

Received 24 July 2018 Accepted 8 August 2018

Edited by L. Fabian, University of East Anglia, England

Keywords: crystal structure; oxazaphospholidinone; organophosphorus; bis(2-chloroethyl)amine; nitrogen mustard.

CCDC references: 1861038; 1861037

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of chiral 2-[bis(2-chloroethyl)amino]-1,3,2-oxazaphospholidin-2-one derivatives for the absolute configuration at phosphorus

Laurence N. Rohde Jr,^a Matthias Zeller^b and John A. Jackson^{a*}

^aDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA, and ^bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA. *Correspondence e-mail: jajackson@ysu.edu

[•]Nitrogen mustard' bis(2-chloroethyl)amine derivatives (2*R*,4*S*,5*R*)- and (2*S*,4*S*,5*R*)-2-[bis(2-chloroethyl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one (**2a** and **2b**, respectively), C₁₄H₂₁Cl₂N₂O₂P, and (2*R*,4*R*)- and (2*S*,4*R*)-2-[bis(2-chloroethyl)amino]-4-isobutyl-1,3,2-oxazaphospholidin-2-one (**3a** and **3b**, respectively), C₁₀H₂₁Cl₂N₂O₂P, were synthesized as a mixture of diastereomers through a 1:1 reaction of enantiomerically pure chiral amino alcohols with bis(2-chloroethyl)phosphoramidic dichloride. Flash column chromatography yielded diastereomerically pure products, as supported by ³¹P NMR. The crystal structures of **2b** and **3b** were obtained to determine their absolute configuration at phosphorus, and ³¹P NMR chemical shift trends are proposed based on the spatial relationship of the bis(2-chloroethyl)amine moiety and the chiral substituent of the amino alcohol. Oxazaphospholidinones were observed to have a more downfield ³¹P NMR chemical shift when the aforementioned substituents are in a *syn* configuration and *vice versa* for when they are *anti*.

1. Chemical context

Bis(2-chloroethyl)amine moieties, also known as a 'nitrogen mustard', are of interest due their ability to alkylate DNA, which hinders the cellular growth and replication of cancer cells (Einhorn, 1985). 2-[Bis(2-chloroethyl)amino]-1, $3\lambda^2$,2oxazaphosphinane 2-oxide, commercially sold as cyclophosphamide, features such a nitrogen mustard moiety and is registered as an FDA-approved chemotherapeutic due to its cytotoxic ability. The bioactivation mechanism of cyclophosphamide is well known. Hydroxylation occurs on the C-4 position through cytochrome P450 type enzymes and the cyclophosphamide β -eliminates into acrolein and an enantiomeric mixture of the cytotoxic phosphoramide mustard (Takamizawa et al., 1975; Borch & Millard, 1987; Sladek, 1988). Studies support an enantioselective metabolism via the administration of enantiomerically pure cyclophosphamide, as expected for an enzyme-catalyzed reaction (Cox et al., 1976; Fernandes et al., 2011; Castro et al., 2016). Therefore, it is of pharmaceutical interest to be able to readily identify the absolute configuration at phosphorus of cyclophosphamide and other related nitrogen mustard derivatives.

Diastereomeric 2-[bis(2-chloroethyl)]-1,3,2-oxazaphospholidin-2-ones, a five-membered ring derivative of cyclophosphamide, have been previously synthesized from L- and D-serine, but lacked X-ray diffraction data to determine the absolute configuration at the P atom (Foster, 1978; Jackson *et al.*, 1992). Instead, the spectroscopic trends and X-ray

Table 1	
Hydrogen-bond geometry (Å, °) for 2b .	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C11-H11A\cdots O2^{i}$	0.99	2.38	3.3571 (11)	170
$C14-H14B\cdots O2^{i}$	0.99	2.41	3.3244 (12)	153
C9−H9···O2 ⁱⁱ	0.95	2.65	3.3444 (13)	130
$C11 - H11B \cdot \cdot \cdot N1$	0.99	2.63	3.1322 (11)	111
$C12-H12B\cdots O1$	0.99	2.64	3.3381 (11)	128
$C13-H13A\cdots Cl1$	0.99	2.86	3.4970 (9)	123
$C10-H10A\cdots C5^{ii}$	0.98	2.84	3.7839 (15)	162

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

diffraction analysis of an L-serine-derived 2-methoxy-1,3,2oxazaphospholidin-2-one was applied and the absolute configuration was determined by analogy (Thompson *et al.*, 1990). It was described that oxazaphospholidinones with a downfield ³¹P NMR chemical shift had a *syn* configuration with respect to the exocyclic methoxy group and the chiral substituent of the amino alcohol, and *vice versa* for the *anti* configuration.

Herein we report the synthesis and absolute configuration at phosphorus of chiral 2-[bis(2-chloroethyl)amino]-1,3,2oxazaphospholidin-2-ones in attempts to support these spectroscopic trends for the analysis of future potentially chemotherapeutic analogues. Bis(2-chloroethyl)amine phosphoramidic dichloride was synthesized following the experimental procedure described by Friedman & Seligman (1954). Enantiomerically pure chiral amino alcohols were purchased and used to synthesize pairs of diastereomeric oxazaphospholidinones, which allowed for easy separation *via* flash column chromatography.

2. Structural commentary

No single crystals of **3a** of X-ray diffraction quality could be obtained, and compound **2a** was isolated as an oil. Compounds **2b** and **3b**, however, have been analyzed by single-crystal diffraction (Figs. 1 and 2). The molecular structures of **2b** and **3b** are similar. The five-membered rings in both structures feature the expected envelope conformation, with the flap at the C atom connecting to the phenyl and isobutyl groups, respectively. An overlay of the two structures, guided by the

Figure 1

Displacement ellipsoid representation of a molecule of 2b (50% probability level), with the atom-numbering scheme.

Displacement ellipsoid representation of a molecule of 3b (50% probability level), with the atom-numbering scheme.

position of the phenyl and isobuytl groups (Fig. 3), indicates that the positions of the aza and oxo groups are swapped between **2b** and **3b**. Another slight difference between the conformations between the two rings is evident, caused by the close to planar configuration of the methylamine N atom of **2b** (the sum of angles around N1 is 359.97°), giving **3b** a slightly more 'buckled' appearance than **2b**. The chloroethyl moieties in **3b** are extended all-*trans*. In **2b**, one is also *trans*, while the other is *gauche* with an N2-C11-C12-Cl1 torsion angle of -65.89 (9)°.

The conformation of both **2b** and **3b** appear at first sight to be stabilized by a number of weak intramolecular hydrogenbond-like interactions. In **2b**, this involves $C12-H12B\cdots O1$ and $C11-H11B\cdots N1$, with atoms O1 and N1 being the O and N atoms of the oxazaphospholidin-2-one five-membered ring (see Table 1). In **3b**, similar interactions are observed for C8-H8B···O1 and C7-H7A···N1. Bond lengths and angles for these interactions are, however, quite unfavorable (see Table 2). In particular, atom N1 in **2b**, being essentially planar and sp^2 -hybridized, appears to be an unlikely acceptor for an actual hydrogen bond. The observed close contacts are most likely not significantly contributing to the stability of the molecular geometry realized in the solid state.

The absolute structure at phosphorous has been established from the single-crystal data for both molecules [Flack para-

Figure 3

Overlay of molecules **2b** and **3b** (50% displacement ellipsoid probability level). R.m.s. value based on atoms of the five-membered ring and oxygen is 0.111 Å. Color coding: P orange, O red, N blue, Cl green, and C light purple for **2b** and light blue for **3b**.

meters = 0.000 (8) and 0.07 (4), respectively] to test whether their determination from ³¹P NMR chemical shift data based on the spatial relationship of the bis(2-chloroethyl)amine moiety and the chiral substituent of the amino alcohol does hold true (Thompson *et al.*, 1990). The single-crystal X-ray structures of **2b** and **3b** tentatively support the literature trends based on their ³¹P NMR chemical shifts. The chiral center(s) of the amino alcohol are *syn* to the nitrogen mustard moiety and the absolute configurations at phosphorus were found to both be *S* for **2b** and **3b** [see Favre & Powell (2014) for assignment of absolute structure for hypervalent atoms such as P or S in tetrahedral geometry]. The ³¹P NMR data are shifted slightly downfield compared to their *anti* diastereomers

Figure 4

Packing arrangement and intermolecular interactions of **2b** (50% probability level). Intermolecular contacts are shown as dashed lines (light blue for $C-H\cdots O$ and purple for $C-H\cdots \pi$).

Table 2 Hydrogen-bond geometry (Å, $^\circ)$ for 3b.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O2^{i}$	0.85 (2)	2.05 (3)	2.863 (3)	158 (4)
$C2-H2\cdots O2^{ii}$	1.00	2.57	3.401 (4)	141
$C1 - H1B \cdot \cdot \cdot N1^{iii}$	0.99	2.71	3.481 (4)	135
$C8-H8A\cdots Cl1^{iv}$	0.99	2.92	3.656 (4)	132
$C8 - H8B \cdots O1$	0.99	2.54	3.245 (4)	128
$C7-H7A\cdots N1$	0.99	2.62	3.125 (4)	112

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 1; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1; (iii) x, y + 1, z; (iv) -x + 1, $y + \frac{1}{2}$, -z.

2a and **3a**, thus confirming the trend proposed by Thompson *et al.* (1990). The absolute shift values are, however, rather small: 1.40 ppm for the pair of **3a** and **3b**, and nearly no shift is observed for the pair of **2a** and **2b** (0.33 ppm) (see *Experimental* section for all NMR data). Whether the assignment of absolute structure is reliable enough to be used for other related molecules in the absence of structural data from X-ray diffraction is not clear based on the data at hand. For a more reliable estimate, data from a larger library of compounds are needed.

3. Supramolecular features

Molecule **2b** does not feature any acidic H atoms and, as such, does not have any strong hydrogen bonds. The O atom of the phospholidinone unit does, however, act as an acceptor for several C-H···O hydrogen-bond-like interactions, originating from two methylene and one aromatic C-H unit of neighboring molecules (see Table 1 for metrical details and symmetry operators). The three $C-H \cdots O$ interactions surrounding O2 are about equally spread, thus giving the O atom of the P=O unit a pseudo-tetrahedral environment made up of the P atom on one side, and the three C-H units on the other three. A C-H··· π interaction, involving C10-H10A towards the π density of the benzene ring at $(x - \frac{1}{2})$ $-y + \frac{1}{2}, -z + 1$), is also observed, but no significant C-H···Cl interactions and no π - π stacking are found. The combined $C-H\cdots O$ and $C-H\cdots \pi$ interactions connect molecules into a three-dimensional lattice (Fig. 4).

Compound **3b** does, in contrast to **2b**, have an acidic functional group, the amide N-H moiety, that is capable of forming a medium-to-strong hydrogen bond. Intermolecular interactions in the structure of **3b** are indeed dominated by an N-H···O hydrogen bond between the amide H atom and the phospholidinone O atom. The graph-set motif for a single interaction is C(4), connecting individual molecules into infinite chains that wrap around a twofold screw axis parallel to the *b*-axis direction (Fig. 5). The spirals of molecules thus formed are further stabilized by a C-H···O interaction between C2 and phospholidinone atom O1, and by a weak C-H···N interaction between atoms C1 and N1 down the chain direction (Fig. 5). Neighboring spiral chains are connected through C-H···Cl interactions involving H8A of one of the methylene groups and Cl1.

Figure 5

Packing arrangement and intermolecular interactions of **3b** (50% probability level). Hydrogen bonds are shown as dashed lines (blue for N-H···O, light blue for C-H···O, and red for C-H···Cl). Molecules 'wrap' around the twofold axis at $[0, y, \frac{1}{2}]$ (symbolized as green lines with half arrows).

4. Database survey

A search in the Cambridge Structural Database (Groom *et al.*, 2016) for the 2-[bis(2-chloroethyl)amino]-1,3,2-oxazaphospholidin-2-one fragment resulted in two entries, namely *rac*-(2R,5S)- and *rac*-(2R,5R)-2-[bis(2-chloroethyl)amino]-5-(1-napthoxymethyl)-1,3,2-oxazaphospholidin-2-one (refcodes COKKIW and COKKES, respectively; Cates *et al.*, 1984). The single-crystal structures of COKKIW and COKKES exhibit *syn* and *trans* configurations, respectively, but unfortunately no ³¹P NMR chemical shifts have been reported to support spectroscopic trends.

5. Synthesis and crystallization

5.1. Bis(2-chloroethyl)phosphoramidic dichloride, 1

Bis(2-chloroethyl)amine hydrochloride (3.00 g, 16.77 mmol) was suspended in freshly distilled phosphoryl chloride (10 ml, 107 mmol) in a 50 ml round-bottomed flask and heated under reflux overnight. Once all the solids were completely dissolved, excess phosphoryl chloride was distilled off to leave a darkbrown oily residue. The residue was dissolved in an excess of a mixture of petroleum ether–acetone (1:1 v/v), while in a 323 K hot water bath. The hot solution was then filtered to remove any solids and the solvent was removed *via* rotary evaporation

to yield an off-white solid. The solid was recrystallized using a 1:1 (ν/ν) solution of petroleum ether–acetone to afford phosphoramide mustard **1** (4.04 g, 79.4%) as an off-white crystalline solid (m.p. 327–328 K). ³¹P NMR (162 MHz, CDCl₃): δ 17.39. ¹³C NMR (100 MHz, CDCl₃): δ 49.48 (d, J = 4.29 Hz), 40.82 (d, J = 2.89 Hz). ¹H NMR (400 MHz, CDCl₃): δ 3.77–3.62 (m, 8H).

5.2. (2*R*,4*S*,5*R*)- and (2*S*,4*S*,5*R*)-2[bis(2-chloroethyl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one (2a and 2b)

Phosphoramide mustard 1 (0.647 g, 2.50 mmol), (1R,2S)-(-)-ephedrine (0.375 g, 2.51 mmol), toluene (20 ml) and triethylamine (0.75 ml, 5.38 mmol) were added to a 50 ml roundbottomed flask at 275 K under an argon atmosphere. The solution was then allowed to stir and warm to room temperature overnight. The reaction mixture was vacuum filtered through 2.0 cm of Celite packed onto a fritted glass funnel and was washed with an additional 60-80 ml of dichloromethane. The solvent was removed via rotary evaporation, which yielded a viscous yellow oil. The oil was purified by flash column chromatography (110 g silica, 100% ethyl acetate, $R_{\rm F} = 0.50$ and 0.33 in 100% ethyl acetate) and afforded oxazaphospholidinones 2a and 2b (combined yield 0.54 g, 64.6%), based on their order of elution. Approximately 25 mg of oxazaphospholidinone 2b was dissolved in 2 ml of ethyl acetate and allowed to slowly evaporate over several days at room temperature. This yielded colorless crystals for single-crystal X-ray diffraction.

Fast diastereomer (**2a**): 0.33 g (39.5%), clear yellow oil. $R_{\rm F} = 0.50$ in 100% ethyl acetate. $[\alpha]_D^{20} = -28.1^{\circ}$ (c = 0.039 g ml⁻¹). ³¹P NMR (162 MHz, CDCl₃): δ 24.30. ¹³C NMR (100 MHz, CDCl₃): δ 136.15 (d, J = 6.49 Hz), 128.47, 128.24, 125.86, 81.57, 59.36 (d, J = 12.76 Hz), 49.65 (d, J = 4.64 Hz), 42.43, 28.46 (d, J = 5.05 Hz), 13.87. ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.30 (m, 5H), 5.49 (dd, 1H, J = 6.16, 2.24 Hz), 3.78–3.38 (m, 10H), 2.70 (d, 3H, J = 10.28 Hz), 0.87 (d, 3H, J = 6.60 Hz).

Slow diastereomer (**2b**): 0.21 g (25.1%), white crystalline solid (m.p. 411 K). $R_{\rm F} = 0.33$ in 100% ethyl acetate. $[\alpha]_D^{20} = -47.8 (c = 0.032 \text{ g ml}^{-1})$. ³¹P NMR (162 MHz, CDCl₃): δ 24.63. ¹³C NMR (100 MHz, CDCl₃): δ 135.87 (*d*, J = 10.95 Hz), 128.55, 128.17, 125.43, 78.15 (*d*, J = 3.85 Hz), 59.46 (*d*, J = 11.89 Hz), 49.50 (*d*, J = 5.09 Hz), 42.42, 29.36 (*d*, J = 5.93 Hz), 14.78 (*d*, J = 1.78 Hz). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.22 (*m*, 5 H), 5.78 (*d*, J = 6.56 Hz), 3.78–3.65 (*m*, 5H), 3.63–3.40 (*m*, 4H), 2.74 (*d*, J = 9.60 Hz), 0.78 (*d*, J = 6.44 Hz).

5.3. (2*S*,4*R*)- and (2*R*,4*R*)-2-[bis(2-chloroethyl)amino]-4-isobutyl-1,3,2-oxazaphospholidin-2-one (3a and 3b)

Phosphoramide mustard 1 (0.258 g, 0.99 mmol), (R)-(-)-2amino-4-methyl-1-pentanol (0.130 ml, 1.01 mmol), ethyl acetate (10 ml) and triethylamine (0.5 ml, 3.59 mmol) were added to a 50 ml round-bottomed flask at 273 K under an argon atmosphere. The solution was then allowed to stir and warm to room temperature overnight. The reaction mixture was vacuum filtered through 2.0 cm of Celite packed on a

research communications

Table 3 Experimental details.

	2b	3b
Crystal data		
Chemical formula	$C_{14}H_{21}Cl_2N_2O_2P$	$C_{10}H_{21}Cl_2N_2O_2P$
M.	351.20	303.16
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1$
Temperature (K)	100	100
a, b, c (Å)	10.6894 (6), 11.1623 (6), 14.0025 (7)	12.1044 (17), 5.3162 (8), 12.8933 (17)
α, β, γ (°)	90, 90, 90	90, 115,409 (4), 90
$V(A^3)$	1670.75 (15)	749.42 (18)
Z	4	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.49	0.53
Crystal size (mm)	$0.45 \times 0.45 \times 0.26$	$0.22 \times 0.02 \times 0.02$
Data collection		
Diffractometer	Bruker AXS D8 Quest CMOS	Bruker AXS D8 Quest CMOS
Absorption correction	Multi-scan (APEX3; Bruker, 2016)	Multi-scan (APEX3; Bruker, 2016)
T_{\min}, \hat{T}_{\max}	0.647, 0.748	0.616, 0.725
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	54792, 10531, 9765	18357, 4294, 3325
R _{int}	0.033	0.080
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.910	0.716
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.064, 1.07	0.048, 0.095, 1.02
No. of reflections	10531	4294
No. of parameters	193	159
No. of restraints	0	2
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.39, -0.34	0.38, -0.49
Absolute structure	Flack x determined using 4150 quotients	Flack x determined using 1199 quotients
	$[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons et al., 2013)	$[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	0.000 (8)	0.07 (4)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2008), and publCIF (Westrip, 2010).

fritted glass funnel and was washed with an additional 60–80 ml of ethyl acetate. The solvent was removed *via* rotary evaporation, which yielded a viscous yellow oil. The oil was purified by flash column chromatography (60 g silica treated with 1% triethylamine, 100% ethyl acetate, $R_F = 0.29$ and 0.17 in 100% ethyl acetate) to afford oxazaphospholidinones **3a** and **3b** (combined yield 0.22 g, 72.8%), based on their order of elution. Approximately 25 mg of oxazaphospholidinone **3b** was dissolved in 2 ml of ethyl acetate and allowed to slowly evaporate over several days at room temperature. This yielded colorless crystals for single-crystal X-ray diffraction.

Fast diastereomer (**3a**): 0.11 g (36.4%), white crystalline solid (m.p. 371–373 °C). $R_{\rm F} = 0.29$ in 100% ethyl acetate. $[\alpha]_D^{20} = -11.1^{\circ}$ (c = 0.028 g ml⁻¹). ³¹P NMR (162 MHz, CDCl₃): δ 27.58. ¹³C NMR (100 MHz, CDCl₃): δ 71.28 (d, J = 1.85 Hz), 53.35 (d, J = 8.61 Hz), 49.12 (d, J = 5.00 Hz), 44.36 (d, J = 4.77 Hz), 42.39, 25.31, 22.93, 22.15. ¹H NMR (400 MHz, CDCl₃): δ 4.21 (ddd, 1H, J = 17.42 Hz, 8.77 Hz, 6.83 Hz), 3.86 (ddd, 1H, J = 8.14 Hz, 8.14 Hz, 4.40 Hz), 3.73–3.62 (m, 1H), 3.62–3.50 (m, 4H), 3.44–3.24 (m, 4H), 2.70 (d, 1H, 14.57 Hz), 1.63–1.45 (m, 2H), 1.39–1.29 (m, 1H), 0.88 (d, 3H, J = 7.16 Hz), 0.86 (d, 3H, J = 7.16 Hz).

Slow diastereomer (**3b**): 0.11 g (36.4%), white crystalline solid (m.p. 352-353 °C). $R_F = 0.17$ in 100% ethyl acetate.

[α]₂₀²⁰ = +4.1° (c = 0.028 g ml⁻¹). ³¹P NMR (162 MHz, CDCl₃): δ 28.98. ¹³C NMR (100 MHz, CDCl₃): δ 71.81, 51.30 (d, J = 9.47 Hz), 49.21 (d, J = 4.78 Hz), 44.74 (d, J = 8.80 Hz), 42.28, 25.25, 23.08, 22.04. ¹H NMR (400 MHz, CDCl₃): δ 4.45 (ddd, 1H, J = 11.84 Hz, 8.52 Hz, 7.09 Hz), 4.00–3.90 (m, 1H), 3.74 (ddd, 1H, J = 8.17 Hz, 8.17 Hz, 8.17 Hz), 3.71–3.59 (m, 4H), 3.56–3.35 (m, 4H), 2.75 (d, 1H, J = 10.92 Hz), 1.71–1.58 (m, 1H), 1.53–1.43 (m, 1H), 1.38–1.29 (m, 1H), 0.99 (d, 3H, J = 6.60 Hz), 0.95 (d, 3H, J = 6.56 Hz).

6. Refinement

H atoms attached to C and N atoms were positioned geometrically and constrained to ride on their parent atoms. C–H bond lengths were constrained to 0.95 Å for aromatic C–H groups. Aliphatic CH, CH₂, and CH₃ groups were constrained to C–H bond lengths of 1.00, 0.99, and 0.98 Å, respectively. The position of the amino H atom was refined and the N–H distance restrained to 0.88 (2) Å. Methyl H atoms were allowed to rotate, but not to tip, to best fit the experimental electron density. $U_{\rm iso}({\rm H})$ values were set to a multiple of $U_{\rm eq}({\rm C})$, with 1.5 for CH₃ and 1.2 for N–H, C–H, and CH₂ units. Crystal data, data collection and structure refinement details are summarized in Table 3.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Materials Research (grant No. 1337296 to MZ, for X-ray diffractometers); Youngstown State University.

References

- Borch, R. F. & Millard, J. A. (1987). J. Med. Chem. 30, 427-431.
- Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castro, F. A., Scatena, G. D., Rocha, O. P., Marques, M. P., Cass, Q. B., Simoes, B. P. & Lanchote, V. L. (2016). *J. Chromatogr. B*, **1011**, 53– 61.
- Cates, L. A., Li, V., Powell, D. R. & Helm, D. V. (1984). J. Med. Chem. 27, 397–401.
- Cox, P. J., Farmer, P. B., Jarman, M., Jones, M., Stec, W. J. & Kinas, R. (1976). *Biochem. Pharmacol.* 25, 993–996.

Einhorn, J. (1985). Int. J. Radiat. Oncol. Biol. Phys. 11, 1375-1378.

Favre, H. A. & Powell, W. H. (2014). In Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. Specification of Configuration and Conformation, pp. 1156–1292. Cambridge: Royal Society of Chemistry.

- Fernandes, B. J. D., Silva, C. D. M., Andrade, J. M., Matthes, A. D. C. S., Coelho, E. B. & Lanchote, V. L. (2011). *Cancer Chemother. Pharmacol.* 68, 897–904.
- Foster, E. (1978). J. Pharm. Sci. 67, 709-710.
- Friedman, O. M. & Seligman, A. M. (1954). J. Am. Chem. Soc. 76, 655–658.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Jackson, J. A., Frick, J. A. & Thompson, C. M. (1992). Bioorg. Med. Chem. Lett. 2, 1547–1550.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sladek, N. E. (1988). Pharmacol. Ther. 37, 301-355.
- Takamizawa, A., Matsumoto, S., Iwata, T., Tochino, Y., Katagiri, K., Yamaguchi, K. & Shirator, O. (1975). J. Med. Chem. 18, 376–383.
- Thompson, C. M., Frick, J. A. & Green, D. L. C. (1990). J. Org. Chem. 55, 111–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2018). E74, 1330-1335 [https://doi.org/10.1107/S2056989018011349]

Crystal structures of chiral 2-[bis(2-chloroethyl)amino]-1,3,2-oxazaphospholidin-2-one derivatives for the absolute configuration at phosphorus

Laurence N. Rohde Jr, Matthias Zeller and John A. Jackson

Computing details

For both structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015) and *shelXle* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(2S,4S,5R)-2-[Bis(2-chloroethyl)amino]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one (2b)

Crystal data	
$C_{14}H_{21}Cl_2N_2O_2P$ $M_r = 351.20$ Orthorhombic, $P2_12_12_1$ $a = 10.6894 (6) Å$ $b = 11.1623 (6) Å$ $c = 14.0025 (7) Å$ $V = 1670.75 (15) Å^3$ $Z = 4$ $F(000) = 736$	$D_x = 1.396 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9357 reflections $\theta = 2.4-40.2^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.45 \times 0.45 \times 0.26 \text{ mm}$
Data collection	
Bruker AXS D8 Quest CMOS diffractometer Radiation source: I μ S microsource X-ray tube Laterally graded multilayer (Goebel) mirror monochromator ω and phi scans Absorption correction: multi-scan (APEX3; Bruker, 2016) $T_{min} = 0.647, T_{max} = 0.748$	54792 measured reflections 10531 independent reflections 9765 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 40.3^\circ, \ \theta_{min} = 2.3^\circ$ $h = -19 \rightarrow 18$ $k = -15 \rightarrow 20$ $l = -23 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.064$ S = 1.07 10531 reflections 193 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.1289P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.39 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.33 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0137 (13) Absolute structure: Flack *x* determined using 4150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.000 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.66219 (3)	0.73317 (2)	0.57271 (2)	0.02053 (5)
C12	0.65512 (2)	0.50227 (2)	0.93609 (2)	0.02110 (5)
P1	0.50144 (2)	0.36754 (2)	0.61478 (2)	0.01080 (4)
01	0.53487 (6)	0.37759 (6)	0.50302 (4)	0.01294 (10)
O2	0.57173 (7)	0.27440 (6)	0.66701 (5)	0.01656 (11)
N1	0.35118 (7)	0.34892 (7)	0.59734 (5)	0.01437 (11)
N2	0.52864 (7)	0.49876 (6)	0.66359 (5)	0.01273 (11)
C1	0.25115 (10)	0.44596 (10)	0.45684 (7)	0.02017 (16)
H1A	0.225400	0.430884	0.390754	0.030*
H1B	0.308943	0.514081	0.458548	0.030*
H1C	0.177284	0.464187	0.495673	0.030*
C2	0.31606 (8)	0.33532 (8)	0.49651 (6)	0.01417 (13)
H2	0.259710	0.264373	0.489379	0.017*
C3	0.44360 (8)	0.30792 (7)	0.44925 (6)	0.01272 (12)
Н3	0.462543	0.220984	0.458637	0.015*
C4	0.45200 (8)	0.33538 (7)	0.34439 (6)	0.01301 (12)
C5	0.53407 (9)	0.41996 (9)	0.30689 (6)	0.01709 (14)
Н5	0.586804	0.464763	0.348205	0.021*
C6	0.53872 (10)	0.43884 (9)	0.20819 (7)	0.02021 (16)
H6	0.595012	0.496426	0.182717	0.024*
C7	0.46181 (10)	0.37419 (9)	0.14708 (7)	0.01941 (15)
H7	0.466005	0.386924	0.080071	0.023*
C8	0.37859 (10)	0.29068 (10)	0.18454 (7)	0.02021 (16)
H8	0.325004	0.246904	0.143165	0.024*
C9	0.37388 (10)	0.27126 (9)	0.28280 (6)	0.01847 (15)
Н9	0.317110	0.213987	0.308112	0.022*
C10	0.25759 (9)	0.34159 (10)	0.67220 (7)	0.02082 (16)
H10A	0.215107	0.263908	0.668721	0.031*
H10B	0.196269	0.406006	0.663841	0.031*
H10C	0.298193	0.349897	0.734603	0.031*
C11	0.45791 (9)	0.60577 (7)	0.63576 (6)	0.01520 (13)
H11A	0.456531	0.662222	0.690283	0.018*
H11B	0.370414	0.582168	0.622219	0.018*

C12	0.51026 (11)	0.67006 (8)	0.54911 (6)	0.01917 (16)	
H12A	0.452137	0.734821	0.530021	0.023*	
H12B	0.516626	0.612916	0.495255	0.023*	
C13	0.61622 (8)	0.50952 (8)	0.74403 (5)	0.01305 (12)	
H13A	0.659371	0.587905	0.740990	0.016*	
H13B	0.680260	0.445669	0.739828	0.016*	
C14	0.54620 (8)	0.49888 (8)	0.83801 (6)	0.01539 (13)	
H14A	0.498508	0.422870	0.839319	0.018*	
H14B	0.486094	0.565913	0.844218	0.018*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02609 (11)	0.01820 (9)	0.01729 (8)	-0.00405 (8)	0.00246 (7)	0.00094 (6)
Cl2	0.02295 (10)	0.02672 (10)	0.01361 (7)	0.00098 (8)	-0.00269 (7)	0.00185 (7)
P1	0.00966 (8)	0.00914 (7)	0.01360 (7)	0.00016 (6)	-0.00134 (6)	0.00005 (5)
O1	0.0097 (2)	0.0153 (2)	0.0137 (2)	-0.00138 (19)	-0.00173 (18)	-0.00211 (19)
O2	0.0174 (3)	0.0118 (2)	0.0204 (3)	0.0030 (2)	-0.0043 (2)	0.0020 (2)
N1	0.0103 (3)	0.0169 (3)	0.0159 (2)	-0.0027 (2)	-0.0004 (2)	-0.0005 (2)
N2	0.0141 (3)	0.0098 (2)	0.0143 (2)	0.0002 (2)	-0.00341 (19)	-0.0005 (2)
C1	0.0161 (4)	0.0239 (4)	0.0205 (3)	0.0075 (3)	-0.0043 (3)	-0.0026 (3)
C2	0.0101 (3)	0.0151 (3)	0.0172 (3)	-0.0010 (2)	-0.0021 (2)	-0.0024 (2)
C3	0.0111 (3)	0.0115 (3)	0.0155 (3)	-0.0003 (2)	-0.0021 (2)	-0.0022 (2)
C4	0.0116 (3)	0.0121 (3)	0.0154 (3)	0.0009 (2)	-0.0019 (2)	-0.0030 (2)
C5	0.0164 (3)	0.0173 (3)	0.0176 (3)	-0.0033 (3)	-0.0037 (3)	0.0002 (3)
C6	0.0214 (4)	0.0211 (4)	0.0182 (3)	-0.0034 (3)	-0.0024 (3)	0.0024 (3)
C7	0.0212 (4)	0.0211 (4)	0.0160 (3)	0.0028 (3)	-0.0027 (3)	-0.0014 (3)
C8	0.0205 (4)	0.0230 (4)	0.0171 (3)	-0.0019 (3)	-0.0035 (3)	-0.0060 (3)
C9	0.0187 (4)	0.0187 (4)	0.0180 (3)	-0.0044 (3)	-0.0017 (3)	-0.0052 (3)
C10	0.0135 (4)	0.0277 (4)	0.0212 (4)	-0.0014 (3)	0.0030 (3)	0.0055 (3)
C11	0.0174 (4)	0.0105 (3)	0.0178 (3)	0.0015 (3)	-0.0019 (3)	0.0000 (2)
C12	0.0277 (5)	0.0130 (3)	0.0168 (3)	-0.0013 (3)	-0.0048 (3)	0.0016 (2)
C13	0.0109 (3)	0.0148 (3)	0.0134 (2)	-0.0013 (2)	-0.0005 (2)	-0.0007 (2)
C14	0.0143 (3)	0.0174 (3)	0.0145 (3)	-0.0005 (3)	0.0005 (2)	0.0024 (3)

Geometric parameters (Å, °)

Cl1—C12	1.8008 (11)	С5—Н5	0.9500
Cl2—C14	1.8008 (9)	C6—C7	1.3888 (14)
P1—O2	1.4765 (7)	С6—Н6	0.9500
P101	1.6092 (7)	С7—С8	1.3912 (15)
P1—N1	1.6378 (8)	С7—Н7	0.9500
P1—N2	1.6423 (7)	C8—C9	1.3938 (13)
O1—C3	1.4573 (10)	C8—H8	0.9500
N1-C10	1.4514 (12)	С9—Н9	0.9500
N1—C2	1.4688 (11)	C10—H10A	0.9800
N2-C11	1.4664 (11)	C10—H10B	0.9800
N2-C13	1.4696 (10)	C10—H10C	0.9800

C1—C2	1.5216 (13)	C11—C12	1.5167 (13)
C1—H1A	0.9800	C11—H11A	0.9900
C1—H1B	0.9800	C11—H11B	0.9900
C1—H1C	0.9800	C12—H12A	0.9900
C2—C3	1.5460 (12)	C12—H12B	0.9900
С2—Н2	1.0000	C13—C14	1.5186 (11)
C3—C4	1.5026 (12)	C13—H13A	0.9900
С3—Н3	1.0000	C13—H13B	0.9900
C4—C5	1.3917 (13)	C14—H14A	0.9900
C4—C9	1.3976 (12)	C14—H14B	0.9900
C5-C6	1 3989 (13)		0.000
O2—P1—O1	114.69 (4)	C6—C7—C8	119.63 (9)
O2—P1—N1	118.92 (4)	С6—С7—Н7	120.2
O1—P1—N1	94.68 (4)	С8—С7—Н7	120.2
O2—P1—N2	109.38 (4)	C7—C8—C9	119.97 (9)
O1—P1—N2	107.65 (4)	С7—С8—Н8	120.0
N1—P1—N2	110.42 (4)	С9—С8—Н8	120.0
C3—O1—P1	108.45 (5)	C8—C9—C4	120.52 (9)
C10—N1—C2	120.82 (7)	С8—С9—Н9	119.7
C10—N1—P1	125.13 (6)	С4—С9—Н9	119.7
C2—N1—P1	114.02 (6)	N1-C10-H10A	109.5
C11—N2—C13	117.75 (7)	N1-C10-H10B	109.5
C11—N2—P1	121.64 (6)	H10A—C10—H10B	109.5
C13—N2—P1	120.31 (6)	N1-C10-H10C	109.5
C_2 — C_1 — H_1A	109.5	H10A—C10—H10C	109.5
C2-C1-H1B	109.5	H10B—C10—H10C	109.5
H1A—C1—H1B	109.5	N2-C11-C12	114.06 (8)
$C^2 - C^1 - H^1C$	109.5	N2-C11-H11A	108 7
H1A - C1 - H1C	109.5	C12—C11—H11A	108.7
H1B-C1-H1C	109.5	N2-C11-H11B	108.7
N1 - C2 - C1	112 56 (7)	C12 $-C11$ $-H11B$	108.7
N1 - C2 - C3	112.30(7) 101.92(7)	H11A-C11-H11B	107.6
C1 - C2 - C3	101.92(7) 113.98(8)	C_{11}	111 78 (6)
N1-C2-H2	109.4	C11 $C12$ $H12A$	109.3
C1 - C2 - H2	109.4	C_{11} C_{12} H_{12A}	109.5
$C_{1} = C_{2} = H_{2}$	109.4	C11 - C12 - H12R	109.5
01 C3 C4	109.4	C_{11} C_{12} H_{12B}	109.5
01 - 03 - 04	105.29 (6)	H12A C12 H12B	109.5
$C_{1} - C_{2} - C_{2}$	105.29(0) 115.51(7)	$\frac{112}{112} = \frac{12}{112} = \frac{112}{112}$	107.9
$C_4 - C_5 - C_2$	113.31(7)	$N_2 - C_{13} - C_{14}$	110.11 (7)
$C_1 = C_2 = H_2$	108.3	$N_2 = C_{13} = H_{13}A$	109.0
C_{4} C_{2} C_{2	100.3	$C14 - C13 - \Pi13A$ $N2 - C12 - U12D$	109.0
$C_2 - C_3 - \Pi_3$	100.5	$\frac{1}{1}$	109.0
$C_{3} = C_{4} = C_{3}$	117.42 (ð) 122.01 (7)	$U_{14} = U_{13} = U$	109.0
$C_{1} = C_{4} = C_{2}$	123.01(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_{4} = C_{5} = C_{6}$	11/.30(8)	C_{12} C_{14} U_{14} C_{12}	109.91 (0)
C4 - C5 - U5	119.82 (8)	C13 - C14 - H14A	109.7
U4-U3-H3	120.1	UI2—U14—H14A	109./

C6—C5—H5	120.1	C13—C14—H14B	109.7
C7—C6—C5	120.63 (9)	Cl2—C14—H14B	109.7
С7—С6—Н6	119.7	H14A—C14—H14B	108.2
С5—С6—Н6	119.7		
O2—P1—O1—C3	95.90 (6)	C1—C2—C3—O1	86.98 (8)
N1—P1—O1—C3	-28.97 (6)	N1—C2—C3—C4	-157.19 (7)
N2—P1—O1—C3	-142.13 (5)	C1—C2—C3—C4	-35.65 (10)
O2—P1—N1—C10	63.01 (9)	O1—C3—C4—C5	-2.20 (12)
O1—P1—N1—C10	-175.38 (8)	C2—C3—C4—C5	117.42 (9)
N2—P1—N1—C10	-64.58 (9)	O1—C3—C4—C9	177.17 (8)
O2—P1—N1—C2	-114.89 (6)	C2—C3—C4—C9	-63.20 (10)
O1—P1—N1—C2	6.71 (7)	C9—C4—C5—C6	-0.81 (14)
N2—P1—N1—C2	117.51 (6)	C3—C4—C5—C6	178.55 (9)
O2—P1—N2—C11	-171.12 (7)	C4—C5—C6—C7	0.21 (16)
O1—P1—N2—C11	63.67 (8)	C5—C6—C7—C8	0.59 (16)
N1—P1—N2—C11	-38.44 (8)	C6—C7—C8—C9	-0.79 (16)
O2—P1—N2—C13	2.45 (8)	C7—C8—C9—C4	0.19 (16)
O1—P1—N2—C13	-122.76 (6)	C5-C4-C9-C8	0.62 (15)
N1—P1—N2—C13	135.12 (6)	C3—C4—C9—C8	-178.78 (9)
C10—N1—C2—C1	75.29 (11)	C13—N2—C11—C12	100.67 (9)
P1—N1—C2—C1	-106.71 (8)	P1—N2—C11—C12	-85.61 (9)
C10—N1—C2—C3	-162.20 (8)	N2—C11—C12—Cl1	-65.89 (9)
P1—N1—C2—C3	15.81 (8)	C11—N2—C13—C14	81.68 (9)
P1—O1—C3—C4	167.41 (6)	P1—N2—C13—C14	-92.13 (8)
P1	41.83 (7)	N2-C13-C14-Cl2	176.25 (6)
N1—C2—C3—O1	-34.55 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11A····O2 ⁱ	0.99	2.38	3.3571 (11)	170
C14—H14 <i>B</i> ····O2 ⁱ	0.99	2.41	3.3244 (12)	153
С9—Н9…О2 ^{іі}	0.95	2.65	3.3444 (13)	130
C11—H11 <i>B</i> …N1	0.99	2.63	3.1322 (11)	111
C12—H12 <i>B</i> ···O1	0.99	2.64	3.3381 (11)	128
C13—H13A···Cl1	0.99	2.86	3.4970 (9)	123
C10—H10A····C5 ⁱⁱ	0.98	2.84	3.7839 (15)	162

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) *x*-1/2, -*y*+1/2, -*z*+1.

(2*S*,4*R*)-2-[Bis(2-chloroethyl)amino]-4-isobutyl-1,3,2-oxazaphospholidin-2-one (3b)

Crystal data	
$C_{10}H_{21}Cl_2N_2O_2P$	$\beta = 115.409 \ (4)^{\circ}$
$M_r = 303.16$	$V = 749.42 (18) \text{ Å}^3$
Monoclinic, $P2_1$	Z = 2
a = 12.1044 (17) Å	F(000) = 320
b = 5.3162 (8) Å	$D_{\rm x} = 1.343 {\rm Mg} {\rm m}^{-3}$
c = 12.8933 (17) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4852 reflections T = 100 K $\theta = 3.1 - 28.1^{\circ}$ Rod, colourless $\mu = 0.53 \text{ mm}^{-1}$ $0.22 \times 0.02 \times 0.02$ mm Data collection Bruker AXS D8 Ouest CMOS 18357 measured reflections diffractometer 4294 independent reflections Radiation source: IuS microsource X-ray tube 3325 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $R_{\rm int} = 0.080$ $\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -17 \rightarrow 17$ monochromator ω and phi scans Absorption correction: multi-scan $k = -7 \rightarrow 7$ (APEX3; Bruker, 2016) $l = -18 \rightarrow 17$ $T_{\rm min} = 0.616, T_{\rm max} = 0.725$ Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.048$ and constrained refinement $wR(F^2) = 0.095$ $w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.0175P]$ S = 1.02where $P = (F_0^2 + 2F_c^2)/3$ 4294 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$ 159 parameters $\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$ 2 restraints Primary atom site location: structure-invariant Absolute structure: Flack x determined using direct methods 1199 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et Secondary atom site location: difference Fourier al., 2013)

Absolute structure parameter: 0.07 (4)

Special details

map

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The position of the amine H atoms was refined and the N-H bond distance was restrained to 0.88 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.42213 (6)	0.54753 (18)	0.09135 (7)	0.0229 (2)	
0.91388 (8)	0.02057 (18)	0.04717 (8)	0.0286 (2)	
0.86712 (6)	0.58725 (13)	0.35572 (7)	0.01086 (18)	
0.79674 (19)	0.8438 (4)	0.3538 (2)	0.0143 (5)	
0.99383 (17)	0.6243 (4)	0.37047 (19)	0.0155 (5)	
0.8406 (2)	0.4528 (5)	0.4568 (2)	0.0135 (6)	
0.886 (3)	0.329 (5)	0.492 (3)	0.016*	
0.7888 (2)	0.4415 (5)	0.2338 (2)	0.0134 (6)	
0.7379 (3)	0.8342 (6)	0.4314 (3)	0.0164 (7)	
0.650845	0.786491	0.389001	0.020*	
0.742459	1.000426	0.467617	0.020*	
0.8062 (3)	0.6388 (6)	0.5215 (3)	0.0133 (7)	
	x 0.42213 (6) 0.91388 (8) 0.86712 (6) 0.79674 (19) 0.99383 (17) 0.8406 (2) 0.886 (3) 0.7888 (2) 0.7379 (3) 0.650845 0.742459 0.8062 (3)	x y 0.42213 (6) 0.54753 (18) 0.91388 (8) 0.02057 (18) 0.86712 (6) 0.58725 (13) 0.79674 (19) 0.8438 (4) 0.99383 (17) 0.6243 (4) 0.8406 (2) 0.4528 (5) 0.886 (3) 0.329 (5) 0.7888 (2) 0.4415 (5) 0.7379 (3) 0.8342 (6) 0.650845 0.786491 0.742459 1.000426 0.8062 (3) 0.6388 (6)	xyz 0.42213 (6) 0.54753 (18) 0.09135 (7) 0.91388 (8) 0.02057 (18) 0.04717 (8) 0.86712 (6) 0.58725 (13) 0.35572 (7) 0.79674 (19) 0.8438 (4) 0.3538 (2) 0.99383 (17) 0.6243 (4) 0.37047 (19) 0.8406 (2) 0.4528 (5) 0.4568 (2) 0.886 (3) 0.329 (5) 0.492 (3) 0.7888 (2) 0.4415 (5) 0.2338 (2) 0.7379 (3) 0.8342 (6) 0.4314 (3) 0.650845 0.786491 0.389001 0.742459 1.000426 0.467617 0.8062 (3) 0.6388 (6) 0.5215 (3)	xyz U_{iso}^*/U_{eq} 0.42213 (6)0.54753 (18)0.09135 (7)0.0229 (2)0.91388 (8)0.02057 (18)0.04717 (8)0.0286 (2)0.86712 (6)0.58725 (13)0.35572 (7)0.01086 (18)0.79674 (19)0.8438 (4)0.3538 (2)0.0143 (5)0.99383 (17)0.6243 (4)0.37047 (19)0.0155 (5)0.8406 (2)0.4528 (5)0.4568 (2)0.0135 (6)0.886 (3)0.329 (5)0.492 (3)0.016*0.7888 (2)0.4415 (5)0.2338 (2)0.0134 (6)0.7379 (3)0.8342 (6)0.4314 (3)0.0164 (7)0.6508450.7864910.3890010.020*0.7424591.0004260.4676170.020*0.8062 (3)0.6388 (6)0.5215 (3)0.0133 (7)

H2	0.881348	0.715273	0.582736	0.016*
C3	0.7281 (3)	0.5206 (7)	0.5755 (3)	0.0185 (7)
H3A	0.777041	0.389806	0.630753	0.022*
H3B	0.656971	0.436364	0.514403	0.022*
C4	0.6812 (3)	0.7079 (7)	0.6380 (3)	0.0211 (8)
H4	0.633747	0.841894	0.582193	0.025*
C5	0.5947 (4)	0.5717 (11)	0.6772 (4)	0.0441 (12)
H5A	0.525838	0.501848	0.610291	0.066*
H5B	0.564077	0.690589	0.716789	0.066*
H5C	0.638821	0.435127	0.729761	0.066*
C6	0.7853 (3)	0.8330 (8)	0.7387 (3)	0.0283 (9)
H6A	0.838643	0.921393	0.711137	0.042*
H6B	0.832701	0.704614	0.794716	0.042*
H6C	0.751796	0.953468	0.775185	0.042*
C7	0.6592 (3)	0.3876 (6)	0.1984 (3)	0.0146 (7)
H7A	0.643680	0.364928	0.267210	0.018*
H7B	0.636966	0.229454	0.153571	0.018*
C8	0.5809 (3)	0.6018 (8)	0.1258 (3)	0.0224 (8)
H8A	0.591595	0.615752	0.054077	0.027*
H8B	0.607631	0.762141	0.168369	0.027*
C9	0.8397 (3)	0.3806 (7)	0.1517 (3)	0.0157 (7)
H9A	0.913708	0.483375	0.168799	0.019*
H9B	0.778956	0.420611	0.072762	0.019*
C10	0.8723 (3)	0.1042 (7)	0.1599 (3)	0.0185 (7)
H10A	0.801388	0.001990	0.153912	0.022*
H10B	0.941323	0.069086	0.235248	0.022*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0133 (3)	0.0329 (5)	0.0192 (4)	0.0036 (3)	0.0037 (3)	0.0007 (4)
Cl2	0.0319 (4)	0.0341 (5)	0.0260 (5)	-0.0030 (4)	0.0185 (4)	-0.0116 (4)
P1	0.0099 (3)	0.0098 (4)	0.0117 (4)	0.0005 (3)	0.0035 (3)	-0.0001 (3)
O1	0.0175 (11)	0.0140 (11)	0.0137 (13)	0.0020 (9)	0.0089 (10)	0.0022 (10)
O2	0.0116 (9)	0.0205 (13)	0.0139 (12)	-0.0027 (9)	0.0050 (9)	-0.0040 (10)
N1	0.0134 (12)	0.0132 (14)	0.0121 (15)	0.0038 (10)	0.0038 (11)	0.0013 (11)
N2	0.0100 (12)	0.0171 (14)	0.0135 (15)	-0.0027 (10)	0.0055 (11)	-0.0046 (12)
C1	0.0158 (15)	0.0175 (17)	0.019 (2)	0.0001 (13)	0.0104 (14)	-0.0029 (15)
C2	0.0143 (14)	0.0146 (17)	0.0108 (17)	-0.0016 (12)	0.0052 (12)	-0.0021 (13)
C3	0.0186 (14)	0.0189 (17)	0.0208 (18)	-0.0065 (14)	0.0111 (13)	-0.0044 (15)
C4	0.0176 (16)	0.029 (2)	0.021 (2)	-0.0001 (14)	0.0125 (15)	-0.0038 (16)
C5	0.039 (2)	0.062 (3)	0.049 (3)	-0.021 (3)	0.036 (2)	-0.024(3)
C6	0.0249 (19)	0.041 (2)	0.022 (2)	-0.0064 (16)	0.0135 (16)	-0.0125 (19)
C7	0.0108 (14)	0.0183 (17)	0.0132 (18)	-0.0011 (12)	0.0038 (13)	-0.0002 (13)
C8	0.0142 (14)	0.0251 (19)	0.0233 (19)	-0.0002 (15)	0.0036 (13)	0.0066 (17)
C9	0.0154 (15)	0.0225 (18)	0.0097 (17)	-0.0026 (13)	0.0057 (13)	-0.0044 (14)
C10	0.0204 (15)	0.0205 (18)	0.0153 (17)	-0.0021(15)	0.0084 (13)	-0.0028 (16)

Geometric parameters (Å, °)

C11—C8	1.801 (3)	C4—C6	1.521 (5)
Cl2—C10	1.787 (3)	C4—C5	1.526 (5)
P1—O2	1.475 (2)	C4—H4	1.0000
P1—O1	1.603 (2)	С5—Н5А	0.9800
P1—N1	1.634 (3)	С5—Н5В	0.9800
P1—N2	1.641 (3)	C5—H5C	0.9800
01	1.456 (4)	C6—H6A	0.9800
N1—C2	1.465 (4)	C6—H6B	0.9800
N1—H1	0.85 (2)	C6—H6C	0.9800
N2—C7	1.462 (4)	C7—C8	1.520 (5)
N2-C9	1 471 (4)	С7—Н7А	0.9900
C1-C2	1 513 (5)	C7—H7B	0.9900
C1—H1A	0.9900	C8—H8A	0.9900
C1H1B	0.9900	C8_H8B	0.9900
$C_2 - C_3$	1 529 (4)	C9-C10	1 513 (5)
$C_2 = C_3$	1.0000	C_{0} H0A	0.0000
$C_2 = 112$	1.0000 1.534(5)	C9 H9R	0.9900
$C_3 = U_3 \wedge$	0.0000	C10 H10A	0.9900
$C_2 = H_2 P$	0.9900		0.9900
Сэ—пэв	0.9900	Сто—птов	0.9900
O2—P1—O1	113.87 (12)	С4—С5—Н5А	109.5
O2—P1—N1	120.29 (13)	C4—C5—H5B	109.5
O1—P1—N1	95.71 (12)	H5A—C5—H5B	109.5
O2—P1—N2	109.14 (13)	C4—C5—H5C	109.5
O1—P1—N2	107.61 (13)	H5A—C5—H5C	109.5
N1—P1—N2	109.10 (14)	H5B—C5—H5C	109.5
C1—O1—P1	111.9 (2)	C4—C6—H6A	109.5
C2—N1—P1	111.1 (2)	C4—C6—H6B	109.5
C2—N1—H1	119 (3)	H6A—C6—H6B	109.5
P1—N1—H1	118 (2)	С4—С6—Н6С	109.5
C7—N2—C9	117.2 (3)	Н6А—С6—Н6С	109.5
C7—N2—P1	119.5 (2)	H6B—C6—H6C	109.5
C9—N2—P1	123.0 (2)	N2—C7—C8	110.3 (3)
O1—C1—C2	106.6 (2)	N2—C7—H7A	109.6
01—C1—H1A	110.4	С8—С7—Н7А	109.6
C2—C1—H1A	110.4	N2—C7—H7B	109.6
O1—C1—H1B	110.4	С8—С7—Н7В	109.6
C2—C1—H1B	110.4	H7A—C7—H7B	108.1
H1A—C1—H1B	108.6	C7—C8—C11	110.5 (2)
N1—C2—C1	102.7 (3)	С7—С8—Н8А	109.6
N1—C2—C3	111.4 (3)	Cl1—C8—H8A	109.6
C1—C2—C3	113.1 (3)	C7—C8—H8B	109.6
N1—C2—H2	109.8	Cl1—C8—H8B	109.6
С1—С2—Н2	109.8	H8A—C8—H8B	108.1
C3—C2—H2	109.8	N2—C9—C10	109.9 (3)
C2—C3—C4	114.4 (3)	N2—C9—H9A	109.7

С2—С3—НЗА	108.7	С10—С9—Н9А	109.7
С4—С3—НЗА	108.7	N2—C9—H9B	109.7
С2—С3—Н3В	108.7	С10—С9—Н9В	109.7
C4—C3—H3B	108.7	H9A—C9—H9B	108.2
НЗА—СЗ—НЗВ	107.6	C9—C10—Cl2	109.9 (2)
C6—C4—C5	111.0 (3)	C9—C10—H10A	109.7
C6—C4—C3	112.0 (3)	Cl2—C10—H10A	109.7
C5—C4—C3	109.1 (3)	C9—C10—H10B	109.7
C6—C4—H4	108.2	Cl2—C10—H10B	109.7
C5—C4—H4	108.2	H10A-C10-H10B	108.2
C3—C4—H4	108.2		
O2—P1—O1—C1	-130.6 (2)	P1—N1—C2—C3	154.3 (2)
N1—P1—O1—C1	-3.9 (2)	O1—C1—C2—N1	-34.2 (3)
N2—P1—O1—C1	108.2 (2)	O1—C1—C2—C3	-154.4 (3)
O2—P1—N1—C2	103.6 (2)	N1—C2—C3—C4	-176.1 (3)
O1—P1—N1—C2	-18.4 (2)	C1—C2—C3—C4	-61.0 (4)
N2—P1—N1—C2	-129.3 (2)	C2—C3—C4—C6	-62.3 (4)
O2—P1—N2—C7	-178.7 (2)	C2—C3—C4—C5	174.4 (3)
O1—P1—N2—C7	-54.7 (3)	C9—N2—C7—C8	-83.5 (4)
N1—P1—N2—C7	48.1 (3)	P1—N2—C7—C8	91.1 (3)
O2—P1—N2—C9	-4.4 (3)	N2-C7-C8-Cl1	-175.6 (2)
O1—P1—N2—C9	119.6 (3)	C7—N2—C9—C10	-82.3 (3)
N1—P1—N2—C9	-137.6 (3)	P1—N2—C9—C10	103.2 (3)
P1—O1—C1—C2	23.8 (3)	N2-C9-C10-Cl2	172.0 (2)
P1—N1—C2—C1	33.0 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	$D \cdots A$	D—H··· A
N1—H1····O2 ⁱ	0.85 (2)	2.05 (3)	2.863 (3)	158 (4)
C2—H2…O2 ⁱⁱ	1.00	2.57	3.401 (4)	141
C1—H1 <i>B</i> …N1 ⁱⁱⁱ	0.99	2.71	3.481 (4)	135
C8—H8A····Cl1 ^{iv}	0.99	2.92	3.656 (4)	132
C8—H8 <i>B</i> …O1	0.99	2.54	3.245 (4)	128
C7—H7A…N1	0.99	2.62	3.125 (4)	112

Symmetry codes: (i) -x+2, y-1/2, -z+1; (ii) -x+2, y+1/2, -z+1; (iii) x, y+1, z; (iv) -x+1, y+1/2, -z.