

One-pot synthesis of (1*RS*,21*SR*)-diethyl 2-[23amino-22-ethoxycarbonyl-8,11,14-trioxa-25-azatetracyclo[19.3.1.0^{2,7}.0^{15,20}]pentacosa-2,4,6,15(20),16,18,22-heptaen-25-yl]but-2endioate

Thi Thanh Van Tran,^a* Tuan Anh Le,^a Hong Hieu Truong,^b Thi Nhung Dao,^a Anatoly T. Soldatenkov^b and Victor N Khrustalev^{c,d}

^aFaculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam, ^bOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, ^cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and ^dNational Research Centre 'Kurchatov Institute', 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation. *Correspondence e-mail: tvche@yahoo.com

The title compound, $C_{30}H_{34}N_2O_9$ (4), is a product of the Michael reaction of azacrown ether with dimethyl acetylenedicarboxylate modified by an addition of NH₃ (aq.) at 298 K. The aza-14-crown-4-ether ring adopts a bowl conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 8.65 (5)°. The tetrahydropyridine ring has a boat conformation. The molecular conformation is supported by one N-H···O and two C-H···O intramolecular hydrogen bonds. Both heterocyclic and amino N atoms have essentially planar configurations (sums of the bond angles are 359.35 and 358.00°). Compound 4 crystallizes as a racemate consisting of enantiomeric pairs of the 1*R*,21*S* diastereomer. In the crystal, molecules of 4 are connected by N-H···O hydrogen bonds, forming chains along [100]. According to the *PASS* program (computer prediction of biological activities), compound 4 may exhibit antiallergic (72% probability) and antiasthmatic (67%) activity, as well as be a membrane permeability inhibitor (65%).

1. Chemical context

Over the last several decades, azacrown ethers have been designed, synthesized and applied as macrocyclic ligands for coordination chemistry (Hiraoka, 1978; Pedersen, 1988; Schwan & Warkentin, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently, we have developed effective new methods for the synthesis of azacrown ethers containing the heterocyclic subunits piperidine (Levov *et al.*, 2006, 2008*a*, *b*; Anh *et al.*, 2008, 2012*a*,*b*,*c*; Hieu *et al.* 2012*a*,*b*, 2013*a*), per-hydropyrimidine (Hieu *et al.*, 2011), perhydrotriazine (Khieu *et al.*, 2011), pyridine (Le *et al.*, 2014; Tuan *et al.*, 2015; Anh *et al.*, 2018) and bispyridine (Komarova *et al.*, 2008; Sokol *et al.*, 2011). These new azacrown compounds also are interesting as potential anticancer agents because of their cytotoxicity (Le *et al.*, 2014; Le *et al.*, 2015; Ahn *et al.*, 2018).

In our previous work, we have studied the Michael addition of azacrown ethers to dimethyl acetylenedicarboxylate (Anh *et al.*, 2012a,b; Hieu *et al.* 2013a,b). We have also found recently that the expected *N*-vynilation proceeded smoothly with the formation of an *N*-maleinate derivative of the aza-

Received 3 August 2018 Accepted 15 August 2018

Edited by S. V. Lindeman, Marquette University, USA

Keywords: macroheterocycles; azacrown ether; one-component reaction; cytotoxicity; anticancer activity; crystal structure.

CCDC reference: 1862265

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 1

The modified reaction yielding the γ -amino-N-propylpiperidine 4.

crown system. Modification of the reaction by the addition of NH₃ (aq.) and continuous stirring for three days at 298 K produced the unexpected γ -amino-*N*-propylpiperidine (**4**) in a yield of 40% (Fig. 1). According to the PASS program (Prediction of Activity Spectra for Substances – *i.e.* computer prediction of biological activities; Sadym *et al.*, 2003), the title compound has the potential to exhibit antiallergic (72% probability), antiasthmatic (67%) and membrane permeability inhibiting (65%) activities. The obtained compound was studied by X-ray diffraction analysis (Fig. 2).

2. Structural commentary

The molecule of **4**, $C_{30}H_{34}N_2O_9$, comprises a fused tetracyclic system containing the aza-14-crown-3-ether macrocycle, one piperidine and two benzene rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7-O8-C9-C10 -O11-C12-C13-O14-C15 polyether chain is t-g(-)-g(-)-t-g(+)-t (t = trans, 180° ; g = gauche, $\pm 60^\circ$). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 8.65 (5)°. The tetrahydropyridine ring adopts a boat conformation. The conformations of the aza-14-crown-4-ether and piperidine rings are supported by the three intramolecular (one N-H···O and two C-H···O) hydrogen bonds (Table 1). The nitrogen N23 and N25 atoms have practically planar geometries (the sums of the bond angles are 359.35 and 358.00°, respectively).

The molecule of 4 possesses two asymmetric centers at the C1 and C21 carbon atoms and potentially can have four diastereomers. The crystal of 4 is racemic and consists of

enantiomeric pairs with the following relative configuration of the centers: 1R,21S.

3. Supramolecular features

In the crystal, molecules of **4** form hydrogen-bonded chains propagating along [100] through strong intermolecular $N-H\cdots O$ hydrogen bonds (Fig. 3, Table 1). The chains are stacking along the *b*-axis direction.

4. Synthesis and crystallization

A solution of 1.30 g (10.00 mmol) of ethyl acetoacetate (1), 3.14 g (10.00 mmol) of 1,5-bis-(2-formylphenoxy)-3-oxaopetane (2) and 1.00 g (13.00 mmol) of ammonium acetate in a mixture of 30 ml ethanol and 1 ml acetic acid was stirred at

The molecular structure of **4**. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intramolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

research communications

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1 111 011	1.00	2.20	2,0572 (17)	146
CI-HI···OII	1.00	2.38	3.2572(17)	146
N23−H23A···O25	0.891 (18)	2.040 (18)	2.7127 (17)	131.4 (15)
$N23-H23B\cdots O32^{i}$	0.936 (18)	2.063 (18)	2.9986 (17)	176.7 (16)
C29-H29···O8	0.95	2.44	3.3439 (17)	159

Symmetry code: (i) x + 1, y, z.

298 K. The reaction was monitored by TLC and found to be complete after 6 h. The reaction mixture was allowed to cool to room temperature before being neutralized with sodium carbonate solution; the product was then extracted with chloroform (3×50 ml). By TCL, compound **3** was determined to be successfully synthesized. The solvent (CDCl₃) was

Figure 3

The hydrogen-bonded chains of **4** along the *a* axis. Dashed lines indicate the intramolecular $N-H\cdots O$ and $C-H\cdots O$ and the intermolecular $N-H\cdots O$ hydrogen bonds.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{30}H_{34}N_2O_9$
M _r	566.59
Crystal system, space group	Triclinic, P1
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1172 (9), 10.3752 (10), 14.7482 (14)
$\begin{array}{c} \alpha, \beta, \gamma (^{\circ}) \\ V (\overset{\Delta^3}{a}) \end{array}$	89.044 (2), 86.658 (2), 82.896 (2) 1382 0 (2)
7 (A)	2
Radiation type	Δ
$\mu (\text{mm}^{-1})$	0.10
Crystal size (mm)	$0.25 \times 0.25 \times 0.05$
erystar size (mm)	0.23 × 0.25 × 0.05
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldrick, 2003)
T_{\min}, T_{\max}	0.969, 0.990
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27765, 10063, 6502
R _{int}	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.761
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055, 0.127, 1.03
No. of reflections	10063
No. of parameters	379
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.39, -0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001) and SHELXTL (Sheldrick, 2015).

evaporated under vacuum until 30ml of CDCl₃ was left, 1.42 g (10 mmol) of DMAD was added and the solution was stirred for 30 minutes at 298 K. Then NH₃ (aq.) was added to the reaction mixture, which was stirred continuously. After three days, the residue was purified by column chromatography and recrystallized from ethanol to obtain 2.27 g of the pure azacrown ether **4** as light-yellow crystals (yield 60%). $T_m = 525-526$ K. $R_f = 0.85$ [*n*-hexane:ethyl acetate = 1:1 (*v*:*v*)].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms of the amino group were localized in difference-Fourier maps and refined isotropically with constrained thermal displacement parameters $[U_{iso}(H = 1.2U_{eq}(N)]$. Other hydrogen atoms were placed in calculated positions with C—H bond lengths of 0.95– 1.00 Å and refined using a riding model with constrained isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃ groups and $1.2U_{eq}(C)$ for all others].

Funding information

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2015.27 and the RUDN University Program "5–100". References

- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.
- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.
- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012*a*). *Acta Cryst.* E68, o1386–o1387.
- Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.
- Anh, L. T., Phuong, N. T. T., Hieu, T. H., Soldatenkov, A. T., Van, B. T., Van, T. T. T., Nhung, D. T., Voskressensky, L. G., Tung, T. H. & Khrustalev, V. N. (2018). *Macroheterocycles*, **11**, 197–202.
- Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd, 47, 1307–1308.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Gorchakova, O. S. & Khrustalev, V. N. (2013b). *Acta Cryst.* E**69**, o1023–o1024.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012*a*). *Acta Cryst.* E68, o2431–o2432.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013a). Acta Cryst. E69, 0565–0566.
- Hiraoka, M. (1978). . In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.

- Khieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). *Russ. J. Org. Chem.* 47, 766–770.
- Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. C. 44, 624–625.
- Le, A. T., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). *Macroheterocycles*, 7, 386–390.
- Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). *Mendeleev Commun.* **25**, 224–225.
- Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457–462.
- Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). *Russ. J. Org. Chem.* 44, 1665–1670.
- Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). *Mendeleev Commun.* 16, 35–36.
- Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.
- Sadym, A., Lagunin, A., Filimonov, D. & Poroikov, V. (2003). SAR QSAR Environ. Res. 14, 339–347.
- Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.
 Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). *Russ. Chem. Bull.* 60, 2086–2088.

supporting information

Acta Cryst. (2018). E74, 1281-1284 [https://doi.org/10.1107/S205698901801160X]

One-pot synthesis of (1*RS*,21*SR*)-diethyl 2-[23-amino-22-ethoxycarbonyl-8,11,14-trioxa-25-azatetracyclo-[19.3.1.0^{2,7}.0^{15,20}]pentacosa-2,4,6,15(20),16,18,22-heptaen-25-yl]but-2endioate

Thi Thanh Van Tran, Tuan Anh Le, Hong Hieu Truong, Thi Nhung Dao, Anatoly T. Soldatenkov and Victor N Khrustalev

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2015); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2015); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2015).

Z = 2

F(000) = 600

 $\theta = 2.4 - 32.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, yellow

 $0.25 \times 0.25 \times 0.05 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.362 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5654 reflections

(1*RS*,21*SR*)-Diethyl 2-[23-amino-22-ethoxycarbonyl-8,11,14-trioxa-25azatetracyclo[19.3.1.0^{2,7}.0^{15,20}]pentacosa-2,4,6,15(20),16,18,22-heptaen-25-yl]but-2-endioate

Crystal data

 $C_{30}H_{34}N_2O_9$ $M_r = 566.59$ Triclinic, *P*1 a = 9.1172 (9) Å b = 10.3752 (10) Å c = 14.7482 (14) Å $a = 89.044 (2)^{\circ}$ $\beta = 86.658 (2)^{\circ}$ $\gamma = 82.896 (2)^{\circ}$ $V = 1382.0 (2) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD	10063 independent reflections
diffractometer	6502 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.046$
φ and ω scans	$\theta_{\rm max} = 32.8^\circ, \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Sheldrick, 2003)	$k = -15 \rightarrow 15$
$T_{\min} = 0.969, \ T_{\max} = 0.990$	$l = -22 \rightarrow 22$
27765 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: mixed
$wR(F^2) = 0.127$	H atoms treated by a mixture of independent
<i>S</i> = 1.03	and constrained refinement
10063 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.1608P]$
379 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: difference Fourier	$\Delta ho_{ m max} = 0.39 \ { m e} \ { m \AA}^{-3}$
map	$\Delta \rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.81612 (14)	0.57839 (12)	0.20889 (9)	0.0141 (2)
H1	0.7967	0.6281	0.1513	0.017*
C2	0.85575 (14)	0.67267 (13)	0.27875 (9)	0.0155 (3)
C3	0.87367 (16)	0.63719 (14)	0.36921 (9)	0.0197 (3)
H3	0.8576	0.5523	0.3891	0.024*
C4	0.91474 (16)	0.72407 (15)	0.43085 (10)	0.0227 (3)
H4	0.9285	0.6977	0.4921	0.027*
C5	0.93576 (17)	0.84913 (15)	0.40326 (11)	0.0242 (3)
Н5	0.9630	0.9087	0.4456	0.029*
C6	0.91694 (16)	0.88691 (14)	0.31367 (11)	0.0224 (3)
H6	0.9302	0.9728	0.2945	0.027*
C7	0.87861 (15)	0.79878 (13)	0.25201 (10)	0.0179 (3)
08	0.85439 (11)	0.83852 (10)	0.16315 (7)	0.0210 (2)
C9	0.98394 (17)	0.82770 (15)	0.10229 (10)	0.0247 (3)
H9A	1.0559	0.7541	0.1210	0.030*
H9B	1.0318	0.9082	0.1035	0.030*
C10	0.93712 (18)	0.80584 (14)	0.00820 (10)	0.0250 (3)
H10A	0.8532	0.8716	-0.0062	0.030*
H10B	1.0202	0.8151	-0.0367	0.030*
011	0.89354 (11)	0.67802 (10)	0.00304 (7)	0.0223 (2)
C12	0.75156 (17)	0.67584 (15)	-0.03119 (10)	0.0239 (3)
H12A	0.7496	0.7151	-0.0928	0.029*
H12B	0.6758	0.7276	0.0085	0.029*
C13	0.71654 (17)	0.53812 (15)	-0.03494 (9)	0.0224 (3)
H13A	0.6301	0.5342	-0.0720	0.027*
H13B	0.8020	0.4821	-0.0635	0.027*
O14	0.68447 (11)	0.49285 (9)	0.05566 (6)	0.0192 (2)
C15	0.66801 (15)	0.36325 (13)	0.06612 (9)	0.0169 (3)

016	0 (5100 (1())	0.00500 (1.4)	0.00027 (10)	0.0004(2)
C16	0.65128 (16)	0.28520 (14)	-0.00827 (10)	0.0204 (3)
H16	0.6523	0.3217	-0.0678	0.024*
C17	0.63327 (17)	0.15515 (15)	0.00416 (10)	0.0239 (3)
H17	0.6228	0.1030	-0.0468	0.029*
C18	0.63047 (17)	0.10129 (15)	0.09031 (11)	0.0243 (3)
H18	0.6174	0.0124	0.0992	0.029*
C19	0.64699 (16)	0.17908 (14)	0.16373 (10)	0.0207 (3)
H19	0.6451	0.1416	0.2229	0.025*
C20	0.66621 (14)	0.31004 (13)	0.15426 (9)	0.0160 (3)
C21	0.68462(15)	0.37961 (13)	0.24427(9)	0.0147(2)
U21	0.00402 (15)	0.37301 (13)	0.24427(7)	0.0147(2)
П21 С22	0.3991 0.92217 (14)	0.3021 0.22210 (12)	0.2805	0.018°
C22	0.82317 (14)	0.32219 (13)	0.28954 (9)	0.0151 (3)
C23	0.95330 (15)	0.36568 (13)	0.25977 (9)	0.0161 (3)
N23	1.08748 (14)	0.32444 (13)	0.29035 (9)	0.0211 (3)
H23A	1.0903 (19)	0.2647 (17)	0.3346 (12)	0.025*
H23B	1.1662 (19)	0.3727 (17)	0.2762 (12)	0.025*
C24	0.94479 (15)	0.47044 (13)	0.18843 (9)	0.0163 (3)
H24A	0.9322	0.4317	0.1289	0.020*
H24B	1.0391	0.5089	0.1841	0.020*
N25	0.68040 (12)	0.52165 (11)	0.23838 (7)	0.0142 (2)
C25	0.81729 (16)	0.23578 (13)	0.36705 (9)	0.0173 (3)
O25	0.92621 (11)	0.17777 (10)	0.40161 (7)	0.0217 (2)
026	0.67790 (11)	0.22664 (10)	0.40149 (7)	0.0211 (2)
C26	0 66542 (18)	0 14964 (15)	0 48444 (10)	0.0249(3)
H26A	0.7269	0.1797	0.5311	0.030*
H26R	0.6991	0.0568	0.4722	0.030*
C27	0.50501 (18)	0.16773 (16)	0.4722 0.51650 (11)	0.030
	0.30301 (18)	0.10775 (10)	0.5709	0.0285 (5)
1127A	0.4900	0.1141	0.3708	0.043*
П27Б	0.4431	0.1410	0.4083	0.043*
H2/C	0.4/45	0.2593	0.5511	0.043*
C28	0.55098 (14)	0.60130 (13)	0.24700 (9)	0.0149 (2)
C29	0.53278 (15)	0.72930 (13)	0.22462 (9)	0.0171 (3)
H29	0.6112	0.7662	0.1926	0.020*
C30	0.39565 (16)	0.81067 (14)	0.24871 (10)	0.0206 (3)
O30	0.28235 (12)	0.77676 (11)	0.28223 (9)	0.0332 (3)
O31	0.41022 (12)	0.93716 (10)	0.22944 (8)	0.0281 (3)
C31	0.2821 (2)	1.02831 (17)	0.25180 (14)	0.0377 (4)
H31A	0.3066	1.1169	0.2416	0.057*
H31B	0.2501	1.0171	0.3157	0.057*
H31C	0.2020	1.0131	0.2133	0.057*
C32	0.42192 (15)	0.53990 (13)	0.29146 (9)	0.0167 (3)
032	0.33589 (11)	0.48529 (10)	0.25174 (7)	0.0235(2)
033	0 42394 (11)	0 55003 (10)	0 38109 (6)	0.0208(2)
C33	0.12091(11) 0.30089(19)	0 50518 (18)	0.43345(11)	0.0200(2) 0.0324(4)
U33 Л	0.30007 (19)	0.5218	0.4080	0.032+(+)
1133A 1122D	0.3076	0.3210	0.4242	0.049
11330	0.3010	0.7110	0.4125	0.049
нзэС	0.2079	0.5516	0.4135	0.049*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0126 (6)	0.0147 (6)	0.0152 (6)	-0.0042 (5)	0.0011 (5)	0.0000 (5)
C2	0.0119 (6)	0.0172 (6)	0.0177 (6)	-0.0033 (5)	0.0017 (5)	-0.0022 (5)
C3	0.0198 (7)	0.0204 (7)	0.0192 (7)	-0.0050 (5)	0.0008 (5)	-0.0006 (5)
C4	0.0217 (7)	0.0276 (8)	0.0193 (7)	-0.0042 (6)	-0.0022 (5)	-0.0039 (6)
C5	0.0211 (7)	0.0251 (8)	0.0274 (8)	-0.0048 (6)	-0.0023 (6)	-0.0085 (6)
C6	0.0208 (7)	0.0160 (7)	0.0307 (8)	-0.0040 (5)	0.0003 (6)	-0.0040 (6)
C7	0.0153 (6)	0.0180 (7)	0.0200 (7)	-0.0007 (5)	0.0007 (5)	-0.0008 (5)
08	0.0222 (5)	0.0191 (5)	0.0211 (5)	-0.0021 (4)	0.0026 (4)	0.0027 (4)
C9	0.0249 (7)	0.0239 (8)	0.0257 (8)	-0.0082 (6)	0.0058 (6)	0.0018 (6)
C10	0.0305 (8)	0.0208 (7)	0.0239 (7)	-0.0077 (6)	0.0047 (6)	0.0028 (6)
011	0.0234 (5)	0.0195 (5)	0.0241 (5)	-0.0038 (4)	0.0012 (4)	0.0010 (4)
C12	0.0246 (7)	0.0262 (8)	0.0207 (7)	-0.0029 (6)	-0.0009 (6)	0.0068 (6)
C13	0.0256 (7)	0.0277 (8)	0.0143 (6)	-0.0064 (6)	0.0000 (5)	0.0044 (5)
O14	0.0243 (5)	0.0198 (5)	0.0139 (5)	-0.0053 (4)	0.0002 (4)	0.0014 (4)
C15	0.0141 (6)	0.0191 (7)	0.0178 (6)	-0.0031 (5)	-0.0005 (5)	-0.0012 (5)
C16	0.0185 (7)	0.0266 (7)	0.0166 (6)	-0.0038 (6)	-0.0021 (5)	-0.0028 (5)
C17	0.0233 (7)	0.0268 (8)	0.0228 (7)	-0.0055 (6)	-0.0031 (6)	-0.0091 (6)
C18	0.0266 (8)	0.0183 (7)	0.0292 (8)	-0.0058 (6)	-0.0052 (6)	-0.0043 (6)
C19	0.0222 (7)	0.0199 (7)	0.0209 (7)	-0.0054 (5)	-0.0049 (5)	0.0010 (5)
C20	0.0135 (6)	0.0180 (6)	0.0170 (6)	-0.0035 (5)	-0.0014 (5)	-0.0014 (5)
C21	0.0155 (6)	0.0144 (6)	0.0149 (6)	-0.0043 (5)	-0.0007 (5)	0.0005 (5)
C22	0.0161 (6)	0.0143 (6)	0.0152 (6)	-0.0033 (5)	-0.0015 (5)	-0.0008 (5)
C23	0.0168 (6)	0.0146 (6)	0.0169 (6)	-0.0011 (5)	-0.0009 (5)	-0.0047 (5)
N23	0.0152 (6)	0.0203 (6)	0.0279 (7)	-0.0029 (5)	-0.0021 (5)	0.0022 (5)
C24	0.0142 (6)	0.0170 (6)	0.0176 (6)	-0.0036 (5)	0.0026 (5)	-0.0016 (5)
N25	0.0131 (5)	0.0148 (5)	0.0150 (5)	-0.0036 (4)	0.0008 (4)	0.0010 (4)
C25	0.0200 (7)	0.0154 (6)	0.0174 (6)	-0.0057 (5)	-0.0015 (5)	-0.0028 (5)
O25	0.0223 (5)	0.0202 (5)	0.0235 (5)	-0.0040 (4)	-0.0070 (4)	0.0036 (4)
O26	0.0213 (5)	0.0238 (5)	0.0187 (5)	-0.0064 (4)	-0.0001 (4)	0.0070 (4)
C26	0.0296 (8)	0.0247 (8)	0.0206 (7)	-0.0071 (6)	0.0005 (6)	0.0087 (6)
C27	0.0338 (9)	0.0273 (8)	0.0249 (8)	-0.0096 (7)	0.0058 (7)	0.0022 (6)
C28	0.0139 (6)	0.0197 (6)	0.0114 (6)	-0.0033 (5)	-0.0007 (5)	-0.0012 (5)
C29	0.0154 (6)	0.0189 (7)	0.0166 (6)	-0.0019 (5)	0.0011 (5)	0.0006 (5)
C30	0.0203 (7)	0.0214 (7)	0.0193 (7)	0.0002 (5)	-0.0014 (5)	0.0013 (5)
O30	0.0195 (6)	0.0309 (6)	0.0468 (7)	0.0014 (5)	0.0085 (5)	0.0048 (5)
031	0.0251 (6)	0.0197 (5)	0.0367 (6)	0.0048 (4)	0.0035 (5)	0.0024 (5)
C31	0.0335 (9)	0.0267 (9)	0.0482 (11)	0.0124 (7)	0.0030 (8)	-0.0003 (8)
C32	0.0143 (6)	0.0180 (6)	0.0175 (6)	-0.0011 (5)	0.0005 (5)	0.0001 (5)
O32	0.0184 (5)	0.0302 (6)	0.0236 (5)	-0.0091 (4)	-0.0031 (4)	-0.0008 (4)
033	0.0200 (5)	0.0275 (5)	0.0157 (5)	-0.0086 (4)	0.0040 (4)	-0.0010 (4)
C33	0.0280 (8)	0.0453 (10)	0.0247 (8)	-0.0138 (7)	0.0115 (7)	0.0005 (7)

Geometric parameters (Å, °)

C1—N25	1.4751 (16)	С19—Н19	0.9500
C1—C2	1.5210 (18)	C20—C21	1.5489 (18)
C1—C24	1.5383 (18)	C21—N25	1.4706 (17)
C1—H1	1.0000	C21—C22	1.5150 (18)
C2—C3	1.3916 (19)	C21—H21	1.0000
C2—C7	1.3970 (19)	C22—C23	1.3671 (18)
C3—C4	1.389 (2)	C22—C25	1.4437 (19)
С3—Н3	0.9500	C23—N23	1.3458 (18)
C4—C5	1.386 (2)	C23—C24	1.4983 (19)
C4—H4	0.9500	N23—H23A	0.891 (18)
C5—C6	1.386 (2)	N23—H23B	0.936 (18)
С5—Н5	0.9500	C24—H24A	0.9900
C6—C7	1.389 (2)	C24—H24B	0.9900
С6—Н6	0.9500	N25—C28	1.3551 (17)
C7—O8	1.3891 (17)	C25—O25	1.2284 (17)
O8—C9	1.4354 (17)	C25—O26	1.3546 (17)
C9—C10	1.504 (2)	O26—C26	1.4566 (17)
С9—Н9А	0.9900	C26—C27	1.501 (2)
С9—Н9В	0.9900	C26—H26A	0.9900
C10—O11	1.4352 (17)	C26—H26B	0.9900
C10—H10A	0.9900	C27—H27A	0.9800
C10—H10B	0.9900	С27—Н27В	0.9800
O11—C12	1.4195 (18)	C27—H27C	0.9800
C12—C13	1.505 (2)	C28—C29	1.3555 (19)
C12—H12A	0.9900	C28—C32	1.5172 (19)
C12—H12B	0.9900	C29—C30	1.4488 (19)
C13—O14	1.4348 (16)	C29—H29	0.9500
C13—H13A	0.9900	C30—O30	1.2083 (18)
C13—H13B	0.9900	C30—O31	1.3590 (18)
014-015	1.3765 (16)	031-C31	1.4353 (18)
C15—C16	1.4008 (19)	C31—H31A	0.9800
C15—C20	1.4039 (19)	C31—H31B	0.9800
C16—C17	1.387 (2)	C31—H31C	0.9800
C16—H16	0.9500	C32—O32	1.2058 (16)
C17—C18	1.380 (2)	C32—O33	1.3292 (16)
C17—H17	0.9500	033-033	1.4448 (17)
C18—C19	1.387 (2)	C33—H33A	0.9800
C18—H18	0.9500	C33—H33B	0.9800
C19—C20	1.3950 (19)	C33—H33C	0.9800
017 020	1.5700 (17)		0.9000
N25—C1—C2	111.41 (10)	C15—C20—C21	127.59 (12)
N25—C1—C24	110.41 (10)	N25—C21—C22	109.45 (10)
C2-C1-C24	111.32 (11)	N25—C21—C20	115.95 (11)
N25—C1—H1	107.8	C22—C21—C20	111.71 (11)
C2—C1—H1	107.8	N25—C21—H21	106.4
C24—C1—H1	107.8	C22—C21—H21	106.4

C^{2} C^{2} C^{2}	110.01 (12)	C20 C21 U21	106.4
$C_{3} = C_{2} = C_{1}$	110.01(12) 122.28(12)	$C_{20} = C_{21} = H_{21}$	100.4 120.74(12)
C_{3} C_{2} C_{1}	122.20(12) 110.70(12)	$C_{23} = C_{22} = C_{23}$	120.74(12)
$C_{1} = C_{2} = C_{1}$	119.70(12) 121.00(14)	$C_{23} = C_{22} = C_{21}$	117.09(12)
C4 - C3 - C2	121.00 (14)	$C_{23} = C_{22} = C_{21}$	121.83(12)
$C_4 = C_3 = H_3$	119.5	N23 - C23 - C22	123.03 (13)
C2-C3-H3	119.5	$N_{23} = C_{23} = C_{24}$	117.38 (12)
C_{3}	120.18 (14)	$C_{22} = C_{23} = C_{24}$	116.96 (12)
C5—C4—H4	119.9	C23—N23—H23A	116.4 (11)
C3—C4—H4	119.9	C23—N23—H23B	119.3 (11)
C4—C5—C6	119.75 (14)	H23A—N23—H23B	122.3 (16)
C4—C5—H5	120.1	C23—C24—C1	112.42 (11)
C6—C5—H5	120.1	C23—C24—H24A	109.1
C5—C6—C7	119.77 (14)	C1—C24—H24A	109.1
С5—С6—Н6	120.1	C23—C24—H24B	109.1
С7—С6—Н6	120.1	C1—C24—H24B	109.1
C6—C7—O8	119.54 (13)	H24A—C24—H24B	107.9
C6—C7—C2	121.28 (13)	C28—N25—C21	121.49 (11)
O8—C7—C2	119.08 (12)	C28—N25—C1	118.50 (11)
С7—О8—С9	115.23 (11)	C21—N25—C1	119.36 (10)
O8—C9—C10	108.14 (12)	O25—C25—O26	121.82 (13)
O8—C9—H9A	110.1	O25—C25—C22	124.65 (13)
С10—С9—Н9А	110.1	O26—C25—C22	113.49 (12)
O8—C9—H9B	110.1	C25—O26—C26	116.03 (11)
С10—С9—Н9В	110.1	O26—C26—C27	106.66 (12)
H9A—C9—H9B	108.4	O26—C26—H26A	110.4
O11—C10—C9	109.54 (12)	С27—С26—Н26А	110.4
O11—C10—H10A	109.8	O26—C26—H26B	110.4
C9-C10-H10A	109.8	С27—С26—Н26В	110.4
O11—C10—H10B	109.8	H26A—C26—H26B	108.6
C9-C10-H10B	109.8	С26—С27—Н27А	109.5
H10A—C10—H10B	108.2	С26—С27—Н27В	109.5
C12—O11—C10	113.88 (11)	H27A—C27—H27B	109.5
O11—C12—C13	109.95 (12)	С26—С27—Н27С	109.5
O11—C12—H12A	109.7	H27A—C27—H27C	109.5
C13—C12—H12A	109.7	H27B—C27—H27C	109.5
O11—C12—H12B	109.7	N25—C28—C29	125.26 (12)
C13—C12—H12B	109.7	N25—C28—C32	115.09 (11)
H12A—C12—H12B	108.2	C29—C28—C32	119.51 (12)
O14—C13—C12	109.07 (12)	C28—C29—C30	121.04 (13)
014—C13—H13A	109.9	С28—С29—Н29	119.5
C12—C13—H13A	109.9	C30-C29-H29	119.5
014—C13—H13B	109.9	030-030-031	122.38(13)
C12—C13—H13B	109.9	030 - C30 - C29	122.30(13) 127.43(14)
H13A—C13—H13B	108.3	031 - C30 - C29	127.13(14) 110 18 (12)
C15-014-C13	116 89 (11)	$C_{30} - C_{31} - C_{31}$	115 59 (13)
014-C15-C16	121 72 (12)	O31—C31—H31A	109 5
014-C15-C20	118 30 (12)	031-C31-H31B	109.5
C16-C15-C20	110.00 (12)	H314_C31_H21B	109.5
010 - 013 - 020	119.97 (13)	1131A-031-1131D	107.5

C17—C16—C15	120.61 (13)	O31—C31—H31C	109 5
C17—C16—H16	1197	H_{31A} $-C_{31}$ $-H_{31C}$	109.5
C15—C16—H16	119.7	H_{31B} C_{31} H_{31C}	109.5
C18 - C17 - C16	120 25 (13)	032-032-033	125.66 (13)
C18 - C17 - H17	119.9	032 - 032 - 033	125.00(12) 125.19(12)
C16—C17—H17	119.9	033 - C32 - C28	109.06(11)
C17 - C18 - C19	118 88 (14)	$C_{32} = C_{33} = C_{33}$	115 97 (11)
C17 - C18 - H18	120.6	033 - C33 - H33A	109.5
C19 - C18 - H18	120.0	033-C33-H33B	109.5
C18 - C19 - C20	122.0	H33A_C33_H33B	109.5
C18 - C19 - H19	118.6	033_C33_H33C	109.5
$C_{10} - C_{10} - H_{10}$	118.6	H33A_C33_H33C	109.5
$C_{10} = C_{10} = C_{15}$	117.52 (12)	H33B C33 H33C	109.5
$C_{19} = C_{20} = C_{13}$	117.32(12) 114.89(12)	1155B-C55-1155C	109.5
019-020-021	114.09 (12)		
N25—C1—C2—C3	54.79 (17)	N25—C21—C22—C25	127.01 (13)
C24—C1—C2—C3	-68.92 (16)	C20—C21—C22—C25	-103.19 (14)
N25—C1—C2—C7	-126.67 (13)	C25—C22—C23—N23	7.7 (2)
C24—C1—C2—C7	109.61 (14)	C21—C22—C23—N23	-178.62 (12)
C7—C2—C3—C4	-0.7 (2)	C25—C22—C23—C24	-170.83 (12)
C1—C2—C3—C4	177.82 (13)	C21—C22—C23—C24	2.85 (17)
C2—C3—C4—C5	1.3 (2)	N23—C23—C24—C1	-134.29 (12)
C3—C4—C5—C6	-0.6 (2)	C22—C23—C24—C1	44.37 (16)
C4—C5—C6—C7	-0.6(2)	N25—C1—C24—C23	-44.58 (14)
C5—C6—C7—O8	177.57 (13)	C2—C1—C24—C23	79.70 (14)
C5—C6—C7—C2	1.2 (2)	C22—C21—N25—C28	-145.08 (12)
C3—C2—C7—C6	-0.5(2)	C20-C21-N25-C28	87.47 (14)
C1—C2—C7—C6	-179.10(12)	C22—C21—N25—C1	44.29 (15)
C3—C2—C7—O8	-176.89(12)	C20-C21-N25-C1	-83.17 (14)
C1—C2—C7—O8	4.51 (19)	C2-C1-N25-C28	64.94 (15)
C6-C7-O8-C9	87.42 (16)	C24—C1—N25—C28	-170.83(11)
C2-C7-O8-C9	-96.13 (15)	C_{2} C1 N_{2} C2 C_{2}	-124.15(12)
C7-08-C9-C10	151.09 (12)	C_{24} C_{1} N_{25} C_{21}	0.08 (15)
08-C9-C10-011	-70.39(15)	C_{23} C_{22} C_{25} O_{25}	-13.2(2)
C9-C10-O11-C12	127.74 (13)	C_{21} C_{22} C_{25} O_{25}	173.47 (12)
C10-011-C12-C13	179.42 (11)	C_{23} C_{22} C_{25} O_{26}	164.83 (12)
011 - C12 - C13 - 014	73.13 (15)	C_{21} C_{22} C_{25} C_{26}	-8.55(18)
C12-C13-O14-C15	-172.13(12)	025-025-026-026	3.11 (19)
$C_{13} - C_{14} - C_{15} - C_{16}$	-13.40(18)	C_{22} C_{25} C_{26} C_{26} C_{26} C_{26}	-174.93(12)
$C_{13} - C_{14} - C_{15} - C_{20}$	167.47 (12)	$C_{25} = 0.26 = 0.26 = 0.27$	172.59 (12)
014-C15-C16-C17	-17930(13)	$C_{21} = N_{25} = C_{28} = C_{29}$	-16586(12)
C_{20} C_{15} C_{16} C_{17}	-0.2(2)	C1 - N25 - C28 - C29	4 85 (19)
C_{15} C_{16} C_{17} C_{18}	0.5(2)	$C_{21} = N_{25} = C_{28} = C_{32}$	18 46 (17)
C16-C17-C18-C19	-0.5 (2)	C1 - N25 - C28 - C32	-170.83(11)
C17-C18-C19-C20	0.1 (2)	$N_{25} - C_{28} - C_{29} - C_{30}$	-170.74(13)
C18-C19-C20-C15	0.2 (2)	C_{32} C_{28} C_{29} C_{30}	4.76 (19)
C18 - C19 - C20 - C21	-179.26(13)	C_{28} C_{29} C_{30} C_{30}	-6.7(2)
014-C15-C20-C19	178 97 (12)	C_{28} C_{29} C_{30} C_{31}	172 40 (13)
011 013 020-017	1,0.77 (12)	020 027 $030-031$	1/2.40 (13)

supporting information

C16—C15—C20—C19	-0.2 (2)	O30—C30—O31—C31	0.2 (2)
O14—C15—C20—C21	-1.6 (2)	C29—C30—O31—C31	-178.94 (13)
C16—C15—C20—C21	179.24 (13)	N25—C28—C32—O32	-90.53 (17)
C19—C20—C21—N25	-170.28 (11)	C29—C28—C32—O32	93.52 (18)
C15—C20—C21—N25	10.30 (19)	N25—C28—C32—O33	86.20 (14)
C19—C20—C21—C22	63.39 (15)	C29—C28—C32—O33	-89.74 (15)
C15—C20—C21—C22	-116.04 (15)	O32—C32—O33—C33	-8.0 (2)
N25—C21—C22—C23	-46.59 (15)	C28—C32—O33—C33	175.27 (12)
N25—C21—C22—C23 C20—C21—C22—C23	-46.59 (15) 83.21 (14)	C28—C32—O33—C33	175.27 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1…O11	1.00	2.38	3.2572 (17)	146
N23—H23 <i>A</i> ···O25	0.891 (18)	2.040 (18)	2.7127 (17)	131.4 (15)
N23—H23 <i>B</i> ···O32 ⁱ	0.936 (18)	2.063 (18)	2.9986 (17)	176.7 (16)
С29—Н29…О8	0.95	2.44	3.3439 (17)	159

Symmetry code: (i) x+1, y, z.