	107.3(12) 120.7(10)
C_{2a} N1a C_{7a}	116 29 (16)	C10a - C11a - H12a C10a - C11a - H13a	120.7(10) 105.2(10)
C_{2a} N1a C_{11a}	110.29(10) 121.87(16)	C12a $C11a$ $H13a$	103.2(10) 131.8(11)
C7a Nga $C0a$	121.07(10) 121.0(2)	$H_{12a} = C_{11a} = H_{12a}$	102.0(11)
C/a N8a C/a	121.9(2) 122.2(5)	H12a $C12a$ $C0a$	102.9 (13)
C/a Noa U_{13a}	122.5(3)	$N_{0}a = C_{1}2a = C_{1}0a$	/3.8 (13)
C/a N8a H8a	119.53 (19)	N8a - C13a - C10a	114.0(9)
$C_{9a} = N_{8a} = C_{13a}$	22.0(5)	N8a - C12a - C12a	104.5 (8)
C_{9a} N8a H8a	118.5(2)	$N\delta a$ — $C13a$ — $H10a$	113.12
	114.5 (5)	N8a - C13a - H92a	112.32
N1a - C2a - C3a	114.01 (15)	N8a—C13a—H16a	109.47
N1a - C2a - H21a	109.47	N8a - C13a - H1/a	109.47
N1a - C2a - H22a	109.47	C9a—C13a—H10a	130.08
C3a - C2a - H21a	109.47	C9a - C13a - H1/a	16/.66
C3a—C2a—H22a	109.47	C10a—C13a—H92a	129.79
H21a—C2a—H22a	104.52	C10a—C13a—H16a	129.35
C2a—C3a—C4a	114.39 (18)	C12a—C13a—H92a	113.84
C2a—C3a—H31a	109.47	C12a—C13a—H16a	109.47
C2a—C3a—H32a	109.47	C12a—C13a—H17a	109.47
C4a—C3a—H31a	109.47	H10a—C13a—H91a	126.53
C4a—C3a—H32a	109.47	H10a—C13a—H92a	130.35
H31a—C3a—H32a	104.05	H10a—C13a—H16a	135.32
C3a—C4a—C5a	114.58 (18)	H92a—C13a—H17a	107.21
C3a—C4a—H41a	109.47	H16a—C13a—H17a	114.05
C3a—C4a—H42a	109.47	C9a—C12a—C11a	119.1 (6)
C5a—C4a—H41a	109.47	C9a—C12a—H11a	111.16
C5a—C4a—H42a	109.47	C9a—C12a—H15a	119.13
H41a—C4a—H42a	103.83	C10a—C12a—H91a	125.59
C4a—C5a—C6a	114.44 (16)	C10a—C12a—H14a	169.66
C4a—C5a—H51a	109.47	C11a—C12a—C13a	109.6 (7)
C4a—C5a—H52a	109.47	C11a—C12a—H91a	130.75
C6a—C5a—H51a	109.47	C11a—C12a—H14a	109.47
C6a—C5a—H52a	109.47	C11a—C12a—H15a	109.47
H51a—C5a—H52a	104	C13a—C12a—H14a	109.47
C5a—C6a—C7a	112.99 (17)	C13a—C12a—H15a	109.47

C5a—C6a—H61a	109.47	H91a—C12a—H11a	130.35
С5а—С6а—Н62а	109.47	H91a—C12a—H15a	118.71
C7a—C6a—H61a	109.47	H11a—C12a—H14a	133.54
C7a—C6a—H62a	109.47	H14a—C12a—H15a	109.31
H61a—C6a—H62a	105.71	O21b—H21b—O11b	167.3 (3)
N1a—C7a—N8a	121.93 (19)	H6b—H21b—O11b	152.98
N1a—C7a—C6a	120.45 (16)	O2b—H2b—O12b	166.81 (13)
N8a—C7a—C6a	117.59 (17)	H61b—H2b—O12b	150.18
N8a—C9a—C10a	107.3 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
N8a—H8a…O11b	0.9604 (17)	1.9329 (15)	2.864 (2)	162.83 (11)
$C10a$ —H10 a ···O32 b^{i}	0.99	2.44	3.248 (4)	138
C2 <i>a</i> —H21 <i>a</i> ···O31 <i>b</i> ⁱⁱ	0.99	2.48	3.275 (3)	137
C6 <i>a</i> —H62 <i>a</i> ···O21 <i>b</i> ⁱⁱⁱ	0.99	2.44	3.152 (6)	128
C10 <i>a</i> —H11 <i>a</i> ···O21 <i>b</i> ^{iv}	0.99	2.47	3.033 (7)	116
O21 <i>b</i> —H21 <i>b</i> ···O11 <i>b</i>	1.303 (6)	1.1454 (16)	2.433 (6)	167.3 (3)
O11 <i>b</i> —H21 <i>b</i> ···O21 <i>b</i>	1.1454 (16)	1.303 (6)	2.433 (6)	167.3 (3)
O12 <i>b</i> —H2 <i>b</i> ···O2 <i>b</i>	1.3846 (15)	1.103 (2)	2.471 (2)	166.81 (13)

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x-1, y, z; (iv) x-1/2, -y+3/2, z+1/2.

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE)

Crystal data

 $C_{26}H_{29}N_2^+ \cdot C_7H_3N_2O_7^ M_r = 596.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 14.5648 (3) Å *b* = 12.9374 (3) Å c = 16.1619(3) Å $\beta = 103.900 (1)^{\circ}$ $V = 2956.22 (11) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD	29552 measured reflections
diffractometer	7344 independent reflections
Radiation source: fine-focus sealed tube	5724 reflections with $I > 3\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Bruker, 2008)	$k = -17 \rightarrow 17$
$T_{\min} = 0.932, T_{\max} = 1.000$	$l = -21 \rightarrow 15$

F(000) = 1256 $D_{\rm x} = 1.341 {\rm Mg m^{-3}}$ Melting point: 383 K Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9909 reflections $\theta = 2.3 - 28.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 200 KBlock, yellow $0.51 \times 0.26 \times 0.17 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F > 3\sigma(F)] = 0.054$	Hydrogen site location: difference Fourier map
wR(F) = 0.190	H atoms treated by a mixture of independent
S = 1.80	and constrained refinement
7344 reflections	Weighting scheme based on measured s.u.'s $w =$
399 parameters	$1/(\sigma^2(I) + 0.0063999998I^2)$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.044$
120 constraints	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Number of fixed parameters 6

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.25627 (8)	0.71181 (9)	0.31343 (7)	0.0246 (3)	
0.30128	0.669474	0.349979	0.035 (4)*	
0.10023 (8)	0.56683 (9)	0.26575 (7)	0.0233 (3)	
0.29865 (11)	0.95151 (12)	0.41661 (10)	0.0334 (5)	
0.245898	0.980932	0.377422	0.0401*	
0.33463 (11)	0.86695 (12)	0.39170 (10)	0.0322 (5)	
0.386765	0.835478	0.430202	0.0386*	
0.29839 (12)	0.81754 (12)	0.30656 (10)	0.0333 (5)	
0.350521	0.811391	0.27725	0.04*	
0.250048	0.862741	0.270514	0.04*	
0.17112 (10)	0.71678 (11)	0.34935 (9)	0.0281 (4)	
0.123241	0.762704	0.313566	0.0337*	
0.189039	0.745897	0.40767	0.0337*	
0.12943 (10)	0.61031 (11)	0.35226 (9)	0.0271 (4)	
0.07387	0.614805	0.377337	0.0326*	
0.177161	0.564522	0.388386	0.0326*	
0.18571 (10)	0.55563 (11)	0.23345 (9)	0.0262 (4)	
0.231171	0.509606	0.271816	0.0315*	
0.168931	0.5233	0.176272	0.0315*	
0.23149 (10)	0.65944 (12)	0.22789 (9)	0.0282 (4)	
0.289537	0.649813	0.207068	0.0338*	
0.187639	0.703827	0.186493	0.0338*	
0.05326 (9)	0.46528 (10)	0.26756 (8)	0.0230 (4)	
0.099282	0.417266	0.304542	0.0276*	
0.33145 (11)	1.00535 (12)	0.49876 (10)	0.0326 (5)	
0.41578 (13)	0.97941 (14)	0.55685 (10)	0.0391 (5)	
0.454927	0.926517	0.543205	0.047*	
0.44278 (15)	1.03053 (17)	0.63457 (11)	0.0502 (6)	
0.499799	1.011658	0.674094	0.0603*	
0.38752 (17)	1.10810 (17)	0.65451 (12)	0.0554 (7)	
	x $0.25627 (8)$ 0.30128 $0.10023 (8)$ $0.29865 (11)$ 0.245898 $0.33463 (11)$ 0.245898 $0.33463 (11)$ 0.386765 $0.29839 (12)$ 0.350521 0.250048 $0.17112 (10)$ 0.123241 0.189039 $0.12943 (10)$ 0.07387 0.177161 $0.18571 (10)$ 0.231171 0.168931 $0.23149 (10)$ 0.289537 0.187639 $0.05326 (9)$ 0.099282 $0.33145 (11)$ $0.41578 (13)$ 0.454927 $0.44278 (15)$ 0.499799 $0.38752 (17)$	x y $0.25627 (8)$ $0.71181 (9)$ 0.30128 0.669474 $0.10023 (8)$ $0.56683 (9)$ $0.29865 (11)$ $0.95151 (12)$ 0.245898 0.980932 $0.33463 (11)$ $0.86695 (12)$ 0.386765 0.835478 $0.29839 (12)$ $0.81754 (12)$ 0.350521 0.811391 0.250048 0.862741 $0.17112 (10)$ $0.71678 (11)$ 0.123241 0.762704 0.189039 0.745897 $0.12943 (10)$ $0.61031 (11)$ 0.07387 0.614805 0.177161 $0.55563 (11)$ 0.231171 0.509606 0.168931 0.5233 $0.23149 (10)$ $0.65944 (12)$ 0.289537 0.649813 0.187639 0.703827 $0.05326 (9)$ $0.46528 (10)$ 0.099282 0.417266 $0.33145 (11)$ $1.00535 (12)$ $0.41578 (13)$ $0.97941 (14)$ $0.44278 (15)$ $1.03053 (17)$ 0.499799 1.011658 $0.38752 (17)$ $1.10810 (17)$	xyz $0.25627 (8)$ $0.71181 (9)$ $0.31343 (7)$ 0.30128 0.669474 0.349979 $0.10023 (8)$ $0.56683 (9)$ $0.26575 (7)$ $0.29865 (11)$ $0.95151 (12)$ $0.41661 (10)$ 0.245898 0.980932 0.377422 $0.33463 (11)$ $0.86695 (12)$ $0.39170 (10)$ 0.386765 0.835478 0.430202 $0.29839 (12)$ $0.81754 (12)$ $0.30656 (10)$ 0.350521 0.811391 0.27725 0.250048 0.862741 0.270514 $0.17112 (10)$ $0.71678 (11)$ $0.34935 (9)$ 0.123241 0.762704 0.313566 0.189039 0.745897 0.40767 $0.12943 (10)$ $0.61031 (11)$ $0.35226 (9)$ 0.07387 0.614805 0.377337 0.177161 $0.55563 (11)$ $0.23345 (9)$ 0.231171 0.509606 0.271816 0.18931 0.5233 0.176272 $0.23149 (10)$ $0.65944 (12)$ $0.22789 (9)$ $0.5326 (9)$ $0.46528 (10)$ $0.26756 (8)$ 0.099282 0.417266 0.304542 $0.3145 (11)$ $1.00535 (12)$ $0.49876 (10)$ $0.41778 (13)$ $0.97941 (14)$ $0.55685 (10)$ $0.44278 (15)$ $1.03053 (17)$ $0.63457 (11)$ 0.49799 1.011658 0.674094 $0.38752 (17)$ $1.10810 (17)$ $0.65451 (12)$	xyz U_{so}^*/U_{eq} 0.25627 (8)0.71181 (9)0.31343 (7)0.0246 (3)0.301280.6694740.3499790.035 (4)*0.10023 (8)0.56683 (9)0.26575 (7)0.0233 (3)0.29865 (11)0.95151 (12)0.41661 (10)0.0334 (5)0.2458980.9809320.3774220.0401*0.33463 (11)0.86695 (12)0.39170 (10)0.0322 (5)0.3867650.8354780.4302020.03386*0.29839 (12)0.81754 (12)0.30656 (10)0.0333 (5)0.3505210.8113910.277250.04*0.2500480.8627410.2705140.04*0.17112 (10)0.71678 (11)0.34935 (9)0.0281 (4)0.1232410.7627040.3135660.0337*0.1890390.7458970.407670.0337*0.12943 (10)0.61031 (11)0.35226 (9)0.0271 (4)0.073870.6148050.3773370.0326*0.18571 (10)0.55563 (11)0.23345 (9)0.0262 (4)0.2311710.5096060.2718160.0315*0.23149 (10)0.65944 (12)0.22789 (9)0.0282 (4)0.2895370.6498130.2070680.0338*0.187326 (9)0.438270.1864930.0338*0.187326 (9)0.44528 (10)0.26756 (8)0.0230 (4)0.0992820.4172660.3045420.0276*0.33145 (11)1.00535 (12)0.49876 (10)0.0326 (5)0.41578 (13)0.97941 (14)0.55685 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14	0.40688	1.143158	0.707495	0.0665*
C15	0.30389 (15)	1.13552 (16)	0.59798 (13)	0.0516 (7)
H15	0.265849	1.18931	0.61197	0.0619*
C16	0.27570 (13)	1.08400 (13)	0.52053 (11)	0.0397 (5)
H16	0.217882	1.102436	0.481949	0.0476*
C21	-0.03166 (9)	0.47504 (10)	0.30647 (8)	0.0240 (4)
C22	-0.04272 (11)	0.40385 (12)	0.36763 (10)	0.0315 (5)
H22	0.003276	0.351198	0.385315	0.0378*
C23	-0.12077 (12)	0.40899 (13)	0.40333 (11)	0.0388 (5)
H23	-0.127745	0.359826	0.445056	0.0466*
C24	-0.18805 (12)	0.48544 (13)	0.37818 (11)	0.0385 (5)
H24	-0.241677	0.488365	0.401911	0.0461*
C25	-0.17687 (11)	0.55719 (12)	0.31859 (11)	0.0351 (5)
H25	-0.222711	0.610174	0.301738	0.0421*
C26	-0.09910 (10)	0.55304 (11)	0.28271 (9)	0.0286 (4)
H26	-0.091899	0.603396	0.241958	0.0344*
C31	0.02520 (10)	0.41880 (11)	0.17810 (9)	0.0248 (4)
C32	0.06690 (11)	0.32720 (12)	0.16027 (10)	0.0331 (5)
H32	0.112496	0.2938	0.204043	0.0397*
C33	0.04254 (13)	0.28416 (13)	0.07918 (11)	0.0392 (5)
H33	0.071842	0.221893	0.067798	0.047*
C34	-0.02351 (12)	0.33108 (13)	0.01557 (10)	0.0379 (5)
H34	-0.039638	0.301886	-0.039979	0.0455*
C35	-0.06672 (12)	0.42142 (14)	0.03267 (10)	0.0385 (5)
H35	-0.113709	0.453238	-0.01092	0.0461*
C36	-0.04162 (11)	0.46550 (12)	0.11316 (10)	0.0321 (5)
H36	-0.070483	0.528311	0.123929	0.0386*
01	0.63327 (8)	0.37352 (10)	0.53505 (8)	0.0392 (4)
O2	0.58197 (10)	0.44006 (14)	0.67133 (9)	0.0614 (6)
O3	0.43608 (10)	0.48129 (12)	0.65684 (9)	0.0549 (5)
O4	0.19464 (9)	0.32143 (13)	0.44743 (10)	0.0569 (5)
05	0.22764 (11)	0.24248 (13)	0.34091 (10)	0.0631 (6)
O6	0.54745 (10)	0.23529 (12)	0.30214 (8)	0.0518 (5)
07	0.66627 (9)	0.28940 (12)	0.40564 (9)	0.0507 (5)
N3	0.49861 (10)	0.43835 (11)	0.63197 (9)	0.0379 (4)
N4	0.25133 (10)	0.29121 (12)	0.40756 (10)	0.0428 (5)
C9	0.57563 (13)	0.27360 (13)	0.37128 (12)	0.0398 (6)
C41	0.54458 (10)	0.35627 (11)	0.50735 (10)	0.0298 (4)
C42	0.50987 (11)	0.30564 (12)	0.42622 (10)	0.0314 (5)
C43	0.41587 (11)	0.28489 (12)	0.39522 (10)	0.0329 (5)
H43	0.395087	0.249901	0.342348	0.0394*
C44	0.35106 (10)	0.31453 (12)	0.44039 (10)	0.0313 (4)
C45	0.37850 (10)	0.36477 (12)	0.51759 (10)	0.0305 (4)
H45	0.332901	0.38543	0.547596	0.0366*
C46	0.47336 (11)	0.38456 (11)	0.55054 (9)	0.0290 (4)
Н7	0.676841	0.321683	0.458063	0.030 (4)*
				× /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0221 (6)	0.0282 (6)	0.0236 (5)	-0.0039 (4)	0.0055 (4)	-0.0028 (4)
N2	0.0209 (5)	0.0268 (6)	0.0227 (5)	-0.0035 (4)	0.0063 (4)	-0.0032 (4)
C1	0.0300 (8)	0.0358 (8)	0.0314 (7)	-0.0037 (6)	0.0017 (6)	-0.0003 (6)
C2	0.0301 (7)	0.0308 (7)	0.0334 (7)	-0.0076 (6)	0.0033 (6)	0.0004 (6)
C3	0.0391 (8)	0.0304 (7)	0.0318 (7)	-0.0113 (6)	0.0111 (6)	-0.0022 (6)
C4	0.0216 (6)	0.0331 (7)	0.0302 (7)	-0.0026 (5)	0.0075 (5)	-0.0076 (5)
C5	0.0248 (7)	0.0337 (7)	0.0241 (6)	-0.0051 (5)	0.0082 (5)	-0.0053 (5)
C6	0.0232 (6)	0.0304 (7)	0.0265 (6)	-0.0032 (5)	0.0088 (5)	-0.0047 (5)
C7	0.0285 (7)	0.0344 (7)	0.0223 (6)	-0.0060 (6)	0.0073 (5)	-0.0045 (5)
C8	0.0197 (6)	0.0247 (6)	0.0245 (6)	0.0003 (5)	0.0054 (5)	0.0010 (5)
C11	0.0357 (8)	0.0306 (7)	0.0307 (7)	-0.0080 (6)	0.0064 (6)	0.0006 (6)
C12	0.0398 (9)	0.0415 (9)	0.0337 (8)	-0.0067 (7)	0.0042 (7)	0.0007 (7)
C13	0.0523 (11)	0.0604 (12)	0.0319 (8)	-0.0142 (9)	-0.0018 (8)	0.0005 (8)
C14	0.0691 (14)	0.0629 (13)	0.0354 (9)	-0.0230 (10)	0.0149 (9)	-0.0159 (8)
C15	0.0584 (12)	0.0455 (10)	0.0562 (11)	-0.0106 (9)	0.0242 (10)	-0.0151 (8)
C16	0.0392 (9)	0.0350 (8)	0.0444 (9)	-0.0049 (7)	0.0090 (7)	-0.0039 (7)
C21	0.0213 (6)	0.0250 (6)	0.0255 (6)	-0.0020 (5)	0.0050 (5)	-0.0024 (5)
C22	0.0311 (7)	0.0329 (8)	0.0325 (7)	0.0030 (6)	0.0114 (6)	0.0046 (6)
C23	0.0426 (9)	0.0390 (9)	0.0413 (9)	0.0005 (7)	0.0228 (7)	0.0058 (7)
C24	0.0344 (8)	0.0391 (8)	0.0493 (9)	-0.0028 (6)	0.0245 (7)	-0.0078 (7)
C25	0.0278 (7)	0.0336 (8)	0.0447 (9)	0.0044 (6)	0.0104 (6)	-0.0058 (6)
C26	0.0269 (7)	0.0271 (7)	0.0323 (7)	0.0015 (5)	0.0079 (6)	0.0002 (5)
C31	0.0226 (6)	0.0253 (6)	0.0282 (6)	-0.0049(5)	0.0093 (5)	-0.0016 (5)
C32	0.0327 (8)	0.0296 (7)	0.0367 (8)	0.0017 (6)	0.0076 (6)	-0.0021 (6)
C33	0.0437 (9)	0.0299 (8)	0.0463 (9)	-0.0014 (7)	0.0154 (8)	-0.0097 (7)
C34	0.0452 (9)	0.0381 (9)	0.0313 (8)	-0.0104 (7)	0.0109 (7)	-0.0090 (6)
C35	0.0387 (9)	0.0451 (9)	0.0283 (7)	-0.0015 (7)	0.0017 (7)	-0.0024 (7)
C36	0.0316 (8)	0.0337 (8)	0.0310(7)	0.0020 (6)	0.0073 (6)	-0.0020 (6)
01	0.0242 (6)	0.0466 (7)	0.0449 (6)	-0.0022(5)	0.0046 (5)	0.0065 (5)
O2	0.0364 (7)	0.0954 (12)	0.0457 (8)	0.0021 (7)	-0.0029 (6)	-0.0243 (7)
O3	0.0459 (8)	0.0698 (9)	0.0453 (7)	0.0153 (7)	0.0038 (6)	-0.0171 (6)
04	0.0239 (6)	0.0732 (10)	0.0713 (9)	0.0049 (6)	0.0067 (6)	-0.0008(8)
05	0.0465 (8)	0.0774 (11)	0.0531 (8)	-0.0103 (7)	-0.0120 (7)	-0.0150 (7)
O6	0.0595 (9)	0.0612 (9)	0.0400 (7)	0.0066 (7)	0.0226 (6)	-0.0026 (6)
O7	0.0391 (7)	0.0619 (9)	0.0567 (8)	0.0007 (6)	0.0223 (6)	-0.0035 (6)
N3	0.0355 (7)	0.0405 (8)	0.0347 (7)	0.0038 (6)	0.0023 (6)	-0.0023(6)
N4	0.0303 (7)	0.0466 (8)	0.0442 (8)	-0.0012 (6)	-0.0056 (6)	0.0040 (6)
C9	0.0393 (9)	0.0352 (8)	0.0491 (10)	0.0046 (7)	0.0190 (8)	0.0095 (7)
C41	0.0232 (7)	0.0277 (7)	0.0368 (7)	0.0028 (5)	0.0038 (6)	0.0099 (6)
C42	0.0330 (8)	0.0293 (7)	0.0345 (7)	0.0049 (6)	0.0133 (6)	0.0074 (6)
C43	0.0370 (8)	0.0322 (8)	0.0284 (7)	0.0011 (6)	0.0059 (6)	0.0030 (6)
C44	0.0238 (7)	0.0334 (8)	0.0333 (7)	0.0012 (5)	0.0000 (6)	0.0037 (6)
C45	0.0255 (7)	0.0325 (7)	0.0333 (7)	0.0060 (6)	0.0067 (6)	0.0030 (6)

Geometric parameters (Å, °)

N1—H71	0.9448 (11)	C16—H16	0.95	
N1—C3	1.5141 (19)	C21—C22	1.388 (2)	
N1—C4	1.492 (2)	C21—C26	1.3962 (19)	
N1—C7	1.5036 (18)	C22—H22	0.95	
N2—C5	1.4718 (17)	C22—C23	1.395 (3)	
N2—C6	1.4682 (19)	C23—H23	0.95	
N2—C8	1.4848 (17)	C23—C24	1.383 (2)	
C1—H1a	0.95	C24—H24	0.95	
C1—C2	1.317 (2)	C24—C25	1.375 (3)	
C1—C11	1.474 (2)	C25—H25	0.95	
C2—H2	0.95	C25—C26	1.392 (2)	
C2—C3	1.494 (2)	C26—H26	0.95	
C3—H3a	0.99	C31—C32	1.393 (2)	
C3—H3b	0.99	C31—C36	1.3867 (19)	
Н3а—Н3b	1.5869	C32—H32	0.95	
C4—H4a	0.99	C32—C33	1.389 (2)	
C4—H4b	0.99	С33—Н33	0.95	
C4—C5	1.511 (2)	C33—C34	1.370 (2)	
H4a—H4b	1.6058	C34—H34	0.95	
С5—Н5а	0.99	C34—C35	1.386 (3)	
C5—H5b	0.99	С35—Н35	0.95	
H5a—H5b	1.6091	C35—C36	1.387 (2)	
С6—Н6а	0.99	C36—H36	0.95	
C6—H6b	0.99	O1—C41	1.2810 (17)	
C6—C7	1.512 (2)	O2—N3	1.2281 (18)	
Нба—Нбb	1.6016	O3—N3	1.215 (2)	
C7—H7a	0.99	O4—N4	1.227 (2)	
C7—H7b	0.99	O5—N4	1.224 (2)	
H7a—H7b	1.6014	O6—C9	1.201 (2)	
C8—H8	1	O7—C9	1.319 (2)	
C8—C21	1.522 (2)	O7—H7	0.9238 (15)	
C8—C31	1.5282 (19)	N3—C46	1.456 (2)	
C11—C12	1.396 (2)	N4—C44	1.453 (2)	
C11—C16	1.399 (3)	C9—C42	1.512 (3)	
C12—H12	0.95	C41—C42	1.444 (2)	
C12—C13	1.390 (2)	C41—C46	1.430 (2)	
C13—H13	0.95	C42—C43	1.367 (2)	
C13—C14	1.372 (3)	C43—H43	0.95	
C14—H14	0.95	C43—C44	1.379 (2)	
C14—C15	1.382 (3)	C44—C45	1.378 (2)	
C15—H15	0.95	C45—H45	0.95	
C15—C16	1.390 (3)	C45—C46	1.380 (2)	
H71—N1—C3	109.70 (10)	C15—C16—H16	119.61	
H71—N1—C4	107.37 (11)	C8—C21—C22	118.95 (12)	
H71—N1—C7	106.90 (11)	C8—C21—C26	122.30 (13)	

C3—N1—C4	112.27 (12)	C22—C21—C26	118.75 (14)
C3—N1—C7	110.59 (11)	C21—C22—H22	119.72
C4—N1—C7	109.82 (10)	C21—C22—C23	120.56 (14)
C5—N2—C6	107.42 (10)	H22—C22—C23	119.72
C5—N2—C8	110.41 (11)	С22—С23—Н23	119.9
C6—N2—C8	110.71 (11)	C_{22} C_{23} C_{24}	120.20 (16)
$H_1a - C_1 - C_2$	116.52	H_{23} C_{23} C_{24}	119.9
H_{1a} C_{1} C_{11}	116.52	C23—C24—H24	120.2
$C_{2}-C_{1}-C_{11}$	126 96 (14)	C_{23} C_{24} C_{25}	119.60(17)
C1 - C2 - H2	118.03	H_{24} C_{24} C_{25}	120.2
C1 - C2 - C3	123 95 (13)	C_{24} C_{25} H_{25}	119.64
$H^2 - C^2 - C^3$	118.03	$C_{24} = C_{25} = C_{26}$	120.72(15)
N1 - C3 - C2	112 26 (13)	H_{25} C_{25} C_{26}	119.64
N1 - C3 - H3a	109.47	C_{21} C_{26} C_{25} C_{20}	120.16(14)
N1 - C3 - H3b	109.47	$C_{21} = C_{26} = C_{25}$	110.02
$C_2 - C_3 - H_{3_2}$	109.47	C_{25} C_{26} H_{26}	119.92
$C_2 = C_3 = H_3 h$	109.47	$C_{23}^{8} = C_{20}^{31} = C_{20}^{32}$	119.92
$H_{20} = C_2 = H_{20}$	109.47	$C_{8} = C_{31} = C_{32}$	119.90(11) 121.61(13)
N1 C4 H42	100.34	C_{3}^{22} C_{31}^{21} C_{36}^{26}	121.01(13) 118.41(13)
N1 = C4 = 114a	109.47	$C_{32} = C_{31} = C_{30}$	110.41 (13)
N1 = C4 = C5	109.47	$C_{31} = C_{32} = C_{33}$	119.04 120.73(13)
$H_{4} C_{4} H_{4}$	100.33 (12)	$H_{22} = C_{22} = C_{23}$	120.75 (15)
$H_{4a} = C_4 = C_5$	100.39	$H_{32} - C_{32} - C_{33}$	119.04
H4b C4 C5	109.47	$C_{32} = C_{33} = C_{34}$	119.05
H40-C4-C3	109.47	$U_{22} = C_{23} = C_{24}$	120.30 (10)
$N_2 = C_3 = C_4$	110.21(12) 100.47	133 - 033 - 034	119.85
$N_2 = C_5 = H_5 h$	109.47	С33—С34—П34	120.18
$N_2 = C_3 = H_3 D$	109.47	$C_{33} - C_{34} - C_{35}$	119.05 (15)
C4—C5—H5a	109.47	H34-C34-C35	120.18
C4—C5—H5b	109.47	C34—C35—H35	119.87
	108.72	$C_{34} = C_{35} = C_{36}$	120.25 (14)
N2—C6—H6a	109.47	H35 - C35 - C36	119.88
N2—C6—H6b	109.47	$C_{31} = C_{36} = C_{35}$	120.65 (15)
N2-C6-C7	110.93 (12)	C31—C36—H36	119.67
H6a—C6—H6b	107.97	С35—С36—Н36	119.68
H6a—C6—C7	109.47	C41—01—H7	101.64 (10)
H6b—C6—C/	109.47	C9—O7—H7	112.68 (16)
NI-C/-C6	110.95 (12)	02—N3—03	123.16 (15)
N1—C7—H7a	109.47	O2—N3—C46	118.72 (15)
N1—C7—H7b	109.47	O3—N3—C46	118.10 (13)
С6—С7—Н7а	109.47	O4—N4—O5	122.91 (15)
C6—C7—H7b	109.47	04—N4—C44	118.79 (14)
H7a—C7—H7b	107.95	O5—N4—C44	118.29 (16)
N2—C8—H8	108.39	06	122.64 (19)
N2—C8—C21	111.04 (11)	O6—C9—C42	122.44 (16)
N2-C8-C31	110.45 (11)	O7—C9—C42	114.91 (15)
H8—C8—C21	107.41	O1—C41—C42	120.00 (15)
H8—C8—C31	108.03	O1—C41—C46	125.00 (14)
C21—C8—C31	111.38 (10)	C42—C41—C46	115.00 (13)

C1—C11—C12	122.33 (15)	C9—C42—C41	121.64 (14)
C1—C11—C16	119.24 (13)	C9—C42—C43	116.80 (14)
C12—C11—C16	118.42 (15)	C41—C42—C43	121.55 (16)
C11—C12—H12	119.81	C42—C43—H43	119.87
C11—C12—C13	120.37 (17)	C42—C43—C44	120.27 (14)
H12—C12—C13	119.81	H43—C43—C44	119.87
C12—C13—H13	119.82	N4—C44—C43	120.01 (14)
C12—C13—C14	120.37 (17)	N4—C44—C45	118.40 (15)
H13—C13—C14	119.82	C43—C44—C45	121.59 (13)
C13—C14—H14	119.8	C44—C45—H45	120.57
C13—C14—C15	120.40 (18)	C44—C45—C46	118.86 (15)
H14—C14—C15	119.8	H45—C45—C46	120.57
C14—C15—H15	120.17	N3—C46—C41	120.55 (13)
C14—C15—C16	119.7 (2)	N3—C46—C45	116.73 (14)
H15—C15—C16	120.17	C41—C46—C45	122.71 (13)
C11—C16—C15	120.77 (16)	O1—H7—O7	148.96 (9)
C11-C16-H16	119.61		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H71…O1 ⁱ	0.9448 (11)	1.9544 (11)	2.8126 (15)	150.01 (8)
N1—H71···O2 ⁱ	0.9448 (11)	2.3020 (16)	3.032 (2)	133.62 (8)
C3—H3 <i>a</i> ···O6 ⁱⁱ	0.99	2.40	3.340 (2)	159
C5—H5 <i>a</i> ···C21	0.99	2.47	2.8777 (19)	104
C6—H6 <i>b</i> ···C31	0.99	2.50	2.8974 (19)	104
O7—H7…O1	0.9238 (15)	1.6675 (13)	2.505 (2)	148.96 (9)
O7—H7…C41	0.9238 (15)	2.2985 (16)	2.827 (2)	115.91 (9)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y+1/2, -z+1/2.