

ISSN 2056-9890

Received 27 July 2018 Accepted 6 August 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; disorder; osmole complex; diene ligand; osmium carbonyl; microwave heating.

CCDC reference: 1847589

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of $[\mu - 1\kappa^2 C^1, C^4: 2(1,2,3,4-\eta) - 1,2,3,4$ -tetraphenylbuta-1,3-diene-1,4-diyl]bis(tricarbonylosmium)(*Os*—*Os*)

Erin F. Rutledge,^a Kylie M. Wilson,^a Stephanie M. Martin,^a John W. Swartout,^a Ashley K. Archambeau,^a Emily R. Mikeska,^a Gregory L. Powell,^a Eric W. Reinheimer^b and Cynthia B. Powell^a*

^aDepartment of Chemistry & Biochemistry, Abilene Christian University, Abilene, TX 79699, USA, and ^bRigaku Oxford Diffraction, The Woodlands, Texas 77381, USA. *Correspondence e-mail:

In the title complex $C_{34}H_{20}O_6Os_2$ or $(\mu - \eta^4 - C_4Ph_4)Os_2(CO)_6$, one Os atom is part of a metallacyclopentadiene ring, while the second Os atom is π -bonded to the organic portion of this ring. The distance of 2.7494 (2) Å between the two Os atoms is typical of an Os—Os single bond. Three carbonyl ligands are attached to each Os atom and these six carbonyls adopt an eclipsed conformation. There are no bridging or semibridging CO groups. Two carbonyl ligands and all four phenyl groups are disordered over two slightly different positions for which each atom in the minor components is displaced less than 1 Å from the corresponding atom in the major components. The refined occupancies of the major components of the carbonyl ligands are 0.568 (16) and 0.625 (13), while those for the phenyl rings are 0.50 (3), 0.510 (12), 0.519 (18), and 0.568 (12).

1. Chemical context

Metallacyclopentadiene complexes, known as metalloles, with the formula $(\mu - \eta^4 - C_4 R_4) M_2(CO)_6$ are typically produced by C-C bond-coupling reactions of alkynes with group 8 metal carbonyls (Mathur et al., 2014). These metalloles have been shown to adopt one of two possible geometries in the solid state, *i.e.* one in which the carbonyl ligands of the $M_2(CO)_6$ units are eclipsed in a so-called sawhorse conformation, or one in which the carbonyls are staggered with one CO semibridging the metal-metal bond. Ferroles (M = Fe) almost always adopt the staggered non-sawhorse conformation (Kumar et al., 2014; Iyoda et al., 1997; Jeannin et al., 1994; Heim et al., 1992; Daran & Jeannin, 1984), while ruthenoles (M = Ru) display an equal propensity to adopt either the sawhorse or the nonsawhorse conformation (Yang, 2014; Mathur et al., 2008, 2014; Tunik *et al.*, 1997). Only two osmole (M = Os) complexes have been examined by X-ray crystallographic analysis, and both of them exhibit the sawhorse conformation. One of these is (μ - η^4 -2,3-dimethylbutadiene)Os₂(CO)₆ (I) (see Scheme 1), which was prepared by reacting Os₃(CO)₁₂ with 2,3-dimethylbutadiene, and in which the osmacyclopentadiene ring contains H atoms in the 2,5-positions and methyl groups in the 3,4-positions (Dodge *et al.*, 1963). The other one is $(\mu - \eta^4 - FcC_2)$ $C \equiv CFc)_2 Os_2(CO)_6$ (II, Fc is ferrocenyl), which was a product of the reaction of $Os_3(CO)_{10}(NCMe)_2$ with 1,4-bis(ferrocenyl)butadiyne, and in which the osmacyclopentadiene ring is substituted by ferrocenyl-C=C- groups in the 2,5-positions and by ferrocenyl groups in the 3,4-positions as a result of head-to-head coupling of the butadiyne starting material (Adams et al., 2002).

research communications

Our goal was to obtain the crystal structure of the title osmole $(\mu - \eta^4 - C_4 Ph_4)Os_2(CO)_6$ (III) (see Scheme 2) containing a tetraphenylbutadiene moiety, which was first reported over 46 years ago but which has never been structurally characterized (Gambino et al., 1971). Gambino et al. prepared III by a three-step process: $Os_3(CO)_{12}$ was heated with diphenylacetylene (tolan) to produce $Os_3(CO)_8(C_4Ph_4)$ (IV), which was treated with CO to yield $Os_3(CO)_9(C_4Ph_4)$ (V). This was then treated with excess CO to produce III. The overall yield for III based on $Os_3(CO)_{12}$ was not mentioned, but it was clearly less than 4% since the yields for the first two steps were reported to be about 10 and 40%, respectively. In order to obtain a significant quantity of III for crystal growing attempts, we sought a higher yield method of preparing this osmole complex. We turned to microwave heating since it had been shown to offer improved efficiency for the preparation of certain other osmium carbonyl complexes (Johnson & Powell, 2008; Leadbeater & Shoemaker, 2008; Jung et al., 2012; Pyper et al., 2013).

2. Structural commentary

The molecular structure of compound **III** is illustrated in Fig. 1. All four phenyl rings are disordered over two slightly different orientations (Fig. 2), and the refined occupancies of the major components are 0.50 (3), 0.510 (12), 0.519 (18), and 0.568 (12). Two of the carbonyl ligands are also disordered over two slightly different positions and the occupancies of the major components are 0.568 (16) and 0.625 (13). Each C or O atom in the minor components is displaced less than 1 Å from its

Figure 1

The molecular structure of the title compound, showing the positions of the major phenyl-ring and carbonyl-ligand components, as well as the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity.

counterpart in the major components. The geometrical features of the central portion of **III** are quite similar to those of the two $(\mu - \eta^4 - C_4 R_4)Os_2(CO)_6$ osmoles that have been previously characterized by X-ray crystallography, with planar osmacyclopentadiene rings and eclipsed sawhorse conformations of the carbonyls. Thus, there are no bridging or semibridging CO ligands. The *R* groups (phenyl rings) in **III** are intermediate in size compared to those of the other two osmoles, one of which (*i.e.* **I**) had small butadiene substituents of Fc-C=C- and Fc. The Os-Os bond lengths of 2.74 Å for **I**, 2.7494 (2) Å for **III**, and 2.7556 (7) Å for **II** might reflect an inverse correlation between the strength of the metal-metal bond and the steric bulk of the butadiene substituents,

Figure 2

A ball-and-stick view of the asymmetric unit of **III**, with partial atom labeling. All components of the disordered carbonyl ligands and phenyl rings are shown (the minor ones in pale blue).

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C19A - H19A \cdots O2^{i}$	0.93	2.60	3.363 (12)	139

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

although the rudimentary nature of the crystal structure report for I precludes a definitive conclusion concerning this trend (the only bond length included in the description of the structure of I was the Os–Os distance and no s.u. value was given). The average bond lengths between the Os atoms that lie within the metallacyclpentadiene rings and the 2,5-C atoms of the rings are 2.09 (1) Å for II and 2.10 (1) Å for III, while the other Os atoms in II and III have an average distance of 2.31 (4) and 2.32 (4) Å, respectively, from the four C atoms in the metallacyclpentadiene rings. The central C-C distances in the C_4R_4 groups are 1.48 (1) Å for **II** and 1.461 (5) Å for **III**, and these are both longer than the other two C-C distances on either side of them [average of 1.42 (1) Å for II and 1.420 (5) Å for III], supporting the designation of these groups as dienes. There are five unique torsion angles within each metallacyclpentadiene ring, and the average values of these are 8° for **II** and 0.7° for **III**. Thus, the planarity of the metallacyclpentadiene ring in III is less distorted than it is in **II**, which is most likely a consequence of the smaller steric bulk of the *R* groups in **III**.

3. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom *et al.*, 2016) for metallole

The overall packing of \mathbf{III} , viewed along the *b*-axis direction.

complexes of the type $(\mu - \eta^4 - C_4 R_4) M_2(CO)_6$, where *M* is any transition metal, gave 14 hits. The only hit containing Os atoms was complex **II** with a sawhorse conformation and no bridging carbonyl ligands. Eight of the hits were for ruthenoles, four with non-sawhorse conformations and semibridging CO ligands and four with sawhorse conformations without bridging carbonyls. The five remaining hits were for ferroles, all of which have semibridging CO ligands.

4. Supramolecular features

There are only two intermolecular nonbonding distances in the structure of **III** that are shorter than the sum of the van der Waals radii. A weak $C19A - H19A \cdots O2^{i}$ hydrogen bond (Table 1) and a close $O2 \cdots O5^{ii}$ contact of 2.941 (9) Å [symmetry code: (ii) $-\frac{1}{2} + x$, 1 - y, z]. These combine to stack molecules of **III** along the direction of the *b* axis of the unit cell (Fig. 3).

5. Synthesis and crystallization

Dodecacarbonyltriosmium(0) (100 mg, 0.110 mmol) and MeCN (8 ml) were placed in a 35 ml glass reaction vessel, then sealed with a PTFE cap and placed in a CEM Discover-SP microwave reactor. The mixture was stirred and heated at 403 K for 8 min to yield a green solution in which the major component was known to be $Os_3(CO)_{11}(NCMe)$, as noted in a previous report (Jung et al., 2009). The reaction vessel was removed from the microwave reactor and allowed to cool to room temperature. Diphenylacetylene (118 mg, 0.662 mmol) was added to the vessel and it was returned to the microwave reactor. This solution was stirred and heated at 433 K for 6 min. The solvent was removed by rotary evaporation, then the residue was dissolved in CH2Cl2 and subjected to thinlayer chromatography (TLC) using an eluent of 1:1 (v/v)hexanes/CH2Cl2. Three yellow bands were collected. The top band consisted of 34.1 mg (22.8% yield) of complex III. IR (v_{CO}, hexane): 2081 (s), 2051 (vs), 2018 (m), 1998 (s), and 1968 (m) cm⁻¹. The second band consisted of a mixture of complex III and an unidentified product. The third band consisted of 4.1 mg (3.2% yield) of complex IV. Crystals of III were grown by slow evaporation of an *n*-hexane solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C atoms in the four phenyl rings were disordered over two slightly different orientations. Each phenyl ring was split into two components (*A* and *B*), which were refined as rigid hexagons. H atoms were included in idealized positions and allowed to ride on their parent atoms: C-H = 0.95 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. The refined occupancy ratios were C11-C16 0.519 (18):0.481 (18), C17-C22 0.50 (3):0.50 (3), C23-C28 0.568 (12):0.432 (12), and C29-C34 0.510 (12):0.490 (12). Two of the CO ligands were also disordered over two slightly different positions. The refined

research communications

occupancy ratios for these were C5 \equiv O5 0.625 (13):0.375 (13) and C6 \equiv O6 0.568 (16):0.432 (16). The best data were obtained at room temperature. X-ray data were collected on the same crystal and several other crystals of **III** at lower temperatures, but as the temperature decreased, the disorder of the phenyl rings and carbonyl ligands became more extensive and increasingly difficult to model.

Acknowledgements

We thank Professor M. G. Richmond of the University of North Texas for supplying the $Os_3(CO)_{12}$ starting material.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021); Abilene Christian University Office of Undergraduate Research; Abilene Christian University Pursuit grant.

References

- Adams, R. D., Qu, B., Smith, M. D. & Albright, T. A. (2002). Organometallics, 21, 2970-2978.
- Daran, J. C. & Jeannin, Y. (1984). Organometallics, 3, 1158-1163.
- Dodge, R. P., Mills, O. S. & Schomaker, V. (1963). *Proc. Chem. Soc.* pp. 380–381.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gambino, O., Vaglio, G. A., Ferrari, R. P. & Cetini, G. (1971). J. Organomet. Chem. **30**, 381–386.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Heim, B., Daran, J. C., Jeannin, Y., Eber, B., Huttner, G. & Imhof, W. (1992). J. Organomet. Chem. 441, 81–97.
- Iyoda, M., Yada, T., Tashiro, S., Maeda, H., Yoshida, M. & Kuwatani, Y. (1997). Chem. Lett. 26, 39–40.
- Jeannin, S., Jeannin, Y., Robert, F. & Rosenberger, C. (1994). J. Organomet. Chem. 480, 111–137.
- Johnson, K. D. & Powell, G. L. (2008). J. Organomet. Chem. 693, 1712–1715.
- Jung, J. Y., Kempe, D. K., Loh, L.-H. J., Shoultz, S. E. & Powell, G. L. (2012). J. Organomet. Chem. 700, 219–222.
- Jung, J. Y., Newton, B. S., Tonkin, M. L., Powell, C. B. & Powell, G. L. (2009). J. Organomet. Chem. 694, 3526–3528.
- Kumar, D., Singh, N., Elias, A. J., Malik, P. & Allen, C. W. (2014). *Inorg. Chem.* 53, 10674–10684.
- Leadbeater, N. E. & Shoemaker, K. M. (2008). Organometallics, 27, 1254–1258.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table	2	
Experi	mental	details

-	
Crystal data	
Chemical formula	$[Os_2(C_{28}H_{20})(CO)_6]$
M _r	904.90
Crystal system, space group	Monoclinic, I2/a
Temperature (K)	298
a, b, c (Å)	15.3471 (1), 21.2919 (2),
	18.5565 (1)
β (°)	90.298 (1)
$V(\dot{A}^3)$	6063.60 (8)
Z	8
Radiation type	Cu <i>Kα</i>
$\mu \text{ (mm}^{-1})$	15.95
Crystal size (mm)	$0.15 \times 0.08 \times 0.07$
Data collection	
Diffractometer	Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.296, 0.506
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27474, 5352, 5118
<i>R</i> :	0.021
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595
()max ()	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.046, 1.05
No. of reflections	5352
No. of parameters	512
No. of restraints	167
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.18, -0.94

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

- Mathur, P., Das, A., Chatterjee, S. & Mobin, S. M. (2008). J. Organomet. Chem. 693, 1919–1926.
- Mathur, P., Rai, D. K., Joshi, R. K., Jha, B. & Mobin, S. M. (2014). Organometallics, 33, 3857-3866.
- Pyper, K. J., Kempe, D. K., Jung, J. Y., Loh, L.-H. J., Gwini, N., Lang, B. D., Newton, B. S., Sims, J. M., Nesterov, V. N. & Powell, G. L. (2013). J. Cluster Sci. 24, 619–634.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tunik, S. P., Grachova, E. V., Denisov, V. R., Starova, G. L., Nikol'skii, A. B., Dolgushin, F. M., Yanovsky, A. I. & Struchkov, Y. T. (1997). J. Organomet. Chem. 536–537, 339–343.
- Yang, J. (2014). CSD Communication, CCDC 1038307. CCDC, Cambridge, England.

Acta Cryst. (2018). E74, 1235-1238 [https://doi.org/10.1107/S2056989018011179]

Crystal structure of $[\mu - 1\kappa^2 C^1, C^4: 2(1,2,3,4-\eta) - 1,2,3,4-tetraphenylbuta-1,3-diene-1,4-diyl]$ bis(tricarbonylosmium)(*Os*—*Os*)

Erin F. Rutledge, Kylie M. Wilson, Stephanie M. Martin, John W. Swartout, Ashley K. Archambeau, Emily R. Mikeska, Gregory L. Powell, Eric W. Reinheimer and Cynthia B. Powell

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008)'; software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

 $[\mu-1\kappa^2C^1, C^4:2(1,2,3,4-\eta)-1,2,3,4-$ Tetraphenylbuta-1,3-diene-1,4-diyl]bis(tricarbonylosmium)(Os—Os)

Crystal data

 $\begin{bmatrix} Os_2(C_{28}H_{20})(CO)_6 \end{bmatrix} \\ M_r = 904.90 \\ Monoclinic, I2/a \\ a = 15.3471 (1) Å \\ b = 21.2919 (2) Å \\ c = 18.5565 (1) Å \\ \beta = 90.298 (1)^\circ \\ V = 6063.60 (8) Å^3 \\ Z = 8 \end{bmatrix}$

Data collection

Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector Detector resolution: 5.2387 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2018) $T_{\min} = 0.296, T_{\max} = 0.506$ 27474 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.046$ S = 1.055352 reflections 512 parameters 167 restraints F(000) = 3392 $D_x = 1.982 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 20186 reflections $\theta = 4.7-73.5^{\circ}$ $\mu = 15.95 \text{ mm}^{-1}$ T = 298 KBlock, red $0.14 \times 0.08 \times 0.07 \text{ mm}$

5352 independent reflections 5118 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 66.6^{\circ}, \ \theta_{min} = 4.8^{\circ}$ $h = -18 \rightarrow 18$ $k = -24 \rightarrow 25$ $l = -22 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0207P)^2 + 11.4338P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.93 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.000017 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Os1	0.62389 (2)	0.49607 (2)	0.15025 (2)	0.04580 (5)	
Os2	0.71430 (2)	0.58750 (2)	0.22382 (2)	0.05374 (6)	
O2	0.46073 (18)	0.41761 (13)	0.13217 (17)	0.0730 (7)	
01	0.6492 (2)	0.52162 (16)	-0.01161 (15)	0.0834 (8)	
C10	0.5756 (2)	0.58624 (14)	0.16889 (17)	0.0475 (7)	
O3	0.7493 (2)	0.38377 (17)	0.1469 (2)	0.0934 (9)	
C7	0.6298 (2)	0.50278 (15)	0.26329 (17)	0.0480 (7)	
O4	0.7858 (2)	0.64993 (18)	0.08904 (19)	0.1020 (11)	
C9	0.5694 (2)	0.60595 (15)	0.24180 (17)	0.0495 (7)	
C8	0.5995 (2)	0.55959 (15)	0.29438 (17)	0.0488 (7)	
C1	0.6400(2)	0.51209 (17)	0.0480(2)	0.0587 (8)	
C2	0.5222 (2)	0.44711 (16)	0.13780 (18)	0.0529 (8)	
C3	0.7024 (3)	0.42495 (19)	0.1475 (2)	0.0630 (9)	
O5A	0.8706 (4)	0.4947 (4)	0.2289 (5)	0.0934 (9)	0.625 (13)
C4	0.7605 (3)	0.6268 (2)	0.1397 (2)	0.0697 (10)	
C22B	0.4324 (10)	0.6596 (6)	0.2462 (12)	0.0648 (18)	0.50 (3)
H22B	0.412221	0.626176	0.218497	0.078*	0.50 (3)
C21B	0.3749 (8)	0.7060 (8)	0.2687 (11)	0.078 (4)	0.50 (3)
H21B	0.316295	0.703623	0.256037	0.094*	0.50 (3)
C20B	0.4050 (11)	0.7559 (7)	0.3101 (9)	0.081 (4)	0.50 (3)
H20B	0.366592	0.786977	0.325197	0.098*	0.50 (3)
C19B	0.4927 (12)	0.7595 (6)	0.3291 (9)	0.088 (3)	0.50 (3)
H19B	0.512814	0.792885	0.356818	0.106*	0.50 (3)
C18B	0.5501 (9)	0.7131 (6)	0.3066 (11)	0.072 (3)	0.50 (3)
H18B	0.608741	0.715439	0.319278	0.086*	0.50 (3)
C17B	0.5200 (9)	0.6631 (6)	0.2652 (13)	0.0575 (8)	0.50 (3)
C16B	0.4631 (13)	0.6056 (7)	0.0780 (10)	0.072 (5)	0.481 (18)
H16B	0.443788	0.565370	0.089217	0.087*	0.481 (18)
C15B	0.4183 (10)	0.6415 (7)	0.0274 (8)	0.072 (3)	0.481 (18)
H15B	0.368909	0.625307	0.004835	0.086*	0.481 (18)
C14B	0.4472 (10)	0.7016(7)	0.0106 (7)	0.072 (2)	0.481 (18)
H14B	0.417198	0.725577	-0.023226	0.086*	0.481 (18)
C13B	0.5210 (10)	0.7257 (6)	0.0443 (8)	0.075 (2)	0.481 (18)
H13B	0.540366	0.765911	0.033095	0.090*	0.481 (18)
C12B	0.5659 (12)	0.6898 (8)	0.0949 (10)	0.071 (3)	0.481 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12B	0.615245	0.705975	0.117478	0.086*	0.481 (18)
C11B	0.5369 (14)	0.6297 (8)	0.1117 (11)	0.0547 (11)	0.481 (18)
C5A	0.8115 (4)	0.5307 (3)	0.2256 (5)	0.0632 (9)	0.625 (13)
O6A	0.8001 (12)	0.6787 (5)	0.3297 (7)	0.114 (4)	0.568 (16)
C6A	0.7709 (6)	0.6429 (5)	0.2911 (4)	0.0632 (9)	0.568 (16)
C34B	0.7313 (6)	0.4375 (5)	0.3494 (7)	0.075 (4)	0.490 (12)
H34B	0.773766	0.468676	0.347749	0.091*	0.490 (12)
C33B	0.7459 (6)	0.3833 (6)	0.3894 (7)	0.081 (3)	0.490 (12)
H33B	0.797998	0.378124	0.414442	0.098*	0.490 (12)
C32B	0.6824 (8)	0.3367 (5)	0.3919 (7)	0.085 (4)	0.490 (12)
H32B	0.692144	0.300440	0.418622	0.102*	0.490 (12)
C31B	0.6045 (8)	0.3444 (6)	0.3544 (8)	0.073 (3)	0.490 (12)
H31B	0.562058	0.313306	0.356109	0.088*	0.490 (12)
C30B	0.5900 (6)	0.3987 (7)	0.3145 (8)	0.060(2)	0.490 (12)
H30B	0.537825	0.403857	0.289416	0.072*	0.490 (12)
C29B	0.6534 (7)	0.4452 (6)	0.3120 (7)	0.058 (4)	0.490 (12)
C6B	0.7491 (8)	0.6609 (5)	0.2770 (6)	0.0637 (10)	0.432 (16)
O6B	0.7851 (18)	0.7002 (7)	0.3059 (10)	0.129 (7)	0.432 (16)
C12A	0.5787 (11)	0.6907 (7)	0.1098 (9)	0.063 (3)	0.519 (18)
H12A	0.624330	0.701954	0.140324	0.076*	0.519 (18)
C13A	0.5446 (9)	0.7342 (6)	0.0615 (7)	0.075 (2)	0.519 (18)
H13A	0.567412	0.774662	0.059736	0.090*	0.519 (18)
C14A	0.4763 (9)	0.7174 (6)	0.0160 (6)	0.072 (2)	0.519 (18)
H14A	0.453502	0.746534	-0.016346	0.086*	0.519 (18)
C15A	0.4422 (10)	0.6570 (6)	0.0187 (7)	0.075 (3)	0.519 (18)
H15A	0.396510	0.645698	-0.011840	0.090*	0.519 (18)
C16A	0.4763 (12)	0.6134 (6)	0.0669 (9)	0.060 (2)	0.519 (18)
H16A	0.453427	0.572989	0.068748	0.072*	0.519 (18)
C11A	0.5445 (13)	0.6303 (7)	0.1125 (10)	0.0547 (11)	0.519 (18)
C18A	0.5678 (8)	0.7125 (6)	0.2967 (13)	0.092 (6)	0.50 (3)
H18A	0.628236	0.710186	0.300154	0.111*	0.50 (3)
C19A	0.5243 (12)	0.7650 (5)	0.3228 (10)	0.088 (3)	0.50 (3)
H19A	0.555515	0.797745	0.343661	0.106*	0.50 (3)
C20A	0.4340 (12)	0.7685 (5)	0.3176 (9)	0.074 (4)	0.50(3)
H20A	0.404865	0.803555	0.335076	0.089*	0.50(3)
C21A	0.3873 (8)	0.7195 (7)	0.2864 (10)	0.069(3)	0.50(3)
H21A	0.326936	0.721807	0.282985	0.083*	0.50(3)
C22A	0.4309 (9)	0.6670 (6)	0.2604 (11)	0.0647 (18)	0.50(3)
H22A	0.399656	0.634247	0.239478	0.078*	0.50 (3)
C17A	0.5212 (9)	0.6635 (6)	0.2655 (13)	0.0574 (8)	0.50(3)
C23A	0.5812 (6)	0.5722(4)	0.37263 (15)	0.061 (5)	0.568 (12)
C24A	0.5003 (6)	0.5547(5)	0.3992 (3)	0.059(3)	0.568(12)
H24A	0.459786	0 535424	0 368955	0.071*	0.568(12)
C25A	0.4798 (6)	0.5660 (5)	0.4709(4)	0.084(4)	0.568(12)
H25A	0.425605	0.554296	0.488652	0.101*	0.568(12)
C26A	0.5403 (7)	0.5948 (5)	0.51606 (19)	0.096(2)	0.568(12)
H26A	0.526582	0.602338	0.564040	0.115*	0.568(12)
C27A	0.6213 (6)	0.6123 (5)	0 4895 (3)	0.090(3)	0.568(12)
~ - /	0.0210 (0)	0.0140 (0)	0,1020 (3)	0.070 (0)	0.000 (12)

H27A	0.661742	0.631508	0.519729	0.108*	0.568 (12)
C28A	0.6417 (5)	0.6009 (5)	0.4178 (3)	0.078 (3)	0.568 (12)
H28A	0.695926	0.612637	0.400032	0.093*	0.568 (12)
C23B	0.5893 (7)	0.5673 (4)	0.37446 (15)	0.051 (5)	0.432 (12)
C24B	0.5044 (6)	0.5753 (6)	0.3986 (4)	0.052 (3)	0.432 (12)
H24B	0.458286	0.574581	0.365926	0.062*	0.432 (12)
C25B	0.4886 (7)	0.5844 (6)	0.4715 (5)	0.069 (4)	0.432 (12)
H25B	0.431784	0.589804	0.487654	0.083*	0.432 (12)
C26B	0.5576 (9)	0.5856 (6)	0.5203 (2)	0.096 (2)	0.432 (12)
H26B	0.546937	0.591666	0.569120	0.115*	0.432 (12)
C27B	0.6424 (8)	0.5776 (7)	0.4962 (3)	0.090 (3)	0.432 (12)
H27B	0.688594	0.578303	0.528860	0.108*	0.432 (12)
C28B	0.6583 (6)	0.5684 (6)	0.4233 (4)	0.070 (3)	0.432 (12)
H28B	0.715099	0.563081	0.407133	0.084*	0.432 (12)
C30A	0.6142 (7)	0.3945 (7)	0.3058 (6)	0.059 (2)	0.510 (12)
H30A	0.571537	0.388665	0.270733	0.071*	0.510 (12)
C31A	0.6356 (9)	0.3459 (5)	0.3526 (7)	0.073 (3)	0.510 (12)
H31A	0.607114	0.307437	0.348851	0.088*	0.510 (12)
C32A	0.6994 (8)	0.3547 (5)	0.4051 (6)	0.090 (4)	0.510 (12)
H32A	0.713633	0.322097	0.436414	0.108*	0.510 (12)
C33A	0.7419 (6)	0.4121 (6)	0.4108 (5)	0.081 (3)	0.510 (12)
H33A	0.784575	0.417984	0.445859	0.098*	0.510 (12)
C34A	0.7206 (7)	0.4608 (5)	0.3640 (6)	0.069 (3)	0.510 (12)
H34A	0.748998	0.499213	0.367743	0.083*	0.510 (12)
C29A	0.6567 (7)	0.4520 (5)	0.3115 (6)	0.048 (3)	0.510 (12)
C5B	0.8208 (5)	0.5440 (6)	0.2457 (8)	0.0632 (9)	0.375 (13)
O5B	0.8734 (7)	0.5156 (7)	0.2566 (9)	0.0934 (9)	0.375 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Os1	0.04688 (9)	0.04677 (9)	0.04374 (8)	-0.00282 (5)	0.00123 (6)	-0.00239 (5)
Os2	0.04855 (9)	0.05941 (10)	0.05324 (9)	-0.01425 (6)	-0.00124 (6)	-0.00057 (6)
O2	0.0593 (16)	0.0678 (17)	0.092 (2)	-0.0166 (13)	-0.0031 (14)	-0.0063 (14)
01	0.098 (2)	0.104 (2)	0.0482 (15)	-0.0096 (18)	0.0066 (14)	0.0067 (14)
C10	0.0485 (17)	0.0462 (17)	0.0476 (16)	-0.0076 (13)	-0.0044 (13)	-0.0021 (13)
03	0.0727 (14)	0.090 (2)	0.117 (2)	0.0196 (13)	0.0055 (15)	0.0113 (16)
C7	0.0424 (16)	0.0548 (18)	0.0468 (17)	-0.0099 (13)	0.0012 (13)	0.0021 (13)
O4	0.089 (2)	0.119 (3)	0.098 (2)	0.003 (2)	0.0261 (19)	0.048 (2)
C9	0.0509 (17)	0.0466 (17)	0.0511 (17)	-0.0093 (14)	-0.0021 (14)	-0.0054 (13)
C8	0.0465 (16)	0.0533 (18)	0.0465 (16)	-0.0076 (14)	0.0010 (13)	-0.0040 (14)
C1	0.057 (2)	0.060(2)	0.058 (2)	-0.0059 (16)	0.0007 (16)	-0.0029 (16)
C2	0.056 (2)	0.0510 (18)	0.0516 (18)	0.0026 (16)	0.0015 (15)	-0.0018 (14)
C3	0.058 (2)	0.065 (2)	0.066 (2)	0.0062 (18)	0.0038 (17)	-0.0021 (17)
O5A	0.0727 (14)	0.090 (2)	0.117 (2)	0.0196 (13)	0.0055 (15)	0.0113 (16)
C4	0.056 (2)	0.069 (2)	0.084 (3)	-0.0039 (18)	0.0023 (19)	0.010 (2)
C22B	0.079 (2)	0.053 (3)	0.063 (6)	0.010 (2)	0.005 (3)	-0.019 (2)
C21B	0.100 (5)	0.068 (6)	0.067 (9)	0.026 (5)	-0.002 (5)	-0.029 (5)

C20B	0.121 (10)	0.053 (6)	0.070(7)	0.023 (6)	-0.005 (8)	-0.021 (5)
C19B	0.103 (9)	0.059 (3)	0.102 (5)	-0.009(5)	0.024 (7)	-0.028(3)
C18B	0.095 (6)	0.057 (6)	0.062 (5)	-0.008(5)	0.006 (6)	-0.016 (4)
C17B	0.0798 (19)	0.0450 (18)	0.0477 (17)	-0.0004 (16)	0.0040 (16)	-0.0042 (14)
C16B	0.083 (7)	0.068 (5)	0.066 (8)	-0.003 (4)	-0.016 (6)	0.009 (5)
C15B	0.086 (7)	0.065 (5)	0.064 (6)	0.003 (4)	-0.014 (5)	0.005 (4)
C14B	0.095 (7)	0.062 (5)	0.059 (3)	0.003 (4)	-0.015 (4)	0.002 (4)
C13B	0.100(7)	0.057 (4)	0.068 (6)	0.000 (3)	-0.019 (4)	0.006 (4)
C12B	0.085 (7)	0.062 (3)	0.067 (7)	-0.005 (4)	-0.013 (5)	0.011 (4)
C11B	0.065 (3)	0.0536 (18)	0.0453 (17)	0.0068 (19)	0.0034 (18)	-0.0023 (13)
C5A	0.0470 (15)	0.0682 (19)	0.074 (3)	-0.0123 (11)	-0.0116 (13)	0.0018 (15)
O6A	0.119 (7)	0.123 (7)	0.100(7)	-0.050 (7)	-0.026 (6)	-0.025 (5)
C6A	0.0470 (15)	0.0682 (19)	0.074 (3)	-0.0123 (11)	-0.0116 (13)	0.0018 (15)
C34B	0.063 (4)	0.077 (6)	0.086 (8)	-0.002 (4)	-0.007 (5)	0.023 (6)
C33B	0.083 (4)	0.090 (7)	0.071 (6)	0.012 (5)	-0.006(4)	0.023 (4)
C32B	0.117 (11)	0.074 (7)	0.064 (7)	0.002 (7)	0.014 (7)	0.019 (6)
C31B	0.083 (8)	0.065 (2)	0.071 (3)	-0.002(4)	0.017 (5)	0.012 (2)
C30B	0.061 (5)	0.061(2)	0.057(3)	0.001 (4)	0.013(4)	0.002(2)
C29B	0.058(5)	0.061(5)	0.056(10)	0.003 (4)	0.005 (5)	0.009(5)
C6B	0.0476(18)	0.069(2)	0.075(3)	-0.0122(14)	-0.0121(16)	0.0012(17)
06B	0.153 (15)	0.131(10)	0.104(10)	-0.083(12)	-0.013(8)	-0.021(8)
C12A	0.081 (7)	0.050 (4)	0.059 (6)	0.002 (4)	-0.005(5)	0.006(4)
C13A	0.100 (7)	0.056 (4)	0.068 (6)	0.000(3)	-0.018(4)	0.005 (4)
C14A	0.095 (7)	0.061 (5)	0.059(3)	0.003 (4)	-0.015(4)	0.002 (4)
C15A	0.098(9)	0.065 (8)	0.061 (6)	-0.007(6)	-0.020(6)	0.006(5)
C16A	0.080 (6)	0.055(5)	0.045(5)	0.003(5)	-0.007(5)	-0.003(4)
C11A	0.065(3)	0.0536 (18)	0.0453(17)	0.0068 (19)	0.0034(18)	-0.0023(13)
C18A	0.091 (7)	0.072 (9)	0.115 (16)	-0.003(6)	0.013 (8)	-0.042(9)
C19A	0.103 (9)	0.059(3)	0.102 (5)	-0.008(5)	0.024(7)	-0.028(3)
C20A	0.088 (9)	0.054 (6)	0.081 (8)	0.007 (7)	0.001(7)	-0.019(5)
C21A	0.088 (6)	0.057(7)	0.063 (9)	0.021 (5)	-0.007(5)	-0.025(5)
C22A	0.079(2)	0.052(3)	0.063 (6)	0.010(2)	0.005(3)	-0.019(2)
C17A	0.080(2)	0.0450(18)	0.0477(18)	-0.0005(16)	0.003(16)	-0.0042(14)
C23A	0.067(8)	0.060 (8)	0.057 (8)	0.003 (6)	-0.021(6)	-0.008(6)
C24A	0.072 (5)	0.040 (7)	0.066 (4)	-0.010(4)	0.017(3)	0.010 (3)
C25A	0.108 (8)	0.072 (8)	0.071 (4)	0.000 (5)	0.032(5)	0.013 (4)
C26A	0.138 (7)	0.096(5)	0.053(3)	0.007(4)	0.013(3)	-0.010(3)
C27A	0.105 (6)	0 111 (8)	0.054(3)	-0.001(5)	-0.008(3)	-0.022(4)
C28A	0.078(5)	0.101 (8)	0.054(3)	-0.002(5)	-0.007(3)	-0.017(4)
C23B	0.078(9)	0.057(9)	0.031(3)	-0.002(3)	0.026 (6)	0.003 (6)
C24B	0.065 (6)	0.031(7)	0.059(5)	-0.012(4)	-0.005(4)	0.003(0)
C25B	0.076 (8)	0.060(8)	0.071(7)	-0.003(5)	0.033 (6)	-0.001(5)
C26B	0.138(7)	0.096 (5)	0.053(3)	0.007(4)	0.013(3)	-0.010(3)
C27B	0.105 (6)	0.111 (8)	0.055(3)	-0.001(5)	-0.009(3)	-0.022(4)
C28B	0.075(7)	0.081 (9)	0.054(5)	-0.015(6)	-0.015(5)	0.007(5)
C30A	0.061(5)	0.061(3)	0.057(3)	0.002 (4)	0.013 (4)	0.002(2)
C31A	0.083(8)	0.061(3)	0.071(3)	-0.002(1)	0.012(1)	0.002(2)
C32A	0.005 (0)	0.003(2)	0.071(8)	0.035 (8)	0.017(0)	0.012(2)
<i></i>	0.070(7)	0.100 (7)	0.0/1(0)	0.000 (0)	0.012 (0)	0.000(7)

C33A	0.083 (4)	0.090 (7)	0.071 (6)	0.012 (5)	-0.006 (4)	0.023 (4)
C34A	0.059 (5)	0.089 (8)	0.058 (5)	0.010 (5)	-0.002 (4)	0.015 (6)
C29A	0.052 (5)	0.055 (5)	0.037 (7)	0.005 (4)	0.015 (4)	0.001 (4)
C5B	0.0470 (15)	0.0682 (19)	0.074 (3)	-0.0123 (11)	-0.0116 (13)	0.0018 (15)
O5B	0.0727 (14)	0.090 (2)	0.117 (2)	0.0196 (13)	0.0055 (15)	0.0113 (16)

Geometric parameters (Å, °)

Os1—Os2	2.7494 (2)	C31B—H31B	0.9300
Os1—C10	2.087 (3)	C31B—C30B	1.3900
Os1—C7	2.104 (3)	C30B—H30B	0.9300
Os1—C1	1.946 (4)	C30B—C29B	1.3900
Os1—C2	1.891 (4)	C6B—O6B	1.136 (6)
Os1—C3	1.936 (4)	C12A—H12A	0.9300
Os2—C10	2.355 (3)	C12A—C13A	1.3900
Os2—C7	2.341 (3)	C12A—C11A	1.3900
Os2—C9	2.285 (3)	C13A—H13A	0.9300
Os2—C8	2.279 (3)	C13A—C14A	1.3900
Os2—C4	1.911 (4)	C14A—H14A	0.9300
Os2—C5A	1.920 (5)	C14A—C15A	1.3900
Os2—C6A	1.922 (4)	C15A—H15A	0.9300
Os2—C6B	1.922 (4)	C15A—C16A	1.3900
Os2—C5B	1.920 (5)	C16A—H16A	0.9300
O2—C2	1.137 (4)	C16A—C11A	1.3900
O1—C1	1.134 (4)	C18A—H18A	0.9300
C10—C9	1.420 (4)	C18A—C19A	1.3900
C10-C11B	1.526 (11)	C18A—C17A	1.3900
C10-C11A	1.482 (10)	C19A—H19A	0.9300
O3—C3	1.135 (5)	C19A—C20A	1.3900
C7—C8	1.419 (5)	C20A—H20A	0.9300
C7—C29B	1.563 (10)	C20A—C21A	1.3900
C7—C29A	1.462 (10)	C21A—H21A	0.9300
O4—C4	1.131 (5)	C21A—C22A	1.3900
С9—С8	1.461 (5)	C22A—H22A	0.9300
C9—C17B	1.499 (4)	C22A—C17A	1.3900
C9—C17A	1.499 (4)	C23A—C24A	1.3900
C8—C23A	1.504 (4)	C23A—C28A	1.3900
C8—C23B	1.504 (4)	C24A—H24A	0.9300
O5A—C5A	1.190 (8)	C24A—C25A	1.3900
C22B—H22B	0.9300	C25A—H25A	0.9300
C22B—C21B	1.3900	C25A—C26A	1.3900
C22B—C17B	1.3900	C26A—H26A	0.9300
C21B—H21B	0.9300	C26A—C27A	1.3900
C21B—C20B	1.3900	C27A—H27A	0.9300
C20B—H20B	0.9300	C27A—C28A	1.3900
C20B—C19B	1.3900	C28A—H28A	0.9300
C19B—H19B	0.9300	C23B—C24B	1.3900
C19B—C18B	1.3900	C23B—C28B	1.3900

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C33B—H33B 0.9300 C33A—C34AC33B—C32B 1.3900 C34A—H34AC32B—H32B 0.9300 C34A—C29AC32B—C31B 1.3900 C5B—O5BC10—Os1—Os256.30 (8)C13B—C14B—H14BC10—Os1—Os255.80 (8)C14B—C13B—H13BC7—Os1—Os255.80 (8)C14B—C13B—H13BC1—Os1—Os2107.09 (11)C12B—C13B—H13BC1—Os1—C7162.88 (14)C11B—C12B—H12BC1—Os1—C7162.88 (14)C11B—C12B—H12BC2—Os1—C3149.94 (10)C11B—C12B—H12BC2—Os1—C7100.99 (13)C12B—C11B—C10C2—Os1—C7100.99 (13)C12B—C11B—C10C2—Os1—C194.97 (15)C12B—C11B—C16BC2—Os1—C394.53 (16)O5A—C5A—Os2C3—Os1—Os2104.74 (12)O6A—C6A—Os2C3—Os1—C191.69 (16)C29B—C34B—H34BC3—Os1—C191.69 (16)C29B—C34B—H34BC3—Os1—C191.69 (16)C29B—C34B—H34BC10—Os2—Os147.50 (8)C34B—C33B—C34B
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C32B-C31B1.3900C5B-O5B $C10-Os1-Os2$ 56.30 (8) $C13B-C14B-H14B$ $C10-Os1-C7$ 77.63 (12) $C14B-C13B-H13B$ $C7-Os1-Os2$ 55.80 (8) $C14B-C13B-C12B$ $C1-Os1-Os2$ 107.09 (11) $C12B-C13B-H13B$ $C1-Os1-C10$ 92.72 (14) $C13B-C12B-H12B$ $C1-Os1-C7$ 162.88 (14) $C11B-C12B-C13B$ $C2-Os1-C7$ 162.88 (14) $C11B-C12B-H12B$ $C2-Os1-Os2$ 149.94 (10) $C11B-C12B-H12B$ $C2-Os1-C7$ 100.99 (13) $C12B-C11B-C10$ $C2-Os1-C7$ 100.99 (13) $C12B-C11B-C10$ $C2-Os1-C1$ 94.97 (15) $C12B-C11B-C16B$ $C2-Os1-C3$ 94.53 (16)05A-C5A-Os2 $C3-Os1-C3$ 94.53 (16)05A-C5A-Os2 $C3-Os1-C7$ 93.18 (15) $C33B-C34B-H34B$ $C3-Os1-C1$ 91.69 (16) $C29B-C34B-H34B$ $C1-Os2-Os1$ 48.00 (8) $C32B-C33B-C34B$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C2-Os1-Os2 $149.94 (10)$ $C11B-C12B-H12B$ $C2-Os1-C10$ $103.52 (13)$ $C16B-C11B-C10$ $C2-Os1-C7$ $100.99 (13)$ $C12B-C11B-C10$ $C2-Os1-C1$ $94.97 (15)$ $C12B-C11B-C16B$ $C2-Os1-C3$ $94.53 (16)$ $O5A-C5A-Os2$ $C3-Os1-Os2$ $104.74 (12)$ $O6A-C6A-Os2$ $C3-Os1-C7$ $93.18 (15)$ $C33B-C34B-H34B$ $C3-Os1-C1$ $91.69 (16)$ $C29B-C34B-H34B$ $C3-Os1-C1$ $91.69 (16)$ $C29B-C34B-H34B$ $C3-Os1-C1$ $91.69 (16)$ $C23B-C33B-H33B$ $C7-Os2-Os1$ $48.00 (8)$ $C32B-C33B-C34B$
C2 - Os1 - C10 $103.52 (13)$ $C16B - C11B - C10$ $C2 - Os1 - C7$ $100.99 (13)$ $C12B - C11B - C10$ $C2 - Os1 - C7$ $100.99 (13)$ $C12B - C11B - C10$ $C2 - Os1 - C1$ $94.97 (15)$ $C12B - C11B - C16B$ $C2 - Os1 - C3$ $94.53 (16)$ $O5A - C5A - Os2$ $C3 - Os1 - Os2$ $104.74 (12)$ $O6A - C6A - Os2$ $C3 - Os1 - C10$ $160.96 (15)$ $C33B - C34B - H34B$ $C3 - Os1 - C7$ $93.18 (15)$ $C33B - C34B - C29B$ $C3 - Os1 - C1$ $91.69 (16)$ $C29B - C34B - H34B$ $C10 - Os2 - Os1$ $47.50 (8)$ $C34B - C33B - H33B$ $C7 - Os2 - Os1$ $48.00 (8)$ $C32B - C33B - C34B$
C2 - Os1 - C10 $100.92 (15)$ $C10B - C11B - C10$ $C2 - Os1 - C7$ $100.99 (13)$ $C12B - C11B - C10$ $C2 - Os1 - C1$ $94.97 (15)$ $C12B - C11B - C16B$ $C2 - Os1 - C3$ $94.53 (16)$ $O5A - C5A - Os2$ $C3 - Os1 - Os2$ $104.74 (12)$ $O6A - C6A - Os2$ $C3 - Os1 - C10$ $160.96 (15)$ $C33B - C34B - H34B$ $C3 - Os1 - C7$ $93.18 (15)$ $C33B - C34B - C29B$ $C3 - Os1 - C1$ $91.69 (16)$ $C29B - C34B - H34B$ $C10 - Os2 - Os1$ $47.50 (8)$ $C34B - C33B - H33B$ $C7 - Os2 - Os1$ $48.00 (8)$ $C32B - C34B$
C2 = 031 - C1 $100.09 (15)$ $C12B - C11B - C16B$ $C2 = -0s1 - C1$ $94.97 (15)$ $C12B - C11B - C16B$ $C2 = -0s1 - C3$ $94.53 (16)$ $05A - C5A - 0s2$ $C3 - 0s1 - Os2$ $104.74 (12)$ $06A - C6A - Os2$ $C3 - 0s1 - C10$ $160.96 (15)$ $C33B - C34B - H34B$ $C3 - 0s1 - C7$ $93.18 (15)$ $C33B - C34B - C29B$ $C3 - 0s1 - C1$ $91.69 (16)$ $C29B - C34B - H34B$ $C10 - 0s2 - 0s1$ $47.50 (8)$ $C34B - C33B - H33B$ $C7 - 0s2 - 0s1$ $48.00 (8)$ $C32B - C33B - C34B$
C2 = Os1 = C1 $94.97 (15)$ $C12B = C11B = C10B$ $C2 = Os1 = C3$ $94.53 (16)$ $O5A = C5A = Os2$ $C3 = Os1 = Os2$ $104.74 (12)$ $O6A = C6A = Os2$ $C3 = Os1 = C10$ $160.96 (15)$ $C33B = C34B = H34B$ $C3 = Os1 = C7$ $93.18 (15)$ $C33B = C34B = C29B$ $C3 = Os1 = C1$ $91.69 (16)$ $C29B = C34B = H34B$ $C10 = Os2 = Os1$ $47.50 (8)$ $C34B = C33B = H33B$ $C7 = Os2 = Os1$ $48.00 (8)$ $C32B = C33B = C34B$
$C_2 = O_{S1} = C_3$ $J_{4,53} (10)$ $O_{5A} = C_{5A} = O_{52}$ $C_3 = O_{S1} = O_{S2}$ $104.74 (12)$ $O_{6A} = C_{6A} = O_{S2}$ $C_3 = O_{S1} = C_{10}$ $160.96 (15)$ $C_{33B} = C_{34B} = H_{34B}$ $C_3 = O_{S1} = C_{11}$ $91.69 (16)$ $C_{29B} = C_{34B} = H_{34B}$ $C_{10} = O_{S2} = O_{S1}$ $47.50 (8)$ $C_{34B} = C_{33B} = H_{33B}$ $C_7 = O_{S2} = O_{S1}$ $48.00 (8)$ $C_{32B} = C_{33B} = C_{34B}$
$C_3 = 0s_1 = 0s_2$ $104.74(12)$ $00A = C0A = 0s_2$ $C_3 = 0s_1 = C10$ $160.96(15)$ $C_{33B} = C34B = H34B$ $C_3 = 0s_1 = C7$ $93.18(15)$ $C_{33B} = C34B = C29B$ $C_3 = 0s_1 = C1$ $91.69(16)$ $C29B = C34B = H34B$ $C10 = 0s_2 = 0s_1$ $47.50(8)$ $C34B = C33B = H33B$ $C7 = 0s_2 = 0s_1$ $48.00(8)$ $C32B = C34B = C34B$
C3-Os1-C1 93.18 (15) C33B-C34B-H34B C3-Os1-C1 91.69 (16) C29B-C34B-H34B C10-Os2-Os1 47.50 (8) C34B-C33B-H33B C7-Os2-Os1 48.00 (8) C32B-C34B-H34B
C_{3} C_{3} C_{3} C_{3} C_{3} C_{2} C_{2} C_{2} C_{2} C_{3} C_{2} C_{3} C_{2} C_{3} C_{3} C_{2} C_{3} <
C_{3} C_{1} 91.69 (16) $C_{2}9B$ $C_{3}4B$ $B_{1}34B$ C_{10} Os_{2} Os_{1} 47.50 (8) $C_{3}4B$ $C_{3}3B$ $H_{3}3B$ C_{7} Os_{2} Os_{1} 48.00 (8) $C_{3}2B$ $C_{3}4B$ $C_{3}4B$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C/
C = C + C + C + C + C + C + C + C + C +
C/-Os2-C10 68.03 (11) $C32B-C33B-H33B$
C9-Os2-Os1 72.85 (8) $C33B-C32B-H32B$
C9—Os2—C10 35.61 (11) C33B—C32B—C31B
C9—Os2—C7 62.97 (12) C31B—C32B—H32B
(2) (2) (2) (2) (2) (2) (2) (2)
Co-052-051 75.20(6) C52D-C51D-H51D
C8-Os2-C10 63.01 (11) C30B-C31B-C32B
C8-Os2-C10 63.01 (11) C30B-C31B-H31B C8-Os2-C7 35.75 (11) C30B-C31B-H31B
C8-Os2-C10 63.01 (11) C30B-C31B-C32B C8-Os2-C7 35.75 (11) C30B-C31B-H31B C8-Os2-C9 37.35 (12) C31B-C30B-H30B

C4—Os2—C10	89.41 (15)	C29B—C30B—H30B	120.0
C4—Os2—C7	143.26 (15)	C34B—C29B—C7	125.3 (8)
C4—Os2—C9	114.18 (15)	C30B—C29B—C7	114.7 (8)
C4—Os2—C8	151.01 (15)	C30B—C29B—C34B	120.0
C4—Os2—C5A	89.9 (3)	O6B—C6B—Os2	167.0 (17)
C4—Os2—C6A	95.4 (3)	C13A—C12A—H12A	120.0
C4—Os2—C6B	87.7 (4)	C13A—C12A—C11A	120.0
C4—Os2—C5B	93.7 (5)	C11A—C12A—H12A	120.0
C5A—Os2—Os1	87.3 (3)	C12A—C13A—H13A	120.0
C5A—Os2—C10	134.5 (3)	C14A—C13A—C12A	120.0
C5A—Os2—C7	86.6 (2)	C14A—C13A—H13A	120.0
C5A—Os2—C9	149.6 (2)	C13A—C14A—H14A	120.0
C5A—Os2—C8	115.4 (3)	C13A—C14A—C15A	120.0
C5A—Os2—C6A	91.5 (4)	C15A—C14A—H14A	120.0
C6A—Os2—Os1	169.2 (3)	C14A—C15A—H15A	120.0
C6A—Os2—C10	133.9 (3)	C16A—C15A—C14A	120.0
C6A—Os2—C7	121.3 (3)	C16A—C15A—H15A	120.0
C6A—Os2—C9	103.7 (3)	C15A—C16A—H16A	120.0
C6A—Os2—C8	97.8 (2)	C11A—C16A—C15A	120.0
C6B—Os2—Os1	165.6 (4)	C11A—C16A—H16A	120.0
C6B—Os2—C10	118.6 (4)	C12A—C11A—C10	119.4 (8)
C6B—Os2—C7	128.2 (3)	C16A—C11A—C10	120.3 (8)
C6B—Os2—C9	93.0 (4)	C16A—C11A—C12A	120.0
C6B—Os2—C8	97.5 (3)	C19A—C18A—H18A	120.0
C5B—Os2—Os1	101.0 (4)	C19A—C18A—C17A	120.0
C5B—Os2—C10	148.5 (4)	C17A—C18A—H18A	120.0
C5B—Os2—C7	92.0 (4)	C18A—C19A—H19A	120.0
C5B—Os2—C9	151.7 (4)	C18A—C19A—C20A	120.0
C5B—Os2—C8	114.4 (4)	C20A—C19A—H19A	120.0
C5B—Os2—C6B	92.9 (6)	C19A—C20A—H20A	120.0
Os1—C10—Os2	76.20 (11)	C19A—C20A—C21A	120.0
C9-C10-Os1	117.1 (2)	C21A—C20A—H20A	120.0
C9—C10—Os2	69.49 (18)	C20A—C21A—H21A	120.0
C9-C10-C11B	117.1 (10)	C22A—C21A—C20A	120.0
C9—C10—C11A	117.5 (9)	C22A—C21A—H21A	120.0
C11B-C10-Os1	125.5 (10)	C21A—C22A—H22A	120.0
C11B—C10—Os2	129.9 (7)	C21A—C22A—C17A	120.0
C11A—C10—Os1	125.3 (9)	C17A—C22A—H22A	120.0
C11A—C10—Os2	125.8 (7)	C18A—C17A—C9	118.8 (10)
Os1—C7—Os2	76.20 (10)	C22A—C17A—C9	121.1 (10)
C8—C7—Os1	116.8 (2)	C22A—C17A—C18A	120.0
C8—C7—Os2	69.73 (17)	C24A—C23A—C8	117.8 (5)
C8—C7—C29B	120.6 (6)	C24A—C23A—C28A	120.0
C8—C7—C29A	118.3 (5)	C28A—C23A—C8	122.2 (5)
C29B—C7—Os1	122.1 (6)	C23A—C24A—H24A	120.0
C29B—C7—Os2	131.1 (5)	C23A—C24A—C25A	120.0
C29A—C7—Os1	124.8 (5)	C25A—C24A—H24A	120.0
C29A—C7—Os2	127.3 (5)	C24A—C25A—H25A	120.0

C10	74.90 (19)	C26A—C25A—C24A	120.0
C10—C9—C8	114.4 (3)	C26A—C25A—H25A	120.0
C10-C9-C17B	123.5 (10)	C25A—C26A—H26A	120.0
C10-C9-C17A	123.9 (10)	C25A—C26A—C27A	120.0
C8—C9—Os2	71.11 (18)	C27A—C26A—H26A	120.0
C8—C9—C17B	120.9 (10)	C26A—C27A—H27A	120.0
C8—C9—C17A	120.8 (10)	C28A—C27A—C26A	120.0
C17B—C9—Os2	132.5 (7)	C28A—C27A—H27A	120.0
C17A—C9—Os2	131.7 (7)	C23A—C28A—H28A	120.0
C7—C8—Os2	74.52 (18)	C27A—C28A—C23A	120.0
C7—C8—C9	114.1 (3)	C27A—C28A—H28A	120.0
C7—C8—C23A	127.4 (4)	C_{24B} C_{23B} C_{8}	115.7 (7)
C7 - C8 - C23B	127.0(4)	$C^{2}4B$ $C^{2}3B$ $C^{2}8B$	120.0
$C9 - C8 - Os^2$	71 54 (18)	$C_{28B} - C_{23B} - C_{8}$	120.0 124.3(7)
C9 - C8 - C23A	1177(4)	C_{23B} C_{24B} H_{24B}	120.0
C9 - C8 - C23B	1235(5)	C25B - C24B - C23B	120.0
$C^{23}A - C^{8} - C^{23}$	123.0(3) 131.0(4)	$C_{25B} = C_{24B} = C_{25B}$	120.0
$C_{23B} - C_{8} - C_{8}^{2}$	131.0(1) 128 6 (4)	C_{24B} C_{25B} H_{25B} H_{25B}	120.0
01 - C1 - 0s1	179 8 (4)	$C_{24B} = C_{25B} = C_{26B}$	120.0
$0^{2}-0^{2}-0^{1}$	179.0(1) 178.2(3)	$C_{26B} = C_{25B} = C_{26B}$	120.0
03 - C3 - 0s1	178.2(5)	$C_{25B} = C_{25B} = H_{25B}$	120.0
$04 - C4 - 0s^2$	178.7(1)	$C_{27B} = C_{26B} = C_{25B}$	120.0
$C_{21B} - C_{22B} - H_{22B}$	120.0	$C_{27B} = C_{26B} = H_{26B}$	120.0
$C_{21B} = C_{22B} = C_{17B}$	120.0	$C_{26B} = C_{27B} = H_{27B}$	120.0
C17B-C22B-H22B	120.0	$C_{26B} = C_{27B} = C_{28B}$	120.0
C_{22B} C_{21B} H_{21B}	120.0	$C_{28B} = C_{27B} = H_{27B}$	120.0
$C_{22B} = C_{21B} = C_{20B}$	120.0	$C_{23B} = C_{28B} = H_{28B}$	120.0
C_{20B} C_{21B} C_{20B} H_{21B}	120.0	C27B-C28B-C23B	120.0
$C_{21B} = C_{20B} = H_{20B}$	120.0	C27B—C28B—H28B	120.0
C19B-C20B-C21B	120.0	C_{31A} C_{30A} H_{30A}	120.0
$C_{19B} = C_{20B} = H_{20B}$	120.0	C31A - C30A - C29A	120.0
C_{20B} C_{19B} H_{19B}	120.0	C29A - C30A - H30A	120.0
C_{20B} C_{19B} C_{18B}	120.0	C30A - C31A - H31A	120.0
C_{18B} C_{19B} H_{19B}	120.0	C30A - C31A - C32A	120.0
C19B-C18B-H18B	120.0	C32A— $C31A$ — $H31A$	120.0
C19B— $C18B$ — $C17B$	120.0	C31A - C32A - H32A	120.0
C17B— $C18B$ — $H18B$	120.0	C33A - C32A - C31A	120.0
$C_{22}B = C_{17}B = C_{9}$	111.9 (10)	$C_{33}A - C_{32}A - H_{32}A$	120.0
C18B-C17B-C9	127.9(10)	C32A— $C33A$ — $H33A$	120.0
C_{18B} C_{17B} C_{22B}	120.0	C32A - C33A - C34A	120.0
C15B-C16B-H16B	120.0	C34A - C33A - H33A	120.0
C15B— $C16B$ — $C11B$	120.0	C33A - C34A - H34A	120.0
C_{11B} C_{16B} H_{16B}	120.0	C29A - C34A - C33A	120.0
C_{16B} $-C_{15B}$ $-H_{15B}$	120.0	C29A - C34A - H34A	120.0
C16B— $C15B$ — $C14B$	120.0	C30A - C29A - C7	118 3 (8)
C14B—C15B—H15B	120.0	C34A - C29A - C7	121.7 (8)
C15B—C14B—H14B	120.0	C34A - C29A - C30A	120.0
C13B—C14B—C15B	120.0	O5B—C5B—Os2	172.8 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
C19A—H19A…O2 ⁱ	0.93	2.60	3.363 (12)	139

Symmetry code: (i) -x+1, y+1/2, -z+1/2.