

Received 23 July 2018 Accepted 4 August 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: chalcone; anthracene; crystal structure; DFT.

CCDC references: 1827021; 1827019

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

2. Structural commentary

The molecular structures and optimized geometries of compounds I and II are shown in Fig. 1. The optimization of the molecular geometries leading to energy minima was

Crystal structure and theoretical studies of two π -conjugated fused-ring chalcones: (E)-1-(anthracen-9-vl)-3-(9-ethvl-9H-carbazol-3-vl)prop-2-en-1one and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9yl)phenyl]prop-2-en-1-one

Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad*

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

The title chalcones, C₃₁H₂₃NO and C₃₅H₂₃NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, $\pi - \pi$ interactions and weak C-H···O and C-H··· π interactions are observed. The effect of these intermolecular interactions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such molecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to quantify the intermolecular interactions present in the crystal, indicating that these are the most important contribution to the crystal packing.

1. Chemical context

Chalcones satisfy the criteria of three features essential for high nonlinear activity in an organic compound, which are: a strong electron donor, a highly polarizable π -conjugated bridge and a strong π -electron acceptor. A chalcone molecule with a π -conjugated system provides a large charge-transfer axis with appropriate substituent groups on the terminal aromatic rings. Polyaromatic hydrocarbons or π -conjugated materials such as anthracenyl chalcone provide the significant property for conductivity that led to tremendous advances in the field of organic electronics (Li et al., 2016). These conjugated materials modifications on the anthracenyl chalcone decrease the HOMO-LUMO energy gap (HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital), enhancing the nonlinear responses of such molecular systems. In this work, we report the synthesis and combined experimental and theoretical studies of the anthracene chalcones (E)-1-(anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one, I, and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1one, II. Additionally, the UV-vis absorption and Hirshfeld surface analyses are discussed.

1302 https://doi.org/10.1107/S2056989018011131

achieved using DFT with a 6-311++G(d,p) basis set, as implemented in the *GAUSSIAN09* program package (Frisch *et al.*, 2009). The calculated geometric parameters, such as bond lengths, bond angles and torsion angles, compared to the experimental data are presented in Table S1 in the supporting information and exhibit normal ranges. The theoretical bond lengths, bond angles and torsion angles correlate well with the experimental data.

Both I and II comprise a chalcone with an anthracene ring with 9-ethyl-9*H*-carbazole and 9-phenyl-9*H*-carbazole substituents, respectively. The asymmetric unit of II contains two crystallographically independent molecules, A and B (Fig. 1*a*). The C–C distances in the central ring of the anthracene units show a little variations compared to the other rings (C2–C3, C4–C5, C9–C10 and C11–C12), which are much shorter. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984).

Both theoretical and experimental structures (Fig. 1) exist in an *s*-trans configuration with respect to the enone moiety, with bond lengths C15=O1 [Exp = 1.220 (2) Å and DFT = 1.22 Å in I; Exp = 1.213 (3) (A) and 1.218 (3) Å (B), and DFT = 1.22 Å in II and C16=C17 [Exp = 1.329 (2) Å andDFT = 1.35 Å in I; Exp = 1.319 (3) (A) and 1.320 (4) Å (B), and DFT = 1.35 Å in **II**]. Both **I** and **II** (**A** and **B**) are twisted at the C14-C15 bond, with C1-C14-C15-C16 torsion angles of -92.6(2) (in I), 84.8(3) (in IIA) and $106.3(3)^{\circ}$ (in IIB). The corresponding torsion angles for DFT are -85.84 and 85.63° , respectively. Additionally, in compound II, rings Y and $Z(\mathbf{A})$ and rings Y' and Z' (**B**) are also twisted at the C21-N1 bond, with C20-C21-N1-C24 torsion angles of Exp = 64.1 (4)° (**A**) and 46.2 (4)° (**B**), and DFT = 55.03°. The large twist angles are due to the bulkiness of the strong electrondonor anthracene ring system and substituent ring system (Zainuri et al., 2018a,b,c). Meanwhile, compounds I and II are found to be slightly twisted at the C17-C18 bond, with C16-C17-C18-C19 torsion angles of Exp = -16.4 (3)° and DFT = -1.38 for compound I, and Exp = $-171.2 (3)^{\circ}$ (A) and 11.4 (5)° (**B**), and DFT = -1.70° for compound **II**. The slight differences in the torsion angles between the experimental and DFT results in both compounds are due to the formation of intermolecular C-H···O and C-H··· π interactions involving all the fused-ring systems, which are not taken into consideration during the optimization process (Arshad et al., 2018).

The enone moiety in I [O1/C15-C17, maximum deviation =0.0308 (19) Å at atom C16] makes dihedral angles of 86.93 (19) and 21.21 (19) $^{\circ}$ with the anthracene ring [maximum deviation = 0.0117(19) Å at C9] and ring X [maximum deviation = 0.0363 (18) Å at C29], respectively. In compound II, the enone moiety [O1/C15-C17, maximum deviation =0.017 (3) Å at C15A] for molecule A forms dihedral angles of 84.76 (17), 87.61 (17) and 72.35 (17)° with the anthracene ring [maximum deviation = 0.029(3) Å at C14A], ring Y [maximum deviation = 0.008 (3) Å at C19A] and ring Z [maximum deviation = 0.043 (3) Å at C34A], respectively. The anthracene ring forms dihedral angles of 89.63 (11) and $62.11 (7)^{\circ}$ with rings Y and Z, respectively, and the dihedral angle between rings Y and Z is $61.73 (10)^{\circ}$. In addition, for molecule **B**, the enone moiety [O1/C15-C17, maximum deviation = 0.036 (3) Å at C16B] forms dihedral angles of 72.2 (3), 13.5 (3) and 87.2 (3) $^{\circ}$ with the anthracene ring [maximum deviation = 0.018 (4) Å at C10B], ring Y' [maximum deviation = 0.010(3) Å at C20B] and ring Z' [maximum deviation = 1.441 (2) Å at N1B], respectively. The anthracene ring forms dihedral angles of 61.46 (11) and 54.80 (7)° with rings Y' and Z', respectively, and the dihedral angle between rings Y' and Z' is 48.92 $(11)^{\circ}$.

3. Supramolecular features

The crystal packing of I shows weak π - π interactions (Fig. 2*a*) involving $Cg1\cdots Cg5 = 3.7267$ (11) Å (symmetry code: 1 - x, 1 - y, 1 - z), $Cg2\cdots Cg4 = 3.6669$ (12) Å (symmetry code: 2 - x, 2 - y, 1 - z), $Cg3\cdots Cg3 = 3.6585$ (11) Å (symmetry code: 2 - x, 2 - y, 1 - z) and $Cg4\cdots Cg4 = 3.6790$ (12) Å (symmetry code: 1 - x, 2 - y, 1 - z), where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of rings N1/C20/C21/C26/C27,

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for II.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C12B - H12B \cdots O1B^{i}$	0.93	2.51	3.266 (4)	138
$C5B - H5BA \cdots Cg6^{ii}$	0.93	2.79	3.585 (4)	144
$C27B - H27B \cdots Cg7$	0.93	2.85	3.577 (4)	136
$C28B - H28B \cdots Cg8$	0.93	2.70	3.382 (4)	130
$C11A - H11A \cdots Cg9^{iii}$	0.93	2.85	3.742 (4)	161
$C7B - H7BA \cdots Cg10^{ii}$	0.93	2.90	3.704 (3)	145

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) x, y, z + 1.

C1–C6, C1/C6–C8/C13/C14, C8–C13, C18–C20/C27-C29, respectively. The packing is further linked into an infinite three-dimensional supramolecular network.

Lists of weak hydrogen-bond intermolecular interactions are shown in Table 1. The crystal packing of **II** (Fig. 1*b*) shows weak $C12B-H12B\cdots O1$ intermolecular hydrogen bonds connecting the molecules into an infinite one-dimensional chain along the *c* axis. In addition, weak intermolecular C5B- $H5BA\cdots Cg6$, $C27B-H27B\cdots Cg7$, $C28B-H28B\cdots Cg8$, $C11A-H11A\cdots Cg9$ and $C7B-H7B\cdots Cg10$ interactions are also observed in the crystal packing and further stabilize the crystal structure, where Cg6, Cg7, Cg8, Cg9 and Cg10 are the

Compound I

centroids of rings N1A/C24A/C29A/C30A/C35A, C1A–C6A, C1A/C6A–C8A/C13A/C14A, C18A–C23A and C24A–C29A, respectively. These weak intermolecular C–H···O and C–H··· π interactions bridge the molecules into an infinite one-dimensional column along the *c* axis.

4. UV-Vis absorption analysis

The electronic absorption spectra of **I** and **II** have been calculated using time-dependent DFT at the B3LYP/6-311++G(d,p) level in the gas phase and give values of 396 (**I**) and 383 nm (**II**). The absorption characteristics of **I** and **II** are observed in the UV region at 393 and 388 nm, as shown in Fig. 3. The theoretical wavelengths are shifted to higher values and are due to the fact that the calculations are confined to the gaseous medium, whereas the observations are from the solution state, using DMSO as solvent (Zainuri *et al.*, 2017).

According to an investigation on the frontier molecular orbital (FMO) energy levels of the title compounds, the corresponding electronic transfer are found to happen between the HOMO and LUMO orbitals, as shown in Fig. 4. The positive phase is red and the negative is green. In Fig. 4, the charge densities in the ground state (HOMO) are mainly delocalized over the anthracenyl donor ring, while in the

Compound II

(a) The molecular structures of compounds I and II. (b) The optimized structures of compounds I and II at DFT/B3LYP 6-311++G(d,p).

research communications

The crystal packing showing (a) weak $\pi - \pi$ interactions in compound I and (b) weak C-H···O and C-H··· π interactions of compound II.

excited state (LUMO), the charge densities were accumulated on the π -conjugated enone bridge and the terminal electron acceptor group. The values of the energy separations between the HOMO and LUMO are 2.98 and 3.12 eV for compounds **I** and **II**, respectively. Through an extrapolation of the linear trend observed in the optical spectra, the experimental energy band gaps in **I** and **II** are 2.86 and 2.96 eV, respectively. These optical band-gap values indicate the suitability of this compound for optoelectronic applications, as was also reported previously for a chalcone structure by Tejkiran *et al.* (2016). In addition, Konkol *et al.* (2016) studied the structural and optical properties of fused rings where the results showed that fused rings have a lower energy band gap.

5. Hirshfeld surface (HS) analysis

The program *CrystalExplorer* (Wolff *et al.*, 2012) was used to analyse the interactions in the crystal. Fig. 5(a) show the HS mapped over d_{norm} , where the red spots indicate the regions of donor-acceptor interactions. The C-H···O contacts are only present in compound **II**. In addition, the presence of C-H··· π interactions only occurs in compound **II**, indicated through a combination of pale-orange bright-red spots which are present on the HS mapped over shape index surface, identified with black arrows (Fig. 5b). The large flat region delineated by a blue outline refers to the π - π stacking interactions. The curved nature of the compound **I**. Meanwhile, these interactions are present in compound **I**. The fingerprint plot shown in Fig. 6 indicates the $H \cdots H$, $H \cdots O$, $C \cdots H$ and $C \cdots C$ interactions with their relative percentage contributions. The $H \cdots H$ contacts have the largest overall contribution to the HS, and these interactions dominate in the crystal structure. The contribution from $H \cdots O/O$ $O \cdots H$ contacts to the HS showing two narrow spikes provides evidence for the presence of intermolecular $C - H \cdots O$ interactions in Fig. 6 for compound **II**. Meanwhile, there is no spike in the fingerprint of compound **I**. The 7.5% $O \cdots H$ contribu-

Figure 3 The UV–Vis absorption spectra of compounds I and II.

research communications

Figure 4

The electron distribution of the HOMO and LUMO energy levels of compounds I and II.

tion shown in compound **I** is the average percentage interaction from the total interactions presence in **I**. In compound **I**, there are no interactions other than the π - π interactions, which makes the percentage of the O···H contribution is

Table 2Experimental details.

	I	П
Crystal data		
Chemical formula	C ₂₁ H ₂₂ NO	C25H22NO
M_	425.50	473.54
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	296	296
a, b, c (Å)	9,3038 (11), 15,0166 (18), 16,1170 (19)	18.019 (3), 29.214 (4), 9.5503 (13)
β (°)	99.286 (2)	97.637 (2)
$V(A^3)$	2222.2 (5)	4982.9 (12)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08	0.08
Crystal size (mm)	$0.63 \times 0.38 \times 0.29$	$0.50 \times 0.19 \times 0.13$
Data collection		
Diffractometer	Bruker SMART APEXII DUO CCD area- detector	Bruker SMART APEXII DUO CCD area- detector
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44210, 5653, 3479	80460, 12643, 5265
Rint	0.047	0.108
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.673	0.672
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.142, 1.03	0.084, 0.169, 1.02
No. of reflections	5653	12643
No. of parameters	298	667
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.20, -0.18	0.15, -0.15

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 5

View of the Hirshfeld surfaces for the title compounds, showing (a) d_{norm} with the red spots showing the involvement of the C-H···O interactions in **II**, (b) mapped over d_e with the pale-orange spots within the black arrows indicating the C-H··· π interactions in **II** and (c) mapped over curvedness with the black arrows indicating the π - π interactions in **I**.

Figure 6

 $Fingerprint \ plots \ of \ the \ H\cdots H, \ H\cdots O, \ C\cdots H \ and \ C\cdots C \ interactions \ showing \ the \ relative \ contributions \ to \ the \ total \ Hirshfeld \ surface.$

slightly higher. Hence, a discussion on the percentage difference between I. and II. is invalid. The significant $C-H\cdots\pi$ interactions for compound II are indicated by the wings $d_e + d_i \sim 2.6 \text{ Å}$.

6. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) revealed several fused-ring-substituted chalcones similar to I and II. There are four compounds which have an anthrancene ketone subtituent on the chalcone, including 9-anthryl styryl ketone and 9,10-anthryl bis(styryl ketone) reported by Harlow et al. (1975). (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one was reported by Girisha et al. (2016), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one was reported by Abdullah et al. (2016). Zainuri et al. (2018a) reported both anthrancene substituents on chalcone (E)-1,3-bis(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methylprop-2-en-1one (Agrahari et al., 2015), 9-anthroylacetone (Cicogna et al., 2004), (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (Zainuri et al., 2018b,c).

7. Synthesis and crystallization

A mixture of 9-acetylanthrancene (0.5 mmol) and 9-ethylcarbazole-3-carbaldehyde (0.5 mmol) and 4-(9*H*-carbazol-9yl)benzaldehyde (0.5 mmol) for compounds I and II, respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise under vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone to give the corresponding chalcones (Scheme 1). Single crystals of I and II suitable for X-ray diffraction were obtained by slow evaporation from acetone solutions.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C-H = 0.93, 0.96 and 0.97 Å in I, and 0.93 Å in II) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl group in I.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for research facilities. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

Funding information

Funding for this research was provided by: Malaysian Government and Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (FRGS) (No. 203/ PFIZIK/6711606) and the Short Term Grant Scheme (No. 304/ PFIZIK/6313336).

References

- Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). *Acta Cryst.* E72, 648–651.
- Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.
- Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). *Mol. Cryst. Liq. Cryst.* 664, 218–240.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cicogna, F., Ingrosso, G., Ladato, F., Marchetti, F. & Zandomeneghi, M. (2004). *Tetrahedron*, **60**, 11959–11968.
- Frisch, M. J., et al. (2009). GAUSSIAN09. Revision A.1. Gaussian Inc., Wallingford, CT, USA.
- Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). *Acta Cryst.* E72, 1153–1158.
- Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). *Acta Cryst.* B**31**, 1344–1350.
- Konkol, K. L., Schwiderski, R. L. & Rasmussen, S. C. (2016). *Materials*, 9, 404–420.
- Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574–10587.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochem. Photobiol. A, **324**, 233–239.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *CrystalExplorer*. University of Western Australia, Perth.
- Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armakoviće, S. J., Panicker, Y. & Alsenoy, C. V. (2017). *J. Mol. Struct.* **1128**, 520– 533.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.
- Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.

Acta Cryst. (2018). E74, 1302-1308 [https://doi.org/10.1107/S2056989018011131]

Crystal structure and theoretical studies of two *π*-conjugated fused-ring chalcones: (*E*)-1-(anthracen-9-yl)-3-(9-ethyl-9*H*-carbazol-3-yl)prop-2-en-1-one and (*E*)-1-(anthracen-9-yl)-3-[4-(9*H*-carbazol-9-yl)phenyl]prop-2-en-1-one

Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad

Computing details

For both structures, data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m)

Crystal data

C₃₁H₂₃NO $M_r = 425.50$ Monoclinic, $P2_1/c$ a = 9.3038 (11) Å b = 15.0166 (18) Å c = 16.1170 (19) Å $\beta = 99.286$ (2)° V = 2222.2 (5) Å³ Z = 4

Data collection

Bruker SMART APEXII DUO CCD areadetector diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.142$ S = 1.035653 reflections 298 parameters 0 restraints F(000) = 896 $D_x = 1.272 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5727 reflections $\theta = 2.2-22.9^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.63 \times 0.38 \times 0.29 \text{ mm}$

44210 measured reflections 5653 independent reflections 3479 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 28.6^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -12 \rightarrow 11$ $k = -20 \rightarrow 20$ $l = -21 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 0.6503P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.30258 (17)	0.43671 (10)	0.60520 (10)	0.0541 (4)	
01	1.00894 (17)	0.82396 (12)	0.67889 (10)	0.0940 (6)	
C1	0.92274 (19)	0.86663 (11)	0.48174 (11)	0.0484 (4)	
C2	1.0196 (2)	0.79632 (13)	0.46961 (14)	0.0628 (5)	
H2A	1.0445	0.7544	0.5119	0.075*	
C3	1.0762 (2)	0.78928 (16)	0.39769 (16)	0.0734 (6)	
H3A	1.1383	0.7423	0.3909	0.088*	
C4	1.0418 (3)	0.85254 (18)	0.33286 (14)	0.0760 (7)	
H4A	1.0812	0.8469	0.2836	0.091*	
C5	0.9521 (2)	0.92119 (15)	0.34183 (12)	0.0661 (6)	
H5A	0.9315	0.9629	0.2989	0.079*	
C6	0.8883 (2)	0.93085 (12)	0.41595 (11)	0.0509 (4)	
C7	0.7968 (2)	1.00127 (12)	0.42694 (11)	0.0527 (5)	
H7A	0.7763	1.0435	0.3845	0.063*	
C8	0.73470 (19)	1.01073 (11)	0.49924 (11)	0.0476 (4)	
C9	0.6398 (2)	1.08243 (12)	0.51020 (13)	0.0578 (5)	
H9A	0.6192	1.1250	0.4680	0.069*	
C10	0.5788 (2)	1.09027 (14)	0.58016 (14)	0.0659 (5)	
H10A	0.5173	1.1379	0.5859	0.079*	
C11	0.6082 (2)	1.02632 (15)	0.64463 (13)	0.0664 (5)	
H11A	0.5654	1.0320	0.6927	0.080*	
C12	0.6979 (2)	0.95678 (14)	0.63762 (12)	0.0578 (5)	
H12A	0.7153	0.9151	0.6808	0.069*	
C13	0.76632 (18)	0.94624 (11)	0.56498 (10)	0.0464 (4)	
C14	0.86110 (18)	0.87608 (11)	0.55531 (10)	0.0474 (4)	
C15	0.9024 (2)	0.81029 (13)	0.62560 (12)	0.0572 (5)	
C16	0.8125 (2)	0.73143 (12)	0.62919 (12)	0.0567 (5)	
H16A	0.8441	0.6888	0.6699	0.068*	
C17	0.6880 (2)	0.71662 (11)	0.57782 (11)	0.0511 (4)	
H17A	0.6618	0.7581	0.5352	0.061*	
C18	0.5880 (2)	0.64229 (11)	0.58115 (11)	0.0484 (4)	
C19	0.6285 (2)	0.56538 (11)	0.62652 (11)	0.0494 (4)	
H19A	0.7240	0.5585	0.6536	0.059*	
C20	0.52804 (19)	0.49902 (11)	0.63166 (10)	0.0458 (4)	
C21	0.5346 (2)	0.41144 (11)	0.67115 (11)	0.0496 (4)	
C22	0.6445 (2)	0.36261 (13)	0.71850 (12)	0.0609 (5)	
H22A	0.7386	0.3852	0.7306	0.073*	
C23	0.6120 (3)	0.28028 (14)	0.74725 (14)	0.0720 (6)	
H23A	0.6849	0.2471	0.7796	0.086*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C24	0.4721 (3)	0.24555 (14)	0.72885 (14)	0.0764 (7)	
H24A	0.4536	0.1894	0.7491	0.092*	
C25	0.3595 (3)	0.29223 (13)	0.68122 (13)	0.0644 (5)	
H25A	0.2661	0.2686	0.6686	0.077*	
C26	0.3929 (2)	0.37631 (11)	0.65312 (11)	0.0504 (4)	
C27	0.38240 (19)	0.51092 (11)	0.59169 (11)	0.0481 (4)	
C28	0.3391 (2)	0.58737 (12)	0.54582 (12)	0.0565 (5)	
H28A	0.2431	0.5951	0.5199	0.068*	
C29	0.4432 (2)	0.65129 (12)	0.54014 (11)	0.0555 (5)	
H29A	0.4170	0.7020	0.5082	0.067*	
C30	0.1472 (2)	0.42573 (14)	0.57684 (13)	0.0654 (5)	
H30A	0.1256	0.3628	0.5693	0.079*	
H30B	0.1209	0.4546	0.5227	0.079*	
C31	0.0561 (3)	0.4638 (2)	0.63703 (16)	0.0956 (8)	
H31A	-0.0451	0.4547	0.6153	0.143*	
H31B	0.0799	0.4345	0.6905	0.143*	
H31C	0.0752	0.5264	0.6439	0.143*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0529 (9)	0.0477 (8)	0.0619 (9)	-0.0090 (7)	0.0099 (7)	0.0009 (7)
01	0.0803 (11)	0.0948 (12)	0.0924 (11)	-0.0320 (9)	-0.0302 (9)	0.0327 (9)
C1	0.0446 (10)	0.0435 (9)	0.0558 (10)	-0.0163 (8)	0.0040 (8)	-0.0043 (8)
C2	0.0587 (12)	0.0521 (11)	0.0777 (14)	-0.0129 (9)	0.0110 (10)	-0.0071 (10)
C3	0.0608 (13)	0.0662 (14)	0.0950 (17)	-0.0117 (11)	0.0176 (12)	-0.0257 (13)
C4	0.0717 (15)	0.0934 (18)	0.0668 (13)	-0.0241 (13)	0.0226 (11)	-0.0256 (13)
C5	0.0686 (14)	0.0778 (15)	0.0533 (11)	-0.0207 (12)	0.0139 (10)	-0.0083 (10)
C6	0.0512 (11)	0.0537 (11)	0.0473 (9)	-0.0191 (9)	0.0062 (8)	-0.0035 (8)
C7	0.0568 (11)	0.0516 (11)	0.0477 (10)	-0.0154 (9)	0.0024 (8)	0.0071 (8)
C8	0.0474 (10)	0.0439 (9)	0.0498 (9)	-0.0146 (8)	0.0028 (8)	0.0021 (7)
C9	0.0583 (12)	0.0476 (10)	0.0651 (12)	-0.0085 (9)	0.0028 (9)	0.0028 (9)
C10	0.0599 (13)	0.0615 (13)	0.0763 (14)	-0.0026 (10)	0.0110 (11)	-0.0084 (11)
C11	0.0655 (13)	0.0744 (14)	0.0618 (12)	-0.0089 (11)	0.0179 (10)	-0.0092 (11)
C12	0.0590 (12)	0.0634 (12)	0.0512 (10)	-0.0144 (10)	0.0095 (9)	0.0046 (9)
C13	0.0432 (10)	0.0470 (10)	0.0476 (9)	-0.0157 (8)	0.0034 (7)	0.0011 (8)
C14	0.0454 (10)	0.0460 (9)	0.0488 (9)	-0.0169 (8)	0.0010 (7)	0.0036 (7)
C15	0.0531 (11)	0.0562 (11)	0.0595 (11)	-0.0106 (9)	0.0006 (9)	0.0092 (9)
C16	0.0616 (12)	0.0474 (10)	0.0588 (11)	-0.0067 (9)	0.0027 (9)	0.0122 (8)
C17	0.0599 (11)	0.0419 (9)	0.0523 (10)	-0.0042 (8)	0.0121 (8)	0.0030 (8)
C18	0.0539 (11)	0.0438 (9)	0.0484 (9)	-0.0072 (8)	0.0108 (8)	-0.0023 (8)
C19	0.0507 (10)	0.0461 (10)	0.0519 (10)	-0.0002 (8)	0.0102 (8)	-0.0037 (8)
C20	0.0524 (10)	0.0406 (9)	0.0461 (9)	-0.0039 (8)	0.0134 (8)	-0.0059 (7)
C21	0.0612 (12)	0.0428 (9)	0.0474 (9)	0.0001 (8)	0.0164 (8)	-0.0041 (8)
C22	0.0721 (13)	0.0532 (11)	0.0591 (11)	0.0054 (10)	0.0154 (10)	0.0005 (9)
C23	0.0931 (17)	0.0574 (13)	0.0679 (13)	0.0149 (12)	0.0200 (12)	0.0102 (10)
C24	0.121 (2)	0.0447 (11)	0.0717 (14)	0.0014 (13)	0.0411 (14)	0.0078 (10)
C25	0.0860 (15)	0.0480 (11)	0.0656 (12)	-0.0126 (11)	0.0313 (11)	-0.0029 (10)

~ •			0.0405(0)	a a a i = (a)	0.01.00.(0)	
C26	0.0640 (12)	0.0420 (9)	0.0486 (9)	-0.0047 (9)	0.0188 (8)	-0.0045 (8)
C27	0.0526 (11)	0.0425 (9)	0.0494 (9)	-0.0056 (8)	0.0090 (8)	-0.0042 (8)
C28	0.0537 (11)	0.0521 (11)	0.0602 (11)	-0.0056 (9)	-0.0015 (9)	-0.0002 (9)
C29	0.0676 (12)	0.0415 (9)	0.0551 (10)	-0.0030 (9)	0.0026 (9)	0.0036 (8)
C30	0.0596 (13)	0.0633 (13)	0.0716 (13)	-0.0168 (10)	0.0052 (10)	0.0008 (10)
C31	0.0596 (15)	0.146 (3)	0.0823 (16)	0.0084 (15)	0.0128 (12)	-0.0006 (17)

Geometric parameters (Å, °)

N1—C27	1.376 (2)	C16—C17	1.329 (2)
N1—C26	1.384 (2)	C16—H16A	0.9300
N1—C30	1.454 (2)	C17—C18	1.459 (2)
O1—C15	1.220 (2)	C17—H17A	0.9300
C1—C14	1.405 (2)	C18—C19	1.386 (2)
C1—C2	1.422 (3)	C18—C29	1.409 (3)
C1—C6	1.431 (2)	C19—C20	1.378 (2)
C2—C3	1.352 (3)	C19—H19A	0.9300
C2—H2A	0.9300	C20—C27	1.415 (2)
C3—C4	1.410 (3)	C20—C21	1.458 (2)
С3—НЗА	0.9300	C21—C22	1.383 (3)
C4—C5	1.349 (3)	C21—C26	1.406 (3)
C4—H4A	0.9300	C22—C23	1.371 (3)
C5—C6	1.424 (3)	C22—H22A	0.9300
С5—Н5А	0.9300	C23—C24	1.389 (3)
C6—C7	1.387 (3)	С23—Н23А	0.9300
C7—C8	1.389 (2)	C24—C25	1.385 (3)
С7—Н7А	0.9300	C24—H24A	0.9300
C8—C9	1.422 (3)	C25—C26	1.393 (2)
C8—C13	1.431 (2)	С25—Н25А	0.9300
C9—C10	1.347 (3)	C27—C28	1.390 (2)
С9—Н9А	0.9300	C28—C29	1.377 (3)
C10—C11	1.409 (3)	C28—H28A	0.9300
C10—H10A	0.9300	С29—Н29А	0.9300
C11—C12	1.353 (3)	C30—C31	1.500 (3)
C11—H11A	0.9300	С30—Н30А	0.9700
C12—C13	1.429 (2)	С30—Н30В	0.9700
C12—H12A	0.9300	C31—H31A	0.9600
C13—C14	1.399 (2)	C31—H31B	0.9600
C14—C15	1.505 (2)	С31—Н31С	0.9600
C15—C16	1.457 (3)		
C27—N1—C26	108.92 (15)	C16—C17—C18	126.96 (17)
C27—N1—C30	125.24 (16)	С16—С17—Н17А	116.5
C26—N1—C30	125.78 (15)	C18—C17—H17A	116.5
C14—C1—C2	123.03 (17)	C19—C18—C29	119.05 (16)
C14—C1—C6	118.96 (17)	C19—C18—C17	122.42 (17)
C2—C1—C6	118.02 (17)	C29—C18—C17	118.45 (16)
C3—C2—C1	121.3 (2)	C20—C19—C18	120.33 (17)

C3—C2—H2A	119.4	C20—C19—H19A	119.8
C1—C2—H2A	119.4	C18—C19—H19A	119.8
C2—C3—C4	120.6 (2)	C19—C20—C27	119.38 (16)
С2—С3—НЗА	119.7	C19—C20—C21	134.24 (17)
С4—С3—НЗА	119.7	C27—C20—C21	106.38 (15)
C5—C4—C3	120.4 (2)	$C_{22} - C_{21} - C_{26}$	120.01 (17)
C5—C4—H4A	119.8	C^{22} C^{21} C^{20}	133.93(18)
C3-C4-H4A	119.8	$C_{26} = C_{21} = C_{20}$	106.06 (16)
C4-C5-C6	121 1 (2)	C_{23} C_{22} C_{21} C_{20}	1187(2)
C4-C5-H5A	119.5	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	120.6
C6 C5 H5A	119.5	$C_{23} = C_{22} = H_{22} \Lambda$	120.0
C7 C6 C5	119.5	$C_{21} = C_{22} = C_{23} = C_{24}$	120.0 121.1(2)
$C_{7} = C_{6} = C_{1}$	122.10(16)	$C_{22} = C_{23} = C_{24}$	121.1(2)
C = C = C	119.20(10)	C_{22} — C_{23} — H_{23A}	119.5
	118.02 (19)	C24—C23—H23A	119.5
	122.16 (17)	$C_{25} = C_{24} = C_{23}$	121.8 (2)
С6—С/—Н/А	118.9	C25—C24—H24A	119.1
С8—С7—Н7А	118.9	C23—C24—H24A	119.1
C7—C8—C9	122.18 (17)	C24—C25—C26	116.7 (2)
C7—C8—C13	119.25 (17)	С24—С25—Н25А	121.6
C9—C8—C13	118.58 (17)	С26—С25—Н25А	121.6
C10—C9—C8	121.62 (19)	N1—C26—C25	128.88 (19)
С10—С9—Н9А	119.2	N1—C26—C21	109.52 (15)
С8—С9—Н9А	119.2	C25—C26—C21	121.60 (19)
C9—C10—C11	120.0 (2)	N1—C27—C28	129.47 (17)
C9—C10—H10A	120.0	N1—C27—C20	109.11 (15)
C11—C10—H10A	120.0	C28—C27—C20	121.40 (16)
C12—C11—C10	120.90 (19)	C29—C28—C27	117.68 (17)
C12—C11—H11A	119.6	C29—C28—H28A	121.2
C10—C11—H11A	119.5	C27—C28—H28A	121.2
C11—C12—C13	121.09 (18)	C28—C29—C18	122.13 (17)
C11—C12—H12A	119.5	С28—С29—Н29А	118.9
C13—C12—H12A	119.5	С18—С29—Н29А	118.9
C14—C13—C12	123.17 (16)	N1—C30—C31	112.98 (17)
C14—C13—C8	119.04 (16)	N1-C30-H30A	109.0
C12-C13-C8	117 79 (17)	C31—C30—H30A	109.0
C13 - C14 - C1	121 38 (16)	N1-C30-H30B	109.0
C13 - C14 - C15	119.96 (16)	$C_{31} - C_{30} - H_{30B}$	109.0
C1 - C14 - C15	118 64 (17)	$H_{30A} = C_{30} = H_{30B}$	107.8
01 - C15 - C16	121.04 (18)	C30_C31_H31A	107.8
01 - C15 - C14	121.04(10) 110.06(17)	C_{30} C_{31} H_{31R}	109.5
$C_{16} = C_{15} = C_{14}$	119.90(17) 110.00(16)	$121 \wedge C21 \rightarrow 121 \square$	109.5
C10 - C13 - C14	119.00(10) 124.02(17)	$\begin{array}{cccc} \text{H31A} \\ \text{C20} \\ \text{C21} \\ \text{H21C} \\ \text{H21C} \end{array}$	109.5
C17 = C16 = C13	124.05 (17)		109.5
C17 - C10 - H10A	118.0	H3IA—C3I—H3IC	109.5
C15-C10-H10A	118.0	H31B-C31-H31C	109.5
C14—C1—C2—C3	179.71 (17)	C16—C17—C18—C19	-16.4 (3)
C6—C1—C2—C3	-0.9 (3)	C16—C17—C18—C29	160.28 (19)
C1—C2—C3—C4	0.8 (3)	C29—C18—C19—C20	-0.3 (3)

C2—C3—C4—C5	0.2 (3)	C17—C18—C19—C20	176.35 (16)
C3—C4—C5—C6	-1.0 (3)	C18—C19—C20—C27	-1.3 (2)
C4—C5—C6—C7	179.43 (18)	C18-C19-C20-C21	178.28 (17)
C4—C5—C6—C1	0.8 (3)	C19—C20—C21—C22	0.3 (3)
C14—C1—C6—C7	0.9 (2)	C27—C20—C21—C22	179.94 (19)
C2-C1-C6-C7	-178.54 (16)	C19—C20—C21—C26	179.98 (18)
C14—C1—C6—C5	179.53 (15)	C27—C20—C21—C26	-0.37 (18)
C2-C1-C6-C5	0.1 (2)	C26—C21—C22—C23	-0.2 (3)
C5—C6—C7—C8	-179.93 (16)	C20—C21—C22—C23	179.44 (18)
C1—C6—C7—C8	-1.3 (3)	C21—C22—C23—C24	0.6 (3)
C6—C7—C8—C9	-179.38 (16)	C22—C23—C24—C25	-0.2 (3)
C6—C7—C8—C13	0.3 (2)	C23—C24—C25—C26	-0.5 (3)
C7—C8—C9—C10	179.15 (18)	C27—N1—C26—C25	-179.43 (17)
C13—C8—C9—C10	-0.6 (3)	C30—N1—C26—C25	3.2 (3)
C8—C9—C10—C11	-0.2 (3)	C27—N1—C26—C21	-0.17 (19)
C9—C10—C11—C12	0.3 (3)	C30-N1-C26-C21	-177.55 (16)
C10-C11-C12-C13	0.4 (3)	C24—C25—C26—N1	-179.86 (18)
C11—C12—C13—C14	179.25 (17)	C24—C25—C26—C21	1.0 (3)
C11—C12—C13—C8	-1.2 (3)	C22-C21-C26-N1	-179.92 (16)
C7—C8—C13—C14	1.1 (2)	C20-C21-C26-N1	0.33 (18)
C9—C8—C13—C14	-179.17 (15)	C22—C21—C26—C25	-0.6 (3)
C7—C8—C13—C12	-178.51 (15)	C20-C21-C26-C25	179.66 (16)
C9—C8—C13—C12	1.2 (2)	C26—N1—C27—C28	178.40 (18)
C12—C13—C14—C1	178.05 (16)	C30—N1—C27—C28	-4.2 (3)
C8—C13—C14—C1	-1.5 (2)	C26—N1—C27—C20	-0.08 (19)
C12—C13—C14—C15	-3.8 (2)	C30—N1—C27—C20	177.32 (16)
C8—C13—C14—C15	176.65 (15)	C19—C20—C27—N1	180.00 (15)
C2-C1-C14-C13	179.93 (16)	C21—C20—C27—N1	0.28 (18)
C6-C1-C14-C13	0.6 (2)	C19—C20—C27—C28	1.4 (3)
C2-C1-C14-C15	1.7 (2)	C21—C20—C27—C28	-178.35 (16)
C6-C1-C14-C15	-177.65 (15)	N1-C27-C28-C29	-178.00 (17)
C13—C14—C15—O1	-90.0 (2)	C20—C27—C28—C29	0.3 (3)
C1-C14-C15-O1	88.2 (2)	C27—C28—C29—C18	-2.1 (3)
C13—C14—C15—C16	89.2 (2)	C19—C18—C29—C28	2.1 (3)
C1-C14-C15-C16	-92.6 (2)	C17—C18—C29—C28	-174.70 (17)
O1-C15-C16-C17	173.6 (2)	C27—N1—C30—C31	-85.7 (2)
C14—C15—C16—C17	-5.6 (3)	C26—N1—C30—C31	91.2 (2)
C15—C16—C17—C18	-175.80 (18)		

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m)

Crystal data

C₃₅H₂₃NO $M_r = 473.54$ Monoclinic, $P2_1/c$ a = 18.019 (3) Å b = 29.214 (4) Å c = 9.5503 (13) Å $\beta = 97.637$ (2)° $V = 4982.9 (12) \text{ Å}^{3}$ Z = 8 F(000) = 1984 $D_x = 1.262 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3880 reflections $\theta = 2.3-20.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART APEXII DUO CCD area- detector diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	80460 measured reflections 12643 independent reflections 5265 reflections with $I > 2\sigma(I)$ $R_{int} = 0.108$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 1.1^{\circ}$ $h = -24 \rightarrow 24$ $k = -39 \rightarrow 39$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.169$ S = 1.02 12643 reflections 667 parameters	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 2.1214P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³
0 restraints	$\Delta ho_{ m min} = -0.15$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Plate, yellow

 $0.50 \times 0.19 \times 0.13$ mm

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1A	0.70771 (12)	0.46409 (8)	0.2628 (2)	0.0562 (6)	
01A	1.07380 (14)	0.46983 (8)	0.9167 (3)	0.1060 (9)	
C1A	1.11780 (15)	0.36157 (10)	0.9308 (3)	0.0550 (7)	
C2A	1.14020 (18)	0.36671 (12)	0.7943 (4)	0.0746 (9)	
H2AA	1.1228	0.3914	0.7378	0.090*	
C3A	1.1869 (2)	0.33565 (16)	0.7463 (4)	0.0971 (12)	
H3AA	1.2003	0.3390	0.6561	0.117*	
C4A	1.2152 (2)	0.29859 (16)	0.8298 (5)	0.0997 (13)	
H4AA	1.2483	0.2783	0.7958	0.120*	
C5A	1.19497 (19)	0.29218 (12)	0.9589 (5)	0.0857 (11)	
H5AA	1.2139	0.2672	1.0128	0.103*	
C6A	1.14504 (16)	0.32293 (10)	1.0144 (3)	0.0630 (8)	
C7A	1.12271 (18)	0.31728 (11)	1.1474 (3)	0.0716 (9)	
H7AA	1.1408	0.2923	1.2021	0.086*	
C8A	1.07435 (17)	0.34759 (10)	1.2011 (3)	0.0618 (8)	
C9A	1.0514 (2)	0.34237 (12)	1.3384 (3)	0.0852 (11)	
H9AA	1.0695	0.3179	1.3952	0.102*	
C10A	1.0038 (2)	0.37244 (14)	1.3864 (4)	0.0945 (12)	
H10A	0.9897	0.3685	1.4759	0.113*	

C11A	0.9754 (2)	0.40949 (12)	1.3031 (4)	0.0855 (11)
H11A	0.9417	0.4295	1.3369	0.103*
C12A	0.99626 (18)	0.41645 (10)	1.1742 (3)	0.0669 (8)
H12A	0.9772	0.4415	1.1210	0.080*
C13A	1.04704 (15)	0.38610 (9)	1.1177 (3)	0.0531 (7)
C14A	1.06970 (14)	0.39254 (9)	0.9843 (3)	0.0490 (7)
C15A	1.04172 (16)	0.43341 (10)	0.8980 (3)	0.0575 (7)
C16A	0.97565 (15)	0 42839 (10)	0 7923 (3)	0.0572(7)
H16A	0.9504	0.4005	0.7855	0.069*
$C17\Delta$	0.95048 (14)	0.46190 (9)	0.7064 (3)	0.000
H17A	0.0775	0.4801	0.7176	0.062*
	0.9775 0.88611 (14)	0.46221(0)	0.7170	0.002
CIOA	0.80011(14) 0.87527(15)	0.40221(9)	0.5900(2)	0.0401(0)
UIOA	0.87337 (13)	0.49921 (9)	0.5044 (5)	0.0382 (8)
HI9A G20A	0.9082	0.5239	0.5170	0.070*
C20A	0.81/01 (16)	0.50011 (10)	0.3950 (3)	0.0629 (8)
H20A	0.8113	0.5250	0.3337	0.075*
C21A	0.76707 (14)	0.46405 (9)	0.3766 (3)	0.0486 (7)
C22A	0.77644 (15)	0.42742 (9)	0.4683 (3)	0.0524 (7)
H22A	0.7428	0.4031	0.4571	0.063*
C23A	0.83510 (15)	0.42646 (9)	0.5763 (3)	0.0522 (7)
H23A	0.8407	0.4015	0.6370	0.063*
C24A	0.71655 (16)	0.46292 (9)	0.1192 (3)	0.0527 (7)
C25A	0.78105 (17)	0.46512 (10)	0.0569 (3)	0.0629 (8)
H25A	0.8278	0.4673	0.1110	0.075*
C26A	0.7740 (2)	0.46406 (11)	-0.0876 (3)	0.0766 (9)
H26A	0.8169	0.4656	-0.1320	0.092*
C27A	0.7054 (2)	0.46071 (11)	-0.1686(3)	0.0818 (10)
H27A	0.7028	0.4605	-0.2665	0.098*
C28A	0.6409(2)	0.45763 (10)	-0.1087(3)	0.0736 (9)
H28A	0.5947	0.4549	-0.1645	0.088*
C29A	0.64597 (16)	0 45865 (9)	0.0391 (3)	0.0562.(7)
C30A	0.59190 (16)	0.45608 (9)	0.1376(3)	0.0502(7)
C31A	0.59190(10) 0.51464(19)	0.45214(11)	0.1233(4)	0.0390(0)
H31A	0.4871	0.404	0.03/1	0.0017 (10)
C32A	0.4701(2)	0.45237(11)	0.0341 0.2415(5)	0.098
	0.4791(2)	0.43237 (11)	0.2413 (3)	0.0918 (12)
П32А С33А	0.4274	0.4490	0.2310 0.2751(5)	0.110^{-1}
USSA USSA	0.3180 (2)	0.45750 (11)	0.3731 (3)	0.0830(11)
H33A	0.4929	0.4581	0.4532	0.103*
C34A	0.59657 (18)	0.46183 (10)	0.3946 (4)	0.0707 (9)
H34A	0.6235	0.4658	0.4838	0.085*
C35A	0.63152 (16)	0.45997 (9)	0.2741 (3)	0.0573 (7)
N1B	0.75504 (13)	0.31672 (7)	0.7498 (2)	0.0545 (6)
O1B	0.39724 (14)	0.25060 (8)	0.0493 (3)	0.1037 (9)
C1B	0.38794 (16)	0.35263 (10)	-0.0405 (3)	0.0588 (8)
C2B	0.4305 (2)	0.33541 (13)	-0.1434 (4)	0.0877 (11)
H2BA	0.4566	0.3081	-0.1266	0.105*
C3B	0.4336 (3)	0.35821 (17)	-0.2660 (4)	0.1139 (14)
H3BA	0.4606	0.3459	-0.3334	0.137*

C4B	0.3965 (3)	0.40018 (16)	-0.2928 (4)	0.1061 (13)
H4BA	0.4003	0.4158	-0.3763	0.127*
C5B	0.3555 (2)	0.41782 (12)	-0.1987 (4)	0.0840 (10)
H5BA	0.3311	0.4456	-0.2181	0.101*
C6B	0.34842 (17)	0.39491 (10)	-0.0695 (3)	0.0614 (8)
C7B	0.30545 (17)	0.41207 (10)	0.0289 (3)	0.0661 (8)
H7BA	0.2797	0.4394	0.0095	0.079*
C8B	0.29961 (16)	0.38992 (10)	0.1545 (3)	0.0600 (8)
C9B	0.25652 (18)	0.40812 (12)	0.2558 (4)	0.0821 (10)
H9BA	0.2306	0.4355	0.2373	0.099*
C10B	0.2529 (2)	0.38588 (15)	0.3791 (4)	0.0962 (12)
H10B	0.2253	0.3984	0.4452	0.115*
C11B	0.2903(2)	0 34412 (14)	0.4084(4)	0.0887(11)
HIIB	0.2870	0.3293	0 4935	0.106*
C12B	0.33094(17)	0.32540 (11)	0.3147(3)	0.0686 (8)
H12B	0.3545	0.2974	0.3352	0.082*
C13B	0.33845(15)	0.34761 (9)	0.3352 0.1845 (3)	0.052
C14B	0.33045(15) 0.38207(15)	0.32077(0)	0.1845(3)	0.0535(7)
C15B	0.38207(13) 0.42182(17)	0.32977(9) 0.28463(10)	0.0007(3)	0.0530(7)
C16B	0.42182(17) 0.48085(16)	0.28403(10) 0.28167(10)	0.1130(3)	0.0027(8)
U16P	0.48985 (10)	0.25107 (10)	0.2149 (3)	0.0019(8)
C17P	0.5104 0.51502 (15)	0.2343 0.21550 (10)	0.2208	0.074°
U17D	0.31393 (13)	0.31330 (10)	0.2990 (3)	0.0303 (7)
	0.4915	0.3434	0.2039	0.008°
CIOD	0.57872(15)	0.31449(9)	0.4128(3)	0.0323(7)
C19B	0.62943 (16)	0.27845 (10)	0.4343 (3)	0.0636 (8)
HI9B	0.6250	0.2537	0.3724	0.076*
C20B	0.68616 (16)	0.27895 (9)	0.5463 (3)	0.0609 (8)
H20B	0.7189	0.2543	0.5606	0.0/3*
C21B	0.69482 (15)	0.31594 (9)	0.6380 (3)	0.0513 (7)
C22B	0.64470 (16)	0.35165 (9)	0.6181 (3)	0.0586 (8)
H22B	0.6495	0.3765	0.6796	0.070*
C23B	0.58778 (15)	0.35067 (9)	0.5079 (3)	0.0586 (8)
H23B	0.5542	0.3750	0.4963	0.070*
C24B	0.82957 (16)	0.30586 (9)	0.7360 (3)	0.0538 (7)
C25B	0.86218 (18)	0.29651 (10)	0.6159 (3)	0.0651 (8)
H25B	0.8338	0.2960	0.5271	0.078*
C26B	0.93814 (19)	0.28801 (10)	0.6323 (4)	0.0746 (9)
H26B	0.9611	0.2813	0.5530	0.089*
C27B	0.98123 (19)	0.28918 (10)	0.7642 (4)	0.0788 (10)
H27B	1.0322	0.2829	0.7722	0.095*
C28B	0.94911 (19)	0.29957 (10)	0.8828 (4)	0.0728 (9)
H28B	0.9781	0.3008	0.9708	0.087*
C29B	0.87234 (17)	0.30820 (9)	0.8695 (3)	0.0584 (8)
C30B	0.82245 (18)	0.32079 (9)	0.9691 (3)	0.0606 (8)
C31B	0.8318 (2)	0.32666 (11)	1.1151 (3)	0.0823 (10)
H31B	0.8786	0.3231	1.1679	0.099*
C32B	0.7706 (3)	0.33779 (12)	1.1797 (4)	0.0923 (12)
H32B	0.7765	0.3415	1.2773	0.111*

C33B	0.7005 (2)	0.34362 (11)	1.1031 (4)	0.0844 (11)
H33B	0.6603	0.3516	1.1500	0.101*
C34B	0.68903 (19)	0.33782 (9)	0.9578 (3)	0.0667 (8)
H34B	0.6419	0.3416	0.9060	0.080*
C35B	0.75101 (17)	0.32615 (9)	0.8929 (3)	0.0559 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0463 (14)	0.0716 (16)	0.0486 (14)	-0.0026 (12)	-0.0021 (11)	0.0073 (12)
O1A	0.1001 (19)	0.0713 (16)	0.130 (2)	-0.0338 (14)	-0.0479 (15)	0.0325 (14)
C1A	0.0367 (16)	0.0623 (19)	0.0628 (19)	-0.0078 (14)	-0.0048 (14)	-0.0074 (15)
C2A	0.058 (2)	0.088 (3)	0.079 (2)	-0.0115 (18)	0.0133 (18)	-0.0093 (19)
C3A	0.073 (3)	0.121 (4)	0.102 (3)	-0.020 (3)	0.031 (2)	-0.029 (3)
C4A	0.054 (2)	0.107 (3)	0.138 (4)	0.000 (2)	0.013 (3)	-0.043 (3)
C5A	0.056 (2)	0.079 (3)	0.116 (3)	0.0077 (19)	-0.015 (2)	-0.016 (2)
C6A	0.0424 (18)	0.060 (2)	0.080 (2)	0.0045 (15)	-0.0160 (16)	-0.0102 (17)
C7A	0.072 (2)	0.060 (2)	0.074 (2)	0.0050 (17)	-0.0213 (18)	0.0111 (17)
C8A	0.068 (2)	0.0567 (19)	0.0560 (19)	-0.0047 (16)	-0.0090 (15)	0.0053 (15)
C9A	0.118 (3)	0.073 (2)	0.061 (2)	-0.010 (2)	-0.002 (2)	0.0162 (18)
C10A	0.129 (4)	0.091 (3)	0.067 (2)	-0.017 (3)	0.025 (2)	-0.005 (2)
C11A	0.108 (3)	0.075 (2)	0.079 (2)	-0.007 (2)	0.031 (2)	-0.012 (2)
C12A	0.076 (2)	0.058 (2)	0.066 (2)	-0.0043 (17)	0.0100 (17)	-0.0042 (16)
C13A	0.0508 (18)	0.0528 (18)	0.0524 (17)	-0.0060 (14)	-0.0055 (14)	-0.0015 (14)
C14A	0.0402 (16)	0.0515 (17)	0.0515 (17)	-0.0037 (13)	-0.0076 (13)	0.0024 (13)
C15A	0.0518 (18)	0.0578 (19)	0.0601 (18)	-0.0069 (15)	-0.0035 (14)	0.0063 (15)
C16A	0.0577 (19)	0.0539 (18)	0.0558 (17)	-0.0051 (14)	-0.0077 (14)	0.0059 (14)
C17A	0.0538 (17)	0.0520 (17)	0.0475 (16)	-0.0033 (14)	0.0003 (13)	0.0027 (13)
C18A	0.0504 (16)	0.0469 (16)	0.0397 (14)	0.0011 (13)	0.0019 (12)	0.0006 (12)
C19A	0.0564 (18)	0.0504 (17)	0.0632 (18)	-0.0088 (14)	-0.0093 (15)	0.0103 (14)
C20A	0.061 (2)	0.0593 (19)	0.0646 (19)	-0.0017 (16)	-0.0059 (15)	0.0182 (15)
C21A	0.0454 (16)	0.0554 (17)	0.0433 (15)	0.0017 (14)	-0.0006 (12)	0.0038 (13)
C22A	0.0547 (18)	0.0533 (18)	0.0478 (16)	-0.0077 (13)	0.0017 (14)	0.0024 (13)
C23A	0.0621 (19)	0.0489 (17)	0.0438 (15)	-0.0030 (14)	0.0004 (14)	0.0059 (12)
C24A	0.0521 (18)	0.0509 (17)	0.0523 (17)	0.0012 (14)	-0.0039 (14)	0.0026 (13)
C25A	0.057 (2)	0.072 (2)	0.0572 (19)	-0.0008 (16)	0.0004 (15)	0.0037 (15)
C26A	0.090 (3)	0.080 (2)	0.060 (2)	0.0094 (19)	0.0113 (19)	-0.0016 (17)
C27A	0.110 (3)	0.077 (2)	0.056 (2)	0.013 (2)	0.002 (2)	-0.0061 (17)
C28A	0.086 (3)	0.058 (2)	0.067 (2)	0.0068 (18)	-0.0259 (19)	-0.0079 (16)
C29A	0.0574 (19)	0.0443 (17)	0.0625 (19)	0.0033 (14)	-0.0083 (15)	0.0012 (14)
C30A	0.0451 (18)	0.0448 (17)	0.083 (2)	0.0002 (13)	-0.0147 (16)	0.0057 (15)
C31A	0.060 (2)	0.060 (2)	0.119 (3)	-0.0025 (17)	-0.013 (2)	0.008 (2)
C32A	0.049 (2)	0.067 (2)	0.157 (4)	-0.0054 (18)	0.002 (3)	0.020 (3)
C33A	0.067 (2)	0.066 (2)	0.129 (3)	0.0064 (19)	0.032 (2)	0.024 (2)
C34A	0.058 (2)	0.073 (2)	0.082 (2)	0.0024 (17)	0.0120 (18)	0.0180 (17)
C35A	0.0462 (18)	0.0521 (18)	0.072 (2)	0.0016 (14)	0.0019 (16)	0.0111 (15)
N1B	0.0536 (16)	0.0558 (14)	0.0519 (14)	-0.0008 (12)	-0.0010 (12)	0.0017 (11)
O1B	0.126 (2)	0.0615 (15)	0.1070 (19)	0.0105 (14)	-0.0459 (16)	-0.0209 (14)

C1B	0.0581 (19)	0.0586 (19)	0.0557 (18)	-0.0037 (15)	-0.0066 (15)	-0.0021 (15)
C2B	0.097 (3)	0.092 (3)	0.076 (2)	0.011 (2)	0.019 (2)	0.004 (2)
C3B	0.137 (4)	0.124 (4)	0.087 (3)	0.010 (3)	0.039 (3)	0.009 (3)
C4B	0.135 (4)	0.111 (4)	0.073 (3)	-0.015 (3)	0.015 (3)	0.022 (2)
C5B	0.096 (3)	0.073 (2)	0.078 (2)	-0.011 (2)	-0.007 (2)	0.017 (2)
C6B	0.061 (2)	0.0554 (19)	0.0617 (19)	-0.0103 (16)	-0.0148 (16)	0.0044 (16)
C7B	0.059 (2)	0.0495 (18)	0.083 (2)	0.0007 (15)	-0.0130 (18)	0.0011 (17)
C8B	0.0497 (18)	0.0560 (19)	0.071 (2)	-0.0037 (15)	-0.0048 (15)	-0.0027 (16)
C9B	0.064 (2)	0.074 (2)	0.108 (3)	0.0090 (18)	0.011 (2)	-0.006 (2)
C10B	0.089 (3)	0.107 (3)	0.098 (3)	0.008 (2)	0.032 (2)	-0.008 (3)
C11B	0.089 (3)	0.104 (3)	0.077 (2)	0.002 (2)	0.022 (2)	0.007 (2)
C12B	0.063 (2)	0.072 (2)	0.068 (2)	-0.0015 (17)	0.0006 (17)	0.0072 (18)
C13B	0.0456 (17)	0.0513 (17)	0.0591 (18)	-0.0038 (14)	-0.0082 (14)	0.0009 (14)
C14B	0.0460 (17)	0.0538 (17)	0.0547 (17)	0.0010 (14)	-0.0105 (14)	-0.0036 (14)
C15B	0.067 (2)	0.0548 (19)	0.0621 (19)	0.0009 (16)	-0.0084 (16)	-0.0054 (15)
C16B	0.062 (2)	0.0519 (18)	0.067 (2)	0.0092 (15)	-0.0061 (16)	-0.0007 (15)
C17B	0.0528 (18)	0.0500 (17)	0.0644 (19)	0.0072 (14)	-0.0001 (14)	0.0056 (14)
C18B	0.0479 (17)	0.0489 (17)	0.0580 (17)	0.0019 (14)	-0.0030 (14)	0.0044 (14)
C19B	0.066 (2)	0.0551 (18)	0.0646 (19)	0.0102 (15)	-0.0100 (16)	-0.0102 (15)
C20B	0.061 (2)	0.0496 (18)	0.0676 (19)	0.0130 (14)	-0.0081 (16)	-0.0032 (15)
C21B	0.0539 (18)	0.0463 (17)	0.0516 (16)	-0.0017 (14)	-0.0002 (14)	0.0035 (13)
C22B	0.062 (2)	0.0451 (17)	0.0659 (19)	0.0014 (15)	-0.0013 (16)	-0.0038 (14)
C23B	0.0524 (18)	0.0447 (17)	0.076 (2)	0.0069 (13)	-0.0035 (15)	0.0026 (15)
C24B	0.0533 (19)	0.0454 (16)	0.0606 (19)	-0.0061 (14)	-0.0002 (15)	0.0042 (14)
C25B	0.066 (2)	0.0599 (19)	0.068 (2)	-0.0054 (16)	0.0038 (17)	0.0018 (15)
C26B	0.068 (2)	0.064 (2)	0.094 (3)	-0.0066 (18)	0.020 (2)	-0.0039 (18)
C27B	0.059 (2)	0.061 (2)	0.113 (3)	-0.0075 (17)	-0.001 (2)	-0.003 (2)
C28B	0.065 (2)	0.058 (2)	0.087 (2)	-0.0115 (17)	-0.0179 (19)	-0.0019 (18)
C29B	0.060 (2)	0.0478 (17)	0.064 (2)	-0.0098 (15)	-0.0036 (16)	-0.0001 (14)
C30B	0.073 (2)	0.0443 (17)	0.0590 (19)	-0.0113 (15)	-0.0111 (17)	-0.0030 (14)
C31B	0.107 (3)	0.071 (2)	0.062 (2)	-0.007 (2)	-0.015 (2)	-0.0104 (18)
C32B	0.146 (4)	0.073 (2)	0.057 (2)	0.006 (2)	0.010 (3)	-0.0099 (18)
C33B	0.124 (3)	0.060 (2)	0.074 (3)	0.011 (2)	0.032 (2)	0.0011 (18)
C34B	0.082 (2)	0.0485 (18)	0.071 (2)	0.0028 (16)	0.0127 (18)	0.0013 (15)
C35B	0.072 (2)	0.0416 (16)	0.0535 (18)	-0.0052 (15)	0.0054 (16)	-0.0008 (13)

Geometric parameters (Å, °)

N1A—C35A	1.397 (3)	N1B—C24B	1.403 (3)
N1A—C24A	1.402 (3)	N1B—C35B	1.405 (3)
N1A—C21A	1.420 (3)	N1B—C21B	1.418 (3)
01A-C15A	1.213 (3)	O1B—C15B	1.218 (3)
C1A—C14A	1.396 (4)	C1B—C14B	1.402 (4)
C1A—C2A	1.423 (4)	C1B—C2B	1.416 (4)
C1A—C6A	1.431 (4)	C1B—C6B	1.434 (4)
C2A—C3A	1.358 (5)	C2B—C3B	1.355 (5)
C2A—H2AA	0.9300	C2B—H2BA	0.9300
C3A—C4A	1.401 (5)	C3B—C4B	1.404 (5)

СЗА—НЗАА	0.9300	СЗВ—НЗВА	0.9300
C4A—C5A	1.344 (5)	C4B—C5B	1.340 (5)
C4A—H4AA	0.9300	C4B—H4BA	0.9300
C5A—C6A	1.423 (4)	C5B—C6B	1.424 (4)
С5А—Н5АА	0.9300	C5B—H5BA	0.9300
C6A—C7A	1.392 (4)	C6B—C7B	1.388 (4)
C7A—C8A	1.388 (4)	C7B—C8B	1.379 (4)
С7А—Н7АА	0.9300	С7В—Н7ВА	0.9300
C8A—C13A	1.428 (4)	C8B—C9B	1.422 (4)
C8A—C9A	1.435 (4)	C8B—C13B	1.431 (4)
C9A—C10A	1.350 (5)	C9B—C10B	1.354 (5)
С9А—Н9АА	0.9300	С9В—Н9ВА	0.9300
C10A—C11A	1.400 (5)	C10B—C11B	1.404 (5)
C10A—H10A	0.9300	C10B—H10B	0.9300
C11A—C12A	1.350 (4)	C11B—C12B	1.345 (4)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1,430 (4)	C12B—C13B	1.424 (4)
C12A—H12A	0.9300	C12B—H12B	0.9300
C13A—C14A	1.401 (4)	C13B—C14B	1.399 (4)
C14A—C15A	1.500 (4)	C14B—C15B	1.506 (4)
C15A—C16A	1.462 (4)	C15B—C16B	1.463 (4)
C16A—C17A	1.319 (3)	C16B—C17B	1.320 (4)
C16A—H16A	0.9300	C16B—H16B	0.9300
C17A—C18A	1.460 (3)	C17B—C18B	1.461 (4)
C17A—H17A	0.9300	C17B—H17B	0.9300
C18A—C23A	1.387 (3)	C18B—C23B	1.389 (4)
C18A—C19A	1.388 (3)	C18B—C19B	1.391 (4)
C19A—C20A	1.381 (4)	C19B—C20B	1.378 (4)
С19А—Н19А	0.9300	C19B—H19B	0.9300
C20A—C21A	1.381 (4)	C20B—C21B	1.386 (4)
C20A—H20A	0.9300	C20B—H20B	0.9300
C21A—C22A	1.379 (3)	C21B—C22B	1.376 (4)
C22A—C23A	1.375 (3)	C22B—C23B	1.369 (4)
C22A—H22A	0.9300	C22B—H22B	0.9300
С23А—Н23А	0.9300	C23B—H23B	0.9300
C24A—C25A	1.376 (4)	C24B—C25B	1.383 (4)
C24A—C29A	1.400 (4)	C24B—C29B	1.401 (4)
C25A—C26A	1.369 (4)	C25B—C26B	1.379 (4)
С25А—Н25А	0.9300	C25B—H25B	0.9300
C26A—C27A	1.371 (4)	C26B—C27B	1.390 (4)
С26А—Н26А	0.9300	C26B—H26B	0.9300
C27A—C28A	1.366 (4)	C27B—C28B	1.372 (4)
С27А—Н27А	0.9300	C27B—H27B	0.9300
C28A—C29A	1.403 (4)	C28B—C29B	1.395 (4)
C28A—H28A	0.9300	C28B—H28B	0.9300
C29A—C30A	1.443 (4)	C29B—C30B	1.441 (4)
C30A—C31A	1.386 (4)	C30B—C31B	1.392 (4)
C30A—C35A	1.405 (4)	C30B—C35B	1.401 (4)

C21A C22A	1 270 (5)	C21D C22D	1 271 (5)
C31A—C32A	1.370 (5)	C31B-C32B	1.3/1 (5)
C3IA—H3IA	0.9300	C3IB—H3IB	0.9300
C32A—C33A	1.384 (5)	C32B—C33B	1.384 (5)
C32A—H32A	0.9300	C32B—H32B	0.9300
C33A—C34A	1.398 (4)	C33B—C34B	1.386 (4)
С33А—Н33А	0.9300	C33B—H33B	0.9300
C34A—C35A	1.385 (4)	C34B—C35B	1.390 (4)
C34A—H34A	0.9300	C34B—H34B	0.9300
C35A—N1A—C24A	108.3 (2)	C24B—N1B—C35B	108.0 (2)
C35A—N1A—C21A	126.1 (2)	C24B—N1B—C21B	124.9 (2)
C24A—N1A—C21A	125.2 (2)	C35B—N1B—C21B	127.0 (2)
C14A—C1A—C2A	122.2 (3)	C14B—C1B—C2B	122.8 (3)
C14A - C1A - C6A	1194(3)	C14B— $C1B$ — $C6B$	1190(3)
$C^2A - C^1A - C^6A$	118 5 (3)	C^{2B} C^{1B} C^{6B}	119.0(3) 118.2(3)
C_{2A} C_{2A} C_{1A}	120.2(4)	C_{2B} C_{2B} C_{1B} C_{1B}	120.0(4)
$C_{2A} = C_{2A} = C_{1A}$	120.2 (4)	$C_{2D} = C_{2D} = C_{1D}$	120.9 (4)
$C_{A} = C_{A} = H_{A}$	119.9	$C_{3}D_{-}C_{2}D_{-}H_{2}D_{A}$	119.0
CIA - C2A - HZAA	119.9	CIB - C2B - H2BA	119.0
$C_2A = C_3A = C_4A$	121.3 (4)		120.9 (4)
С2А—С3А—НЗАА	119.3	С2В—С3В—Н3ВА	119.5
С4А—С3А—НЗАА	119.3	C4B—C3B—H3BA	119.5
C5A—C4A—C3A	120.5 (4)	C5B—C4B—C3B	120.3 (4)
С5А—С4А—Н4АА	119.8	C5B—C4B—H4BA	119.8
СЗА—С4А—Н4АА	119.8	C3B—C4B—H4BA	119.8
C4A—C5A—C6A	121.1 (4)	C4B—C5B—C6B	121.4 (4)
С4А—С5А—Н5АА	119.5	C4B—C5B—H5BA	119.3
С6А—С5А—Н5АА	119.5	C6B—C5B—H5BA	119.3
C7A—C6A—C5A	122.6 (3)	C7B—C6B—C5B	122.6 (3)
C7A—C6A—C1A	118.9 (3)	C7B—C6B—C1B	119.2 (3)
C5A—C6A—C1A	118.5 (3)	C5B—C6B—C1B	118.2 (3)
C8A - C7A - C6A	122.2(3)	C8B-C7B-C6B	122.2(3)
C8A - C7A - H7AA	118.9	C8B - C7B - H7BA	118.9
C6A - C7A - H7AA	118.9	C6B-C7B-H7BA	118.9
C7A C8A C13A	118.0 (2)	C7P $C8P$ $C0P$	1210(3)
C7A C8A C0A	110.9(3)	C7P $C9P$ $C13P$	121.9(3) 110.2(3)
$C_{A} = C_{A} = C_{A}$	122.8(3)	$C/B = C\delta B = C13B$	119.2(3)
C13A - C8A - C9A	118.3 (3)	$C_{9B} = C_{8B} = C_{13B}$	118.9 (5)
CIOA—C9A—C8A	121.0 (3)	CIOB—C9B—C8B	120.4 (3)
С10А—С9А—Н9АА	119.5	С10В—С9В—Н9ВА	119.8
С8А—С9А—Н9АА	119.5	С8В—С9В—Н9ВА	119.8
C9A—C10A—C11A	120.7 (3)	C9B—C10B—C11B	120.9 (4)
C9A—C10A—H10A	119.6	C9B—C10B—H10B	119.5
C11A—C10A—H10A	119.6	C11B—C10B—H10B	119.5
C12A—C11A—C10A	120.6 (3)	C12B—C11B—C10B	120.6 (3)
C12A—C11A—H11A	119.7	C12B—C11B—H11B	119.7
C10A—C11A—H11A	119.7	C10B—C11B—H11B	119.7
C11A—C12A—C13A	121.4 (3)	C11B—C12B—C13B	121.2 (3)
C11A—C12A—H12A	119.3	C11B—C12B—H12B	119.4
C13A—C12A—H12A	119.3	C13B—C12B—H12B	119.4

C14A—C13A—C8A	119.5 (3)	C14B—C13B—C12B	122.7(3)
C14A—C13A—C12A	122.6 (3)	C14B—C13B—C8B	119.4 (3)
C8A - C13A - C12A	1179(3)	C12B—C13B—C8B	1179(3)
C1A - C14A - C13A	12112(2)	C13B-C14B-C1B	1210(3)
C1A - C14A - C15A	121.1(2) 1197(3)	C13B— $C14B$ — $C15B$	121.0(3) 120.8(3)
C_{13A} C_{14A} C_{15A}	119.3 (3)	C1B - C14B - C15B	120.0(3) 118.2(3)
O1A - C15A - C16A	119.5(3) 121.2(3)	O1B $C15B$ $C16B$	120.1(3)
O1A - C15A - C14A	121.2(3) 1199(2)	01B - C15B - C14B	120.1(3) 1100(3)
C_{16A} C_{15A} C_{14A}	119.9(2) 118.9(2)	C16B-C15B-C14B	119.9(3) 120.0(3)
C17A $C16A$ $C15A$	110.9(2) 122.4(3)	C17B $C16B$ $C15B$	120.0(3) 124.0(3)
C17A $C16A$ $H16A$	122.4 (5)	C17B $C16B$ $H16B$	124.0 (3)
$C_{1/A} = C_{10A} = H_{10A}$	118.8	C15P $C16P$ $H16P$	118.0
C16A = C17A = C18A	110.0 120.0(2)	C16P C17P C19P	110.0 128.0(2)
C16A = C17A = C18A	129.0 (5)	C16B - C17B - C18B	126.0 (5)
C10A - C17A - H17A	115.5	C10B— $C17B$ — $H17B$	116.0
C18A - C1/A - H1/A	115.5	$C_{18B} - C_{1/B} - H_{1/B}$	110.0
C_{23A} C_{18A} C_{17A}	117.8 (2)	$C_{23}B - C_{18}B - C_{19}B$	117.3(2)
$C_{23}A \rightarrow C_{18}A \rightarrow C_{17}A$	122.8 (2)	$C_{23}B \rightarrow C_{18}B \rightarrow C_{17}B$	118.9 (2)
C19A - C18A - C17A	119.4 (2)	C19B—C18B—C17B	123.6 (3)
C20A—C19A—C18A	121.3 (3)	C20B—C19B—C18B	120.8 (3)
C20A—C19A—H19A	119.3	C20B—C19B—H19B	119.6
С18А—С19А—Н19А	119.3	C18B—C19B—H19B	119.6
C19A—C20A—C21A	120.0 (3)	C19B—C20B—C21B	120.5 (3)
C19A—C20A—H20A	120.0	C19B—C20B—H20B	119.7
C21A—C20A—H20A	120.0	C21B—C20B—H20B	119.7
C22A—C21A—C20A	119.2 (2)	C22B—C21B—C20B	119.1 (2)
C22A—C21A—N1A	120.2 (2)	C22B—C21B—N1B	120.9 (2)
C20A—C21A—N1A	120.6 (2)	C20B—C21B—N1B	119.9 (2)
C23A—C22A—C21A	120.6 (3)	C23B—C22B—C21B	120.1 (3)
C23A—C22A—H22A	119.7	C23B—C22B—H22B	120.0
C21A—C22A—H22A	119.7	C21B—C22B—H22B	120.0
C22A—C23A—C18A	121.0 (2)	C22B—C23B—C18B	122.0 (3)
C22A—C23A—H23A	119.5	C22B—C23B—H23B	119.0
C18A—C23A—H23A	119.5	C18B—C23B—H23B	119.0
C25A—C24A—C29A	121.8 (3)	C25B—C24B—C29B	121.4 (3)
C25A—C24A—N1A	129.4 (2)	C25B—C24B—N1B	129.8 (3)
C29A—C24A—N1A	108.9 (3)	C29B—C24B—N1B	108.7 (3)
C26A—C25A—C24A	117.7 (3)	C26B—C25B—C24B	117.8 (3)
C26A—C25A—H25A	121.2	C26B—C25B—H25B	121.1
C24A—C25A—H25A	121.2	C24B—C25B—H25B	121.1
C25A—C26A—C27A	121.7 (3)	C25B—C26B—C27B	121.6 (3)
C25A—C26A—H26A	119.1	C25B—C26B—H26B	119.2
C27A—C26A—H26A	119.1	C27B—C26B—H26B	119.2
C28A—C27A—C26A	121.5 (3)	C28B—C27B—C26B	120.5 (3)
С28А—С27А—Н27А	119.3	C28B—C27B—H27B	119.8
С26А—С27А—Н27А	119.3	C26B—C27B—H27B	119.8
C27A—C28A—C29A	118.3 (3)	C27B—C28B—C29B	119.1 (3)
C27A—C28A—H28A	120.8	C27B—C28B—H28B	120.4
C29A—C28A—H28A	120.8	C29B—C28B—H28B	120.4

C24A—C29A—C28A	119.0 (3)	C28B—C29B—C24B	119.5 (3)
C24A—C29A—C30A	107.0 (2)	C28B—C29B—C30B	133.2 (3)
C28A—C29A—C30A	134.0 (3)	C24B—C29B—C30B	107.3 (3)
C31A—C30A—C35A	118.6 (3)	C31B—C30B—C35B	119.1 (3)
C31A—C30A—C29A	134.2 (3)	C31B-C30B-C29B	133.6 (3)
C35A - C30A - C29A	107.3(2)	$C_{35B} = C_{30B} = C_{29B}$	107.2(3)
$C_{32} = C_{31} = C_{30}$	107.3(2) 119.4(3)	$C_{32B} = C_{31B} = C_{30B}$	107.2(3)
$C_{32A} = C_{31A} = C_{30A}$	119.4 (5)	C32B C31B U31B	120.6
C_{2}	120.3	C_{20} C_{21} D_{121} D_{21}	120.0
C30A—C31A—FISTA	120.5		120.0
C31A—C32A—C33A	121.4 (3)	C31B—C32B—C33B	121.5 (3)
C31A—C32A—H32A	119.3	C31B—C32B—H32B	119.2
C33A—C32A—H32A	119.3	C33B—C32B—H32B	119.2
C32A—C33A—C34A	121.1 (3)	C32B—C33B—C34B	121.2 (3)
C32A—C33A—H33A	119.4	C32B—C33B—H33B	119.4
C34A—C33A—H33A	119.4	C34B—C33B—H33B	119.4
C35A—C34A—C33A	116.5 (3)	C33B—C34B—C35B	117.1 (3)
С35А—С34А—Н34А	121.8	C33B—C34B—H34B	121.5
C33A—C34A—H34A	121.8	C35B—C34B—H34B	121.5
C34A—C35A—N1A	128.4 (3)	C34B—C35B—C30B	122.2 (3)
C34A—C35A—C30A	122.9 (3)	C34B—C35B—N1B	129.1 (3)
N1A—C35A—C30A	108.6 (3)	C30B—C35B—N1B	108.7 (3)
C14A—C1A—C2A—C3A	-179.8 (3)	C14B—C1B—C2B—C3B	178.8 (3)
C6A—C1A—C2A—C3A	-0.6 (4)	C6B—C1B—C2B—C3B	-0.2(5)
C1A—C2A—C3A—C4A	-1.3 (5)	C1B—C2B—C3B—C4B	1.8 (6)
C2A—C3A—C4A—C5A	1.9 (6)	C2B—C3B—C4B—C5B	-1.9(7)
C3A—C4A—C5A—C6A	-0.6(5)	C3B - C4B - C5B - C6B	02(6)
C4A - C5A - C6A - C7A	179 8 (3)	C4B-C5B-C6B-C7B	-179.0(3)
C4A - C5A - C6A - C1A	-1.2(5)	C4B - C5B - C6B - C1B	14(5)
$C_{14} - C_{14} - C_{64} - C_{74}$	1.2(3)	$C_{14B} = C_{1B} = C_{6B} = C_{7B}$	1.4(3)
C_{2A} C_{1A} C_{6A} C_{7A}	-179.2(3)	$C^{2}B$ $C^{1}B$ $C^{6}B$ $C^{7}B$	1700(3)
$C_{14A} = C_{1A} = C_{6A} = C_{7A}$	-179.2(3)	$C_{2D} = C_{1D} = C_{0D} = C_{7D}$	179.0(3) 179.5(3)
$C_{14A} = C_{1A} = C_{0A} = C_{5A}$	1/9.0(3)	C14D - C1D - C0D - C5D	-14(4)
$C_{2A} = C_{1A} = C_{0A} = C_{3A}$	1.0(4)	$C_{2}B = C_{1}B = C_{0}B = C_{3}B$	-1.4(4)
$C_{A} = C_{A} = C_{A} = C_{A}$	1/9.0(3)	$C_{3}D = C_{0}D = C_{7}D = C_{8}D$	-1/9.2(3)
CIA = COA = C/A = COA	0.6 (4)		0.3(4)
C6A - C/A - C8A - C13A	-0.5 (4)	C6B-C7B-C8B-C9B	1/8.9 (3)
C6A—C/A—C8A—C9A	-1/9.5 (3)		-0.6 (4)
C/A—C8A—C9A—C10A	-179.5 (3)	C/B—C8B—C9B—C10B	-178.9(3)
C13A—C8A—C9A—C10A	1.5 (5)	C13B—C8B—C9B—C10B	0.6 (5)
C8A—C9A—C10A—C11A	0.2 (6)	C8B—C9B—C10B—C11B	-1.2 (6)
C9A—C10A—C11A—C12A	-1.4 (6)	C9B—C10B—C11B—C12B	0.3 (6)
C10A—C11A—C12A—C13A	0.8 (5)	C10B—C11B—C12B—C13B	1.2 (5)
C7A—C8A—C13A—C14A	-0.2 (4)	C11B—C12B—C13B—C14B	178.0 (3)
C9A-C8A-C13A-C14A	178.8 (3)	C11B—C12B—C13B—C8B	-1.8 (4)
C7A—C8A—C13A—C12A	179.0 (3)	C7B-C8B-C13B-C14B	0.6 (4)
C9A—C8A—C13A—C12A	-2.0 (4)	C9B-C8B-C13B-C14B	-178.9 (3)
C11A—C12A—C13A—C14A	-179.9 (3)	C7B-C8B-C13B-C12B	-179.6 (3)
C11A—C12A—C13A—C8A	0.9 (4)	C9B-C8B-C13B-C12B	0.9 (4)

C2A—C1A—C14A—C13A	178.4 (2)	C12B—C13B—C14B—C1B	179.9 (3)
C6A—C1A—C14A—C13A	-0.8(4)	C8B—C13B—C14B—C1B	-0.3 (4)
C2A—C1A—C14A—C15A	-1.6(4)	C12B—C13B—C14B—C15B	2.0 (4)
C6A—C1A—C14A—C15A	179.2 (2)	C8B—C13B—C14B—C15B	-178.2(2)
C8A—C13A—C14A—C1A	0.9 (4)	C2B— $C1B$ — $C14B$ — $C13B$	-178.9(3)
C12A— $C13A$ — $C14A$ — $C1A$	-1783(2)	C6B-C1B-C14B-C13B	0.0(4)
C8A - C13A - C14A - C15A	-1791(2)	C^{2B} C^{1B} C^{14B} C^{15B}	-10(4)
C_{12A} C_{13A} C_{14A} C_{15A}	17.1(2)	C6B— $C1B$ — $C14B$ — $C15B$	177.9(2)
C1A— $C14A$ — $C15A$ — $O1A$	-952(4)	C13B-C14B-C15B-O1B	1043(3)
C_{134} C_{144} C_{154} O_{14}	84 8 (4)	C1B - C14B - C15B - O1B	-73.6(4)
$C_{1}^{1} \wedge C_{1}^{1} \wedge C_{1$	84.8 (3)	$\begin{array}{c} C13B \\ C14B \\ C15B \\ C15B \\ C16B \\ C1$	-75.7(4)
C_{13} C_{14} C_{15} C_{16}	-95.2(3)	C1B C14B C15B C16B	106.3 (3)
$\begin{array}{c} C15A \\ \hline \\ C15A \\ \hline \\ C15A \\ \hline \\ C16A \\ \hline \\ C17A \\ \hline \\ C17A \\ \hline \\ \end{array}$	95.2(5)	$\begin{array}{c} C1D - C14D - C15D - C10D \\ O1B - C15B - C16B - C17B \\ \end{array}$	-1726(3)
C14A $C15A$ $C16A$ $C17A$	-175.6(2)	C14P $C15P$ $C16P$ $C17P$	74(5)
C14A - C15A - C16A - C17A	-173.0(3)	C14B - C15B - C10B - C17B	7.4(3)
C16A = C17A = C18A = C22A	1/9.7(3)	C15B— $C10B$ — $C1/B$ — $C18B$	1/3.3(3)
C16A - C17A - C18A - C23A	/.0 (4)	C10B-C17B-C18B-C23B	-100.7(3)
C16A - C17A - C18A - C19A	-1/1.2(3)	C10B - C17B - C10B - C19B	11.4 (5)
C23A - C18A - C19A - C20A	-1.6(4)	C23B—C18B—C19B—C20B	0.1 (4)
C17A— $C18A$ — $C19A$ — $C20A$	177.4 (3)	C1/B—C18B—C19B—C20B	-178.0(3)
CI8A—CI9A—C20A—C2IA	1.2 (4)	C18B—C19B—C20B—C21B	-1.5 (5)
C19A—C20A—C21A—C22A	-0.1(4)	C19B—C20B—C21B—C22B	1.8 (4)
C19A—C20A—C21A—N1A	-178.7 (3)	C19B—C20B—C21B—N1B	-177.8 (3)
C35A—N1A—C21A—C22A	57.7 (4)	C24B—N1B—C21B—C22B	-133.4 (3)
C24A—N1A—C21A—C22A	-114.5 (3)	C35B—N1B—C21B—C22B	49.8 (4)
C35A—N1A—C21A—C20A	-123.8 (3)	C24B—N1B—C21B—C20B	46.2 (4)
C24A—N1A—C21A—C20A	64.1 (4)	C35B—N1B—C21B—C20B	-130.6 (3)
C20A—C21A—C22A—C23A	-0.6(4)	C20B—C21B—C22B—C23B	-0.9 (4)
N1A—C21A—C22A—C23A	178.0 (2)	N1B—C21B—C22B—C23B	178.7 (3)
C21A—C22A—C23A—C18A	0.2 (4)	C21B—C22B—C23B—C18B	-0.5 (4)
C19A—C18A—C23A—C22A	0.9 (4)	C19B—C18B—C23B—C22B	0.8 (4)
C17A—C18A—C23A—C22A	-178.0 (2)	C17B—C18B—C23B—C22B	179.1 (3)
C35A—N1A—C24A—C25A	-178.9 (3)	C35B—N1B—C24B—C25B	-176.2 (3)
C21A—N1A—C24A—C25A	-5.6 (5)	C21B—N1B—C24B—C25B	6.4 (4)
C35A—N1A—C24A—C29A	0.7 (3)	C35B—N1B—C24B—C29B	0.3 (3)
C21A—N1A—C24A—C29A	174.0 (2)	C21B—N1B—C24B—C29B	-177.1 (2)
C29A—C24A—C25A—C26A	1.5 (4)	C29B—C24B—C25B—C26B	2.1 (4)
N1A-C24A-C25A-C26A	-178.9 (3)	N1B-C24B-C25B-C26B	178.2 (3)
C24A—C25A—C26A—C27A	-0.3 (5)	C24B—C25B—C26B—C27B	-0.7 (4)
C25A—C26A—C27A—C28A	-0.9(5)	C25B—C26B—C27B—C28B	-0.9 (5)
C26A—C27A—C28A—C29A	0.9 (5)	C26B—C27B—C28B—C29B	1.1 (5)
C25A—C24A—C29A—C28A	-1.5 (4)	C27B—C28B—C29B—C24B	0.4 (4)
N1A—C24A—C29A—C28A	178.8 (2)	C27B—C28B—C29B—C30B	-178.4(3)
C25A—C24A—C29A—C30A	178.4 (3)	C25B—C24B—C29B—C28B	-2.0(4)
N1A—C24A—C29A—C30A	-1.3 (3)	N1B—C24B—C29B—C28B	-178.8 (2)
C27A—C28A—C29A—C24A	0.2 (4)	C25B—C24B—C29B—C30B	177.0 (2)
C27A—C28A—C29A—C30A	-179.6 (3)	N1B—C24B—C29B—C30B	0.2 (3)
C24A—C29A—C30A—C31A	179.3 (3)	C28B—C29B—C30B—C31B	-3.8 (6)
C28A—C29A—C30A—C31A	-0.9 (6)	C24B—C29B—C30B—C31B	177.3 (3)

C24A—C29A—C30A—C35A	1.4 (3) -178 8 (2)	C28B—C29B—C30B—C35B	178.3 (3)
C28A—C29A—C30A—C33A C35A—C30A—C31A—C32A	0.3 (4)	C35B—C30B—C31B—C32B	-0.4(5)
C29A—C30A—C31A—C32A	-177.4 (3)	C29B—C30B—C31B—C32B	-178.1 (3)
C30A—C31A—C32A—C33A	1.5 (5)	C30B—C31B—C32B—C33B	-0.5(5)
C31A—C32A—C33A—C34A	-1.2 (5)	C31B—C32B—C33B—C34B	0.9 (5)
C32A—C33A—C34A—C35A	-1.0 (5)	C32B—C33B—C34B—C35B	-0.3 (5)
C33A—C34A—C35A—N1A	178.8 (3)	C33B—C34B—C35B—C30B	-0.6 (4)
C33A—C34A—C35A—C30A	2.9 (4)	C33B—C34B—C35B—N1B	177.6 (3)
C24A—N1A—C35A—C34A	-176.3 (3)	C31B—C30B—C35B—C34B	1.0 (4)
C21A—N1A—C35A—C34A	10.5 (5)	C29B—C30B—C35B—C34B	179.2 (2)
C24A—N1A—C35A—C30A	0.1 (3)	C31B—C30B—C35B—N1B	-177.5 (2)
C21A—N1A—C35A—C30A	-173.1 (2)	C29B—C30B—C35B—N1B	0.7 (3)
C31A—C30A—C35A—C34A	-2.6 (4)	C24B—N1B—C35B—C34B	-179.0 (3)
C29A—C30A—C35A—C34A	175.7 (3)	C21B—N1B—C35B—C34B	-1.7 (4)
C31A—C30A—C35A—N1A	-179.2 (2)	C24B—N1B—C35B—C30B	-0.6 (3)
C29A—C30A—C35A—N1A	-0.9 (3)	C21B—N1B—C35B—C30B	176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$C12B$ — $H12B$ ···· $O1B^{i}$	0.93	2.51	3.266 (4)	138
C5B—H5BA···Cg6 ⁱⁱ	0.93	2.79	3.585 (4)	144
C27—H27 <i>B</i> ··· <i>Cg</i> 7	0.93	2.85	3.577 (4)	136
C28—H28 <i>B</i> … <i>Cg</i> 8	0.93	2.70	3.382 (4)	130
C11—H11 <i>A</i> … <i>Cg</i> 9 ⁱⁱⁱ	0.93	2.85	3.742 (4)	161
C7—H7 <i>BA</i> ··· <i>Cg</i> 10 ⁱⁱ	0.93	2.90	3.704 (3)	145

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*+1, -*y*, -*z*; (iii) *x*, *y*, *z*+1.