CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 27 July 2018
Accepted 6 August 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; trimethyl citrate; hydrogen bonds; inversion dimers; ring motifs.

CCDC reference: 1500726

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Inversion dimers dominate the crystal packing in the structure of trimethyl citrate (trimethyl 2-hydroxypropane-1,2,3-tricarboxylate)

Rami Y. Morjan, ${ }^{\text {a }}$ Said M. El-Kurdi, ${ }^{\text {a }}$ Jannat N. Azarah, ${ }^{\text {a }}$ Neda A. Eleiwa, ${ }^{\text {b }}$ Omar S. Abu-Teim, ${ }^{\text {b }}$ Adel M. Awadallah, ${ }^{\text {a }}$ James Raftery ${ }^{\text {c }}$ and John M. Gardiner ${ }^{\text {d* }}$

${ }^{\text {a }}$ Department of Chemistry, Islamic University of Gaza, Gaza PO Box 108, Palestine, ${ }^{\text {b }}$ Department of Chemistry, Al-Azhar University of Gaza, Gaza PO Box 1277, Palestine, 'School of Chemistry, The University of Manchester, Brunswick Street, Manchester M13 9PL, UK, and dManchester Institute of Biotechnology, School of Chemistry and EPS, The University of Manchester, Manchester M1 7DN, UK. *Correspondence e-mail: john.m.gardiner@manchester.ac.uk

Trimethyl citrate, $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{7}$ (systematic name: trimethyl 2-hydroxypropane-1,2,3tricarboxylate), $\mathbf{2}$, was prepared by the esterification of citric acid and methanol in the presence of thionyl chloride at 273 K . The bond lengths and angles in 2 compare closely with those observed in citric acid. The $\mathrm{C}-\mathrm{C}$ bonds adjacent to the terminal carboxyl groups are significantly shorter than those around the central C atom. The central carboxylate group and the hydroxy group occur in the normal planar arrangement with an r.m.s. deviation of $0.0171 \AA$ from the mean plane involving all six atoms in the central unit. The crystal structure is almost completely dominated by the formation of inversion dimers through an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, together with an extensive array of weaker $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts. These generate a three-dimensional network structure with molecules stacked along the c-axis direction.

1. Chemical context

Esters of citric acid have received significant attention because of their many applications. Their use as plasticizers has grown because of their low toxicity, compatibility with the host materials and low volatility (Labrecque et al., 1997; Garg et al., 2014). They were investigated for use in degradable thermoset polymers (Halpern et al., 2014). In the biological field, trimethyl citrate is used to synthesize citrate-functionalized ciprofloxacin conjugates and their antimicrobial activities have been determined against a panel of clinically-relevant bacteria (Md-Saleh et al., 2009). Several different methods and catalysts have been employed for the synthesis of trimethyl citrate from citric acid and methanol using, for example, thionyl chloride (Ilewska \& Chimiak, 1994) and zirconium(IV) dichloride oxide hydrate (Sun et al., 2006). We report here the esterification of citric acid to form trimethyl citrate, 2, together with its molecular and crystal structure.

2. Structural commentary

The title compound, $\mathbf{2}$, crystallizes in the triclinic space group $P \overline{1}$, with one molecule in the asymmetric unit. The molecular structure of the compound, with the atom labelling, is shown in Fig. 1. The bond lengths and angles in $\mathbf{2}$ are comparable to those observed in citric acid, $\mathbf{1}$ (Glusker et al., 1969; Roelofsen \& Kanters, 1972; King et al., 2011). The C2-C3 and C5-C6 bonds $[1.506$ (2) and 1.502 (2) A, respectively] that bridge the outer terminal carboxyl groups are significantly shorter than those around the central C 4 atom $[\mathrm{C} 3-\mathrm{C} 4=1.5405$ (19), $\mathrm{C} 4-$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.98	2.65	3.393 (2)	133
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O} 5^{\text {ii }}$	0.98	2.56	3.520 (2)	167
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$	0.99	2.66	3.6388 (18)	170
C5-H5A . $\mathrm{O}^{\text {2 }}{ }^{\text {iv }}$	0.99	2.51	3.4610 (18)	160
C7-H7C . $\mathrm{O}^{\text {² }}$	0.98	2.53	3.3008 (19)	135
C9-H9B . $\mathrm{O}^{\text {2 }}{ }^{\text {iii }}$	0.98	2.61	3.423 (2)	140
C9-H9B . $\mathrm{O}^{\text {vi }}$	0.98	2.64	3.2576 (17)	121
C9-H9C..O37 ${ }^{\text {vii }}$	0.98	2.61	3.4147 (19)	140
$\mathrm{O} 3-\mathrm{H} 3 \cdots 5^{\text {v }}$	0.80 (2)	2.14 (2)	2.8428 (15)	147 (2)

Symmetry codes: (i) $x-1, y-1, z$; (ii) $x, y-1, z$; (iii) $-x,-y,-z+1$; (iv) $-x+1,-y,-z+1 ; \quad$ (v) $\quad-x+1,-y+1,-z+2$; (vi) $\quad x-1, y, z$; (vii) $-x,-y+1,-z+2$.

C5 $=1.5348$ (19) and $\mathrm{C} 4-\mathrm{C} 8=1.5398$ (18) Å], an observation that mirrors what occurs in glycine itself. The carbonyl groups $\mathrm{C} 2-\mathrm{O} 2, \mathrm{C} 8-\mathrm{O} 7$ and $\mathrm{C} 6-\mathrm{O} 5$ are clearly double bonds with similar bond lengths [1.2046(18), $1.2036(18)$ and 1.2082 (18) \AA, respectively]. Furthermore, the marked discrepancy between the $\mathrm{C}(=\mathrm{O})-\mathrm{O}$ and $\mathrm{O}-\mathrm{Me}$ distances, with the latter significantly longer in all instances, reflects considerable delocalization in the $\mathrm{C}(=\mathrm{O})-\mathrm{O}$ units. This is again consistent with what is seen in other similar structures. The central carboxylate group and the hydroxy group occur in the normal planar arrangement, with an $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 8-\mathrm{O} 6$ torsion angle of $-178.95(11)^{\circ}$ and an r.m.s. deviation of only $0.0171 \AA$ from the best-fit mean plane through the O3, C4, C8, O7, O6 and C9 atoms.

3. Supramolecular features

In the crystal, classical $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 5$ hydrogen bonds form inversion dimers enclosing $R_{2}^{2}(12)$ rings. These contacts are

Figure 1
The structure of $\mathbf{2}$, showing the atom numbering, with ellipsoids drawn at the 50% probability level.

Figure 2
A view along c of chains of molecules of $\mathbf{2}$ formed along (10 $\overline{1})$ from pairs of inversion dimers.
supported by weaker inversion-related $\mathrm{C} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O}^{\vee}$ hydrogen bonds with $R_{2}^{2}(16)$ ring motifs (Table 1). These dimers are linked into chains parallel to (10 $\overline{1})$ by inversionrelated $\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 2^{\mathrm{iii}}$ contacts that also form $R_{2}^{2}(16)$ rings (Fig. 2). H atoms from both of the methylene groups in the molecule are also involved in inversion-dimer formation. Pairs of $\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$ hydrogen bonds enclose $R_{2}^{2}(8)$ rings that are linked by $R_{2}^{2}(12)$ ring $\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iv }}$ interactions into chains along the a-axis direction. Weaker $\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\text {vi }}$ hydrogen bonds further stabilize these chains (Fig. 3). The $R_{2}^{2}(12)$ ring $\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iv }}$ interactions, mentioned previously, form more chains, this time linking another set of inversion dimers involving the $R_{2}^{2}(10)$ ring $\mathrm{C} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O} 7^{\text {vii }}$ contacts. These contacts form chains of dimers that run along the $a c$ diagonal (Fig. 4).

The only significant intermolecular contacts in the crystal structure not to result in inversion-dimer formation involve weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds formed by the peripheral C 1 and central C9 methyl groups. C 1 acts as a bifurcated donor forming $\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\mathrm{i}}$ and $\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O} 5^{\mathrm{ii}}$ contacts that combine with $\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 3^{\text {vi }}$ hydrogen bonds to generate a sheet of molecules in the $a b$ plane (Fig. 5). Overall, this extensive array of both classical and nonclassical inter-

Figure 3
Chains of molecules of $\mathbf{2}$ along the a-axis direction formed from pairs of inversion dimers.

Figure 4
Pairs of inversion dimers that link molecules of $\mathbf{2}$ into chains along the ac diagonal.
molecular contacts generates a three-dimensional network structure with molecules stacked along the c-axis direction (Fig. 6).

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, updated February 2018; Groom et al., 2016) for the title compound gave no hits. In contrast, a search for the $\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{C}(\mathrm{O})\left(\mathrm{CO}_{2}\right) \mathrm{CH}_{2} \mathrm{CO}_{2}$ fragment incorporating both organic and metal organic structures gave an impressive 404

Figure 5
A view along c of the sheet of molecules of $\mathbf{2}$ formed in the $a b$ plane by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Figure 6
The overall packing of $\mathbf{2}$ viewed along the c-axis direction.
hits. Limiting the search to organic structures, which eliminates the numerous metals salts of the citrate anions and the use of citrate as a ligand, reduced the hits to 124 . In what follows, with few exceptions, only one or two recent examples of the plethora of different related systems are cited. The structure of citric acid itself has been reported several times, both in isolation (Glusker et al., 1969) and as the monohydrate (Roelofsen \& Kanters, 1972; King et al., 2011). Eighteen examples of citric acid cocrystallized with various organic bases are also found (see, for example, Kerr et al., 2016; Wang et al., 2016). This search also revealed a lone neutral 1,5-dimethyl citrate (Li et al., 2007a) and a single monoanionic dimethyl citrate derivative, (-)-brucinium (R)-1,2-dimethylcitrate hydrate (Bergeron et al., 1997), with no related dianions. No examples of 1-methyl citrate or any of its anions were found, but 6-methyl citrate with the carboxylate group on the central C atom has been reported (Li et al., 2007b; Aliyu et al., 2009). In contrast, structures of more than 80 citrate anions have been reported; these included 48 monoanions with the proton lost from both the central (Inukai et al., 2017; Wang et al., 2017) and peripheral carboxylate OH groups (Abraham et al., 2016; Rammohan \& Kaduk, 2016a). Sixteen examples of citrate dianions (Rammohan \& Kaduk, 2016b, 2017a) and 17 citrate trianions (Rammohan \& Kaduk, $2017 b, c$) were also found.

Figure 7
The synthesis of the title compound (2).

5. Synthesis and crystallization

Citric acid ($0.01 \mathrm{~mol}, 2.00 \mathrm{~g}$) was dissolved in absolute methanol (50 mL) and the solution was cooled in an ice-bath under a nitrogen atmosphere. To this solution, thionyl chloride ($0.08 \mathrm{~mol}, 6.0 \mathrm{~mL}$) was added dropwise with efficient stirring at 273 K for 1 h and the solution was left stirring overnight at 298 K (Fig. 7). The solvent was removed in vacuo and the solid residue was dissolved in ethyl acetate (15 mL), dried over MgSO_{4} and filtered. The solvent was removed under reduced pressure and the solid residue was purified by recrystallization from hexane/ethyl acetate ($1: 3 \mathrm{v} / \mathrm{v}$) to yield $1.6 \mathrm{~g}(80 \%)$ of the title compound as white crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atom H3 of the OH group was located in a difference Fourier map and its coordinates refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The resulting $\mathrm{O} 3-\mathrm{H} 3$ distance of 0.80 (2) A was acceptable. All H atoms bound to carbon were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2} \mathrm{H}$ atoms, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Acknowledgements

The Analytical Chemistry Trust Fund of the Royal Society of Chemistry is thanked for funding RYM at the University of Manchester. Bank of Palestine and Welfare Association are thanked for funding RYM under the Zamala program.

Funding information

Funding for this research was provided by: Analytical Chemistry Trust Fund of the Royal Society of Chemistry (award No. 6000504/3 to RYM); Bank of Palestine and Welfare Association (under Zamala program to RYM).

References

Abraham, A., Apperley, D. C., Byard, S. J., Ilott, A. J., Robbins, A. J., Zorin, V., Harris, R. K. \& Hodgkinson, P. (2016). CrystEngComm, 18, 1054-1063.
Aliyu, L., Mohamed, N., Quah, C. K. \& Fun, H.-K. (2009). Acta Cryst. E65, o1843.
Bergeron, J. R., Xin, M., Smith, E. R., Wollenweber, M., McManis, S. R., Ludin, C. \& Abboud, A. K. (1997). Tetrahedron, 53, 427-434.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEX2, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Garg, B., Bisht, T. \& Ling, Y. C. (2014). RSC Adv. 4, 57297-57307.
Glusker, J. P., Minkin, J. A. \& Patterson, A. L. (1969). Acta Cryst. B25, 1066-1072.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Halpern, J. M., Urbanski, R., Weinstock, A. K., Iwig, D. F., Mathers, R. T. \& von Recum, H. A. (2014). J. Biomed. Mater. Res. Part A, 102, 1467-1477.
Ilewska, M. J. \& Chimiak, A. (1994). Amino Acids, 7, 89-96.

Table 2
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{7}$
$M_{\text {r }}$	234.20
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	150
$a, b, c(\AA)$	7.8428 (3), 8.0256 (3), 9.3965 (3)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	109.915 (1), 92.832 (1), 104.493 (1)
$V\left(\mathrm{~A}^{3}\right)$	532.46 (3)
Z	2
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.11
Crystal size (mm)	$0.24 \times 0.16 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}, T_{\text {max }}$	0.769, 0.897
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	4914, 1989, 1873
$R_{\text {int }}$	0.030
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.618
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.038, 0.110, 1.08
No. of reflections	1989
No. of parameters	151
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.30, -0.28

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia 2012).

Inukai, K., Takiyama, K., Noguchi, S., Iwao, Y. \& Itai, S. (2017). Int. J. Pharm. 521, 33-39.
Kerr, H. E., Mason, H. E., Sparkes, H. A. \& Hodgkinson, P. (2016). CrystEngComm, 18, 6700-6707.
King, M. D., Davis, E. A., Smith, T. M. \& Korter, T. M. (2011). J. Phys. Chem. A, 115, 11039-11044.
Labrecque, L. V., Kumar, R. A., Dave, V., Gross, R. A. \& McCarthy, S. P. (1997). J. Appl. Polym. Sci. 66, 1507-1513.

Li, M., Wang, Y., Fu, D. \& Liu, X. (2007b). Acta Cryst. E63, o4497.
Li, M., Wang, Y., Ma, P., Fu, D. \& Liu, X. (2007a). Acta Cryst. E63, o4632.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Md-Saleh, S. R., Chilvers, E. C., Kerr, K. G., Milner, S. J., Snelling, A. M., Weber, J. P., Thomas, G. H., Duhme-Klair, A. K. \& Routledge, A. (2009). Bioorg. Med. Chem. Lett. 19, 1496-1498.

Rammohan, A. \& Kaduk, J. A. (2016a). Acta Cryst. E72, 854-857.
Rammohan, A. \& Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.
Rammohan, A. \& Kaduk, J. A. (2017a). Acta Cryst. E73, 92-95.
Rammohan, A. \& Kaduk, J. A. (2017b). Acta Cryst. E73, 250-253.
Rammohan, A. \& Kaduk, J. A. (2017c). Acta Cryst. E73, 286-290.
Roelofsen, G. \& Kanters, J. A. (1972). Cryst. Struct. Commun. 1, 2326.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sun, H. B., Hua, R. M. \& Yin, Y. W. (2006). Molecules, 11, 263-271.
Wang, L., Guo, M., Jin, S., Sun, L., Wang, Y., Xu, W. \& Wan, D. (2016). J. Chem. Crystallogr. 46, 399-410.

Wang, C., Paul, S., Wang, K., Hu, S. \& Sun, C. C. (2017). Cryst. Growth Des. 17, 6030-6040.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 1362-1365 [https://doi.org/10.1107/S2056989018011222]

Inversion dimers dominate the crystal packing in the structure of trimethyl citrate (trimethyl 2-hydroxypropane-1,2,3-tricarboxylate)

Rami Y. Morjan, Said M. El-Kurdi, Jannat N. Azarah, Neda A. Eleiwa, Omar S. Abu-Teim, Adel
M. Awadallah, James Raftery and John M. Gardiner

Computing details

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia 2012).

Trimethyl 2-hydroxypropane-1,2,3-tricarboxylate

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{7}$

$M_{r}=234.20$
Triclinic, $P \overline{1}$
$a=7.8428$ (3) \AA
$b=8.0256$ (3) \AA
$c=9.3965$ (3) \AA
$\alpha=109.915$ (1) ${ }^{\circ}$
$\beta=92.832(1)^{\circ}$
$\gamma=104.493(1)^{\circ}$
$V=532.46$ (3) \AA^{3}

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: X-ray, X-ray
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.769, T_{\text {max }}=0.897$
4914 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.110$
$S=1.08$
1989 reflections
151 parameters
0 restraints

$$
Z=2
$$

$$
F(000)=248
$$

$$
D_{\mathrm{x}}=1.461 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA
$$

$$
\text { Cell parameters from } 3559 \text { reflections }
$$

$$
\theta=5.1-72.3^{\circ}
$$

$$
\mu=1.11 \mathrm{~mm}^{-1}
$$

$$
T=150 \mathrm{~K}
$$

Block, colourless
$0.24 \times 0.16 \times 0.10 \mathrm{~mm}$

1989 independent reflections
1873 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=72.3^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-11 \rightarrow 11$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0525 P)^{2}+0.2284 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.0409 (2)	-0.2623 (3)	0.7299 (2)	0.0381 (4)
H1A	-0.005169	-0.376371	0.639926	0.057*
H1B	-0.050722	-0.248183	0.796766	0.057*
H1C	0.146568	-0.268417	0.785887	0.057*
C2	0.22424 (19)	-0.0992 (2)	0.60115 (16)	0.0219 (3)
C3	0.26796 (18)	0.0716 (2)	0.56095 (16)	0.0207 (3)
H3A	0.160716	0.074354	0.502631	0.025*
H3B	0.361749	0.065717	0.494144	0.025*
C4	0.33242 (18)	0.25094 (19)	0.70328 (15)	0.0186 (3)
C5	0.40405 (19)	0.4110 (2)	0.64816 (16)	0.0212 (3)
H5A	0.503632	0.387793	0.590925	0.025*
H5B	0.308690	0.413571	0.576515	0.025*
C6	0.46821 (18)	0.5968 (2)	0.77536 (16)	0.0207 (3)
C7	0.6601 (2)	0.8984 (2)	0.8491 (2)	0.0328 (4)
H7A	0.565562	0.957176	0.844474	0.049*
H7B	0.768047	0.965634	0.821830	0.049*
H7C	0.685307	0.900853	0.953140	0.049*
C8	0.18196 (18)	0.28329 (18)	0.79919 (16)	0.0196 (3)
C9	-0.0983 (2)	0.3424 (2)	0.80083 (18)	0.0269 (3)
H9A	-0.130073	0.261138	0.858908	0.040*
H9B	-0.201720	0.322531	0.727756	0.040*
H9C	-0.061107	0.471599	0.871360	0.040*
O1	0.08823 (14)	-0.10558 (15)	0.68144 (14)	0.0288 (3)
O2	0.30055 (15)	-0.21698 (16)	0.56613 (13)	0.0314 (3)
O3	0.47114 (14)	0.22946 (16)	0.79070 (12)	0.0238 (3)
H3	0.472 (3)	0.284 (3)	0.880 (3)	0.036*
O4	0.60317 (14)	0.70848 (14)	0.74259 (12)	0.0262 (3)
O5	0.40234 (14)	0.64142 (15)	0.89107 (12)	0.0286 (3)
O6	0.04717 (13)	0.30097 (14)	0.71842 (11)	0.0220 (3)
O7	0.18789 (15)	0.29190 (16)	0.92982 (12)	0.0277 (3)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0306(9)$	$0.0363(9)$	$0.0600(12)$	$0.0126(7)$	$0.0154(8)$	$0.0297(9)$
C2	$0.0185(7)$	$0.0249(7)$	$0.0202(7)$	$0.0083(6)$	$-0.0007(6)$	$0.0046(6)$
C3	$0.0189(7)$	$0.0253(7)$	$0.0174(7)$	$0.0085(6)$	$0.0025(5)$	$0.0056(6)$
C4	$0.0160(6)$	$0.0241(7)$	$0.0160(6)$	$0.0075(5)$	$0.0018(5)$	$0.0064(5)$
C5	$0.0198(7)$	$0.0260(7)$	$0.0179(7)$	$0.0071(6)$	$0.0045(5)$	$0.0076(6)$

C6	$0.0164(6)$	$0.0254(7)$	$0.0209(7)$	$0.0074(5)$	$-0.0007(5)$	$0.0088(6)$
C7	$0.0347(9)$	$0.0226(8)$	$0.0398(9)$	$0.0053(6)$	$0.0003(7)$	$0.0123(7)$
C8	$0.0194(7)$	$0.0188(6)$	$0.0200(7)$	$0.0062(5)$	$0.0039(6)$	$0.0055(5)$
C9	$0.0188(7)$	$0.0300(8)$	$0.0304(8)$	$0.0102(6)$	$0.0073(6)$	$0.0065(6)$
O1	$0.0232(5)$	$0.0287(6)$	$0.0427(7)$	$0.0120(4)$	$0.0118(5)$	$0.0189(5)$
O2	$0.0350(6)$	$0.0325(6)$	$0.0339(6)$	$0.0205(5)$	$0.0107(5)$	$0.0124(5)$
O3	$0.0214(5)$	$0.0358(6)$	$0.0168(5)$	$0.0152(4)$	$0.0022(4)$	$0.0078(4)$
O4	$0.0247(5)$	$0.0243(5)$	$0.0306(6)$	$0.0053(4)$	$0.0054(4)$	$0.0121(4)$
O5	$0.0255(6)$	$0.0327(6)$	$0.0213(5)$	$0.0058(5)$	$0.0045(4)$	$0.0037(4)$
O6	$0.0166(5)$	$0.0272(5)$	$0.0212(5)$	$0.0093(4)$	$0.0026(4)$	$0.0054(4)$
O7	$0.0326(6)$	$0.0366(6)$	$0.0221(5)$	$0.0174(5)$	$0.0112(4)$	$0.0145(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-O1	1.4497 (19)	C5-H5B	0.9900
C1-H1A	0.9800	C6-O5	1.2083 (18)
C1-H1B	0.9800	C6-04	1.3279 (18)
C1-H1C	0.9800	C7-O4	1.4494 (19)
$\mathrm{C} 2-\mathrm{O} 2$	1.2047 (18)	C7-H7A	0.9800
C2-O1	1.3372 (18)	C7-H7B	0.9800
C2-C3	1.506 (2)	C7-H7C	0.9800
C3-C4	1.5405 (19)	C8-07	1.2036 (18)
C3-H3A	0.9900	C8-06	1.3352 (17)
С3-H3B	0.9900	C9-O6	1.4537 (17)
C4-O3	1.4107 (16)	C9-H9A	0.9800
C4-C5	1.5348 (19)	C9-H9B	0.9800
C4-C8	1.5398 (18)	C9-H9C	0.9800
C5-C6	1.502 (2)	$\mathrm{O} 3-\mathrm{H} 3$	0.80 (2)
C5-H5A	0.9900		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C4-C5-H5B	108.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	H5A-C5-H5B	107.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	O5-C6-O4	124.07 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	O5-C6-C5	124.44 (13)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	O4-C6-C5	111.46 (12)
H1B- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	123.32 (14)	O4-C7-H7B	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	125.04 (13)	H7A-C7- H 7 B	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	111.64 (12)	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
C2-C3-C4	112.59 (11)	H7A-C7- H 7 C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.1	H7B-C7-H7C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.1	O7-C8-O6	125.36 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.1	O7-C8-C4	123.63 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.1	O6-C8-C4	111.01 (11)
H3A-C3-H3B	107.8	O6-C9-H9A	109.5
O3-C4-C5	110.16 (11)	O6-C9-H9B	109.5
O3-C4-C8	109.64 (11)	H9A-C9-H9B	109.5
C5-C4-C8	111.26 (11)	O6-C9-H9C	109.5

O3-C4-C3	106.41 (11)	H9A-C9-H9C	109.5
C5-C4-C3	107.72 (11)	H9B-C9-H9C	109.5
C8-C4-C3	111.52 (11)	C2-O1-C1	115.46 (12)
C6-C5-C4	113.73 (11)	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{H} 3$	109.9 (15)
C6-C5-H5A	108.8	C6-04-C7	115.72 (12)
C4-C5-H5A	108.8	C8-O6-C9	115.65 (11)
C6-C5-H5B	108.8		
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-116.42 (15)	C5-C4-C8-O7	-120.73 (15)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	63.70 (15)	C3-C4-C8-O7	118.97 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	51.89 (14)	O3-C4-C8-O6	-178.93 (11)
C2-C3-C4-C5	170.01 (11)	C5-C4-C8-O6	58.96 (15)
C2-C3-C4-C8	-67.63 (15)	C3-C4-C8-O6	-61.34 (15)
O3-C4-C5-C6	-65.67 (14)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	2.2 (2)
C8-C4-C5-C6	56.14 (15)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	-177.89 (13)
C3-C4-C5-C6	178.65 (11)	O5-C6-O4-C7	-5.5 (2)
C4-C5-C6-O5	-34.35 (19)	C5-C6-O4-C7	172.48 (12)
C4-C5-C6-O4	147.68 (12)	O7-C8-O6-C9	3.0 (2)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 8-\mathrm{O} 7$	1.38 (19)	C4-C8-O6-C9	-176.68 (11)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B^{\cdots}{ }^{\text {O }} 4^{\text {i }}$	0.98	2.65	3.393 (2)	133
$\mathrm{C} 1-\mathrm{H} 1 C^{\cdots} \mathrm{O} 5^{\mathrm{ii}}$	0.98	2.56	3.520 (2)	167
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$	0.99	2.66	3.6388 (18)	170
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.99	2.51	3.4610 (18)	160
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C} \cdots{ }^{\text {O }}{ }^{\text {v}}$	0.98	2.53	3.3008 (19)	135
$\mathrm{C} 9-\mathrm{H} 9 B^{\cdots} \mathrm{O} 2^{\mathrm{iii}}$	0.98	2.61	3.423 (2)	140
$\mathrm{C} 9-\mathrm{H} 9 B^{\cdots} \mathrm{O}^{\text {vi }}$	0.98	2.64	3.2576 (17)	121
C9—H9C \cdots O7vii	0.98	2.61	3.4147 (19)	140
$\mathrm{O} 3-\mathrm{H} 3 \cdots{ }^{\text {v }}$	0.80 (2)	2.14 (2)	2.8428 (15)	147 (2)

Symmetry codes: (i) $x-1, y-1, z$; (ii) $x, y-1, z$; (iii) $-x,-y,-z+1$; (iv) $-x+1,-y,-z+1$; (v) $-x+1,-y+1,-z+2$; (vi) $x-1, y, z$; (vii) $-x,-y+1,-z+2$.

