CRYSTALLOGRAPHIC COMMUNICATIONS

Received 11 July 2018
Accepted 6 August 2018

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; hydrogen bonding; phosphite.

CCDC reference: 1860376
Supporting information: this article has supporting information at journals.iucr.org/e

open \prec access

Bis(3-carbamoylpyridin-1-ium) phosphite monohydrate

Jan Fábry*

Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic. *Correspondence e-mail: fabry@fzu.cz

Two of the constituent molecules in the title structure, $2 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+}$.$\mathrm{HPO}_{3}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$, i.e. the phosphite anion and the water molecule, are situated on a symmetry plane. The molecules are held together by moderate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$, and weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {carbonyl }}$ hydrogen bonds in which the amide and secondary amine groups, and the water molecules are involved. The structural features are usual, among them the H atom bonded to the P atom avoids hydrogen bonding.

1. Chemical context

Nicotinamide (pyridine-2-carboxamide) is a biologically important molecule, being the active part of vitamin B3 and nicotinamide adenine dinucleotide (NAD) (e.g. Wald, 1991; Williamson et al., 1967).

However, interest in the preparation of the title hydrated salt was called for with respect to an investigation of the configuration of the $-\mathrm{NH}_{2}$ group and its dependence on its environment.

It was hoped that 3-carbamoylpyridine (nicotinamide) would make a salt or a co-crystal with phosphorous acid, $\mathrm{H}_{3} \mathrm{PO}_{3}$. It is difficult to predict which of these two forms would be prefererred, because of a small difference of $\Delta \mathrm{p} K_{\mathrm{a}}=$ $\mathrm{p} K_{\mathrm{a}}$ (base) $-\mathrm{p} K_{\mathrm{a}}($ acid $)$ (Childs et al., 2007). [The $\mathrm{p} K_{\mathrm{a}}$ values for 3-carbamoylpyridine and $\mathrm{H}_{3} \mathrm{PO}_{3}$ are 3.3 and 1.3 (first degree), respectively (CRC Handbook, 2009).]

2. Structural commentary

The title molecules are shown in Fig. 1. The resulting structure turned out to be a monohydrated salt. Table 1 lists the hydrogen bonds, which are shown in Fig. 2. The secondary amine hydrogen $\mathrm{H} 1 n 1$ is involved in the strongest hydrogen bond present in the structure $\left(\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O} 3^{\mathrm{i}}\right)$. Its parameters indicate that this hydrogen bond is situated on the boundary between strong and moderate hydrogen bonds (Gilli \& Gilli, 2009). The amide hydrogen H1n2 is donated to the water oxygen, while $\mathrm{H} 2 n 2$ is donated to atom O 3 of the phosphite anion. Atom O 2 is an acceptor of water hydrogen $\mathrm{H} 1 o w$. Water hydrogen $\mathrm{H} 2 o w$ is donated to a pair of O 3

Figure 1

The title molecule, with anisotropic atomic displacement ellipsoids shown at the 50% probability level (PLATON; Spek, 2009).
atoms. The carbonyl oxygen O 1 is an acceptor of two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, namely $\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3 \cdots \mathrm{O} 1^{\mathrm{ii}}$ and $\mathrm{C} 4-\mathrm{H} 1 c 4 \cdots \mathrm{O} 1^{\mathrm{iii}}$. The water oxygen atom is also an acceptor of hydrogen H1c2 (see Table 1).

Phosphite and fluorophosphonate, as well hydrogen phosphite and hydrogen fluorophosphonate, are similar molecules. Either molecule can be involved, not only in isostructural compounds, but even in mixed crystals (Fábry et al., 2012). Similarity regarding not only the shape of the molecules but also the avoidance both of P-bonded fluorines and hydrogens of involvement in strong or moderate hydrogen bonds (Matulková et al., 2017). The latter article shows a plot of the

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 1 c 2 \cdots \mathrm{O} w^{\mathrm{i}}$	0.95	2.64	$3.5777(14)$	168
$\mathrm{C} 3-\mathrm{H} 1 c 3 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.56	$3.4790(17)$	164
$\mathrm{C} 4-\mathrm{H} 1 c 4 \cdots 1^{\text {iii }}$	0.95	2.56	$3.1948(13)$	125
$\mathrm{~N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O}^{\text {iv }}$	$1.053(15)$	$1.455(15)$	$2.508(3)$	$178.1(14)$
$\mathrm{N} 2-\mathrm{H} 1 n 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.849(16)$	$2.140(16)$	$2.9513(13)$	$159.8(18)$
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O}^{\mathrm{v}}$	$0.889(18)$	$1.955(18)$	$2.823(3)$	$165.2(15)$
$\mathrm{O} w-\mathrm{H} 1 o w \cdots \mathrm{O}^{\text {vi }}$	$0.84(2)$	$1.82(2)$	$2.657(4)$	$172(2)$
$\mathrm{O} w-\mathrm{H} 2 o w \cdots \mathrm{O}^{\text {a }}$	$0.96(3)$	$2.42(2)$	$3.263(3)$	$146.8(9)$
$\mathrm{O} w-\mathrm{H} 2 o w \cdots \mathrm{O}^{\text {vii }}$	$0.96(3)$	$2.42(2)$	$3.263(3)$	$146.8(9)$

Symmetry codes: (i) $-x+\frac{3}{2},-y+2, z+\frac{1}{2}$; (ii) $x, y+1, z-1$; (iii) $-x+\frac{3}{2},-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{3}{2},-y+2, z-\frac{1}{2}$; (v) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$; (vi) $x, y, z-1$; (vii) $-x+1, y, z$.
dependence of $\mathrm{P}-\mathrm{F}$ distance on the longest $\mathrm{P}-\mathrm{O}$ distance in flourophosphonate and hydrogen fluorophosphonate molecules. The $\mathrm{P}-\mathrm{F}$ distance tends to be longer in $\left[\mathrm{FPO}_{3}\right]^{2-}$ than in $\left[\mathrm{HFPO}_{3}\right]^{-}$. Fig. 3 shows a similar plot for the phosphites and hydrogen phosphites between both molecules despite the larger spread of $\mathrm{P}-\mathrm{H}$ distances in phosphite molecules because of the lower accuracy of the H -atom determinations by X-ray diffraction experiments. The reason why the $\mathrm{P}-\mathrm{H}$ bond tends to be longer follows from the conservation of the overall bond valence sum of the central P^{5+} or P^{3+} atom. It is worth pointing out that the tabulated value of the bond valence parameter for the $\mathrm{P}-\mathrm{H}$ bond seems to yield too high values. For example, for the important values of the $\mathrm{P}-\mathrm{H}$ distances, i.e. 1.28, 1.33 and $1.37 \AA$ (cf. Fig. 3), the bond valences (Brese \& O'Keeffe, 1991) are 1.42, 1.24 and 1.11, respectively. The $\mathrm{P}-\mathrm{H}$ bond valence parameters are going to be checked as part of future work.

Figure 2

View of the title structure. C, H, N, O and P atoms are represented by gray, small gray, blue, red and violet circles, respectively. [Symmetry codes: (i) $-x+1, y, z$; (ii) $x, y-1, z$; (iii) $x, y-1, z$; (iv) $-x+\frac{3}{2},-y+1, z-\frac{1}{2}$; (v) $-x+2, y-1, z$; (vi) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$; (vii) $x-\frac{1}{2},-y+1, z-\frac{1}{2}$; (viii) $x, y-1$, $z-1$.] The hydrogen bonds are shown as yellow dashed lines (DIAMOND; Brandenburg \& Putz, 2005).

Figure 3
The dependence of the longest $\mathrm{P}-\mathrm{O}$ distance (\AA) on the $\mathrm{P}-\mathrm{H}$ distance (\AA) in hydrogen phosphites (red circles); phosphites are represented by black squares and the title phosphite structure by a green triangle.

The $\mathrm{C}-\mathrm{NH}_{2}$ group tends to be fairly planar for short $\mathrm{C}-\mathrm{N}$ bonds (Fábry et al., 2014). In agreement with a short $\mathrm{C}-\mathrm{N}$ bond length $[\mathrm{C} 6-\mathrm{N} 2=1.3232(18) \AA$] in the title structure, the best plane through $\mathrm{C} 6 / \mathrm{N} 2 / \mathrm{H} 1 n 2 / \mathrm{H} 2 n 2$ reveals a maximum deviation of about 0.05 (2) \AA for each hydrogen, while $\xi^{2}=$ 12.6.

3. Supramolecular features

In the crystal, the most important graph-set motif (Etter et al., 1990) present is an $R_{4}^{3}(10)$ ring motif, which is composed of atoms $\mathrm{P} 1-\mathrm{O} 3 \cdots \mathrm{H} 2 n 2^{\text {iv }}-\mathrm{N} 2^{\text {iv }}-\mathrm{H} 1 n 2^{\text {iv }} \cdots \mathrm{O} w \cdots \mathrm{H} 1 n 2^{\text {vii }}-$ $\mathrm{N} 2^{\text {vii }}-\mathrm{H} 2 n 2^{\text {vii. }} \ldots \mathrm{O}^{\mathrm{i}}$ (Table 1 and Fig. 2; symmetry codes are given in the figure cation). The phosphite anion and the water molecule are linked by $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {phosphite }}$ hydrogen bonds, forming chains propagating along [001]. The cations are linked to these chains via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming layers parallel to the $b c$ plane, as shown in Fig. 2. The layers are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in the formation of a supramolecular three-dimensional structure.

4. Database survey

The applied crystallographic databases were the Cambridge Crystallographic Database (Version 5.39, with updates to May 2018; Groom et al., 2016) and the Inorganic Crystal Structure Database (June 2018; ICSD, 2018). The search was carried out for all phosphites or hydrogen phosphites with a cation of one kind.

5. Synthesis and crystallization

The title structure was prepared by slow evaporation of a water solution (18 ml) of equimolar amounts of nicotinamide $(1.49 \mathrm{~g})$ and phosphorous acid (1 g). Colourless crystals were isolated after two months.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>3 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R[F>3 \sigma(F)], w R(F), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

```
2C6}\mp@subsup{\textrm{H}}{7}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{}{+}\cdot\mp@subsup{\textrm{HPO}}{3}{}\mp@subsup{}{}{2-}\cdot\mp@subsup{}{}{\prime}\mp@subsup{\textrm{H}}{2}{}\textrm{O
344.3
Orthorhombic, Pmn21
95
22.9297 (4), 4.5910 (1), 7.0900 (1)
746.37 (2)
2
Cu K\alpha
2.01
0.45 \times 0.16 \times 0.06
Rigaku OD SuperNova Dual
        source diffractometer with an
        AtlasS2 detector
Multi-scan (CrysAlis PRO; Rigaku
    OD, 2017)
0.599,0.831
10796, 1592, 1588
0.021
0.630
0.019, 0.054, 2.21
1592
181
1
H atoms treated by a mixture of independent and constrained refinement
0.14,-0.15
Since the Flack parameter turned
    out to equal to 0.012(13) in the
    final stage of refinement it was
    set to 0.726 Friedel pairs used in
    the refinement.
0.0
```

Computer programs: CrysAlis PRO (Rigaku OD, 2017), SIR2014 (Burla et al., 2015), JANA2006 (Petríček et al., 2014), PLATON (Spek, 2009) and DIAMOND (Brandenburg \& Putz, 2005).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were discernible in the difference electron-density map. The aryl H atoms were constrained by the constraints $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. Water hydrogen $\mathrm{H} 2 o w$ was refined freely, while H1ow was restrained with a distance restraint of $0.84 \AA$ with elasticity $0.02 \AA$ (Müller, 2009), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The hydrogens of the primary amine N 2 group and the secondary amine N 1 group were constrained by $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{N})$. The $\mathrm{P}-\mathrm{H}$ hydrogen was refined isotropically. Three reflections, i.e. $95 \overline{2}, 10,5, \overline{2}$ and $11,5, \overline{2}$, were discarded from the refinement because $\mid I($ obs $)-I($ calc $) \mid / \sigma(I)>20$.

Since the phosphite oxygens revealed large displacement ellipsoids, the anharmonic displacement parameters upto the fourth grade were included for atoms P1, O2 and O3. (The refinement with the harmonic approximation resulted in $R_{\text {obs }}=$ $0.0242, R w_{\text {obs }}=0.0773, R_{\text {all }}=0.0243, R w_{\text {all }}=0.0774$ and $S=$ 3.13, with number of parameters $=127$. With application of anharmonic approximation, $R_{\mathrm{obs}}=0.0188, R w_{\mathrm{obs}}=0.0535$,
$R_{\text {all }}=0.0188, R w_{\text {all }}=0.0535$ and $S=2.21$, with number of parameters $=181$. The respective values of the third- and fourth-order components of the displacement tensor are given in the CIF.)

Refinement with the assumption of the presence of inversion twinning resulted in a Flack parameter of 0.012 (13) (726 Friedel pairs used in the refinement). Therefore, the crystal was considered as single-domained in the final stage of the refiement, the results of which are presented here.

Acknowledgements

The author expresses the gratitude for the support of the Ministry of Education of the Czech Republic. Dr Michal Dušek from the Institute of Physics is thanked for careful data collection.

Funding information

Funding for this research was provided by: Ministry of Education of the Czech Republic (grant No. NPU I-LO1603).

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. \& Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.

Childs, S. L., Stahly, G. P. \& Park, A. (2007). Mol. Pharm. 4, 323338.

CRC Handbook (2009). CRC Handbook of Chemistry and Physics, 90th ed., edited by D. R. Lidl, pp. 8-40 and 8-45. Boca Raton, London, New York: CRC Press.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Fábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. \& Urban, J. (2014). Acta Cryst. C70, 1153-1160.

Fábry, J., Fridrichová, M., Dušek, M., Fejfarová, K. \& Krupková, R. (2012). Acta Cryst. C68, o76-o83.

Gilli, G. \& Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
ICSD (2018). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/fiz/products/icsd/welcome. html.
Matulková, I., Fábry, J., Němec, I., Císařová, I. \& Vaněk, P. (2017). Acta Cryst. B73, 1114-1124.
Müller, P. (2009). Crystallogr. Rev. 15, 57-83.
Petříček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wald, N. (1991). Lancet, 338, 131-137.
Williamson, D. H., Lund, P. \& Krebs, H. A. (1967). Biochem J. 103, 514-527.

supporting information

Bis(3-carbamoylpyridin-1-ium) phosphite monohydrate

Jan Fábry

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

Bis(3-carbamoylpyridin-1-ium) phosphite monohydrate

Crystal data

$2 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{HPO}_{3}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=344.3$
Orthorhombic, $P m n 2_{1}$
Hall symbol: P -2x;-2yac;2zac
$a=22.9297$ (4) \AA
$b=4.5910$ (1) \AA
$c=7.0900$ (1) \AA
$V=746.37(2) \AA^{3}$
$Z=2$

Data collection

Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 5.2027 pixels mm^{-1} $\omega /$ scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)

Refinement

Refinement on F^{2}
$R[F>3 \sigma(F)]=0.019$
$w R(F)=0.054$
$S=2.21$
1592 reflections
181 parameters
1 restraint
22 constraints
H atoms treated by a mixture of independent and constrained refinement
Weighting scheme based on measured s.u.'s $w=$ $1 /\left(\sigma^{2}(I)+0.0004 I^{2}\right)$
$F(000)=360$
$D_{\mathrm{x}}=1.532 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 9530 reflections
$\theta=6.5-75.9^{\circ}$
$\mu=2.01 \mathrm{~mm}^{-1}$
$T=95 \mathrm{~K}$
Plate, colourless
$0.45 \times 0.16 \times 0.06 \mathrm{~mm}$
$T_{\min }=0.599, T_{\text {max }}=0.831$
10796 measured reflections
1592 independent reflections
1588 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=76.3^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-28 \rightarrow 28$
$k=-5 \rightarrow 5$
$l=-8 \rightarrow 8$
$(\Delta / \sigma)_{\text {max }}=0.035$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Extinction correction: B-C type 1 Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 910 (160)
Absolute structure: Since the Flack parameter turned out to equal to $0.012(13)$ in the final stage of refinement it was set to 0.726 Friedel pairs used in the refinement.
Absolute structure parameter: 0.0

Special details

Refinement. This part differs from the original article by Thanigaimani et al. (2006). It also differs from the refinement by Thanigaimani et al. (2006) by a different threshold for the consideration of the observed diffractions: $\mathrm{F}^{2}>3 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ has been used as criterion for observed diffractions by JANA2006 which was used for the calculation of the corrected structural model.
Three diffractions $95-2$, $105-2,115-2$ were discarded from the refinement because $|\mathrm{I}(\mathrm{obs})-\mathrm{I}(\mathrm{calc})| / \sigma(\mathrm{I})>20$.
Since the Flack parameter turned out to equal to 0.012 (13) in the final stage of refinement it was set to 0.726 Friedel pairs used in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\text {eq }}$
C1	$0.84788(5)$	$0.8441(2)$	$0.47478(18)$	$0.0157(3)$
C2	$0.88464(4)$	$1.0560(2)$	$0.40131(18)$	$0.0159(3)$
H1c2	0.916985	1.121048	0.473657	0.0191^{*}
N1	$0.87528(4)$	$1.1699(2)$	$0.23035(17)$	$0.0168(2)$
H1n1	$0.9056(7)$	$1.320(3)$	$0.175(2)$	0.0202^{*}
C3	$0.82992(5)$	$1.0852(2)$	$0.1232(2)$	$0.0169(3)$
H1c3	0.824169	1.170176	0.002456	0.0202^{*}
C4	$0.79162(5)$	$0.8751(2)$	$0.1879(2)$	$0.0178(3)$
H1c4	0.759552	0.814668	0.112553	0.0213^{*}
C5	$0.80087(4)$	$0.7536(2)$	$0.36522(18)$	$0.0168(3)$
H1c5	0.77504	0.608615	0.411623	0.0201^{*}
C6	$0.85727(5)$	$0.7074(3)$	$0.66613(19)$	$0.0173(3)$
O1	$0.82199(4)$	$0.52392(19)$	$0.72395(16)$	$0.0271(2)$
N2	$0.90344(4)$	$0.7930(2)$	$0.76358(18)$	$0.0202(3)$
H1n2	$0.9281(7)$	$0.917(3)$	$0.724(3)$	0.0243^{*}
H2n2	$0.9105(7)$	$0.698(4)$	$0.871(3)$	0.0243^{*}
P1	0.5	$0.3758(3)$	$0.7085(2)$	$0.0181(6)$
H1p1	0.5	$0.092(5)$	$0.698(4)$	$0.034(6)^{*}$
O2	0.5	$0.4732(8)$	$0.9100(6)$	$0.0287(14)$
O3	$0.55414(11)$	$0.4668(5)$	$0.5974(3)$	$0.0350(8)$
Ow	0.5	$0.7861(2)$	$0.22531(19)$	$0.0219(3)$
H1ow	0.5	$0.672(5)$	$0.132(3)$	0.0328^{*}
H20w	0.5	$0.658(6)$	$0.332(4)$	0.0328^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0143(4)$	$0.0170(5)$	$0.0159(5)$	$0.0034(3)$	$0.0021(4)$	$-0.0004(4)$
C2	$0.0157(4)$	$0.0167(5)$	$0.0152(5)$	$0.0009(4)$	$-0.0018(4)$	$-0.0008(4)$
N 1	$0.0174(4)$	$0.0158(4)$	$0.0172(4)$	$0.0004(3)$	$-0.0006(4)$	$0.0018(4)$
C3	$0.0183(4)$	$0.0170(5)$	$0.0153(5)$	$0.0020(4)$	$-0.0026(4)$	$0.0000(4)$
C4	$0.0163(4)$	$0.0189(5)$	$0.0182(5)$	$0.0008(3)$	$-0.0032(4)$	$-0.0018(4)$
C5	$0.0142(4)$	$0.0177(5)$	$0.0184(5)$	$-0.0001(4)$	$0.0019(3)$	$-0.0001(4)$
C6	$0.0176(5)$	$0.0183(5)$	$0.0161(5)$	$0.0013(4)$	$0.0026(3)$	$0.0014(4)$
O1	$0.0275(4)$	$0.0331(4)$	$0.0207(4)$	$-0.0115(3)$	$-0.0015(4)$	$0.0082(4)$
N2	$0.0179(4)$	$0.0265(5)$	$0.0162(4)$	$-0.0015(4)$	$-0.0011(3)$	$0.0072(4)$
P1	$0.0192(11)$	$0.0147(7)$	$0.0205(12)$	0	0	$-0.0018(8)$

O2	$0.038(3)$	$0.040(2)$	$0.008(2)$	0	0	$-0.0080(19)$
O3	$0.0349(14)$	$0.0382(15)$	$0.0318(15)$	$-0.0234(11)$	$0.0241(13)$	$-0.0182(12)$
Ow	$0.0283(5)$	$0.0185(5)$	$0.0188(5)$	0	0	$-0.0010(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C2	1.3884 (15)	C5-H1c5	0.95
C1-C5	1.3920 (16)	C6-O1	1.2379 (15)
C1-C6	1.5103 (18)	C6-N2	1.3237 (16)
C2-H1c2	0.95	N2-H1n2	0.849 (16)
$\mathrm{C} 2-\mathrm{N} 1$	1.3375 (17)	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{n} 2$	0.889 (18)
N1-H1n1	1.053 (15)	$\mathrm{H} 1 \mathrm{n} 2-\mathrm{H} 2 \mathrm{n} 2$	1.50 (2)
N1-C3	1.3455 (16)	P1-H1p1	1.30 (3)
$\mathrm{H} 1 \mathrm{n} 1-\mathrm{O}^{\text {i }}$	1.455 (15)	P1-O2	1.497 (4)
C3-H1c3	0.9501	$\mathrm{P} 1-\mathrm{O} 3$	1.528 (3)
C3-C4	1.3827 (15)	$\mathrm{P} 1-\mathrm{O} 3{ }^{\text {ii }}$	1.528 (3)
C4-H1c4	0.95	Ow-Hlow	0.84 (2)
C4-C5	1.3917 (18)	Ow-H2ow	0.96 (3)
C2-C1-C5	118.02 (11)	C1-C5-H1c5	119.91
C2-C1-C6	122.79 (10)	C4-C5-H1c5	119.91
C5-C1-C6	119.19 (10)	C1-C6-O1	119.15 (11)
C1-C2-H1c2	119.45	C1-C6-N2	117.36 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	121.10 (10)	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	123.49 (13)
$\mathrm{H} 1 \mathrm{c} 2-\mathrm{C} 2-\mathrm{N} 1$	119.45	C6-N2-H1n2	124.0 (12)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{n} 1$	119.1 (9)	C6-N2-H2n2	116.4 (11)
C2-N1-C3	121.51 (10)	$\mathrm{H} 1 \mathrm{n} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{n} 2$	119.2 (16)
H1n1-N1-C3	119.3 (9)	$\mathrm{H} 1 \mathrm{p} 1-\mathrm{P} 1-\mathrm{O} 2$	110.6 (13)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{n} 1-\mathrm{O}^{\text {i }}$	178.1 (14)	H1p1-P1-O3	104.1 (7)
N1-C3-H1c3	119.82	H1p1-P1-O3ii	104.1 (7)
N1-C3-C4	120.37 (12)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	114.21 (12)
H1c3-C3-C4	119.82	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3{ }^{\text {ii }}$	114.21 (12)
C3-C4-H1c4	120.58	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 3{ }^{\text {ii }}$	108.64 (15)
C3-C4-C5	118.82 (11)	$\mathrm{H} 1 \mathrm{n} 1 \mathrm{iii}^{\text {iil }} \mathrm{O} 3-\mathrm{P} 1$	120.3 (6)
H1c4-C4-C5	120.59	H1ow-Ow-H2Ow	104 (2)
C1-C5-C4	120.18 (10)		

Symmetry codes: (i) $-x+3 / 2,-y+2, z-1 / 2$; (ii) $-x+1, y, z$; (iii) $-x+3 / 2,-y+2, z+1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 1 c 2 \cdots \mathrm{O} w^{\text {iii }}$	0.95	2.64	$3.5777(14)$	167.77
$\mathrm{C} 3 — \mathrm{H} 1 c 3 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.56	$3.4790(17)$	163.62
$\mathrm{C} 4 — \mathrm{H} 1 c 4 \cdots 1^{v}$	0.95	2.56	$3.1948(13)$	124.74
$\mathrm{~N} 1 — \mathrm{H} 1 n 1 \cdots \mathrm{O}^{\mathrm{i}}$	$1.053(15)$	$1.455(15)$	$2.508(3)$	$178.1(14)$
$\mathrm{N} 2 — \mathrm{H} 1 n 2 \cdots \mathrm{O} w^{\text {iii }}$	$0.849(16)$	$2.140(16)$	$2.9513(13)$	$159.8(18)$
$\mathrm{N} 2 — \mathrm{H} 2 n 2 \cdots 3^{\text {vi }}$	$0.889(18)$	$1.955(18)$	$2.823(3)$	$165.2(15)$
$\mathrm{O} w — \mathrm{H} 1 o w \cdots \mathrm{O}^{\text {vii }}$	$0.84(2)$	$1.82(2)$	$2.657(4)$	$172(2)$

supporting information

$\mathrm{O} w-\mathrm{H} 2 o w \cdots \mathrm{O} 3$	$0.96(3)$	$2.42(2)$	$3.263(3)$	$146.8(9)$
$\mathrm{O} w — \mathrm{H} 2 o w \cdots \mathrm{O}^{\mathrm{ii}}$	$0.96(3)$	$2.42(2)$	$3.263(3)$	$146.8(9)$

Symmetry codes: (i) $-x+3 / 2,-y+2, z-1 / 2$; (ii) $-x+1, y, z$; (iii) $-x+3 / 2,-y+2, z+1 / 2$; (iv) $x, y+1, z-1$; (v) $-x+3 / 2,-y+1, z-1 / 2$; (vi) $-x+3 / 2,-y+1, z+1 / 2$; (vii) $x, y, z-1$.

