

Received 19 July 2018 Accepted 7 August 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; dinuclear complex; electrochemistry; tetra(pyridyl)pyrazine; ruthenium precatalyst.

CCDC reference: 1860573

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Francisca N. Rein,* Weizhong Chen, Brian L. Scott and Reginaldo C. Rocha*

Los Alamos National Laboratory, Los Alamos, NM 87545, USA. *Correspondence e-mail: franrein@lanl.gov, rcrocha@lanl.gov

We report the structural and electrochemical characterization of the binuclear complex $[\mu - (C_{24}H_{16}N_6) \{RuCl(C_{10}H_8N_2)\}_2](PF_6)_2$, which contains the bis-tridentate bridging ligand 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine (tppz), the monodentate ligand Cl⁻, and the bidentate ligand 2,2'-bipyridine (bpy) {systematic name: μ -2,3,5,6-tetrakis(pyridin-2-yl)pyrazine-bis[(2,2'-bipyridine)chloridoruthenium(II)] bis(hexafluoridophosphate)}. The complete [(bpy)(Cl)Ru(tppz)-Ru(Cl)(bpy)²⁺ dication is generated by crystallographic twofold symmetry; the tppz bridging ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metalcoordinated chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} unit. The Ru^{II} ion exhibits a distorted octahedral geometry due to the restricted bite angle $[160.6 (3)^{\circ}]$ of the tppz ligand. For bpy, the bond lengths of the Ru-N bonds are 2.053 (8) and 2.090 (8) Å, with the shorter bond being opposite to Ru-Cl. For the tridentate tppz, the Ru-Ndistances involving the outer N atoms trans to each other are 2.069 (8) and 2.072 (9) Å, whereas the Ru–N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of the geometric constraints and stronger π -acceptor ability of the pyrazine-centered bridge. The Ru-Cl distance is 2.407 (3) Å and the intramolecular distance between Ru centers is 6.579 (4) Å. In the crystal, weak $C-H\cdots Cl$ and $C-H\cdots F$ interactions consolidate the packing.

1. Chemical context

The design and synthesis of electrochemically and photochemically active ruthenium(II)-polypyridine complexes have been of continued interest in the development of homogeneous electrocatalysis and photocatalysis toward watersplitting schemes for renewable energy applications (Yamazaki et al., 2010; Herrero et al., 2011; Jurss et al., 2012). In our previous work, we introduced Ru dyads in which a lightharvesting Ru moiety (chromophore) and a multi-electron/ multi-proton redox-active Ru moiety (catalyst) were linked by back-to-back terpyridine (tpy-tpy) or tetrapyridylpyrazine (tppz) ligands to give modular light-driven oxidation catalysts with a varying extent of charge delocalization between the Ru centers (Chen et al., 2009, 2013). In such catalysts containing the {(tpy/tppz)Ru(bpy)(L)} moiety ($L = H_2O$ or Cl^-), the aqua species is typically formed by ligand substitution from its chloro precursor in water (Davidson et al., 2015b; Matias et al., 2016). Therefore, the chloro complex reported here was initially prepared and isolated as an intermediate in the synthesis of binuclear precatalysts based on the {Ru(tppz)Ru} structural framework (Chen et al., 2011). In addition to catalysis, the bis-tridentate tppz ligand finds relevance to the assembly of donor-acceptor metal complexes with electron/

energy-transfer properties for potential applications in molecular (opto)electronic devices (Davidson *et al.*, 2015*a*; Fantacci *et al.*, 2004; Nagashima *et al.*, 2014, 2016; Wadman *et al.*, 2009).

2. Structural commentary

The hexafluoridophosphate salt of the binuclear complex $[(bpy)(Cl)Ru^{II}(\mu-tppz)Ru^{II}(Cl)(bpy)]^{2+}$ (I) crystallized from an acetonitrile solution in the monoclinic (*C*2/*c*) space group. Its crystal structure is shown in Fig. 1, and selected geometrical data are summarized in Table 1. As shown in Fig. 2, the dicationic complex packs in alternating layers with the uncoordinated PF₆⁻ anions. The complete complex is generated by a crystallographic twofold axis bisecting the C6–C6ⁱ and C7– C7ⁱ [symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$] bonds of the central pyrazine ring, although it is close to being locally centrosymmetric. The complete tppz ligand has a significantly twisted conformation, with an average angle of 42.4° between the mean planes of adjacent pyridyl rings. The metal-coordinated

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms have been omitted for clarity, except for H13; its close contact with Cl1 is indicated by a red dotted line. [Symmetry code: (i) -x + 1, y, $-z + \frac{3}{2}$.]

Table 1				
Selected	geometric	parameters	(Å,	°).

0	1 ()	,	
Ru1–N2	1.939 (7)	Ru1-N1	2.070 (9)
Ru1-N5	2.053 (8)	Ru1-N4	2.090 (8)
Ru1-N3	2.069 (8)	Ru1-Cl1	2.406 (3)
N2-Ru1-N5	98.1 (3)	N3-Ru1-N4	99.3 (3)
N2-Ru1-N3	80.0 (3)	N1-Ru1-N4	100.1 (3)
N5-Ru1-N3	88.5 (3)	N2-Ru1-Cl1	89.2 (2)
N2-Ru1-N1	80.6 (3)	N5-Ru1-Cl1	172.6 (2)
N5-Ru1-N1	95.4 (3)	N3-Ru1-Cl1	91.7 (2)
N3-Ru1-N1	160.6 (3)	N1-Ru1-Cl1	86.8 (2)
N2-Ru1-N4	176.4 (3)	N4-Ru1-Cl1	94.3 (3)
N5-Ru1-N4	78.4 (3)		

chloride ligands are in a trans configuration relative to each other across the {Ru(tppz)Ru} core. The two equivalent metal coordination spheres exhibit a distorted octahedral geometry at the Ru^{II} ion due to the restricted bite angle of the bistridendate tppz ligand; the N1–Ru–N3 angle of 160.6 (3) $^{\circ}$ is very similar to those of related tppz-Ru^{II} complexes (Chen et al., 2011; Jude et al., 2013), and significantly less than the ideal angle of 180°. The Ru atom is essentially in the equatorial mean plane formed by atoms N1, N2, N3, and N4, with a deviation of only 0.026 Å. The bidentate bpy ligand has a *cis* configuration, with the N4-Ru-N5 angle of 78.4 (3)°, in agreement with those found in similar chlorido Ru^{II}-bpy complexes (Chen et al., 2013; Rein et al., 2015). The N5 atom of bpy is arranged *trans* to the chloride ligand in a nearly linear N-Ru-Cl fashion $[172.6 (2)^{\circ}]$. The distances of the two Ru-N bonds for bpy are 2.053 (8) and 2.090 (8) Å, with the shorter bond opposite to Ru-Cl reflecting the increased $Ru^{II} \rightarrow N_{bpv} \pi$ -backbonding interaction at the coordinating atom *trans* to the π -donor Cl⁻ ligand (Chen *et al.*, 2013). The Ru-Cl bond length of 2.406 (3) Å and the intramolecular Ru…Ru separation of 6.579 (4) Å are also similar to those observed for the most closely related Ru(tppz)Ru complexes (Chen et al., 2011; Hartshorn et al., 1999). For the tridentate

View along the *b* axis of a $1 \times 2 \times 2$ crystal packing diagram of **I**. Displacement ellipsoids are drawn at the 40% probability level. Intraand intermolecular H···Cl interactions (those with separations shorter than the sum of van der Waals radii) are represented by the fine dotted lines.

research communications

Table 2	
Hydrogen-bond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C13-H13\cdots Cl1\\ C9-H9\cdots Cl1^{i}\\ C14-H14\cdots F2^{ii} \end{array}$	0.93	2.74	3.362 (12)	125
	0.93	2.71	3.390 (11)	131
	0.93	2.54	3.342 (17)	144

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$.

tppz ligand, the Ru–N bond lengths involving the outer N atoms *trans* to each other are 2.069 (8) and 2.070 (9) Å, whereas the Ru–N bond involving the central N atom has the much shorter length of 1.939 (7) Å as a result of both the geometric constraint imposed by such *mer*-arranged ligands and the stronger π -acceptor ability of the pyrazine-centered bridge (Chen *et al.*, 2011; Jude *et al.*, 2013). An intramolecular C13–H13···Cl1 close contact of 2.74 Å is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen *et al.*, 2013; Jude *et al.*, 2008; Rein *et al.*, 2015), although this proximity appears to be partly a consequence of geometry rather than chemically significant bonding.

3. Supramolecular features

In the crystal, $C-H \cdots Cl$ and $C-H \cdots F$ interactions (Table 2) with $H \cdots X$ distances that are shorter than the sum of van der Waals radii can be identified and appear to provide some further stabilization of the crystal packing.

4. Database survey

A search in the Cambridge Structural Database (Groom *et al.*, 2016) listed only four entries for the {RuCl(bpy)(tppz)} substructure. Of these, two are mononuclear complexes [one with the Ru^{III} oxidation state (Daryanavard *et al.*, 2009) and another at the Ru^{II} state (Tondreau *et al.*, 1996)] and the other two are binuclear complexes [one with tpy instead of bpy and Cl⁻ (Chen *et al.*, 2011), and another with Me₂bpy instead of bpy and the two Cl⁻ ligands in a *cis* configuration (Hartshorn *et al.*, 1999)].

5. Electrochemical characterization

Cyclic voltammograms of **I** in acetonitrile (Fig. 3; top) show two metal-based oxidation processes at +0.65 and +0.94 V *versus* Ag/Ag⁺ (10 m*M* AgNO₃). These processes are clearly reversible and correspond to the redox couples Ru^{II}–Ru^{II}/ Ru^{II}–Ru^{III} and Ru^{II}–Ru^{III}/Ru^{III}–Ru^{III}, respectively. The stability of the fully oxidized complex is also demonstrated by the voltammogram starting from the Ru^{III}–Ru^{III} species, obtained after application of +1.25 V for 100 s prior to the initial run in the cathodic direction (Fig. 3; bottom). Two additional reversible processes are observed at –0.89 and –1.39 V, which are characteristic of the ligand-based reductions at the tppz bridge. The separation of 290 mV between the two Ru^{II}/Ru^{III} redox potentials gives a comproportionation constant (K_c) of about 8.0 × 10⁴, which reflects the stabilization of the mixed-valent state Ru^{II}-Ru^{III} relative to its reduced and oxidized isovalent counterparts Ru^{II}-Ru^{II} and Ru^{III}-Ru^{III} (Richardson & Taube, 1984; Rocha & Toma, 2004). This K_c value suggests a significant communication between the Ru centers, although electrochemical properties alone cannot be taken as conclusive evidence for electronic coupling across the bridging ligand because of possible electrostatic effects (Jude et al., 2008). By comparison with its precursor [Cl₃Ru^{II}(tppz)Ru^{III}Cl₃]⁻, which shows a separation greater than 700 mV between the two Ru^{II}/Ru^{III} redox potentials and which has been well characterized as a borderline case of valence localization/delocalization (Concepcion et al., 2008; Rocha et al., 2008), the electrochemical data are consistent with a charge-localized configuration in the mixed-valent species [(bpy)(Cl)Ru^{II}(tppz)- $Ru^{III}(Cl)(bpy)]^{3+}$.

6. Synthesis and crystallization

Compound I was prepared from the mixed-valent complex $(nBu_4N)[Cl_3Ru^{II}(tppz)Ru^{III}Cl_3]$ as starting material (Rocha *et al.*, 2008). This precursor was treated by refluxing an ethanolic

Cyclic voltammograms of 1.0 m*M* solutions of **I** in acetonitrile with 0.1 *M* Bu₄NPF₆ as electrolyte. The various redox states are represented by the potential regions as **A**: $[(bpy)(Cl)Ru^{II}(tppz)Ru^{II}(Cl)(bpy)]^{2+}$, **B**: $[(bpy)(Cl)Ru^{II}(tppz)Ru^{III}(Cl)(bpy)]^{3+}$, **C**: $[(bpy)(Cl)Ru^{III}(tppz)Ru^{III}(Cl)(bpy)]^{4+}$, **D**: $[(bpy)(Cl)Ru^{II}(tppz^{-})Ru^{II}(Cl)(bpy)]^{+}$, and **E**: $[(bpy)(Cl)Ru^{II}(tppz^{-})Ru^{II}(Cl)(bpy)]^{-}$

Table 3Experimental details.

Crystal data Chemical formula

 $(PF_{6})_{2}$ 1311.77 Μ. Crystal system, space group Monoclinic, C2/c Temperature (K) 100 36.04 (3), 11.517 (11), 14.406 (14) *a*, *b*, *c* (Å) 95.258 (13) β (°) $V(A^3)$ 5954 (10) Ζ 4 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.73 Crystal size (mm) $0.20 \times 0.14 \times 0.06$ Data collection Diffractometer Bruker D8 with APEXII CCD Absorption correction Multi-scan (SADABS; Sheldrick, 2008) 0.862, 0.956 T_{\min}, T_{\max} No. of measured, independent and 13828, 5306, 2167 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.121 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.600 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.078, 0.221, 0.92 No. of reflections 5306 325 No. of parameters H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.89, -0.52

 $[Ru_2Cl_2(C_{10}H_8N_2)_2(C_{24}H_{16}N_6)]$ -

Computer programs: APEXII and SAINT-Plus (Bruker, 2009), SHELXS2013 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

solution with two equivalents of bpy in the presence of triethylamine as a reductant and the final solid product was collected by filtration of the precipitate formed upon addition of a concentrated aqueous solution of NH_4PF_6 to the reaction mixture. Green blocks of I were grown by the slow diffusion of diethyl ether into acetonitrile solutions of the product in long thin tubes.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. Six disordered acetonitrile solvent molecules were treated using *PLATON*/SQUEEZE (van der Sluis & Spek, 1990; Spek, 2015) and not included in the refinement model; the stated chemical formula, molar mass, *etc.*, do not take account of these solvent molecules. All H atoms (aromatic) were idealized and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors thank the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory for financial support.

Funding information

Funding for this research was provided by: US Department of Energy, Laboratory Directed Research and Development.

References

- Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W., Rein, F. N. & Rocha, R. C. (2011). Angew. Chem. Int. Ed. 48, 9672–9675.
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). *Chem. Eur.* J. 17, 5595–5604.
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m510–m511.
- Concepcion, J. J., Dattelbaum, D. M., Meyer, T. J. & Rocha, R. C. (2008). *Phil. Trans. R. Soc. A*, **366**, 163–175.
- Daryanavard, M., Hadadzadeh, H., Khalaji, A. D. & Weil, M. (2009). *Transition Met. Chem.* **34**, 779–786.
- Davidson, R. J., Liang, J. H., Costa Milan, D., Mao, B. W., Nichols, R. J., Higgins, S. J., Yufit, D. S., Beeby, A. & Low, P. J. (2015a). *Inorg. Chem.* 54, 5487–5494.
- Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015b). *Dalton Trans.* 44, 11368–11379.
- Fantacci, S., De Angelis, F., Wang, J., Bernhard, S. & Selloni, A. (2004). J. Am. Chem. Soc. **126**, 9715–9723.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hartshorn, C. M., Daire, N., Tondreau, V., Loeb, B., Meyer, T. J. & White, P. S. (1999). *Inorg. Chem.* 38, 3200–3206.
- Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). *Energy Environ. Sci.* **4**, 2353–2365.
- Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). *Inorg. Chem.* 47, 7695–7702.
- Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81– m82.
- Jurss, J. W., Concepcion, J. J., Butler, J. M., Omberg, K. M., Baraldo, L. M., Thompson, D. G., Lebeau, E. L., Hornstein, B., Schoonover, J. R., Jude, H., Thompson, J. D., Dattelbaum, D. M., Rocha, R. C., Templeton, J. L. & Meyer, T. J. (2012). *Inorg. Chem.* **51**, 1345– 1358.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Matias, T. A., Mangoni, A. P., Toma, S. H., Rein, F. N., Rocha, R. C., Toma, H. E. & Araki, K. (2016). *Eur. J. Inorg. Chem.* pp. 5547– 5556.
- Nagashima, T., Nakabayashi, T., Suzuki, T., Kanaizuka, K., Ozawa, H., Zhong, Y. W., Masaoka, S., Sakai, K. & Haga, M. A. (2014). Organometallics, 33, 4893–4904.
- Nagashima, T., Ozawa, H., Suzuki, T., Nakabayashi, T., Kanaizuka, K. & Haga, M. A. (2016). *Chem. Eur. J.* **22**, 1658–1667.
- Rein, F. N., Chen, W., Scott, B. L. & Rocha, R. C. (2015). Acta Cryst. E71, 1017–1021.
- Richardson, D. E. & Taube, H. (1984). Coord. Chem. Rev. 60, 107–129.
- Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503–506.
- Rocha, R. C. & Toma, H. E. (2004). J. Coord. Chem. 57, 303-312.
- Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Tondreau, V., Leiva, A. M., Loeb, B., Boys, D., Stultz, L. K. & Meyer, T. J. (1996). *Polyhedron*, **15**, 2035–2040.
- Wadman, S. H., Havenith, R. W., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. & van Koten, G. (2009). *Inorg. Chem.* 48, 5685–5696.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yamazaki, H., Shouji, A., Kajita, M. & Yagi, M. (2010). Coord. Chem. Rev. 254, 2483–2491.

supporting information

Acta Cryst. (2018). E74, 1250-1253 [https://doi.org/10.1107/S2056989018011258]

Crystal structure and redox potentials of the tppz-bridged {RuCl(bpy)}⁺ dimer

Francisca N. Rein, Weizhong Chen, Brian L. Scott and Reginaldo C. Rocha

Computing details

Data collection: APEXII (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* (Bruker, 2009); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 μ -2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2'-bipyridine)chloridoruthenium(II)] bis(hexafluoridophosphate)

Crystal data

$[Ru_2Cl_2(C_{10}H_8N_2)_2(C_{24}H_{16}N_6)](PF_6)_2$
$M_r = 1311.77$
Monoclinic, $C2/c$
a = 36.04 (3) Å
b = 11.517 (11) Å
c = 14.406 (14) Å
$\beta = 95.258 \ (13)^{\circ}$
$V = 5954 (10) \text{ Å}^3$
Z = 4

Data collection

Bruker D8 with APEXII CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
$T_{\min} = 0.862, \ T_{\max} = 0.956$
13828 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.221$ S = 0.925306 reflections 325 parameters 0 restraints F(000) = 2600 $D_x = 1.463 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 792 reflections $\theta = 2.3 - 15.6^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 100 KBlock, green $0.20 \times 0.14 \times 0.06 \text{ mm}$

5306 independent reflections 2167 reflections with $I > 2\sigma(I)$ $R_{int} = 0.121$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -43 \rightarrow 41$ $k = -13 \rightarrow 12$ $l = -17 \rightarrow 9$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1018P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.89$ e Å⁻³ $\Delta\rho_{min} = -0.52$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.42533 (2)	0.80820(7)	0.86533 (6)	0.0515 (3)	
P1	0.28591 (11)	0.1287 (4)	0.8171 (3)	0.0899 (11)	
Cl1	0.46532 (8)	0.8343 (3)	1.00695 (19)	0.0738 (9)	
N1	0.4391 (2)	0.6338 (7)	0.8747 (6)	0.052 (2)	
N2	0.46892 (19)	0.8090 (7)	0.7958 (5)	0.0411 (18)	
N3	0.4279 (2)	0.9831 (7)	0.8337 (5)	0.054 (2)	
N4	0.3763 (2)	0.8077 (7)	0.9324 (6)	0.056 (2)	
N5	0.3856 (2)	0.7895 (6)	0.7548 (6)	0.050(2)	
F1	0.2644 (3)	0.1831 (10)	0.7306 (6)	0.192 (5)	
F2	0.3108 (2)	0.0590 (8)	0.7523 (6)	0.145 (3)	
F3	0.3087 (3)	0.0751 (8)	0.9044 (6)	0.156 (3)	
F4	0.2625 (2)	0.1970 (8)	0.8839 (6)	0.146 (3)	
F5	0.2599 (3)	0.0239 (10)	0.8153 (7)	0.182 (4)	
F6	0.3144 (3)	0.2278 (8)	0.8224 (8)	0.178 (4)	
C1	0.4250 (3)	0.5509 (11)	0.9278 (7)	0.063 (3)	
H1	0.403164	0.567077	0.954866	0.076*	
C2	0.4409 (3)	0.4466 (11)	0.9435 (8)	0.071 (3)	
H2	0.429611	0.390445	0.977902	0.085*	
C3	0.4743 (3)	0.4249 (9)	0.9073 (7)	0.064 (3)	
H3	0.486337	0.354441	0.919608	0.077*	
C4	0.4900 (3)	0.5057 (9)	0.8535 (7)	0.053 (3)	
H4	0.512875	0.492082	0.830629	0.064*	
C5	0.4710 (3)	0.6078 (8)	0.8339 (6)	0.047 (3)	
C6	0.4860 (2)	0.7048 (9)	0.7808 (6)	0.044 (2)	
C7	0.4829 (2)	0.9123 (9)	0.7690 (6)	0.043 (2)	
C8	0.4563 (3)	1.0102 (9)	0.7801 (6)	0.045 (2)	
C9	0.4566 (3)	1.1141 (10)	0.7356 (7)	0.061 (3)	
H9	0.474145	1.128530	0.693447	0.073*	
C10	0.4312 (3)	1.1972 (10)	0.7528 (8)	0.066 (3)	
H10	0.432617	1.270606	0.726425	0.079*	
C11	0.4039 (3)	1.1725 (11)	0.8086 (8)	0.071 (3)	
H11	0.386399	1.228549	0.820873	0.085*	
C12	0.4024 (3)	1.0628 (11)	0.8467 (7)	0.063 (3)	
H12	0.382958	1.044423	0.882405	0.076*	
C13	0.3731 (3)	0.8161 (10)	1.0246 (8)	0.072 (3)	
H13	0.395001	0.822036	1.063895	0.086*	
C14	0.3411 (4)	0.8166 (11)	1.0637 (10)	0.090 (4)	
H14	0.340712	0.826684	1.127676	0.108*	
C15	0.3084 (4)	0.8020 (12)	1.0072 (11)	0.101 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15	0.285660	0.798244	1.032786	0.121*	
C16	0.3100 (3)	0.7929 (10)	0.9126 (10)	0.082 (4)	
H16	0.288200	0.783580	0.873405	0.099*	
C17	0.3444 (3)	0.7977 (9)	0.8752 (7)	0.057 (3)	
C18	0.3493 (3)	0.7923 (9)	0.7757 (7)	0.058 (3)	
C19	0.3204 (3)	0.7896 (10)	0.7048 (9)	0.078 (4)	
H19	0.295778	0.789111	0.719650	0.093*	
C20	0.3277 (3)	0.7878 (11)	0.6156 (10)	0.086 (4)	
H20	0.308295	0.787549	0.568362	0.103*	
C21	0.3638 (3)	0.7864 (9)	0.5938 (7)	0.072 (3)	
H21	0.369245	0.783504	0.531922	0.086*	
C22	0.3924 (3)	0.7893 (8)	0.6657 (7)	0.059 (3)	
H22	0.416987	0.791088	0.650899	0.070*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0439 (5)	0.0600 (6)	0.0513 (6)	0.0015 (5)	0.0081 (4)	-0.0001 (5)
P1	0.074 (2)	0.104 (3)	0.093 (3)	0.005 (3)	0.011 (2)	0.006 (2)
Cl1	0.0681 (18)	0.091 (2)	0.0614 (19)	-0.0025 (17)	0.0022 (14)	-0.0059 (16)
N1	0.042 (5)	0.063 (6)	0.052 (6)	0.009 (5)	0.007 (4)	0.006 (5)
N2	0.041 (4)	0.038 (5)	0.045 (5)	0.008 (4)	0.009 (4)	0.003 (4)
N3	0.053 (5)	0.052 (6)	0.057 (6)	0.007 (5)	0.011 (4)	-0.001 (4)
N4	0.060 (5)	0.061 (6)	0.049 (6)	0.007 (5)	0.007 (5)	-0.002 (5)
N5	0.050 (5)	0.057 (6)	0.043 (5)	-0.002 (4)	0.005 (4)	-0.003 (4)
F1	0.197 (10)	0.263 (13)	0.117 (7)	0.127 (9)	0.014 (7)	0.058 (7)
F2	0.141 (7)	0.162 (8)	0.139 (7)	0.053 (6)	0.051 (6)	-0.020 (6)
F3	0.160 (8)	0.189 (9)	0.115 (7)	0.034 (7)	-0.005 (6)	0.006 (6)
F4	0.115 (6)	0.194 (10)	0.135 (7)	0.052 (6)	0.040 (6)	-0.038 (6)
F5	0.133 (8)	0.219 (11)	0.199 (10)	-0.073 (8)	0.035 (7)	-0.039 (8)
F6	0.131 (8)	0.122 (8)	0.288 (13)	-0.019 (7)	0.055 (8)	-0.008(8)
C1	0.038 (6)	0.087 (9)	0.065 (8)	-0.015 (7)	0.009 (5)	0.006 (7)
C2	0.071 (9)	0.065 (9)	0.075 (9)	-0.006 (7)	0.002 (7)	0.021 (7)
C3	0.077 (8)	0.049 (7)	0.064 (8)	-0.001 (7)	-0.005 (6)	0.003 (6)
C4	0.054 (6)	0.048 (7)	0.058 (7)	-0.002 (6)	0.005 (5)	0.004 (6)
C5	0.057 (7)	0.036 (6)	0.046 (7)	-0.005 (5)	-0.010 (5)	0.002 (5)
C6	0.037 (5)	0.050 (7)	0.045 (6)	-0.004 (5)	-0.001 (4)	0.000 (5)
C7	0.030 (5)	0.062 (7)	0.035 (6)	-0.001 (5)	-0.006 (4)	-0.001 (5)
C8	0.048 (6)	0.048 (7)	0.037 (6)	0.005 (5)	-0.001 (5)	-0.004 (5)
C9	0.064 (7)	0.070 (8)	0.046 (7)	0.014 (7)	-0.006 (5)	0.001 (6)
C10	0.063 (7)	0.060 (8)	0.072 (8)	0.005 (7)	-0.011 (6)	0.003 (6)
C11	0.051 (7)	0.062 (9)	0.099 (10)	0.020 (7)	-0.001 (7)	-0.002 (7)
C12	0.036 (6)	0.080 (9)	0.074 (8)	0.010 (6)	0.005 (5)	-0.016 (7)
C13	0.065 (8)	0.082 (9)	0.068 (8)	0.001 (7)	0.006 (7)	0.003 (7)
C14	0.068 (9)	0.112 (11)	0.095 (10)	-0.004 (9)	0.036 (8)	-0.004 (8)
C15	0.082 (10)	0.127 (13)	0.099 (12)	0.011 (10)	0.041 (9)	-0.006 (10)
C16	0.048 (7)	0.087 (10)	0.115 (12)	0.009 (7)	0.030 (7)	0.004 (8)
C17	0.046 (6)	0.078 (8)	0.048 (7)	0.000 (6)	0.002 (5)	-0.001 (6)

supporting information

C18	0.049 (6)	0.073 (8)	0.051 (7)	-0.005 (6)	-0.004 (5)	0.001 (6)
C19	0.058 (7)	0.106 (11)	0.070 (9)	0.001 (7)	0.005 (7)	-0.003 (8)
C20	0.056 (8)	0.124 (12)	0.076 (10)	0.014 (8)	-0.009 (7)	0.008 (9)
C21	0.089 (9)	0.082 (9)	0.044 (7)	0.002 (7)	0.001 (7)	-0.002 (6)
C22	0.058 (7)	0.067 (8)	0.051 (7)	-0.004 (6)	0.004 (6)	-0.007 (6)

Geometric parameters (Å, °)

Ru1—N2	1.939 (7)	C5—C6	1.484 (12)	
Ru1—N5	2.053 (8)	C6C6 ⁱ	1.403 (17)	
Ru1—N3	2.069 (8)	C7C7 ⁱ	1.396 (16)	
Ru1—N1	2.070 (9)	C7—C8	1.497 (12)	
Ru1—N4	2.090 (8)	C8—C9	1.358 (13)	
Ru1—Cl1	2.406 (3)	C9—C10	1.363 (13)	
P1—F5	1.527 (10)	С9—Н9	0.9300	
P1—F6	1.532 (10)	C10-C11	1.358 (14)	
P1—F1	1.539 (9)	C10—H10	0.9300	
P1—F4	1.552 (8)	C11—C12	1.380 (14)	
P1—F3	1.565 (9)	C11—H11	0.9300	
P1—F2	1.574 (8)	C12—H12	0.9300	
N1—C1	1.351 (12)	C13—C14	1.331 (14)	
N1—C5	1.370 (11)	C13—H13	0.9300	
N2—C7	1.361 (10)	C14—C15	1.379 (17)	
N2—C6	1.375 (10)	C14—H14	0.9300	
N3—C12	1.326 (11)	C15—C16	1.374 (16)	
N3—C8	1.374 (11)	C15—H15	0.9300	
N4—C13	1.347 (12)	C16—C17	1.399 (14)	
N4—C17	1.355 (12)	C16—H16	0.9300	
N5—C22	1.330 (11)	C17—C18	1.462 (13)	
N5—C18	1.367 (12)	C18—C19	1.392 (14)	
C1—C2	1.340 (14)	C19—C20	1.337 (14)	
C1—H1	0.9300	C19—H19	0.9300	
C2—C3	1.380 (13)	C20—C21	1.367 (14)	
C2—H2	0.9300	C20—H20	0.9300	
C3—C4	1.365 (13)	C21—C22	1.392 (13)	
С3—Н3	0.9300	C21—H21	0.9300	
C4—C5	1.376 (12)	C22—H22	0.9300	
C4—H4	0.9300			
N2—Ru1—N5	98.1 (3)	C5—C4—H4	120.8	
N2—Ru1—N3	80.0 (3)	N1C5C4	121.3 (9)	
N5—Ru1—N3	88.5 (3)	N1—C5—C6	114.6 (8)	
N2—Ru1—N1	80.6 (3)	C4—C5—C6	123.4 (10)	
N5—Ru1—N1	95.4 (3)	N2C6C6 ⁱ	117.2 (5)	
N3—Ru1—N1	160.6 (3)	N2—C6—C5	112.7 (8)	
N2—Ru1—N4	176.4 (3)	C6 ⁱ —C6—C5	130.1 (6)	
N5—Ru1—N4	78.4 (3)	$N2-C7-C7^{i}$	118.3 (5)	
N3—Ru1—N4	99.3 (3)	N2—C7—C8	111.9 (7)	

N1 D 1 N14	100.1.(2)		100 5 (6)
NI—RuI—N4	100.1 (3)	C/-C/-C8	129.7 (6)
N2—Ru1—Cl1	89.2 (2)	C9—C8—N3	120.2 (9)
N5—Ru1—Cl1	172.6 (2)	C9—C8—C7	125.5 (10)
N3—Ru1—Cl1	91.7 (2)	N3—C8—C7	113.9 (8)
N1—Ru1—Cl1	86.8 (2)	C8—C9—C10	119.9 (11)
N4—Ru1—Cl1	94.3 (3)	С8—С9—Н9	120.0
F5—P1—F6	175.7 (7)	С10—С9—Н9	120.0
F5—P1—F1	92.6 (7)	C11—C10—C9	119.8 (11)
F6—P1—F1	91.2 (7)	C11—C10—H10	120.1
F5—P1—F4	92.5 (6)	С9—С10—Н10	120.1
F6—P1—F4	89.5 (6)	C10-C11-C12	119.0 (11)
F1—P1—F4	91.9 (5)	C10-C11-H11	120.5
F5—P1—F3	88.8 (6)	C12—C11—H11	120.5
F6—P1—F3	87.4 (6)	N3—C12—C11	121.6 (10)
F1—P1—F3	178.4 (7)	N3—C12—H12	119.2
F4—P1—F3	88.7 (5)	C11—C12—H12	119.2
F5—P1—F2	88.3 (6)	C14—C13—N4	125.0 (11)
F6—P1—F2	89.6 (6)	C14—C13—H13	117.5
F1—P1—F2	89.9 (5)	N4—C13—H13	117.5
F4—P1—F2	178.0 (6)	C13—C14—C15	118.5 (13)
F3—P1—F2	89.4 (5)	C13—C14—H14	120.8
C1—N1—C5	117.4 (9)	C15—C14—H14	120.8
C1—N1—Ru1	128.5 (7)	C16—C15—C14	119.0 (12)
C5—N1—Ru1	112.9 (7)	С16—С15—Н15	120.5
C7-N2-C6	122.4 (7)	C14—C15—H15	120.5
C7— $N2$ — $Ru1$	119.2 (6)	C_{15} C_{16} C_{17}	119.8 (12)
C6-N2-Ru1	118.2 (6)	$C_{15} - C_{16} - H_{16}$	120.1
C12 - N3 - C8	119.0(9)	C17 - C16 - H16	120.1
C12 N3 $Ru1$	1267(8)	N4-C17-C16	120.1 120.1(10)
C8—N3—Rul	113 3 (6)	N4-C17-C18	115 3 (9)
C13 - N4 - C17	117.5 (9)	C_{16} C_{17} C_{18}	1245(10)
C13 N4 $Ru1$	1274(7)	N_{5} C_{18} C_{19}	1204(10)
C17—N4—Rul	127.4(7) 1151(7)	N_{5} C_{18} C_{17}	114.8 (8)
$C_{22} N_{5} C_{18}$	118.5 (8)	C_{19} C_{18} C_{17}	124.8(0)
$C_{22} = N_5 = C_{10}$	124 8 (7)	C_{20} C_{19} C_{18}	124.0(10) 1203(11)
C18 N5 Rul	124.0(7) 1161(6)	C_{20} C_{19} H_{19}	110.0
$C_{10} = N_{10} = R_{11}$	110.1(0) 123.6(10)	$C_{18} C_{19} H_{19}$	119.9
$C_2 = C_1 = H_1$	123.0 (10)	$C_{10} = C_{10} = C_{11}$	119.9
N1 C1 H1	118.2	$C_{19} = C_{20} = C_{21}$	119.9 (11)
$N_1 = C_1 = M_1$	110.2	$C_{1}^{2} = C_{2}^{2} = H_{2}^{2}$	120.1
C1 = C2 = C3	110.1 (11)	$C_{21} = C_{20} = H_{20}$	120.1
$C_1 = C_2 = H_2$	120.9	$C_{20} = C_{21} = C_{22}$	119.0 (11)
$C_3 = C_2 = H_2$	120.9	C20—C21—H21	120.5
C4 = C2 = U2	120.8 (11)	$U_{22} - U_{21} - H_{21}$	120.3
C_{4} C_{2} C_{2	119.0	$N_{5} = C_{22} = C_{21}$	121.9 (10)
C2-C3-H3	119.0	$H_{22} = H_{22}$	119.1
$C_3 = C_4 = C_5$	118.3 (10)	C21—C22—H22	119.1
C3—C4—H4	120.8		

C5—N1—C1—C2	1.1 (15)	C7—C8—C9—C10	-179.0 (9)
Ru1—N1—C1—C2	-165.8 (8)	C8—C9—C10—C11	-5.3 (15)
N1—C1—C2—C3	3.3 (16)	C9-C10-C11-C12	-0.1 (16)
C1—C2—C3—C4	-2.8 (16)	C8—N3—C12—C11	-0.7 (14)
C2—C3—C4—C5	-2.0 (15)	Ru1—N3—C12—C11	-168.5 (8)
C1—N1—C5—C4	-6.2 (13)	C10-C11-C12-N3	3.2 (16)
Ru1—N1—C5—C4	162.7 (7)	C17—N4—C13—C14	-0.7 (17)
C1—N1—C5—C6	-176.9 (8)	Ru1—N4—C13—C14	179.2 (10)
Ru1—N1—C5—C6	-8.0 (9)	N4-C13-C14-C15	3 (2)
C3—C4—C5—N1	6.6 (14)	C13—C14—C15—C16	-3 (2)
C3—C4—C5—C6	176.5 (9)	C14—C15—C16—C17	0.5 (19)
$C7-N2-C6-C6^{i}$	-13.6 (14)	C13—N4—C17—C16	-2.0 (15)
Ru1—N2—C6—C6 ⁱ	170.9 (8)	Ru1—N4—C17—C16	178.1 (8)
C7—N2—C6—C5	167.0 (7)	C13—N4—C17—C18	178.2 (9)
Ru1—N2—C6—C5	-8.6 (9)	Ru1—N4—C17—C18	-1.7 (11)
N1-C5-C6-N2	10.7 (11)	C15—C16—C17—N4	2.0 (17)
C4—C5—C6—N2	-159.7 (8)	C15—C16—C17—C18	-178.2 (11)
N1-C5-C6-C6 ⁱ	-168.6 (11)	C22—N5—C18—C19	2.9 (14)
C4—C5—C6—C6 ⁱ	20.9 (17)	Ru1—N5—C18—C19	174.9 (8)
$C6-N2-C7-C7^{i}$	-4.5 (14)	C22—N5—C18—C17	-177.3 (8)
$Ru1$ — $N2$ — $C7$ — $C7^i$	171.0 (8)	Ru1—N5—C18—C17	-5.4 (11)
C6—N2—C7—C8	171.4 (7)	N4—C17—C18—N5	4.6 (13)
Ru1—N2—C7—C8	-13.0 (9)	C16—C17—C18—N5	-175.2 (10)
C12—N3—C8—C9	-4.8 (13)	N4—C17—C18—C19	-175.6 (10)
Ru1—N3—C8—C9	164.6 (7)	C16—C17—C18—C19	4.5 (18)
C12—N3—C8—C7	-178.7 (8)	N5-C18-C19-C20	-2.0 (17)
Ru1—N3—C8—C7	-9.4 (9)	C17—C18—C19—C20	178.2 (11)
N2—C7—C8—C9	-159.3 (9)	C18—C19—C20—C21	1.2 (19)
C7 ⁱ —C7—C8—C9	16.1 (17)	C19—C20—C21—C22	-1.3 (18)
N2-C7-C8-N3	14.3 (10)	C18—N5—C22—C21	-3.0 (14)
C7 ⁱ —C7—C8—N3	-170.3 (11)	Ru1—N5—C22—C21	-174.3 (7)
N3—C8—C9—C10	7.8 (14)	C20-C21-C22-N5	2.3 (16)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C13—H13…Cl1	0.93	2.74	3.362 (12)	125
С9—Н9…С11 ^{іі}	0.93	2.71	3.390 (11)	131
C14—H14…F2 ⁱⁱⁱ	0.93	2.54	3.342 (17)	144

Symmetry codes: (ii) *x*, –*y*+2, *z*–1/2; (iii) *x*, –*y*+1, *z*+1/2.