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The molecular structure of the title compound, C13H6Cl4OS, consists of a 2,5-

dichlorothiophene ring and a 2,4-dichlorophenyl ring linked via a prop-2-en-1-

one spacer. The dihedral angle between the 2,5-dichlorothiophene ring and the

2,4-dichlorophenyl ring is 12.24 (15)�. The molecule has an E configuration

about the C C bond and the carbonyl group is syn with respect to the C C

bond. The molecular conformation is stabilized by intramolecular C—H� � �Cl

contacts, producing S(6) and S(5) ring motifs. In the crystal, the molecules are

linked along the a-axis direction through face-to-face �-stacking between the

thiophene rings and the benzene rings of the molecules in zigzag sheets lying

parallel to the bc plane along the c axis. The intermolecular interactions in the

crystal packing were further analysed using Hirshfield surface analysis, which

indicates that the most significant contacts are Cl� � �H/ H� � �Cl (20.8%), followed

by Cl� � �Cl (18.7%), C� � �C (11.9%), Cl� � �S/S� � �Cl (10.9%), H� � �H (10.1%),

C� � �H/H� � �C (9.3%) and O� � �H/H� � �O (7.6%).

1. Chemical context

Compounds bearing the 1,3-diphenyl-2-propen-1-one frame-

work and belong to the flavonoid family are commonly called

by its generic name ‘chalcone’. These are abundant in nature,

ranging from ferns to higher plants, and are considered to be

the precursors of flavonoids and isoflavonoids, in which the

two aromatic rings are joined by a three carbon �,�-unsatu-

rated carbonyl system. In plants, chalcones are converted to

the corresponding (2S)-flavanones in a stereospecific reaction

catalysed by the enzyme chalcone isomerase. The chemistry of

chalcones remains a fascination among researchers because of

the large number of replaceable hydrogen atoms that allows a

number of derivatives with a variety of promising biological

activities. They are found in fruits and vegetables, which

attracted attention because of their pharmacological activities

such as anti-inflamatory (Yadav et al., 2011), antifungal

(Mahapatra et al., 2015), antiviral (Nowakowska, 2007;

Chimenti et al., 2010; Elarfi &Al-Difar, 2012), antioxidant

(Ferreira et al., 2006) and anticancer (Stiborova et al., 2011

activities). The synthesis and antimicrobial evaluation of new

chalcones containing a 2,5-dichlorothiophene moiety has been
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reported (Tomar et al., 2007). In recent years, chalcones have

been used in the field of materials science as non-linear optical

devices (Raghavendra et al., 2017; Chandra Shekhara Shetty et

al., 2016). In view of all the above and as part of our ongoing

work (Harrison et al., 2010; Jasinski et al., 2010; Dutkiewicz et

al., 2010) herewith we report the crystal and molecular

structure of the title compound.

2. Structural commentary

The title compound, Fig. 1, is constructed from two aromatic

rings (2,5-dichlorothiophene and terminal 2,4-dichlorophenyl

rings), which are linked by a C=C—C(=O)—C enone bridge.

Probably as a result of the steric repulsion between the

chlorine atoms of the adjacent molecules, the C3—C4—C5—

O1 and O1—C5—C6—C7 torsion angles about the enone

bridge are �11.8 (5) and 0.4 (6)�, respectively. Hence, the

dihedral angle between the 2,5-dichlorothiophene ring and the

2,4-dichlorophenyl ring increases to 12.24 (15)�. The bond

lengths and angles in the title compound are comparable with

those of the related compounds (E)-3-(3,4-dimethoxyphenyl)-

1-(1-hydroxynaphthalen-2yl)prop-2-en-1-one (Ezhilarasi et

al., 2015), (E)-1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)-

prop-2-en-1-one (Escobar et al., 2012) and (E)-3-(2-bromo-

phenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (Li et al.,

2012). The molecular conformation of the title compound is

stabilized by intramolecular C—H� � �Cl contacts (Table 1),

producing S(6) and S(5) ring motifs.

3. Supramolecular features and Hirshfeld surface
analysis

In the crystal, conventional hydrogen bonds are not observed.

�-stacking is observed between the thiophene rings (S1/C1–

C4, centroid Cg1) of adjacent molecules in the alternating

sheets along the [100] direction [Cg1� � �Cg1i,ii: centroid–

centroid distance = 3.987 (2) Å, shortest perpendicular

distance for the centroid of one ring to the plane of the other =

3.6143 (12) Å, ring-centroid offset = 1.683 Å; symmetry codes:

(i) �1 + x, y, z; (i) 1 + x, y, z] and between the benzene rings

(C8–C13, centroid Cg2) of the same molecules [Cg2� � �Cg2i,ii:

centroid–centroid distance = 3.987 (2) Å, shortest perpendic-

ular distance = 3.5213 (13) Å, offset = 1.869 Å]. As shown

Fig. 2, the molecules are packed to form zigzag sheets lying

parallel to (011) along the c-axis direction through face-to-face

�-stacking between the thiophene and benzene rings of pairs

of adjacent molecules along the [100] direction (Cl� � �S and

Cl� � �H interactions; Table 2 and Fig. 2). The Cl� � �S contact, at

3.660 (1) Å, is equal to the sum of the van der Waals radii of S

and Cl atoms (3.65 Å; Pauling, 1960).

Hirshfeld surfaces and fingerprint plots were generated for

the title compound using CrystalExplorer (McKinnon et al.,

2007). Hirshfeld surfaces enable the visualization of inter-

molecular interactions by different colours and colour inten-

sity, representing short or long contacts and indicating the
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Figure 1
The molecular structure of the title compound, showing the atom
labelling and displacement ellipsoids drawn at the 50% probability level.
The two intramolecular C—H� � �Cl contacts (see Table1) are shown as
dashed lines.

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C6—H6A� � �Cl1 0.93 2.48 3.220 (3) 136
C7—H7A� � �Cl3 0.93 2.65 3.075 (3) 108

Figure 2
A view of the offset face-to-face �-stacking in the title compound, with
the thick dashed lines indicating centroid-to-centroid interactions. The
Cl� � �H and Cl� � �S interactions are also shown as dashed lines.

Table 2
Summary of short interatomic contacts (Å) in the title compound.

Contact Distance Symmetry operation

Cl2� � �S1 3.660 (1) 1
2 + x, 3

2 � y, 2 � z
H10A� � �Cl4 3.03 �1

2 + x, 3
2 � y, 1 � z

C8� � �C9 3.573 (4) 1 + x, y, z



relative strength of the interactions. The overall two-dimen-

sional fingerprint plot for the title compound and those deli-

neated into Cl� � �H/ H� � �Cl, Cl� � �Cl, C� � �C, Cl� � �S/S� � �Cl,

H� � �H, C� � �H/H� � �C and O� � �H/H� � �O contacts are illus-

trated in Fig. 3; the percentage contributions from the

different interatomic contacts to the Hirshfeld surfaces are as

follows: Cl� � �H/ H� � �Cl (20.8%), Cl� � �Cl (18.7%), C� � �C

(11.9%), Cl� � �S/S� � �Cl (10.9%), H� � �H (10.1%), C� � �H/H� � �C

(9.3%) and O� � �H/H� � �O (7.6%). The contributions of the

other weak intermolecular contacts to the Hirshfeld surfaces

are Cl� � �C/C� � �Cl (3.6%), S� � �C/C� � �S (2.8%), Cl� � �O/O� � �Cl

(2.3%), S� � �S (0.9%), O� � �O (0.6%) and C� � �O/O� � �C

(0.6%).

The C—H� � �Cl interactions appear as two distinct spikes in

the fingerprint plot (Fig. 3b) of the title compound, where the

sum of Cl� � �H/H� � �Cl interactions comprises 20.8% of the

total Hirshfeld surface area of the molecule. The Cl� � �H/

H� � �Cl interactions represented by the spikes in the bottom

right and left region (de + di ’ 2.83 Å) indicate that the

hydrogen atoms are in contact with the Cl atoms to build the

two-dimensional supramolecular framework [de and di

represent the distances from a point on the Hirshfeld surface

to the nearest atoms outside (external) and inside (internal)

the surface, respectively]. Cl� � �Cl contacts (Fig. 3c; 18.7%) are

disfavoured when the number of H atoms on the molecular

surface is large because of competition with the more attrac-

tive H� � �Cl contacts. Cl� � �Cl contacts from a parallel align-

ment of C—Cl bonds (C10—H10A� � �Cl4iii; (iii) �1
2 + x, 3

2 � y,

1 � z] may be indicated. They are known in the literature as

type-I halogen–halogen interactions (Bui et al., 2009), with

both C—Cl� � �Cl angles equal to one another. In the present

case, these angles are close to 165�. The C� � �C contacts

(Fig. 3d); 11.9%) reflect �–� interactions between the above-

mentioned aromatic rings. The S� � �Cl contacts (Fig. 3e; 10.9%)

contracted to a much lesser degree. The C� � �H/H� � �C inter-

actions (Fig. 3g) account for 9.3% of the total Hirshfeld

surface of the molecules. The scattered points in the break-

down of the fingerprint plot show the �–� stacking inter-

actions. In the fingerprint plot delineated into H� � �O/O� � �H

contacts (Fig. 3h), the 7.6% contribution to the Hirshfeld

surface arises from intermolecular C O� � �H hydrogen

bonding and is viewed as pair of spikes with the tip at

de + di � 2.9 Å.

The large number of Cl� � �H/ H� � �Cl, Cl� � �Cl, C� � �C,

Cl� � �S/S� � �Cl, H� � �H, C� � �H/H� � �C and O� � �H/H� � �O inter-

actions suggest that van der Waals interactions and hydrogen

bonding play the major roles in the crystal packing (Hathwar

et al., 2015).

4. Database survey

The closest related compounds with the same skeleton and

containing a similar bis-chalcone moiety to the title compound

but with different substituents on the aromatic rings are: (2E)-

1-(5-chlorothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one

[(I); Naik et al., 2015], (2E)-1-(5-bromothiophen-2-yl)-3-(4-

ethylphenyl)prop- 2-en-1-one [(II); Naik et al., 2015], (2E)-1-

(5-chlorothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one

[(III); Naik et al., 2015], (2E)-1-(5-bromothiophen-2-yl)-3-(4-

ethoxyphenyl)prop-2-en-1-one [(IV); Naik et al., 2015], (2E)-

3-(4-bromophenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one

[(V); Naik et al., 2015], (2E)-1-(5-bromothiophen-2-yl)-3-(3-

methoxyphenyl)prop-2-en-1-one [(VI); Naik et al., 2015], (E)-

1-(5-chlorothiophen-2-yl)-3-(p-tolyl)prop-2-en-1-one [(VII);

Kumara et al., 2017], (E)-1-(5-chlorothiophen-2-yl)-3-(2,4-di-

methylphenyl) prop-2-en-1-one [(VIII); Naveen et al., 2016],

(2E)-1-(5-bromothiophen- 2-yl)-3-(2-chlorophenyl)prop-2-en-

1-one [(IX); Anitha et al., 2015], (2E)-1-[4-hydroxy-3-

(morpholin-4-ylmethyl)phenyl]-3-(thiophen-2-yl)prop-2-en-1-

one [(X); Yesilyurt et al., 2018] and (E)-1-(2-aminophenyl)-3-

(thiophen-2-yl)prop-2-en-1-one [(XI); Chantrapromma et al.,

2013].

In (I) and (II), the structures are isostructural in space

group P1, while (III) and (IV) are isostructural in space group

P21/c. There are no hydrogen bonds of any kind in the

structures of compounds (I) and (II), but in the structures of

compounds (III) and (IV), the molecules are linked into C(7)

chains by means of C—H� � �O hydrogen bonds. In (V), there

are again no hydrogen bonds nor �–� stacking interactions
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Figure 3
The two-dimensional fingerprint plots of the title compound, showing (a)
all interactions, and delineated into (b) Cl� � �H/ H� � �Cl, (c) Cl� � �Cl, (d)
C� � �C, (e) Cl� � �S/S� � �Cl, (f) H� � �H, (g) C� � �H/H� � �C and (h) O� � �H/
H� � �O interactions.



but in (VI), the molecules are linked into C(5) chains by C—

H� � �O hydrogen bonds. In each of compounds (I)–(VI), the

molecular skeletons are close to planarity, and there are short

halogen–halogen contacts in the structures of compounds (II)

and (V) and a short Br� � �O contact in the structure of

compound (VI).

In (VII), the molecule is non-planar, with a dihedral angle

of 22.6 (2)� between the aromatic rings. The molecules are

linked by pairs of C—H� � �� interactions, forming inversion

dimers. There are no other significant intermolecular inter-

actions present. In (VIII), the molecule is nearly planar, the

dihedral angle between the thiophene and phenyl rings being

9.07 (8)�. The molecules are linked via weak C—H� � �O and

C—H� � �S hydrogen bonds, forming chains propagating along

the c-axis direction. In (IX), the thienyl ring is not coplanar

with the benzene ring, their planes forming a dihedral angle of

13.2 (4)�. In the crystal, molecules stack along the a-axis

direction, with the interplanar separation between the thienyl

rings and between the benzene rings being 3.925 (6) Å. In (X),

the thiophene ring forms a dihedral angle of 26.04 (9)� with

the benzene ring. The molecular conformation is stabilized by

an O—H� � �N hydrogen bond. The molecules are connected

through C—H� � �O hydrogen bonds, forming wave-like layers

parallel to the ab plane, which are further linked into a three-

dimensional network by C—H� � �� interactions. In (XI), the

molecule is almost planar with a dihedral angle of 3.73 (8)�

between the phenyl and thiophene rings. An intramolecular

N—H� � �O hydrogen bond generates an S(6) ring motif.

Adjacent molecules are linked into dimers in an anti-parallel

face-to-face manner by pairs of C—H� � �O interactions.

Neighboring dimers are further linked into chains along the c-

axis direction by N—H� � �N hydrogen bonds.

5. Synthesis and crystallization

The title compound was synthesized as per the procedure

reported earlier (Kumar et al., 2013a,b; Chidan Kumar et al.,

2014). 1-(2,5-Dichlorothiophen-3-yl)ethanone (0.01 mol)

(Harrison et al., 2010) and 2,4-dichlorobenzaldehyde

(0.01 mol) was dissolved in 20 ml methanol. A catalytic

amount of NaOH was added to the solution dropwise with

vigorous stirring. The reaction mixture was stirred for about

2 h at room temperature. The formed crude products were

filtered, washed successively with distilled water and recrys-

tallized from methanol to get the title chalcone. The melting

point (381–383 K) was determined by Stuart Scientific (UK)

apparatus.

6. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 3. C-bound H atoms were positioned

geometrically and refined using a riding model, with C—H =

0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H. Owing to poor

agreement between observed and calculated intensities,

twelve outliers (2 7 2, 2 8 0, 2 8 1, 0 1 28, 2 8 23, 0 14 8, 0 0 6, 3 0

29, 1 0 8, 0 17 4, 1 3 27, 2 12 19) were omitted in the final cycles

of refinement.
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Crystal structure and Hirshfeld surface analysis of (2E)-3-(2,4-dichloro-

phenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one

T. N. Sanjeeva Murthy, Zeliha Atioğlu, Mehmet Akkurt, C. S. Chidan Kumar, M. K. Veeraiah, 

Ching Kheng Quah and B. P. Siddaraju

Computing details 

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); 

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 

(Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for 

publication: PLATON (Spek, 2009).

(2E)-3-(2,4-Dichlorophenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one 

Crystal data 

C13H6Cl4OS
Mr = 352.04
Orthorhombic, P212121

a = 3.9867 (3) Å
b = 13.4564 (11) Å
c = 25.573 (2) Å
V = 1371.91 (19) Å3

Z = 4
F(000) = 704

Dx = 1.704 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 4362 reflections
θ = 2.2–28.5°
µ = 1.00 mm−1

T = 294 K
Block, yellow
0.63 × 0.23 × 0.11 mm

Data collection 

Bruker APEXII CCD 
diffractometer

φ and ω scans
Absorption correction: multi-scan 

(SADABS; Bruker, 2007)
Tmin = 0.757, Tmax = 0.894
11402 measured reflections

4226 independent reflections
3425 reflections with I > 2σ(I)
Rint = 0.026
θmax = 30.8°, θmin = 1.6°
h = −5→2
k = −19→19
l = −36→36

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.038
wR(F2) = 0.102
S = 1.03
4226 reflections
172 parameters
0 restraints
Hydrogen site location: inferred from 

neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0581P)2 + 0.011P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max = 0.001
Δρmax = 0.25 e Å−3

Δρmin = −0.20 e Å−3

Absolute structure: Flack x determined using 
1124 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et 
al., 2013)

Absolute structure parameter: 0.04 (5)
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Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

C1 1.1673 (8) 0.77797 (19) 0.84012 (9) 0.0391 (6)
C2 1.2553 (8) 0.6794 (2) 0.91880 (10) 0.0419 (6)
C3 1.1115 (8) 0.6258 (2) 0.88062 (10) 0.0410 (6)
H3A 1.052432 0.559246 0.884223 0.049*
C4 1.0587 (8) 0.6820 (2) 0.83366 (10) 0.0382 (6)
C5 0.9016 (9) 0.6327 (2) 0.78763 (10) 0.0444 (7)
C6 0.7779 (10) 0.6938 (2) 0.74420 (11) 0.0493 (7)
H6A 0.809837 0.762158 0.746266 0.059*
C7 0.6253 (9) 0.6588 (2) 0.70264 (10) 0.0462 (7)
H7A 0.596005 0.590316 0.700760 0.055*
C8 0.4975 (8) 0.7177 (2) 0.65917 (10) 0.0386 (6)
C9 0.3384 (8) 0.67552 (19) 0.61621 (10) 0.0403 (6)
C10 0.2191 (8) 0.7316 (2) 0.57472 (10) 0.0431 (6)
H10A 0.112503 0.701315 0.546561 0.052*
C11 0.2620 (8) 0.8330 (2) 0.57612 (10) 0.0425 (7)
C12 0.4192 (9) 0.8788 (2) 0.61805 (11) 0.0465 (7)
H12A 0.447771 0.947373 0.618483 0.056*
C13 0.5316 (9) 0.8219 (2) 0.65879 (11) 0.0438 (7)
H13A 0.633719 0.852975 0.687101 0.053*
O1 0.8718 (9) 0.54311 (16) 0.78790 (9) 0.0721 (9)
S1 1.3313 (2) 0.80047 (5) 0.90119 (3) 0.04511 (19)
Cl1 1.1738 (3) 0.87633 (5) 0.79734 (3) 0.0556 (2)
Cl2 1.3606 (3) 0.63887 (6) 0.98017 (3) 0.0593 (2)
Cl3 0.2772 (3) 0.54840 (5) 0.61241 (3) 0.0639 (3)
Cl4 0.1204 (3) 0.90504 (6) 0.52453 (3) 0.0605 (2)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

C1 0.0422 (17) 0.0375 (11) 0.0377 (11) 0.0021 (13) 0.0062 (12) −0.0015 (9)
C2 0.0429 (18) 0.0443 (13) 0.0384 (12) 0.0015 (13) −0.0020 (11) 0.0019 (10)
C3 0.0430 (18) 0.0392 (12) 0.0408 (12) −0.0001 (13) −0.0012 (12) 0.0003 (10)
C4 0.0376 (16) 0.0406 (12) 0.0364 (11) 0.0014 (12) 0.0021 (11) −0.0021 (10)
C5 0.051 (2) 0.0462 (14) 0.0362 (12) −0.0046 (14) 0.0005 (12) −0.0046 (10)
C6 0.059 (2) 0.0451 (13) 0.0437 (13) −0.0026 (15) −0.0080 (14) −0.0013 (11)
C7 0.058 (2) 0.0429 (13) 0.0382 (12) −0.0006 (15) 0.0010 (14) −0.0022 (10)
C8 0.0385 (16) 0.0415 (13) 0.0358 (11) 0.0001 (12) 0.0045 (11) −0.0038 (10)
C9 0.0416 (16) 0.0380 (11) 0.0412 (12) −0.0018 (13) 0.0027 (13) −0.0046 (9)
C10 0.0433 (18) 0.0481 (13) 0.0378 (12) 0.0008 (13) 0.0001 (12) −0.0066 (10)
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C11 0.0387 (18) 0.0488 (14) 0.0401 (12) 0.0061 (13) 0.0018 (11) 0.0002 (10)
C12 0.048 (2) 0.0396 (13) 0.0522 (15) −0.0007 (13) 0.0013 (14) −0.0061 (11)
C13 0.0468 (19) 0.0422 (13) 0.0426 (13) −0.0004 (13) −0.0034 (13) −0.0080 (11)
O1 0.123 (3) 0.0414 (11) 0.0517 (12) −0.0110 (15) −0.0209 (16) −0.0012 (9)
S1 0.0504 (5) 0.0422 (3) 0.0427 (3) −0.0035 (3) −0.0008 (3) −0.0055 (3)
Cl1 0.0766 (6) 0.0403 (3) 0.0498 (4) −0.0043 (4) −0.0001 (4) 0.0048 (3)
Cl2 0.0740 (6) 0.0589 (4) 0.0450 (3) −0.0016 (4) −0.0159 (4) 0.0056 (3)
Cl3 0.0883 (8) 0.0410 (3) 0.0625 (4) −0.0127 (4) −0.0148 (5) −0.0023 (3)
Cl4 0.0684 (6) 0.0556 (4) 0.0576 (4) 0.0076 (4) −0.0106 (4) 0.0080 (3)

Geometric parameters (Å, º) 

C1—C4 1.372 (4) C7—C8 1.458 (4)
C1—Cl1 1.717 (3) C7—H7A 0.9300
C1—S1 1.720 (3) C8—C9 1.390 (4)
C2—C3 1.343 (4) C8—C13 1.408 (4)
C2—Cl2 1.714 (3) C9—C10 1.386 (4)
C2—S1 1.717 (3) C9—Cl3 1.731 (3)
C3—C4 1.435 (4) C10—C11 1.375 (4)
C3—H3A 0.9300 C10—H10A 0.9300
C4—C5 1.489 (4) C11—C12 1.387 (4)
C5—O1 1.212 (4) C11—Cl4 1.732 (3)
C5—C6 1.467 (4) C12—C13 1.368 (4)
C6—C7 1.312 (4) C12—H12A 0.9300
C6—H6A 0.9300 C13—H13A 0.9300

C4—C1—Cl1 130.8 (2) C8—C7—H7A 117.1
C4—C1—S1 113.3 (2) C9—C8—C13 116.5 (3)
Cl1—C1—S1 115.92 (16) C9—C8—C7 122.7 (3)
C3—C2—Cl2 126.8 (2) C13—C8—C7 120.9 (3)
C3—C2—S1 113.3 (2) C10—C9—C8 122.6 (3)
Cl2—C2—S1 119.95 (17) C10—C9—Cl3 116.5 (2)
C2—C3—C4 112.8 (3) C8—C9—Cl3 120.8 (2)
C2—C3—H3A 123.6 C11—C10—C9 118.5 (3)
C4—C3—H3A 123.6 C11—C10—H10A 120.7
C1—C4—C3 110.5 (2) C9—C10—H10A 120.7
C1—C4—C5 130.3 (2) C10—C11—C12 121.2 (3)
C3—C4—C5 119.2 (3) C10—C11—Cl4 119.7 (2)
O1—C5—C6 121.9 (3) C12—C11—Cl4 119.2 (2)
O1—C5—C4 118.7 (3) C13—C12—C11 119.2 (3)
C6—C5—C4 119.3 (3) C13—C12—H12A 120.4
C7—C6—C5 124.6 (3) C11—C12—H12A 120.4
C7—C6—H6A 117.7 C12—C13—C8 122.0 (3)
C5—C6—H6A 117.7 C12—C13—H13A 119.0
C6—C7—C8 125.7 (3) C8—C13—H13A 119.0
C6—C7—H7A 117.1 C2—S1—C1 90.24 (13)

Cl2—C2—C3—C4 −179.6 (2) C13—C8—C9—C10 0.3 (5)
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S1—C2—C3—C4 0.7 (4) C7—C8—C9—C10 −179.5 (3)
Cl1—C1—C4—C3 178.6 (3) C13—C8—C9—Cl3 −179.3 (3)
S1—C1—C4—C3 0.2 (4) C7—C8—C9—Cl3 0.9 (4)
Cl1—C1—C4—C5 −2.0 (6) C8—C9—C10—C11 0.4 (5)
S1—C1—C4—C5 179.6 (3) Cl3—C9—C10—C11 179.9 (3)
C2—C3—C4—C1 −0.6 (4) C9—C10—C11—C12 −0.3 (5)
C2—C3—C4—C5 179.9 (3) C9—C10—C11—Cl4 179.2 (2)
C1—C4—C5—O1 168.9 (4) C10—C11—C12—C13 −0.3 (5)
C3—C4—C5—O1 −11.8 (5) Cl4—C11—C12—C13 −179.9 (3)
C1—C4—C5—C6 −13.1 (5) C11—C12—C13—C8 1.0 (5)
C3—C4—C5—C6 166.3 (3) C9—C8—C13—C12 −1.0 (5)
O1—C5—C6—C7 0.4 (6) C7—C8—C13—C12 178.8 (3)
C4—C5—C6—C7 −177.6 (3) C3—C2—S1—C1 −0.5 (3)
C5—C6—C7—C8 179.5 (3) Cl2—C2—S1—C1 179.8 (2)
C6—C7—C8—C9 179.9 (4) C4—C1—S1—C2 0.1 (3)
C6—C7—C8—C13 0.1 (5) Cl1—C1—S1—C2 −178.5 (2)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C6—H6A···Cl1 0.93 2.48 3.220 (3) 136
C7—H7A···Cl3 0.93 2.65 3.075 (3) 108


