COMMUNICATIONS

ISSN 2056-9890

Received 23 July 2018
Accepted 9 August 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; reactivity studies; hydrogen bonding; anilines; piperazines.

CCDC references: 1861254; 1861253
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

A structural study of 2,4-dimethylaniline derivatives

Samuel C. Penner, Maryam Kalvandi and Jamie S. Ritch*

Department of Chemistry, The University of Winnipeg, Winnipeg MB R3B 2E9, Canada. *Correspondence e-mail: j.ritch@uwinnipeg.ca

Crystallographic studies of nitrogen-containing small molecules aid in the elucidation of their structure-activity relationships and modes of aggregation. In this study, two previously synthesized molecules are crystallographically characterized for the first time. Reaction of 2,4-dimethylaniline with N -bromosuccinimide affords the ortho-brominated derivative 2-bromo-4,6dimethylaniline ($\mathbf{1} ; \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrN}$), which sublimates in vacuo to afford crystals featuring hydrogen-bonded chains as well as Type I halogen-halogen interactions. Conversely, alkylation of two equivalents of 2,4-dimethylaniline with 1,2-dibromoethane affords a separable mixture of N, N^{\prime}-bis(2,4-dimethylphenyl)piperazine ($2 ; \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$), which was crystallographically characterized, as well as N, N^{\prime}-bis(2,4-dimethylphenyl)ethylenediamine (3).

1. Chemical context

Anilines are important building blocks for value-added chemicals such as indoles, which feature prominently in therapeutic agents (Humphrey \& Kuethe, 2006). Polyaniline, formed by oxidative coupling of aniline, is a valuable conductive polymer used in advanced materials research (Kang et al., 1998). As they are prone to engage in hydrogen bonding, anilines have also been utilized in crystal engineering studies (Mukherjee et al., 2014). The piperazine functional group is present in a number of active pharmaceutical ingredients. In particular, the widely used antifungal agent itraconazole (Grant \& Clissold, 1989), and antibacterial ciprofloxacin (Hooper \& Wolfson, 1991) feature piperazine structural units with aryl-group substitution. We have an interest in constructing N-heterocyclic carbenes (NHCs) and NHC-derived ligands, which often feature N-aryl groups derived from substituted anilines. Halogenated NHCs can be utilized to fine-tune the steric and electronic properties of transition metal catalysts. It has been demonstated that the presence of fluorine on an aryl group of an NHC ligand influences the E / Z selectivity of a ruthenium cross-metathesis catalyst (Xu et al., 2017). In our efforts to prepare NHC ligands, anilines and N, N^{\prime}-diaryldiamines are commonly used starting materials or synthetic intermediates.

In this study, we report the crystallographic characterization of two compounds derived from 2,4-dimethylaniline: 2-bromo-4,6-dimethylaniline (1) and N, N^{\prime}-bis(2,4-dimethylphenyl)piperazine (2). Though available from many commercial suppliers, the crystal structure of 2-bromo-4,6-dimethylaniline (1) has not been previously disclosed. Only a few reports of compound 2 can be found in the literature. An early publication (Tikhomirova, 1971) describes the reaction of 2-(2,4dimethylanilino)ethanol with pyridinium chloride, which generates a mixture of 2,4-dimethylaniline and the piperazine

2, which was characterized only by elemental analysis, melting point, and boiling point. More recently, piperazine 2 was obtained as a trace by-product in the production of 2-(2,4dimethylanilino)ethanol via palladium-mediated hydrogen autotransfer between 2,4-dimethylaniline and ethylene glycol (Llabres-Campaner et al., 2017), and characterized by NMR and IR spectroscopy in addition to high resolution mass spectrometry. No X-ray structural data for compound 2 have been previously disclosed.

2. Structural commentary

The solid-state structure of $\mathbf{1}$ obtained by slow sublimation is depicted in Fig. 1. Two independent molecules are present in the asymmetric unit, which are hydrogen bonded (Table 1) to each other $[d(\mathrm{~N} \cdots \mathrm{~N})=3.172(5) \AA]$ within the $P 2_{1} / \mathrm{c}$ space group. The two independent molecules exhibit $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-$ N bond lengths that are equal within experimental error [1.910 (3)-1.912 (3) \AA and 1.394 (4)-1.394 (5) \AA, respectively]. The angle between the two mean planes passing through the aromatic rings of the two independent molecules is $80.6(2)^{\circ}$. The hydrogen atoms on each nitrogen centre that are not involved in the chains formed by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions are oriented towards the ortho bromine atoms on

Figure 1
Displacement ellipsoid plot (50% probability) of the asymmetric unit of compound 1.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for $\mathbf{1}$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2$	$0.80(4)$	$2.44(4)$	$3.172(5)$	$154(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1$	$0.79(4)$	$2.68(4)$	$3.094(4)$	$115(4)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.81(4)$	$2.43(4)$	$3.155(5)$	$149(4)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Br} 2$	$0.75(4)$	$2.70(4)$	$3.082(4)$	$114(3)$

Symmetry code: (i) $x, y+1, z$.
the aromatic rings. These intramolecular hydrogen bonds feature donor-acceptor distances of 3.082 (4) and 3.094 (4) \AA.

X-ray diffraction analysis of 2 revealed a solvent-free structure in the $P 2_{1}$ space group (Fig. 2). The asymmetric unit contains one pseudo- C_{i} symmetric molecule. The central $\mathrm{N}_{2} \mathrm{C}_{4}$ ring exhibits a chair conformation. Compound 2 represents the first crystallographically characterized diarylpiperazine with methyl groups on the aromatic substituents. The aromatic rings are twisted relative to the $\mathrm{N}_{2} \mathrm{C}_{4}$ mean plane, forming angles of $46.8(1)$ and $56.9(1)^{\circ}$ for $\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{C} 13-\mathrm{C} 18$, respectively.

3. Supramolecular features

Each amino group in compound $\mathbf{1}$ provides one donor and one acceptor site for the hydrogen-bond interactions (Table 1), and chains are observed to form by translation along the crystallographic b axis (Fig. 3). Additionally, the bromine atoms from one of the two independent molecules exhibit weak van der Waals interactions to the equivalent sites on adjacent chains, related by an inversion centre (Fig. 4). The distance for this interaction is 3.537 (1) \AA (sum of van der Waals radii for bromine: $3.70 \AA$; Bondi, 1964). As the two C$\mathrm{Br} \cdots \mathrm{Br}$ bond angles are equal (ca 153°), this classifies as a Type I halogen-halogen interaction (Cavallo et al., 2016). This type is generally accepted as a dispersion interaction, as opposed to Type II interactions which are weakly electrostatic in nature and require $R-X \cdots X$ angles of 90 and 180°. No $\pi-\pi$ interactions are present in the structure. No significant intermolecular interactions are observed in the crystal packing motif of 2 (Fig. 5).

4. Database survey

The packing motif of compound $\mathbf{1}$ makes an interesting contrast to the structure of the less substituted analogue

Figure 2
Displacement ellipsoid plot (50% probability) of the asymmetric unit of compound 2. Hydrogen atoms are omitted for clarity.

Figure 3
Packing diagram for compound 1. Carbon-bound hydrogen atoms are omitted for clarity.

2-bromoaniline, which crystallizes from the melt in the trigonal $P 3_{1}$ space group (Nayak et al., 2009). Helical arrangements are formed with each molecule involved in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds $[D \cdots A$ distance of 3.162 (6) \AA] and a weaker bromine...bromine interaction ($\mathrm{Br} \cdots \mathrm{Br}$ distance of 3.637 (1) \AA), both observed along the 3_{1} screw axes, and with additional intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions. In the case of the more sterically hindered derivative $\mathbf{1}$, this arrangement is not feasible and chains are instead adopted.
Most of the crystallographically characterized diarylpiperazines feature the chair conformation; a few have been determined in the twist-boat form (Wirth et al., 2012). Whereas the phenyl groups of piperazine 2 are twisted relative to the $\mathrm{N}_{2} \mathrm{C}_{4}$ mean plane, the structure of the less substituted N, N^{\prime}-diphenylpiperazine, which crystallizes in the Pbca space group, exhibits phenyl groups closer to being in conjugation with the nitrogen lone pairs (Wirth et al., 2012; Safko \& Pike, 2012). The sum of the bond angles around nitrogen is quite similar between the two structures (2:338$341^{\circ} ; N, N^{\prime}$-diphenylpiperazine: 343°), though the $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ bond lengths are slightly shortened in the phenyl-substituted analogue [2: 1.426 (3)-1.431 (3) \AA; N, N^{\prime}-diphenylpiperazine: 1.4157 (15) \AA], indicating that resonance delocalization is a perhaps a minor effect, if present, while packing effects likely

Figure 4
Type I bromine-bromine interaction in the packing of compound $\mathbf{1}$. Carbon-bound hydrogen atoms are omitted for clarity.

Packing diagram for compound 2. Hydrogen atoms are omitted for clarity.
dominate. The structures of $\mathbf{2}$ and the phenyl analogue are overlaid in Fig. 6 for visual comparison.

5. Synthesis and crystallization

We prepared compound $\mathbf{1}$ by electrophilic aromatic bromination of the parent aniline, as reported previously for related compounds (Das et al., 2007). The resultant red-brown solid was reasonably pure by ${ }^{1} \mathrm{H}$ NMR, however it was easily sublimated to afford very pure colourless material, leaving behind oily reddish-brown impurities.

The piperazine compound 2 was unexpectedly obtained as a by-product during the synthesis of N, N^{\prime}-bis(2,4-dimethylphenyl)ethylenediamine (3) via a condensation reaction. Compound $\mathbf{3}$ is evidently able to compete with 2,4-dimethylaniline as a nucleophile towards 1,2-dibromoethane, once formed. Both desired main product 3 and by-product 2 were isolated after separation by column chromatography.

Figure 6
Structure of compound 2 overlaid with N, N^{\prime}-diphenylpiperazine (CCDC refcode WAQNUZ01).

Table 2
Experimental details.

	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrN}$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$
Crystal data		
$M_{\text {r }}$	200.08	294.43
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Monoclinic, $P 2_{1}$
Temperature (K)	150	150
$a, b, c(\AA)$	$\begin{aligned} & 16.4359 \text { (10), } 5.1917 \text { (3), } \\ & 20.5792 \text { (11) } \end{aligned}$	7.6563 (2), 13.2685 (4), 8.3688 (2)
$\beta\left({ }^{\circ}\right.$)	110.748 (4)	96.968 (2)
$V\left(\AA^{3}\right)$	1642.15 (17)	843.89 (4)
Z	8	2
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.93	0.07
Crystal size (mm)	$0.28 \times 0.15 \times 0.08$	$0.28 \times 0.15 \times 0.08$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Numerical (SADABS; Bruker, 2015)	Numerical (SADABS; Bruker, 2015)
$T_{\text {min }}, T_{\text {max }}$	0.542, 0.746	0.894, 0.954
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	17969, 2903, 2170	13424, 3289, 2588
$R_{\text {int }}$	0.052	0.074
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.595	0.625
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.030, 0.069, 1.00	0.040, 0.095, 1.05
No. of reflections	2903	3289
No. of parameters	201	203
No. of restraints	0	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.45,-0.38$	0.20, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Synthetic protocols were conducted under ambient conditions using ACS-grade solvents. All chemicals were obtained from commercial sources and used as received. NMR spectra were collected using a Bruker 400 MHz Avance III spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances are referenced to residual CHCl_{3} or CDCl_{3}, respectively, using the reported values relative to SiMe_{4} (Fulmer et al., 2010).

5.1. Preparation of 2-bromo-4,6-dimethylaniline (1)

A 100 mL round-bottom flask equipped with a magnetic stir bar was charged with N-bromosuccinimide (3.4896 g , 19.607 mmol), ammonium acetate ($0.1583 \mathrm{~g}, 2.054 \mathrm{mmol}$), and acetonitrile $(60 \mathrm{~mL})$. The reagent 2,4-dimethylaniline $(2.4297 \mathrm{~g}, 20.050 \mathrm{mmol})$ was added slowly, by pipette. The resulting mixture was left to stir at room temperature for 90 min . The solvent was removed under vacuum to produce a reddish-brown solid. Water (45 mL) and dichloromethane $(45 \mathrm{~mL})$ were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and washed with water $(3 \times 30 \mathrm{~mL})$, saturated sodium thiosulfate $(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$. After drying the organic layer with magnesium sulfate, the mixture was filtered and the volatiles removed under vacuum to afford a brown crystalline solid ($3.2723 \mathrm{~g}, 83.42 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.15$ $(s, 1 \mathrm{H}), 7.14(s, 1 \mathrm{H}), 3.93(s, 2 \mathrm{H}), 2.22(s, 3 \mathrm{H}), 2.21(s, 3 \mathrm{H})$. The procedure was based on one reported for similar aniline
derivatives (Das et al., 2007). The product can be purified by sublimation under static vacuum with heating to 308 K for 3 d . Large X-ray quality crystals of the product were obtained by slow sublimation under ambient conditions in a capped glass vial containing the crude product, over a period of months.

5.2. Preparation of N, N^{\prime}-bis(2,4-dimethylphenyl)piperazine
 (2) and N, N^{\prime}-bis(2,4-dimethylphenyl)ethylenediamine (3)

A 100 mL round-bottom flask equipped with a magnetic stir bar was charged with 2,4-dimethylaniline $(9.21 \mathrm{~mL}$, 74.5 mmol), 1,2-dibromoethane ($3.21 \mathrm{~mL}, 37.3 \mathrm{mmol}$), and N, N^{\prime}-diisopropylethylamine ($12.98 \mathrm{~mL}, 74.5 \mathrm{mmol}$), and fitted with a reflux condenser and drying tube. The mixture was heated to 403 K for 4 h , then cooled to room temperature affording a red solid mass. To this was added $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ before extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and to the combined aqueous extracts was added $1 M \mathrm{NaOH}(\mathrm{aq})(40 \mathrm{~mL})$, and this mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (30 mL), dried over MgSO_{4}, decanted into a round-bottom flask, and dried under vacuum to afford a dark orange-red liquid. Addition of hexanes $(40 \mathrm{~mL})$ resulted in the precipitation of crystalline material. The solid material was redissolved by warming the hexanes, and the resultant clear red solution was stored overnight at 238 K . The mother liquor was decanted
and the remaining solid material was washed with cold hexanes $(3 \times 3 \mathrm{~mL})$ and dried under vacuum to afford a beige solid $(5.4730 \mathrm{~g})$. NMR data indicated that the product was a $90: 10 \mathrm{~mol} \%$ mixture of 1,2-diamine $\mathbf{3}$ and piperazine $\mathbf{2}$, obtained with a 69% yield of products based on 1,2-dibromoethane. Separation of the compounds was achieved by silica gel flash chromatography. Elution of 1.3223 g of a mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded piperazine $\mathbf{2}$ as a paletan crystalline solid ($R_{\mathrm{f}}=0.75,124.0 \mathrm{mg}, 60 \%$ recovery $)$ and diamine 3 as a pale-yellow solid ($R_{\mathrm{f}}=0.21,851.4 \mathrm{mg}, 84 \%$ recovery). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts and assignments for diamine in CDCl_{3} differed from the reported values (Türkmen \& Çetinkaya, 2006). Diamine 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.96(d$, ${ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic $\left.5-\mathrm{H}\right), 6.91(s, 2 \mathrm{H}$, aromatic $3-\mathrm{H})$, $6.61\left(d,{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aromatic $\left.6-\mathrm{H}\right), 3.61(\mathrm{br} s, 2 \mathrm{H}, \mathrm{NH})$, $3.47\left(s, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25\left(s, 6 \mathrm{H}\right.$, aromatic $\left.4-\mathrm{CH}_{3}\right), 2.11(s, 6 \mathrm{H}$, aromatic $\left.2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 144.0(s), 131.3(s)$, 127.6 (s), 126.8 (s), 122.8 ($s), 110.4(s), 43.8\left(s, \mathrm{CH}_{2}\right), 20.5(s)$, 17.7 (s). Piperazine 2: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.03(s, 2 \mathrm{H}$, aromatic CH$), 7.01(s, 4 \mathrm{H}$, aromatic CH$), 3.04\left(s, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.33\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $149.5(s), 132.9(s), 132.8(s), 132.0(s), 127.2(s), 119.3(s), 52.8$ $(s), 20.9(s), 18.0(s)$. The procedure was based on that used for the fluoro analogue (Day et al., 2011). Crystals of piperazine 2 were grown by slow evaporation of a toluene solution of the compound, at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The $\mathrm{N}-\mathrm{H}$ protons of compound $\mathbf{1}$ were located in the difference map and refined freely. The piperazine 2 crystallized in the non-centric group $P 2_{1}$; no heavy atoms are present in the structure, therefore the Flack parameter was not calculated. Carbon-bound hydrogen atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$ and refined according to a riding model, with fixed $U_{\text {iso }}$ values of 1.2 times (CH and CH_{2} groups) and 1.5 times $\left(\mathrm{CH}_{3}\right.$ groups) the parent atom.

Acknowledgements

Dr David Herbert (Department of Chemistry, University of Manitoba) is thanked for access to a single-crystal X-ray diffractometer.

Funding information

Funding for this research was provided by: The University of Winnipeg.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2015). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. \& Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.
Das, B., Venkateswarlu, K., Majhi, A., Siddaiah, V. \& Reddy, K. R. (2007). J. Mol. Catal. A: Chem. 267, 30-33.

Day, G. S., Pan, B., Kellenberger, D. L., Foxman, B. M. \& Thomas, C. M. (2011). Chem. Commun. 47, 3634-3636.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. \& Goldberg, K. I. (2010). Organometallics, 29, 2176-2179.
Grant, S. M. \& Clissold, S. P. (1989). Drugs, 37, 310-344.
Hooper, D. C. \& Wolfson, J. S. (1991). N. Eng. J. Med. 324, 384-394.
Humphrey, G. R. \& Kuethe, J. T. (2006). Chem. Rev. 106, 2875-2911.
Kang, E. T., Neoh, K. G. \& Tan, K. L. (1998). Prog. Polym. Sci. 23, 277-324.
Llabres-Campaner, P. J., Ballesteros-Garrido, R., Ballesteros, R. \& Abarca, B. (2017). Tetrahedron, 73, 5552-5561.
Mukherjee, A., Dixit, K., Sarma, S. P. \& Desiraju, G. R. (2014). IUCrJ, 1, 228-239.
Nayak, S. K., Prathapa, S. J. \& Guru Row, T. N. (2009). J. Mol. Struct. 935, 156-160.
Safko, J. P. \& Pike, R. D. (2012). J. Chem. Crystallogr. 42, 981-987. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Tikhomirova, R. G. (1971). Zh. Org. Khim. 7, 1480-1483.
Türkmen, H. \& Çetinkaya, B. (2006). J. Organomet. Chem. 691, 37493759.

Wirth, S., Barth, F. \& Lorenz, I.-P. (2012). Dalton Trans. 41, 21762186.

supporting information

Acta Cryst. (2018). E74, 1276-1280 [https://doi.org/10.1107/S2056989018011404]

A structural study of 2,4-dimethylaniline derivatives

Samuel C. Penner, Maryam Kalvandi and Jamie S. Ritch

Computing details

For both structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Bromo-4,6-dimethylaniline (1)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrN}$
$M_{r}=200.08$
Monoclinic, $P 2_{1} / c$
$a=16.4359$ (10) \AA
$b=5.1917$ (3) \AA
$c=20.5792(11) \AA$
$\beta=110.748$ (4) ${ }^{\circ}$
$V=1642.15(17) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2015)
$T_{\min }=0.542, T_{\text {max }}=0.746$
17969 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.069$
$S=1.00$
2903 reflections
201 parameters
0 restraints
Primary atom site location: dual
$F(000)=800$
$D_{\mathrm{x}}=1.619 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6401 reflections
$\theta=2.7-27.3^{\circ}$
$\mu=4.93 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.28 \times 0.15 \times 0.08 \mathrm{~mm}$

2903 independent reflections
2170 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-19 \rightarrow 19$
$k=-6 \rightarrow 6$
$l=-24 \rightarrow 24$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0241 P)^{2}+3.2572 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	0.97945 (2)	0.20330 (8)	0.56141 (2)	0.03211 (12)
N1	0.8334 (2)	0.6135 (7)	0.52086 (17)	0.0268 (7)
H1A	0.815 (2)	0.756 (8)	0.5140 (19)	0.020 (11)*
H1B	0.871 (3)	0.593 (8)	0.505 (2)	0.035 (13)*
C1	0.8515 (2)	0.5157 (6)	0.58759 (17)	0.0194 (7)
C2	0.9120 (2)	0.3209 (7)	0.61459 (17)	0.0214 (8)
C3	0.9268 (2)	0.2078 (7)	0.67863 (17)	0.0228 (8)
H3	0.968810	0.074670	0.694815	0.027*
C4	0.8800 (2)	0.2901 (7)	0.71895 (17)	0.0222 (7)
C5	0.8196 (2)	0.4857 (7)	0.69261 (17)	0.0216 (8)
H5	0.787150	0.543673	0.719926	0.026*
C6	0.8041 (2)	0.6005 (7)	0.62857 (18)	0.0208 (8)
C7	0.8930 (2)	0.1658 (8)	0.78885 (19)	0.0315 (9)
H7A	0.881827	-0.019629	0.782470	0.047*
H7B	0.852611	0.242654	0.808743	0.047*
H7C	0.952953	0.194196	0.820356	0.047*
C8	0.7372 (2)	0.8172 (7)	0.60306 (18)	0.0232 (8)
H8A	0.766500	0.975665	0.597582	0.035*
H8B	0.708709	0.845803	0.637008	0.035*
H8C	0.693420	0.768935	0.558245	0.035*
Br2	0.73280 (2)	0.70006 (8)	0.33028 (2)	0.03345 (12)
N2	0.7421 (2)	1.1155 (7)	0.43964 (19)	0.0262 (7)
H2A	0.745 (3)	1.262 (8)	0.454 (2)	0.026 (12)*
H2B	0.771 (3)	1.104 (8)	0.419 (2)	0.024 (12)*
C9	0.6585 (2)	1.0176 (7)	0.40744 (17)	0.0217 (8)
C10	0.6405 (2)	0.8241 (7)	0.35792 (17)	0.0220 (8)
C11	0.5595 (2)	0.7119 (7)	0.32828 (17)	0.0254 (8)
H11	0.550493	0.580042	0.294449	0.030*
C12	0.4915 (2)	0.7929 (7)	0.34820 (18)	0.0264 (8)
C13	0.5085 (2)	0.9868 (7)	0.39782 (17)	0.0237 (8)
H13	0.462454	1.043560	0.412055	0.028*
C14	0.5893 (2)	1.1007 (7)	0.42741 (17)	0.0218 (8)
C15	0.4027 (2)	0.6683 (8)	0.3184 (2)	0.0364 (10)
H15B	0.371137	0.740538	0.272303	0.055*
H15C	0.370039	0.701668	0.349132	0.055*
H15A	0.409549	0.482129	0.314386	0.055*
C16	0.6042 (2)	1.3165 (6)	0.48222 (16)	0.0191 (7)
H16C	0.652570	1.268841	0.524484	0.029*
H16A	0.551292	1.339629	0.493238	0.029*

H 16 B	0.618051	1.477773	0.463684	0.029^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0301(2)$	$0.0367(2)$	$0.0358(2)$	$0.00185(18)$	$0.01951(18)$	$-0.00371(18)$
N1	$0.0294(19)$	$0.0256(19)$	$0.0247(17)$	$-0.0004(16)$	$0.0088(16)$	$0.0017(15)$
C1	$0.0179(18)$	$0.0172(18)$	$0.0196(18)$	$-0.0040(14)$	$0.0024(15)$	$0.0002(14)$
C2	$0.0168(17)$	$0.0228(19)$	$0.0256(19)$	$-0.0034(16)$	$0.0089(15)$	$-0.0073(16)$
C3	$0.0155(16)$	$0.0221(18)$	$0.0278(19)$	$0.0014(15)$	$0.0041(15)$	$0.0003(16)$
C4	$0.0169(17)$	$0.0249(18)$	$0.0232(18)$	$-0.0065(16)$	$0.0053(14)$	$-0.0025(16)$
C5	$0.0162(17)$	$0.0264(19)$	$0.0228(18)$	$-0.0023(15)$	$0.0078(15)$	$-0.0085(16)$
C6	$0.0161(17)$	$0.0178(17)$	$0.0258(19)$	$-0.0015(15)$	$0.0042(15)$	$-0.0035(16)$
C7	$0.029(2)$	$0.037(2)$	$0.030(2)$	$-0.0012(18)$	$0.0115(17)$	$0.0041(18)$
C8	$0.0238(18)$	$0.0161(17)$	$0.0259(18)$	$-0.0007(16)$	$0.0040(15)$	$-0.0055(16)$
Br2	$0.0361(2)$	$0.0404(2)$	$0.0305(2)$	$0.00730(19)$	$0.02002(18)$	$0.00411(18)$
N2	$0.0225(18)$	$0.0237(19)$	$0.0312(19)$	$-0.0051(15)$	$0.0081(16)$	$-0.0007(16)$
C9	$0.0233(19)$	$0.0205(19)$	$0.0193(18)$	$0.0011(15)$	$0.0050(15)$	$0.0071(15)$
C10	$0.027(2)$	$0.0234(19)$	$0.0193(17)$	$0.0047(16)$	$0.0126(15)$	$0.0056(16)$
C11	$0.031(2)$	$0.0235(19)$	$0.0196(17)$	$-0.0008(17)$	$0.0069(16)$	$-0.0017(16)$
C12	$0.0242(19)$	$0.0282(19)$	$0.0230(18)$	$0.0005(17)$	$0.0037(15)$	$0.0060(17)$
C13	$0.0226(19)$	$0.027(2)$	$0.0226(19)$	$0.0063(16)$	$0.0097(15)$	$0.0062(16)$
C14	$0.0257(19)$	$0.0193(17)$	$0.0185(17)$	$0.0037(15)$	$0.0052(15)$	$0.0030(15)$
C15	$0.029(2)$	$0.042(3)$	$0.033(2)$	$-0.0064(19)$	$0.0049(18)$	$0.000(2)$
C16	$0.0192(17)$	$0.0139(17)$	$0.0210(17)$	$0.0037(15)$	$0.0031(14)$	$0.0038(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 2$	1.912 (3)	Br2-C10	1.910 (3)
N1-H1A	0.80 (4)	N2-H2A	0.81 (4)
N1-H1B	0.79 (4)	N2-H2B	0.75 (4)
N1-C1	1.394 (4)	N2-C9	1.394 (5)
C1-C2	1.390 (5)	C9-C10	1.386 (5)
C1-C6	1.406 (5)	C9-C14	1.407 (5)
C2-C3	1.383 (5)	C10-C11	1.382 (5)
C3-H3	0.9500	C11-H11	0.9500
C3-C4	1.384 (5)	C11-C12	1.385 (5)
C4-C5	1.389 (5)	C12-C13	1.390 (5)
C4-C7	1.521 (5)	C12-C15	1.513 (5)
C5-H5	0.9500	C13-H13	0.9500
C5-C6	1.386 (5)	C13-C14	1.382 (5)
C6-C8	1.531 (5)	C14-C16	1.546 (5)
C7-H7A	0.9800	C15-H15B	0.9800
C7-H7B	0.9800	C15-H15C	0.9800
C7-H7C	0.9800	C15-H15A	0.9800
C8-H8A	0.9800	C16-H16C	0.9800
C8-H8B	0.9800	C16-H16A	0.9800
C8-H8C	0.9800	C16-H16B	0.9800

H1A-N1-H1B	111 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	108 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	117 (3)	C9-N2-H2A	116 (3)
C1-N1-H1B	115 (3)	C9-N2-H2B	115 (3)
N1-C1-C6	120.5 (3)	N2-C9-C14	120.8 (3)
C2-C1-N1	122.1 (3)	C10-C9-N2	122.1 (3)
C2- $\mathrm{C} 1-\mathrm{C} 6$	117.3 (3)	C10-C9-C14	117.0 (3)
C1-C2-Br1	118.8 (3)	C9-C10-Br2	118.6 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	117.9 (3)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{Br} 2$	118.0 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	123.3 (3)	C11-C10-C9	123.4 (3)
C2-C3-H3	120.2	C10-C11-H11	120.2
C2-C3-C4	119.5 (3)	C10-C11-C12	119.6 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2	C12-C11-H11	120.2
C3-C4-C5	117.7 (3)	C11-C12-C13	117.7 (3)
C3-C4-C7	121.0 (3)	C11-C12-C15	120.9 (3)
C5-C4-C7	121.4 (3)	C13-C12-C15	121.4 (3)
C4-C5-H5	118.3	C12-C13-H13	118.5
C6-C5-C4	123.4 (3)	C14-C13-C12	123.0 (3)
C6-C5-H5	118.3	C14-C13-H13	118.5
C1-C6-C8	120.5 (3)	C9-C14-C16	120.0 (3)
C5-C6-C1	118.8 (3)	C13-C14-C9	119.3 (3)
C5-C6-C8	120.7 (3)	C13-C14-C16	120.7 (3)
C4-C7-H7A	109.5	C12-C15-H15B	109.5
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5	C12-C15-H15C	109.5
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5	C12-C15-H15A	109.5
H7A-C7-H7B	109.5	H15B-C15-H15C	109.5
H7A - $\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5	H15B-C15-H15A	109.5
H7B-C7-H7C	109.5	H15C-C15-H15A	109.5
C6-C8-H8A	109.5	C14-C16-H16C	109.5
C6-C8-H8B	109.5	C14-C16-H16A	109.5
C6-C8-H8C	109.5	C14-C16-H16B	109.5
H8A-C8-H8B	109.5	H16C-C16-H16A	109.5
H8A-C8-H8C	109.5	H16C-C16-H16B	109.5
H8B-C8-H8C	109.5	H16A-C16-H16B	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 2$	$0.80(4)$	$2.44(4)$	$3.172(5)$	$154(3)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Br} 1$	$0.79(4)$	$2.68(4)$	$3.094(4)$	$115(4)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.81(4)$	$2.43(4)$	$3.155(5)$	$149(4)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{Br} 2$	$0.75(4)$	$2.70(4)$	$3.082(4)$	$114(3)$

[^0]1,4-Bis(2,4-dimethylphenyl)piperazine (2)

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$
$M_{r}=294.43$
Monoclinic, $P 2_{1}$
$a=7.6563$ (2) \AA
$b=13.2685(4) \AA$
$c=8.3688(2) \AA$
$\beta=96.968(2)^{\circ}$
$V=843.89(4) \AA^{3}$
$Z=2$
$F(000)=320$
$D_{\mathrm{x}}=1.159 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4924 reflections
$\theta=2.5-31.6^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, clear colourless
$0.28 \times 0.15 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2015)
$T_{\text {min }}=0.894, T_{\text {max }}=0.954$
13424 measured reflections

3289 independent reflections

2588 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.095$
$S=1.05$
3289 reflections
203 parameters
1 restraint
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0509 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.8569(2)$	$0.56722(15)$	$0.4969(3)$	$0.0224(5)$
N2	$0.6207(2)$	$0.45272(16)$	$0.6642(3)$	$0.0220(5)$
C1	$0.9201(3)$	$0.4876(2)$	$0.6112(3)$	$0.0246(6)$
H1A	1.040068	0.504463	0.662098	0.029^{*}
H1B	0.926270	0.423048	0.552878	0.029^{*}
C2	$0.7987(3)$	$0.4762(2)$	$0.7399(3)$	$0.0259(6)$
H2A	0.841706	0.421380	0.814845	0.031^{*}
H2B	0.797117	0.539467	0.802411	0.031^{*}
C3	$0.6774(3)$	$0.5442(2)$	$0.4243(3)$	$0.0258(6)$
H3A	0.676846	0.480219	0.363429	0.031^{*}

H3B	0.634424	0.598445	0.348234	0.031*
C4	0.5577 (3)	0.5352 (2)	0.5544 (4)	0.0268 (6)
H4A	0.557386	0.599282	0.614919	0.032*
H4B	0.435857	0.521120	0.505348	0.032*
C5	0.4986 (3)	0.41979 (19)	0.7690 (3)	0.0222 (6)
C6	0.3523 (3)	0.3616 (2)	0.7052 (3)	0.0209 (6)
C7	0.2394 (3)	0.3254 (2)	0.8102 (3)	0.0234 (6)
H7	0.140547	0.286476	0.767276	0.028*
C8	0.2643 (3)	0.3435 (2)	0.9749 (3)	0.0252 (6)
C9	0.4095 (3)	0.4009 (2)	1.0347 (4)	0.0302 (7)
H9	0.430569	0.414541	1.146814	0.036*
C10	0.5236 (3)	0.4385 (2)	0.9336 (3)	0.0275 (6)
H10	0.621291	0.478073	0.977545	0.033*
C11	0.3192 (3)	0.3355 (2)	0.5289 (3)	0.0264 (6)
H11A	0.254747	0.271661	0.515405	0.040*
H11B	0.431892	0.328848	0.485378	0.040*
H11C	0.249530	0.389040	0.471108	0.040*
C12	0.1416 (4)	0.3004 (2)	1.0852 (4)	0.0350 (7)
H12A	0.024784	0.290661	1.025118	0.052*
H12B	0.132978	0.346997	1.174735	0.052*
H12C	0.187303	0.235416	1.127501	0.052*
C13	0.9794 (3)	0.59108 (19)	0.3864 (3)	0.0212 (6)
C14	1.1194 (3)	0.65758 (19)	0.4351 (3)	0.0216 (6)
C15	1.2329 (3)	0.6837 (2)	0.3236 (3)	0.0231 (6)
H15	1.325513	0.729848	0.355421	0.028*
C16	1.2165 (3)	0.64531 (19)	0.1680 (4)	0.0251 (6)
C17	1.0792 (3)	0.5787 (2)	0.1236 (3)	0.0275 (6)
H17	1.065047	0.550702	0.018299	0.033*
C18	0.9624 (3)	0.5526 (2)	0.2311 (3)	0.0274 (6)
H18	0.868867	0.507338	0.197703	0.033*
C19	1.1465 (3)	0.7012 (2)	0.6018 (4)	0.0296 (7)
H19A	1.210157	0.652630	0.675487	0.044*
H19B	1.032038	0.715946	0.637638	0.044*
H19C	1.215095	0.763545	0.601050	0.044*
C20	1.3401 (3)	0.6774 (2)	0.0498 (4)	0.0307 (7)
H20A	1.290904	0.736048	-0.011167	0.046*
H20B	1.354809	0.621855	-0.024576	0.046*
H20C	1.454590	0.695166	0.108346	0.046*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0194(10)$	$0.0218(12)$	$0.0258(12)$	$0.0019(8)$	$0.0017(9)$	$0.0032(10)$
N2	$0.0184(10)$	$0.0228(12)$	$0.0238(12)$	$0.0004(8)$	$-0.0005(9)$	$0.0036(10)$
C1	$0.0180(11)$	$0.0238(13)$	$0.0311(17)$	$0.0023(10)$	$-0.0007(10)$	$0.0038(12)$
C2	$0.0213(11)$	$0.0271(15)$	$0.0284(16)$	$-0.0012(10)$	$-0.0010(10)$	$0.0042(13)$
C3	$0.0204(12)$	$0.0288(14)$	$0.0276(15)$	$0.0024(10)$	$0.0003(10)$	$0.0061(12)$
C4	$0.0188(12)$	$0.0265(14)$	$0.0344(17)$	$0.0025(10)$	$0.0011(11)$	$0.0062(13)$

supporting information

C5	$0.0200(12)$	$0.0220(14)$	$0.0244(16)$	$0.0035(9)$	$0.0015(10)$	$0.0031(11)$
C6	$0.0198(12)$	$0.0211(13)$	$0.0213(14)$	$0.0044(9)$	$0.0004(10)$	$0.0006(11)$
C7	$0.0195(12)$	$0.0223(14)$	$0.0276(16)$	$-0.0006(10)$	$0.0000(10)$	$-0.0009(12)$
C8	$0.0258(12)$	$0.0217(14)$	$0.0287(16)$	$0.0004(10)$	$0.0060(11)$	$-0.0009(12)$
C9	$0.0348(14)$	$0.0343(16)$	$0.0214(15)$	$-0.0017(12)$	$0.0031(12)$	$-0.0067(13)$
C10	$0.0266(13)$	$0.0244(14)$	$0.0306(16)$	$-0.0053(11)$	$0.0003(11)$	$-0.0030(12)$
C11	$0.0222(12)$	$0.0295(15)$	$0.0269(16)$	$-0.0016(11)$	$0.0004(11)$	$-0.0008(13)$
C12	$0.0395(15)$	$0.0368(18)$	$0.0297(18)$	$-0.0049(12)$	$0.0085(13)$	$-0.0013(14)$
C13	$0.0171(11)$	$0.0190(13)$	$0.0271(16)$	$0.0027(9)$	$0.0012(10)$	$0.0026(11)$
C14	$0.0192(11)$	$0.0221(14)$	$0.0227(15)$	$0.0038(10)$	$-0.0010(10)$	$0.0013(11)$
C15	$0.0208(12)$	$0.0207(13)$	$0.0264(16)$	$-0.0017(10)$	$-0.0025(11)$	$0.0002(11)$
C16	$0.0241(13)$	$0.0235(14)$	$0.0270(16)$	$0.0029(10)$	$-0.0003(11)$	$0.0027(12)$
C17	$0.0301(14)$	$0.0291(15)$	$0.0227(15)$	$-0.0014(11)$	$0.0006(11)$	$-0.0064(12)$
C18	$0.0228(12)$	$0.0275(15)$	$0.0308(17)$	$-0.0056(11)$	$-0.0012(11)$	$-0.0030(12)$
C19	$0.0266(12)$	$0.0358(17)$	$0.0261(16)$	$-0.0042(11)$	$0.0026(11)$	$-0.0036(13)$
C20	$0.0318(14)$	$0.0351(17)$	$0.0259(17)$	$-0.0037(12)$	$0.0065(12)$	$-0.0024(13)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C1	1.466 (3)	C9-C10	1.381 (4)
N1-C3	1.466 (3)	C10-H10	0.9500
N1-C13	1.431 (3)	C11-H11A	0.9800
N2-C2	1.465 (3)	C11-H11B	0.9800
N2-C4	1.472 (3)	C11-H11C	0.9800
N2-C5	1.426 (3)	C12-H12A	0.9800
C1-H1A	0.9900	C12-H12B	0.9800
C1-H1B	0.9900	C12-H12C	0.9800
$\mathrm{C} 1-\mathrm{C} 2$	1.514 (4)	C13-C14	1.410 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C13-C18	1.388 (4)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C14-C15	1.393 (4)
C3-H3A	0.9900	C14-C19	1.502 (4)
C3-H3B	0.9900	C15-H15	0.9500
C3-C4	1.511 (4)	C15-C16	1.390 (4)
C4-H4A	0.9900	C16-C17	1.390 (4)
C4-H4B	0.9900	C16-C20	1.511 (4)
C5-C6	1.411 (3)	C17-H17	0.9500
C5-C10	1.390 (4)	C17-C18	1.387 (4)
C6-C7	1.391 (4)	C18-H18	0.9500
C6-C11	1.507 (4)	C19-H19A	0.9800
C7-H7	0.9500	C19-H19B	0.9800
C7-C8	1.389 (4)	C19-H19C	0.9800
C8-C9	1.390 (4)	C20-H20A	0.9800
C8-C12	1.508 (4)	C20-H20B	0.9800
C9-H9	0.9500	C20-H20C	0.9800
C3-N1-C1	109.8 (2)	C5- $\mathrm{C} 10-\mathrm{H} 10$	119.3
C13-N1-C1	112.98 (18)	C9-C10-C5	121.4 (2)
C13-N1-C3	115.7 (2)	C9-C10-H10	119.3

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$	109.2 (2)	C6- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 2$	116.4 (2)	C6-C11-H11B	109.5
C5-N2-C4	114.96 (19)	C6- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
N1-C1-H1A	109.5	H11A-C11-H11B	109.5
N1-C1-H1B	109.5	H11A-C11-H11C	109.5
N1-C1-C2	110.71 (19)	H11B-C11-H11C	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.1	C8-C12-H12A	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C8-C12-H12B	109.5
C2-C1-H1B	109.5	C8-C12-H12C	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	109.4 (2)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.8	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
N2-C2-H2B	109.8	$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.8	C14-C13-N1	119.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.8	C18-C13-N1	122.0 (2)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.2	C18-C13-C14	118.9 (2)
N1-C3-H3A	109.7	C13-C14-C19	121.6 (2)
N1-C3-H3B	109.7	C15-C14-C13	118.4 (2)
N1-C3-C4	109.7 (2)	C15-C14-C19	119.9 (2)
H3A-C3-H3B	108.2	C14-C15-H15	118.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7	C16-C15-C14	122.9 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.7	C16-C15-H15	118.6
N2-C4-C3	109.1 (2)	C15-C16-C20	121.2 (2)
N2-C4-H4A	109.9	C17-C16-C15	117.6 (3)
N2-C4-H4B	109.9	C17-C16-C20	121.2 (3)
C3-C4-H4A	109.9	C16-C17-H17	119.6
C3-C4-H4B	109.9	C18-C17-C16	120.8 (3)
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.3	C18-C17-H17	119.6
C6-C5-N2	119.0 (2)	C13-C18-H18	119.3
C10-C5-N2	122.2 (2)	C17-C18-C13	121.4 (2)
C10-C5-C6	118.7 (2)	C17-C18-H18	119.3
C5-C6-C11	121.8 (2)	C14-C19-H19A	109.5
C7-C6-C5	118.4 (2)	C14-C19-H19B	109.5
C7-C6-C11	119.7 (2)	C14-C19-H19C	109.5
C6-C7-H7	118.5	H19A-C19-H19B	109.5
C8-C7-C6	123.1 (2)	H19A-C19-H19C	109.5
C8-C7-H7	118.5	H19B-C19-H19C	109.5
C7-C8-C9	117.4 (2)	C16-C20-H20A	109.5
C7-C8-C12	121.4 (2)	C16-C20-H20B	109.5
C9-C8-C12	121.2 (3)	C16-C20-H20C	109.5
C8-C9-H9	119.5	H20A-C20-H20B	109.5
C10-C9-C8	121.0 (3)	$\mathrm{H} 20 \mathrm{~A}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
C10-C9-H9	119.5	$\mathrm{H} 20 \mathrm{~B}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5

[^0]: Symmetry code: (i) $x, y+1, z$.

