

ISSN 2056-9890

Received 29 June 2018 Accepted 25 July 2018

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

‡ Additional correspondence author, e-mail: Chem_sq@163.com.

Keywords: crystal structure; carbapenem; antibiotics; tebipenem; prodrug; hydrogen bonding.

CCDC reference: 1816052

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tebipenem pivoxil

Chao Tang,^a Li Cai,^b* Shuai Liu,^a Zhiwei Zheng,^a Gen Li,^a Jianli Chen^a and Qiang Sui^a‡

^aChina State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, People's Republic of China, and ^bUniversity of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, SC 29720, USA. *Correspondence e-mail: CAILI@mailbox.sc.edu

The molecular structure of the first orally active carbapenem antibacterial agent, tebipenem pivoxil (systematic name: (2,2-dimethylpropanoyloxy)methyl (4*R*,5*S*,6*S*)-3-{[1-(4,5-dihydro-1,3-thiazol-2-yl)azetidin-3-yl]sulfanyl}-6-[(1*R*)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate), $C_{22}H_{31}N_3O_6S_2$, has been determined and the configurations of the four chiral centers validated. The title compound crystallizes in the triclinic space group *P*1 with one molecule in the unit cell. Three out of the four rings adopt planar conformations while the thiazolinyl ring adopts an enveloped conformation. In the crystal, $O-H \cdots N$ hydrogen bonds link the molecules into chains along [110].

1. Chemical context

Carbapenem antibiotics, like all β -lactam antibacterials that bind to and inhibit the peptidoglycan cross-linking transpeptidases, have attracted increasing attention recently because of their broader spectrum activities and stronger bactericidal actions compared to cephalosporins and penicillins. Since the first carbapenem structure thienamycin, a natural product derived from *Streptomyces cattleya*, was isolated in 1976 (Johnston *et al.*, 1978), a handful of subsequent parenteral carbapenem agents, such as imipenem, panipenem, meropenem, biapenem, have been developed based on this parent compound and used clinically for the treatment of severe bacterial infections.

Tebipenem pivoxil (see scheme), as a novel oral carbapenem agent, was approved by the Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on Apr 22, 2009. It was developed and marketed as Orapenem (R) by Meiji Seika in Japan (as of 05/16/2016, the only approved country/area for its usage was Japan for treating children, as these oral antibiotics are often better tolerated than infusions) (Kijima *et al.*, 2009). It is a prodrug that is quickly hydrolysed to the active antimicrobial agent LJC11,036 (**5**, reaction scheme) because the absorption rate of the pivaloyloxymethyl ester is higher than that of other prodrug-type β -lactam antibiotics (Kato *et al.*, 2010). The active metabolite **5** shows potent and well-

OPEN d ACCESS

research communications

balanced antibacterial activity and also shows higher stability to human renal dehydropeptidase-I than meropenem (Isoda *et al.*, 2006*a*; Kobayashi *et al.*, 2005). Research has also revealed that the tebipenbem acyl- β -lactamase covalent complex remains very stable for longer than 90 min, partly explaining its resistance towards hydrolysis (Papp-Wallace *et al.*, 2011).

Tebipenem pivoxil has a complex structure with four chiral centers and a 1-(1,3-thiazolin-2-yl)azetidin-3-ylthio side chain at the C-2 position. We hope the structural elucidation will facilitate future mechanistic studies of this molecule and of its interactions with enzymes that are responsible for bacterial resistance.

2. Structural commentary

Tebipenem pivoxil (Fig. 1) crystallizes in the triclinic space group P1 with one molecule in the unit cell. The present crystal structure dertermination allowed the configurations of the four chiral centers to be validated as: C2S, C3S, C4R, C7R. Rings I (N1/C1–C3), II (N1/C3–C6) and III (N2/C11–C13) adopt planar conformations (with r.m.s. deviations of 0.0251, 0.0838, and 0.0967 Å, respectively) while ring IV (N3/S2/C14– C16) adopts an envelope conformation with atom C16 as the flap. The dihedral angles between rings I and II, II and III, and III and IV are 46.7 (2), 85.7 (2), and 11.9 (4)°, respectively. Atoms C9 (methyl) and C7 are located above and below the planes of rings I and II because of steric hindrance.

Figure 1

The molecular structure of the title compound, showing the atom labelling and 30% probability displacement ellipsoids.

Table 1				
Hydrogen-bond	geometry	(Å,	°).	

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots N3^{i}$ $C11-H11A\cdots O2^{ii}$	0.82 0.98	2.01 2.43	2.816 (6) 3.366 (6)	169 160

Symmetry codes: (i) x - 1, y + 1, z; (ii) x, y - 1, z.

3. Supramolecular features

In the crystal, $O-H\cdots N$ hydrogen bonds (Table 1) link the molecules into chains along [110]. $C-H\cdots O$ hydrogen bonds are also observed. The packing viewed along the *a* axis is shown in Fig. 2.

4. Database survey

The tebipenem pivoxil we obtained was well characterized spectroscopically and carefully compared with reference values (Isoda *et al.*, 2006*a*). To the best of our knowledge, including a search of the Cambridge Structural Database (CSD Version 5.39; Groom *et al.*, 2016), no single crystal structure determination has previously been reported for this drug.

5. Synthesis and crystallization

As shown in the reaction scheme (also see Supporting Information), 3-mercapto-1-(1,3-thiazolin-2-yl)-azetidine hydrochloride (3) was first synthesized according to a method previously reported (Isoda *et al.*, 2006*b*) with minor optimizations. The side chain 3 was then coupled with the commercially available carbapenem core (2), followed by hydrogenation/deprotection and SN_2 esterification to afford the desired tebipenem pivoxil 1 (Isoda *et al.*, 2006*a*,*b*). Instead

The crystal packing viewed along the crystallographic a axis showing the $O-H\cdots N$ hydrogen bonds (Table 1) as dashed lines.

Table 2	
Experimental	details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)

 $\begin{array}{l} \alpha, \, \beta, \, \gamma \, (^{\circ}) \\ V \, (\text{\AA}^3) \\ Z \end{array}$

Radiation type $\mu \text{ (mm}^{-1}\text{)}$ Crystal size (mm)

Data collection Diffractometer Absorption correction

	2014)
T_{\min}, T_{\max}	0.703, 0.808
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3454, 2483, 2389
R _{int}	0.019
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.592
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.115, 1.04
No. of reflections	2483
No. of parameters	298
No. of restraints	3
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.33, -0.21
Absolute structure	Flack x determined using 531 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.140 (12)

C22H31N3O6S2

7.7292 (10), 7.9892 (9),

108.300 (7), 92.553 (7), 101.499 (8)

11.2035 (13)

 $0.17 \times 0.12 \times 0.10$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker,

Triclinic, P1

639.36 (14)

Cu Ka

2.23

497.62

296

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS2018/3 and SHELXTL (Sheldrick, 2008) and SHELXL2018/3 (Sheldrick, 2015).

of using column chromatography, we successfully obtained pure tebipenem pivoxil on a relatively large scale through recrystallization from ethyl acetate, yielding colourless blockshaped crystals. The HPLC spectrum of the final product showed a single peak with less than 0.1% of impurities. $[\alpha]_D^8$ = +9.6°, m.p. = 407-409 K. Elemental analysis calculated for C₂₂H₃₁N₃O₆S₂: C, 53.10; H, 6.28; N, 8.44; S, 12.89; Found: C, 53.13; H, 6.32; N, 8.45; S, 12.94. HRESI-MS calculated for C₂₂H₃₂N₃O₆S₂ ([*M* + H]⁺): 498.1727, found: 498.1867. The structure has also been characterized with ¹H NMR, ¹³C NMR, and IR spectroscopy. ¹H NMR, ¹³C NMR, and IR spectra of tebipenem pivoxil **1** are included in the supporting information and compared with reference values, including the assignment of NMR chemical shifts and IR absorption bands (Isoda *et al.*, 2006*a*).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In the refinement, all H atoms were positioned geometrically and refined as riding: C-H =0.96–0.98 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl).

Acknowledgements

The authors thank Dr Jialiang Zhong at the China State Institute of Pharmaceutical Industry for helpful discussion.

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Isoda, T., Ushirogochi, H., Satoh, K., Takasaki, T., Yamamura, I., Sato, C., Mihira, A., Abe, T., Tamai, S., Yamamoto, S., Kumagai, T. & Nagao, Y. (2006a). J. Antibiot. **59**, 241–247.
- Isoda, T., Yamamura, I., Tamai, S., Kumagai, T. & Nagao, Y. (2006b). *Chem. Pharm. Bull.* **54**, 1408–1411.
- Johnston, D. B. R., Schmitt, S. M., Bouffard, F. A. & Christensen, B. G. (1978). J. Am. Chem. Soc. 100, 313–315.
- Kato, K., Shirasaka, Y., Kuraoka, E., Kikuchi, A., Iguchi, M., Suzuki, H., Shibasaki, S., Kurosawa, T. & Tamai, I. (2010). *Mol. Pharm.* 7, 1747–1756.
- Kijima, K., Morita, J., Suzuki, K., Aoki, M., Kato, K., Hayashi, H., Shibasaki, S. & Kurosawa, T. (2009). Jpn. J. Antibiot. 62, 214–240.
- Kobayashi, R., Konomi, M., Hasegawa, K., Morozumi, M., Sunakawa, K. & Ubukata, K. (2005). Antimicrob. Agents Chemother. 49, 889– 894.
- Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. (2011). Antimicrob. Agents Chemother. 55, 4943–4960.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Acta Cryst. (2018). E74, 1215-1217 [https://doi.org/10.1107/S2056989018010770]

Crystal structure of tebipenem pivoxil

Chao Tang, Li Cai, Shuai Liu, Zhiwei Zheng, Gen Li, Jianli Chen and Qiang Sui

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS2018/3* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Z = 1

F(000) = 264

 $D_{\rm x} = 1.292 \text{ Mg m}^{-3}$

(2,2-Dimethylpropanoyloxy)methyl (4*R*,5*S*,6*S*)-3-{[1-(4,5-dihydro-1,3-thiazol-2-yl)azetidin-3-y]sulfanyl}-6-[(1*R*)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate

Crystal data

 $C_{22}H_{31}N_{3}O_{6}S_{2}$ $M_{r} = 497.62$ Triclinic, P1 a = 7.7292 (10) Å b = 7.9892 (9) Å c = 11.2035 (13) Å $a = 108.300 (7)^{\circ}$ $\beta = 92.553 (7)^{\circ}$ $\gamma = 101.499 (8)^{\circ}$ $V = 639.36 (14) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.703$, $T_{\max} = 0.808$ 3454 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.115$ S = 1.042483 reflections 298 parameters 3 restraints Hydrogen site location: inferred from neighbouring sites Cu *K* α radiation, $\lambda = 1.54178$ Å Cell parameters from 2598 reflections $\theta = 4.2 - 65.6^{\circ}$ $\mu = 2.23 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.17 \times 0.12 \times 0.10 \text{ mm}$ 2483 independent reflections 2389 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$ $\theta_{\rm max} = 65.9^{\circ}, \ \theta_{\rm min} = 4.2^{\circ}$ $h = -7 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -13 \rightarrow 12$ H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0826P)^2 + 0.0878P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.015$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack x determined using 531 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*,

Absolute structure parameter: 0.140 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.33764 (12)	0.37913 (11)	0.01567 (9)	0.0531 (3)	
S2	0.6657 (3)	0.6243 (2)	0.50488 (14)	0.0889 (5)	
01	-0.0384 (5)	0.8665 (5)	-0.1269(3)	0.0695 (9)	
O2	-0.0964 (4)	1.0714 (4)	0.1973 (3)	0.0601 (8)	
H2A	-0.139807	1.152553	0.240566	0.090*	
03	0.4728 (4)	0.6066 (5)	-0.1353 (3)	0.0626 (8)	
O4	0.3985 (4)	0.8733 (4)	-0.1081 (3)	0.0589 (8)	
05	0.4493 (5)	1.0081 (6)	-0.2577 (4)	0.0781 (11)	
O6	0.2673 (7)	0.7659 (6)	-0.3881 (6)	0.1060 (16)	
N1	0.1226 (4)	0.7928 (4)	0.0285 (3)	0.0447 (7)	
N2	0.5213 (7)	0.3896 (6)	0.2801 (4)	0.0737 (12)	
N3	0.7629 (6)	0.3330 (6)	0.3725 (4)	0.0679 (11)	
C1	-0.0250 (6)	0.8214 (6)	-0.0352 (4)	0.0486 (9)	
C2	-0.1483 (5)	0.7724 (5)	0.0574 (4)	0.0455 (8)	
H2B	-0.238265	0.661201	0.014328	0.055*	
C3	0.0144 (5)	0.7296 (5)	0.1179 (4)	0.0442 (8)	
H3B	0.050788	0.808606	0.205772	0.053*	
C4	0.0397 (6)	0.5350 (6)	0.0968 (4)	0.0498 (9)	
H4A	0.058878	0.516830	0.178516	0.060*	
C5	0.2114 (5)	0.5408 (5)	0.0341 (4)	0.0437 (8)	
C6	0.2416 (5)	0.6785 (5)	-0.0123 (4)	0.0436 (8)	
C7	-0.2320 (5)	0.9153 (5)	0.1391 (4)	0.0483 (9)	
H7A	-0.316888	0.944012	0.085209	0.058*	
C8	-0.3299 (7)	0.8508 (7)	0.2361 (5)	0.0651 (12)	
H8A	-0.421147	0.744567	0.193571	0.098*	
H8B	-0.247930	0.822482	0.289674	0.098*	
H8C	-0.382809	0.944259	0.286473	0.098*	
C9	-0.1081 (6)	0.3822 (7)	0.0108 (7)	0.0762 (16)	
H9A	-0.215396	0.379378	0.050815	0.114*	
H9B	-0.127753	0.402322	-0.068287	0.114*	
H9C	-0.073970	0.268830	-0.004165	0.114*	
C10	0.3811 (5)	0.7099 (6)	-0.0923 (4)	0.0472 (9)	
C11	0.2935 (6)	0.3012 (6)	0.1482 (5)	0.0535 (10)	
H11A	0.175564	0.222769	0.139734	0.064*	
C12	0.4501 (6)	0.2200 (5)	0.1758 (5)	0.0532 (10)	
H12A	0.415244	0.115292	0.202918	0.064*	
H12B	0.525236	0.196247	0.108146	0.064*	
C13	0.3520 (6)	0.4482 (6)	0.2791 (5)	0.0581 (11)	
H13A	0.364717	0.570857	0.277752	0.070*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H13B	0.280849	0.428426	0.344663	0.070*
C14	0.6465 (6)	0.4232 (6)	0.3738 (4)	0.0559 (11)
C15	0.8971 (11)	0.4207 (12)	0.4850 (8)	0.116 (3)
H15A	1.004355	0.482093	0.461013	0.140*
H15B	0.927124	0.329086	0.516839	0.140*
C16	0.8293 (11)	0.5528 (11)	0.5860 (6)	0.098 (2)
H16A	0.924735	0.655012	0.632517	0.118*
H16B	0.775573	0.496738	0.644719	0.118*
C17	0.5186 (7)	0.9092 (9)	-0.1956 (6)	0.0739 (14)
H17A	0.634318	0.976545	-0.150543	0.089*
H17B	0.532612	0.796482	-0.255647	0.089*
C18	0.3224 (8)	0.9266 (8)	-0.3535 (5)	0.0724 (14)
C19	0.2625 (11)	1.0577 (9)	-0.4111 (5)	0.0854 (18)
C20	0.406 (2)	1.2163 (17)	-0.4024 (14)	0.181 (6)
H20A	0.455241	1.276802	-0.315584	0.271*
H20B	0.497695	1.176572	-0.451723	0.271*
H20C	0.358495	1.298285	-0.434103	0.271*
C21	0.179 (2)	0.9556 (19)	-0.5419 (9)	0.183 (6)
H21A	0.087040	0.855032	-0.541445	0.274*
H21B	0.127395	1.033571	-0.575774	0.274*
H21C	0.266596	0.911858	-0.593394	0.274*
C22	0.1304 (18)	1.1339 (17)	-0.3284 (9)	0.142 (4)
H22A	0.188241	1.199331	-0.244299	0.213*
H22B	0.082558	1.214142	-0.361897	0.213*
H22C	0.035952	1.036984	-0.326218	0.213*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0556 (6)	0.0528 (5)	0.0564 (6)	0.0265 (4)	0.0067 (4)	0.0168 (4)
S2	0.1153 (13)	0.0862 (10)	0.0592 (7)	0.0530 (9)	0.0044 (7)	-0.0025 (7)
01	0.078 (2)	0.096 (3)	0.0542 (19)	0.0412 (19)	0.0077 (16)	0.0382 (18)
O2	0.0553 (17)	0.0497 (16)	0.070 (2)	0.0134 (14)	0.0171 (15)	0.0107 (15)
O3	0.0572 (18)	0.0701 (19)	0.067 (2)	0.0282 (17)	0.0193 (15)	0.0220 (16)
O4	0.0610 (18)	0.0706 (18)	0.0592 (18)	0.0253 (15)	0.0183 (14)	0.0332 (16)
05	0.081 (2)	0.102 (3)	0.0598 (19)	0.014 (2)	0.0054 (17)	0.042 (2)
O6	0.099 (3)	0.077 (3)	0.126 (4)	0.020 (2)	-0.015 (3)	0.014 (3)
N1	0.0461 (17)	0.0475 (17)	0.0448 (17)	0.0201 (14)	0.0055 (14)	0.0155 (14)
N2	0.072 (3)	0.076 (3)	0.068 (3)	0.045 (2)	-0.005 (2)	0.002 (2)
N3	0.064 (2)	0.065 (2)	0.064 (2)	0.029 (2)	-0.0105 (19)	0.001 (2)
C1	0.050 (2)	0.052 (2)	0.041 (2)	0.0208 (18)	0.0003 (16)	0.0081 (18)
C2	0.0405 (19)	0.048 (2)	0.046 (2)	0.0151 (16)	-0.0009 (16)	0.0099 (17)
C3	0.043 (2)	0.052 (2)	0.0400 (18)	0.0173 (16)	0.0043 (15)	0.0141 (17)
C4	0.044 (2)	0.058 (2)	0.058 (2)	0.0244 (18)	0.0084 (17)	0.026 (2)
C5	0.0399 (18)	0.0476 (19)	0.0424 (19)	0.0142 (16)	-0.0011 (15)	0.0112 (17)
C6	0.0399 (19)	0.047 (2)	0.0416 (18)	0.0131 (16)	0.0002 (14)	0.0097 (16)
C7	0.0414 (19)	0.048 (2)	0.058 (2)	0.0179 (17)	0.0050 (17)	0.0158 (18)
C8	0.062 (3)	0.061 (3)	0.079 (3)	0.019 (2)	0.024 (2)	0.026 (2)

C9	0.045 (2)	0.053 (3)	0.129 (5)	0.008 (2)	0.004 (3)	0.031 (3)
C10	0.0422 (19)	0.057 (2)	0.043 (2)	0.0152 (19)	-0.0019 (16)	0.0155 (18)
C11	0.045 (2)	0.051 (2)	0.070 (3)	0.0151 (18)	0.0032 (19)	0.026 (2)
C12	0.057 (2)	0.043 (2)	0.062 (2)	0.0210 (18)	0.001 (2)	0.0162 (18)
C13	0.059 (3)	0.066 (3)	0.063 (3)	0.035 (2)	0.016 (2)	0.026 (2)
C14	0.063 (3)	0.057 (2)	0.049 (2)	0.025 (2)	0.008 (2)	0.013 (2)
C15	0.098 (5)	0.119 (6)	0.102 (5)	0.055 (5)	-0.043 (5)	-0.016 (5)
C16	0.101 (5)	0.115 (5)	0.067 (4)	0.036 (4)	-0.014 (3)	0.010 (4)
C17	0.056 (3)	0.113 (4)	0.070 (3)	0.024 (3)	0.019 (2)	0.051 (3)
C18	0.069 (3)	0.072 (3)	0.069 (3)	0.012 (3)	0.008 (3)	0.016 (3)
C19	0.128 (5)	0.087 (4)	0.048 (3)	0.037 (4)	0.001 (3)	0.025 (3)
C20	0.247 (16)	0.137 (9)	0.167 (11)	0.007 (9)	-0.005 (11)	0.089 (8)
C21	0.267 (18)	0.196 (12)	0.070 (5)	0.079 (12)	-0.037 (7)	0.014 (6)
C22	0.190 (11)	0.185 (10)	0.095 (6)	0.122 (9)	0.017 (6)	0.057 (6)

Geometric parameters (Å, °)

S1—C5	1.737 (4)	C8—H8A	0.9600
S1—C11	1.802 (4)	C8—H8B	0.9600
S2—C14	1.778 (5)	C8—H8C	0.9600
S2—C16	1.807 (7)	С9—Н9А	0.9600
01—C1	1.197 (5)	C9—H9B	0.9600
O2—C7	1.409 (5)	С9—Н9С	0.9600
O2—H2A	0.8200	C11—C13	1.544 (7)
O3—C10	1.196 (5)	C11—C12	1.546 (6)
O4—C10	1.354 (5)	C11—H11A	0.9800
O4—C17	1.433 (6)	C12—H12A	0.9700
O5—C18	1.323 (7)	C12—H12B	0.9700
O5—C17	1.370 (7)	C13—H13A	0.9700
O6—C18	1.198 (7)	C13—H13B	0.9700
N1-C1	1.413 (5)	C15—C16	1.480 (11)
N1-C6	1.414 (6)	C15—H15A	0.9700
N1—C3	1.477 (5)	C15—H15B	0.9700
N2-C14	1.319 (6)	C16—H16A	0.9700
N2-C12	1.468 (6)	C16—H16B	0.9700
N2-C13	1.476 (6)	C17—H17A	0.9700
N3—C14	1.258 (6)	C17—H17B	0.9700
N3—C15	1.481 (7)	C18—C19	1.523 (8)
C1—C2	1.527 (6)	C19—C21	1.479 (10)
C2—C7	1.500 (6)	C19—C20	1.483 (15)
C2—C3	1.549 (5)	C19—C22	1.499 (13)
C2—H2B	0.9800	C20—H20A	0.9600
C3—C4	1.551 (6)	C20—H20B	0.9600
С3—Н3В	0.9800	C20—H20C	0.9600
C4—C9	1.527 (7)	C21—H21A	0.9600
C4—C5	1.528 (6)	C21—H21B	0.9600
C4—H4A	0.9800	C21—H21C	0.9600
C5—C6	1.342 (6)	C22—H22A	0.9600

C6C10	1.466 (6)	C22—H22B	0.9600
С7—С8	1.512 (6)	C22—H22C	0.9600
С7—Н7А	0.9800		
C5—S1—C11	102.76 (19)	C13—C11—H11A	114.7
C14—S2—C16	88.8 (3)	C12—C11—H11A	114.7
C7—O2—H2A	109.5	S1—C11—H11A	114.7
C10—O4—C17	116.1 (4)	N2—C12—C11	88.2 (3)
C18—O5—C17	120.2 (5)	N2—C12—H12A	114.0
C1—N1—C6	132.4 (3)	C11—C12—H12A	114.0
C1—N1—C3	93.1 (3)	N2—C12—H12B	114.0
C6—N1—C3	108.6 (3)	C11—C12—H12B	114.0
C14—N2—C12	128.7 (4)	H12A—C12—H12B	111.2
C14—N2—C13	130.5 (5)	N2-C13-C11	88.0 (4)
C12—N2—C13	92.8 (4)	N2—C13—H13A	114.0
C14—N3—C15	111.1 (5)	C11—C13—H13A	114.0
01—C1—N1	131.4 (4)	N2—C13—H13B	114.0
01	136.6 (4)	C11—C13—H13B	114.0
N1-C1-C2	91.9 (3)	H13A—C13—H13B	111.2
C7—C2—C1	118.6 (3)	N3—C14—N2	124.9 (5)
C7—C2—C3	117.9 (3)	N3-C14-S2	117.5 (4)
C1—C2—C3	86.1 (3)	N2-C14-S2	117.3 (4)
C7—C2—H2B	110.7	N3—C15—C16	111.0 (6)
C1—C2—H2B	110.7	N3—C15—H15A	109.4
C3—C2—H2B	110.7	C16—C15—H15A	109.4
N1—C3—C2	88.6 (3)	N3—C15—H15B	109.4
N1-C3-C4	104.6 (3)	C16—C15—H15B	109.4
C2—C3—C4	123.7 (3)	H15A—C15—H15B	108.0
N1—C3—H3B	112.2	C15—C16—S2	105.3 (5)
C2—C3—H3B	112.2	C15—C16—H16A	110.7
C4—C3—H3B	112.2	S2—C16—H16A	110.7
C9—C4—C5	109.9 (4)	C15—C16—H16B	110.7
C9—C4—C3	115.8 (4)	S2—C16—H16B	110.7
C5—C4—C3	100.8 (3)	H16A—C16—H16B	108.8
C9—C4—H4A	110.0	O5—C17—O4	108.0 (4)
C5—C4—H4A	110.0	O5—C17—H17A	110.1
C3—C4—H4A	110.0	O4—C17—H17A	110.1
C6-C5-C4	110.6 (4)	O5—C17—H17B	110.1
C6—C5—S1	125.5 (3)	O4—C17—H17B	110.1
C4—C5—S1	123.7 (3)	H17A—C17—H17B	108.4
C5—C6—N1	110.9 (3)	O6—C18—O5	120.9 (6)
C5—C6—C10	125.1 (4)	O6—C18—C19	126.3 (6)
N1—C6—C10	124.0 (3)	O5—C18—C19	112.8 (5)
02	107.8 (3)	C21—C19—C20	113.4 (9)
O2—C7—C8	111.5 (4)	C21—C19—C22	111.2 (10)
С2—С7—С8	111.3 (4)	C20—C19—C22	105.0 (9)
О2—С7—Н7А	108.7	C21—C19—C18	108.6 (7)
С2—С7—Н7А	108.7	C20—C19—C18	113.3 (8)

С8—С7—Н7А	108.7	C22—C19—C18	105.0 (6)
С7—С8—Н8А	109.5	C19—C20—H20A	109.5
C7—C8—H8B	109.5	C19—C20—H20B	109.5
H8A—C8—H8B	109.5	H20A—C20—H20B	109.5
С7—С8—Н8С	109.5	С19—С20—Н20С	109.5
H8A—C8—H8C	109.5	H20A—C20—H20C	109.5
H8B—C8—H8C	109.5	H20B—C20—H20C	109.5
С4—С9—Н9А	109.5	C19—C21—H21A	109.5
С4—С9—Н9В	109.5	C19—C21—H21B	109.5
Н9А—С9—Н9В	109.5	H21A—C21—H21B	109.5
C4—C9—H9C	109.5	C19—C21—H21C	109.5
H9A—C9—H9C	109.5	$H_{21}A - C_{21} - H_{21}C$	109.5
H9B-C9-H9C	109.5	H_{21B} C_{21} H_{21C}	109.5
03-010-04	123.8 (4)	C19—C22—H22A	109.5
03-C10-C6	124 3 (4)	C19 - C22 - H22B	109.5
04 - C10 - C6	1119(4)	$H_{22}A - C_{22} - H_{22}B$	109.5
C_{13} C_{11} C_{12}	873(3)	C19-C22-H22C	109.5
$C_{13} = C_{11} = C_{12}$	114.7(3)	H_{22} H_{22} H_{22} H_{22}	109.5
$C_{12} = C_{11} = S_1$	114.7(3) 107.7(3)	$H_{22} = C_{22} = H_{22} C_{22}$	109.5
612	107.7 (3)	1122 D —C22—1122C	109.5
C6 N1 C1 O1	-56.9(7)	$C_{17} O_{4} C_{10} O_{3}$	85(6)
C_{3} N1 C_{1} O_{1}	-175.8(5)	C17 = 04 = C10 = 05	-1737(4)
C6 N1 C1 C2	175.0(5) 122.0(4)	$C_{1}^{-} = C_{1}^{-} = C_{1}^{-} = C_{0}^{-} = C_{0$	75(6)
$C_0 = N_1 = C_1 = C_2$	122.9(4)	$C_{3} = C_{0} = C_{10} = C_{3}$	-172.8(4)
C_{3} $-N_{1}$ $-C_{1}$ $-C_{2}$ C_{7}	4.0(3)	N1 - C0 - C10 - O3	-1/3.0(4)
$V_1 = C_1 = C_2 = C_7$	-04.2(7)	$C_{3} = C_{10} = C_{10} = C_{10}$	-1/0.2(4)
N1 = C1 = C2 = C7	110.0(4) 176.0(6)	NI = C0 = C10 = O4	6.4(3)
01 - C1 - C2 - C3	1/0.0(0)	$C_{5} = S_{1} = C_{11} = C_{12}$	-01.7(3)
NI = CI = C2 = C3	-3.8(3)	C_3 C_1 C_1 C_1 C_1 C_1	-130.9(3)
CI = NI = C3 = C2	-3.9(3)	C12 N2 C12 C11	105.7(0)
$C_0 N_1 C_2 C_2$	-140.9(3)	C13 - N2 - C12 - C11	15.0 (4)
CI = NI = C3 = C4	120.6 (3)	C13 - C11 - C12 - N2	-14.4(4)
C_{6} N1 $-C_{3}$ C4	-16.3(4)	SI = CII = CI2 = N2	100.7 (4)
$C/-C_2-C_3-N_1$	-116.8 (4)	C14— $N2$ — $C13$ — $C11$	-164.9 (6)
C1 - C2 - C3 - N1	3.7(3)	C12— $N2$ — $C13$ — $C11$	-15.1(4)
C/C2C3C4	136.5 (4)	C12—C11—C13—N2	14.3 (4)
C1 - C2 - C3 - C4	-103.1(4)	SI = CII = CI3 = N2	-93.9 (4)
NI-C3-C4-C9	-98.4 (5)	C15—N3—C14—N2	1/2.4 (7)
C2—C3—C4—C9	-0.1(6)	C15—N3—C14—S2	-0.9 (7)
NI-C3-C4-C5	20.2 (4)	C12—N2—C14—N3	21.4 (9)
C2—C3—C4—C5	118.5 (4)	C13—N2—C14—N3	161.4 (5)
C9—C4—C5—C6	104.1 (4)	C12—N2—C14—S2	-165.3 (4)
C3—C4—C5—C6	-18.6 (4)	C13—N2—C14—S2	-25.3 (8)
C9—C4—C5—S1	-71.2 (5)	C16—S2—C14—N3	-12.7 (5)
C3—C4—C5—S1	166.1 (3)	C16—S2—C14—N2	173.4 (5)
C11—S1—C5—C6	156.3 (3)	C14—N3—C15—C16	18.3 (10)
C11—S1—C5—C4	-29.1 (4)	N3—C15—C16—S2	-26.1 (10)
C4—C5—C6—N1	9.5 (4)	C14—S2—C16—C15	21.0 (7)
S1—C5—C6—N1	-175.3 (3)	C18—O5—C17—O4	-80.2 (6)

C4—C5—C6—C10	-171.7 (4)	C10O4C17O5	143.8 (4)
S1—C5—C6—C10	3.5 (5)	C17O5C18O6	-0.7 (9)
C1—N1—C6—C5	-108.0 (4)	C17O5C18C19	-179.7 (5)
C3—N1—C6—C5	4.8 (4)	O6C18C19C21	-21.0 (12)
C1—N1—C6—C10	73.2 (5)	O5C18C19C21	158.0 (9)
C3—N1—C6—C10	-174.1 (3)	O6C18C19C20	-148.0 (9)
C3—N1—C6—C5	4.8 (4)	O6—C18—C19—C21	-21.0 (12)
C1—N1—C6—C10	73.2 (5)	O5—C18—C19—C21	158.0 (9)
C3—N1—C6—C10	-174.1 (3)	O6—C18—C19—C20	-148.0 (9)
C1—C2—C7—O2	-50.0 (5)	O5—C18—C19—C20	31.0 (10)
C3—C2—C7—O2 C1—C2—C7—C8 C3—C2—C7—C8	51.5 (5) -172.6 (4) -71.1 (5)	O6—C18—C19—C22 O5—C18—C19—C22	98.0 (9) -83.0 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A···N3 ⁱ	0.82	2.01	2.816 (6)	169
C11—H11 <i>A</i> ···O2 ⁱⁱ	0.98	2.43	3.366 (6)	160

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*, *y*-1, *z*.