

Received 27 June 2018 Accepted 20 August 2018

Edited by A. M. Chippindale, University of Reading, England

Keywords: crystal structure; adduct; triazine; neodymium(III); three-dimensional supramolecular hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 1583097

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ Access

Crystal structure and Hirshfeld surface analysis of the 1:3 adduct of tetraaquatrinitratoneodymium(III) with 3-amino-1,2,4-triazine

Ramalingam Sangeetha,^a Kasthuri Balasubramani,^a* Savaridasson Jose Kavitha^b and Madhukumar Hemamalini^b

^aDepartment of Chemistry, Government Arts College(Autonomous), Karur 639 005, Tamil Nadu, India, and ^bDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India. *Correspondence e-mail: manavaibala@gmail.com

In the title compound, [Nd(NO₃)₃(H₂O)₄]·3C₃H₄N₄, neodymium is tencoordinate with a distorted bicapped square-antiprismatic geometry formed from six O atoms from three nitrate ions and four O atoms from four coordinated water molecules. The structure also contains neutral 3-amino-1.2.4triazine molecules which are not coordinated to the central metal atom. The coordinated water molecules and nitrate ions of adjacent complexes are linked by O-H···O hydrogen bonds to form cyclic $R_2^2(8)$ ring motifs, which in turn are further connected *via* hydrogen bonds to generate a sheet-like structure. The triazine molecules are involved in a number of hydrogen-bonding interactions: N-H···N and O-H···N interactions to form $R_3^3(9)$ motifs and N-H···N interactions to link the organic molecules into chains. Weak C-H···O hydrogen bonds also occur between triazine molecules and coordinated nitrate atoms. All these intermolecular contacts contribute to the stabilization of the three-dimensional supramolecular framework. Hirshfeld surface analysis shows that $N \cdots H/H \cdots N$ and $H \cdots H$ interactions account for 42.9 and 20.6% of the surface, respectively.

1. Chemical context

Lanthanide complexes with organic ligands have many applications related to the design and synthesis of potential anticancer and antibacterial agents (Eliseeva & Bunzli, 2010; Liu *et al.*, 2008; Kostova & Stefanova, 2009; Siddiqi *et al.*, 2009; Taha *et al.*, 2011; Hermann *et al.*, 2008; Gassner *et al.*, 2008; Xu *et al.*, 2010). Some lanthanide complexes also have potential roles in the treatment of malignant cells (Kostova *et al.*, 2004). In addition, coordination polymers of lanthanide ions have been investigated for use as sensors, catalysts and MRI contrast agents and in applications in the areas of magnetism, gas absorption, self-assembly and medicine (Li *et al.*, 2014).

Triazine heterocyclic π -conjugated structures are attractive organic molecules owing to the chemical flexibility of their systems and have many applications in medicinal chemistry, materials science and organic synthesis (Boesveld & Lappert, 1997; Boesveld *et al.*, 1999; Reid *et al.*, 2011). Triazine derivatives have been used as building blocks for subtle chemical architectures comprising organic–inorganic hybrid frameworks (Mathias *et al.*, 1994; Zerkowski & Whitesides, 1994; MacDonald & Whitesides, 1994; Guru Row, 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). We report herein

research communications

Table	1	
Selecte	ed bond lengths (Å).	

Nd1-O1A	2.5876 (15)	Nd1-O4 <i>B</i>	2.5698 (17)
Nd1 - O1W	2.4826 (17)	Nd1 - O4W	2.4540 (14)
Nd1 - O2A	2.5480 (16)	Nd1-O5B	2.6402 (17)
Nd1 - O2W	2.4603 (18)	Nd1-O7C	2.5428 (15)
Nd1 - O3W	2.4790 (15)	Nd1-O8C	2.6161 (15)

the crystal structure of a new lanthanide complex with 3amino-1,2,4-triazine.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$		
$O1W-H1A\cdots N4A^{i}$	0.79 (3)	2.09 (3)	2.876 (2)	179 (4)		
$O1W - H1B \cdot \cdot \cdot N2C^{ii}$	0.76(3)	2.16 (3)	2.899 (3)	167 (3)		
$O2W - H2A \cdots O6B^{iii}$	0.67(3)	2.14 (3)	2.791 (3)	168 (3)		
$O2W - H2B \cdot \cdot \cdot N2B^{iv}$	0.81(3)	2.01(3)	2.806 (3)	166 (3)		
$O3W-H3A\cdots O7C^{v}$	0.83 (3)	2.04 (3)	2.864(2)	173 (3)		
$O3W - H3B \cdot \cdot \cdot N4B$	0.82(3)	2.02(3)	2.832 (3)	169 (3)		
$O4W-H4A\cdots N4C^{vi}$	0.82(2)	2.05 (3)	2.871 (3)	172 (3)		
$O4W - H4B \cdot \cdot \cdot N2A$	0.84(2)	2.00(2)	2.829 (2)	170 (2)		
$N3A - H1NA \cdots O2A$	0.84(2)	2.06(2)	2.883 (2)	168 (2)		
$N3C - H2NC \cdot \cdot \cdot N1A^{vii}$	0.85(2)	2.10(2)	2.916 (3)	163 (2)		
$N3A - H2NA \cdots N1C^{iii}$	0.85(2)	2.12 (2)	2.931 (3)	161 (2)		
$N3C - H1NC \cdot \cdot \cdot O8C^{ii}$	0.83 (2)	2.17 (3)	2.980 (3)	164 (3)		
$N3B - H1NB \cdots O1A$	0.83 (2)	2.17 (2)	2.992 (3)	171 (2)		
$N3B - H2NB \cdots O9C^{vii}$	0.84(2)	2.46 (3)	3.046 (3)	128 (2)		
$C3A - H3AA \cdots N1B^{viii}$	0.93	2.60	3.245 (3)	127		
$C3B - H3BA \cdots O6B^{ix}$	0.93	2.58	3.475 (3)	161		
$C3C-H3CA\cdots O4B^{vii}$	0.93	2.54	3.328 (3)	142		

Symmetry codes: (i) -x + 3, -y + 1, -z + 2; (ii) -x + 2, -y + 1, -z + 2; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 2, -y, -z + 1; (vi) x, y - 1, z; (vii) x, y + 1, z; (viii) x + 1, y, z + 1; (ix) -x + 1, -y, -z + 1.

nitrate ions and four oxygen atoms from coordinated water molecules. The lengths of the Ni-O bonds (Table 1) are in good agreement with those reported in the literature (Trzesowska-Kruszynska *et al.*, 2010).

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) contains a neodymium(III) cation, three coordinated nitrate anions, four coordinated water molecules and three uncoordinated neutral 3-amino-1,2,4-triazine molecules. The Nd^{III} ion is ten coordinate and has a distorted bicapped square-antiprismatic geometry, being surrounded by six oxygen atoms from three

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

3. Supramolecular features

In the crystal, the coordinated water molecules act as hydrogen-atom donors (Table 2) to the oxygen atoms of nitrate ions in adjacent molecules and are linked by a set of $O-H\cdots O$ [$O2W-H2A\cdots O6B^{iii}$ and $O3W-H3A\cdots O7C^{v}$] hydrogen bonds, forming cyclic $R_2^2(8)$ ring motifs. These ring motifs are further connected via $O-H\cdots O$ hydrogen bonds to generate a sheet-like structure (Fig. 2). The uncoordinated neutral triazine moieties (A & C) are connected via $N-H\cdots N$ [$N3C-H2NC\cdots N1A^{vii}$ and $N3A-H2NA\cdots N1C^{iii}$] hydrogen bonds, forming zigzag chains (Fig. 3). The triazine molecules are also involved in $N-H\cdots N$ and $O-H\cdots N$ hydrogenbonding interactions, forming $R_3^3(9)$ motifs (Fig. 4). The carbon-bound hydrogen atoms of the triazine moieties (B &

Figure 2

A view of the O-H···O hydrogen-bonding interactions (shown as dotted lines) between coordinated water molecules and nitrate ions, which generate a sheet-like structure.

A view of $N-H \cdots N$ hydrogen-bonded pairs (shown as dotted lines) between triazine moieties (A and C) extending into zigzag chains.

C) are linked through weak C-H···O [C3B-H3BA···O6 B^{ix} and C3C-H3CA···O4 B^{vii}] hydrogen bonds formed with the coordinated nitrate atoms (B). All these intermolecular interactions appear to play a significant role in stabilizing the crystal structure and result in the formation of a three-dimensional supramolecular framework (Fig. 4).

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots, which are useful tools for describing the surface characteristics of the crystal structure, were generated using *CrystalExplorer3.0* (Wolff *et al.*, 2012). The normalized contact distance (d_{norm}) is based on the distances from the nearest atom inside (d_i) and outside (d_e) the surface. The three-dimensional d_{norm} surface of the title compound is shown in Fig. 5. The red points represent short contacts and negative d_{norm} values on the surface correspond to the N-H···N, N-H···O and O-H···O interactions. Analysis of the two-dimensional fingerprint plots reveal that the H···H (20.6%) and N···H/H···N (42.9%) interactions are

Figure 4

An overall view of the three-dimensional supramolecular framework of the title compound.

the highest contributors to the Hirshfeld surface. Smaller contributions come from $O \cdots H/H \cdots O(13.3\%) C \cdots H/H \cdots C(6.3\%)$, $N \cdots N(6.2\%)$, $C \cdots N/N \cdots C(4.6\%)$, $N \cdots O/O \cdots N(2.8\%)$ and $C \cdots O/O \cdots C(1.8\%)$ interactions (Fig. 6).

Figure 6

Two-dimensional fingerprint plots of the title compound showing the contributions of the different interactions. d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively.

5. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom *et al.*, 2016) for 3-amino-1,2,4-triazine yielded four structures crystallizing as metal complexes: KUCNAY [with bis(3-amino-1,2,4-triazine- N^2)-bis-(hexafluoroacetylacetonato-O,O')copper(II)] and KUCNEC [with bis(μ 2-3-amino-1,2,4-triazine- N^1,N^4)hexakis(hexafluoroacetylacetonato-O,O')tricopper(II)] (Li *et al.*, 2009); WOZXOA {with *catena*-[bis(μ_2 -dicyanamido)bis(1,2,4-triazin-3-amine)cobalt]; Palion-Gazda *et al.*, 2015} and WOZXOA01 {with *catena*-[bis(μ_2 -dicyanamido)bis(1,2,4-triazin-3-amine)cobalt]; Şwitlicka-Olszewska *et al.*, 2016}.

6. Synthesis and crystallization

The title compound was prepared by adding a hot methanolic solution (20 ml) of 3-amino-1,2,4-triazine (0.043g) (Aldrich) to a hot methanolic solution (20 ml) of Nd(NO₃)₃·6H₂O (0.219g) (Alfa Aesar). Dichloromethane (5 ml) was then added and the mixture refluxed for 7 h at 353 K. The resulting solution was then allowed to cool slowly to room temperature. After two weeks, brown-coloured crystals were obtained, m.p. = 378 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed geometrically and refined using the riding-model approximation: C-H = 0.93 Å with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The water and N-bound H atoms were located in difference-Fourier maps and refined with $U_{iso}(H) = 1.2U_{eq}(O)$ or $1.2U_{eq}(N)$.

Acknowledgements

The authors wish to thank SAIF–STIC, Cochin, Kerala, for the data collection.

Funding information

KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041–4046.
- Boesveld, W. M. & Lappert, M. F. (1997). *Chem. Commun.* pp. 2091–2092.
- Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bunzli, J.-C. G. (2015). Coord. Chem. Rev. 19, 293–294.

Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Nd(NO_3)_3(H_2O)_4] \cdot 3C_3H_4N_4$
M _r	690.64
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	8.0279 (5), 10.8496 (5), 15.1239 (8)
α, β, γ (°)	102.228 (2), 96.148 (2), 102.764 (2)
$V(Å^3)$	1239.11 (12)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.18
Crystal size (mm)	$0.35 \times 0.30 \times 0.30$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.517, 0.562
No. of measured, independent and	10023, 6016, 5620
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.014
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.047, 1.05
No. of reflections	6016
No. of parameters	399
No. of restraints	15
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.48, -0.41

Computer programs: *APEX2* (Bruker, 2004), *APEX2*, *SAINT* and *XPREP* (Bruker, 2004), *SIR92* (Altomare *et al.*, 1993), *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

- Gassner, A.-L., Duhot, C., Bünzli, J.-C. G. & Chauvin, A.-S. (2008). Inorg. Chem. 47, 7802–7812.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.
- Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047.
- Kostova, I., Manolov, I. & Momekov, G. (2004). Eur. J. Med. Chem. 39, 765–775.
- Kostova, I. & Stefanova, T. (2009). J. Coord. Chem. 62, 3187-3197.
- Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3-29.
- Li, L., Turnbull, M. M., Ackers, J., Chen, J., Lin, H., Pan, B., Wang, H. & Foxman, B. M. (2009). *Inorg. Chim. Acta*, **362**, 3845–3852.
- Li, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40–84.
- Liu, M., Yuan, W.-B., Zhang, Q., Yan, L. & Yang, R.-D. (2008). Spectrochim. Acta A, **70**, 1114–1119.
- MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.
- Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.
- Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Lloret, F. & Julve, M. (2015). Dalton Trans. 44, 2989–2992.
- Reid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). *Dalton Trans.* 40, 5009–5017.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sherrington, D. C. & Taskinen, K. A. (2001). *Chem. Soc. Rev.* **30**, 83–93.
- Siddiqi, Z. A., Shahid, M., Khalid, M., Noor, S. & Kumar, S. (2009). Spectrochim. Acta A, 74, 391–397.

- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Świtlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). *Dalton Trans.* 45, 10181–10193.
- Taha, Z. A., Ajlouni, A. M., Al Momani, W. & Al-Ghzawi, A. A. (2011). Spectrochim. Acta A, **81**, 570–577.
- Trzesowska-Kruszynska, A., Kruszynski, R., Zalewicz, M. & Bartczak, T. J. (2010). J. Coord. Chem. 63, 1013–1028.
- Wang, H., Wang, B.-W., Bian, Y., Gao, S. & Jiang, J. (2016). Coord. Chem. Rev. 306, 195–216.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *CrystalExplorer3.0*. University of Western Australia, Perth.
- Xu, D., Xu, Y., Cheng, N., Zhou, X., Shi, Y. & He, Q. (2010). J. Coord. Chem. 63, 2360–2369.
- Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.
- Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982-5993.

Acta Cryst. (2018). E74, 1309-1313 [https://doi.org/10.1107/S2056989018011714]

Crystal structure and Hirshfeld surface analysis of the 1:3 adduct of tetraaquatrinitratoneodymium(III) with 3-amino-1,2,4-triazine

Ramalingam Sangeetha, Kasthuri Balasubramani, Savaridasson Jose Kavitha and Madhukumar Hemamalini

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Tetraaquatrinitratoneodymium(III)-3-amino-1,2,4-triazine (1:3)

Crystal data [Nd(NO₃)₃(H₂O)₄]·3C₃H₄N₄ $M_r = 690.64$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.0279 (5) Å b = 10.8496 (5) Å c = 15.1239 (8) Å a = 102.228 (2)° $\beta = 96.148$ (2)° $\gamma = 102.764$ (2)° V = 1239.11 (12) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 18.4 pixels mm⁻¹ ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.517, T_{\max} = 0.562$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.047$ S = 1.056016 reflections Z = 2 F(000) = 686 $D_x = 1.851 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7537 reflections $\theta = 5.3-56.6^{\circ}$ $\mu = 2.18 \text{ mm}^{-1}$ T = 293 K Block, brown $0.35 \times 0.30 \times 0.30 \text{ mm}$

10023 measured reflections 6016 independent reflections 5620 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 20$

399 parameters15 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0271P)^2 + 0.3994P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd1	1.03611 (1)	0.21335(1)	0.71016(1)	0.0226(1)	
O1A	1.0327 (2)	0.43232 (14)	0.66866 (10)	0.0403 (5)	
O1W	1.2955 (2)	0.21178 (17)	0.81482 (11)	0.0411 (5)	
O2A	1.1864 (3)	0.44707 (14)	0.79616 (10)	0.0488 (6)	
O2W	1.2906 (2)	0.26993 (18)	0.63563 (13)	0.0411 (6)	
O3A	1.1817 (2)	0.62147 (14)	0.74931 (13)	0.0521 (6)	
O3W	0.9189 (2)	0.18292 (17)	0.54640 (10)	0.0400 (5)	
O4B	0.7358 (2)	0.05414 (15)	0.68162 (12)	0.0433 (5)	
O4W	0.9528 (2)	0.25477 (15)	0.86308 (9)	0.0374 (5)	
O5B	0.7217 (2)	0.24915 (14)	0.68278 (11)	0.0396 (5)	
O6B	0.4922 (2)	0.09045 (19)	0.63361 (18)	0.0732 (8)	
O7C	1.0658 (2)	-0.00476 (14)	0.62008 (10)	0.0376 (5)	
O8C	1.0185 (2)	-0.00715 (14)	0.75724 (9)	0.0367 (5)	
O9C	1.0158 (4)	-0.18660 (17)	0.66249 (15)	0.0796 (8)	
N4	1.1347 (2)	0.50519 (15)	0.73869 (11)	0.0309 (5)	
N5	0.6465 (2)	0.13104 (17)	0.66539 (13)	0.0376 (6)	
N6	1.0336 (3)	-0.06974 (17)	0.68007 (12)	0.0377 (6)	
N1A	1.1227 (3)	0.36263 (18)	1.09013 (13)	0.0401 (6)	
N2A	1.1636 (2)	0.42269 (17)	1.02436 (11)	0.0368 (5)	
N3A	1.3275 (3)	0.5930(2)	0.98173 (13)	0.0569 (7)	
N4A	1.3919 (2)	0.58214 (16)	1.13098 (11)	0.0333 (5)	
C1A	1.2941 (3)	0.53168 (18)	1.04680 (13)	0.0314 (6)	
C2A	1.2103 (3)	0.4099 (2)	1.17336 (15)	0.0403 (7)	
C3A	1.3477 (3)	0.5199 (2)	1.19349 (14)	0.0368 (6)	
N1B	0.4862 (3)	0.4080 (2)	0.36226 (14)	0.0455 (7)	
N2B	0.6180 (2)	0.49570 (18)	0.41878 (13)	0.0385 (6)	
N3B	0.8421 (3)	0.5452 (2)	0.53804 (15)	0.0445 (7)	
N4B	0.7041 (3)	0.32938 (17)	0.48005 (13)	0.0390 (6)	
C1B	0.7185 (3)	0.45541 (19)	0.47817 (14)	0.0308 (6)	
C2B	0.4607 (3)	0.2855 (3)	0.36603 (18)	0.0499 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C3B	0.5728 (4)	0.2461 (2)	0.42432 (18)	0.0490 (8)
N1C	0.5817 (3)	0.82519 (19)	0.96809 (14)	0.0469 (7)
N2C	0.7014 (3)	0.91061 (18)	1.03239 (13)	0.0418 (6)
N3C	0.8979 (3)	1.1069 (2)	1.07868 (14)	0.0540 (7)
N4C	0.7495 (3)	1.05383 (18)	0.93164 (12)	0.0409 (6)
C1C	0.7815 (3)	1.02272 (19)	1.01297 (14)	0.0345 (6)
C2C	0.5443 (4)	0.8506 (2)	0.88785 (17)	0.0522 (8)
C3C	0.6296 (4)	0.9664 (3)	0.87013 (16)	0.0513 (8)
H1A	1.381 (4)	0.268 (3)	0.8291 (18)	0.048 (8)*
H1B	1.287 (4)	0.170 (3)	0.849 (2)	0.058 (9)*
H2A	1.348 (3)	0.234 (3)	0.6331 (18)	0.034 (8)*
H2B	1.327 (4)	0.331 (3)	0.614 (2)	0.069 (10)*
H3A	0.924 (4)	0.126 (3)	0.5008 (19)	0.048 (7)*
H3B	0.864 (4)	0.234 (3)	0.5329 (19)	0.058 (9)*
H4A	0.903 (4)	0.199 (2)	0.8872 (19)	0.070 (10)*
H4B	1.018 (3)	0.311 (2)	0.9070 (14)	0.045 (7)*
H2AA	1.17990	0.36910	1.21960	0.0480*
H3AA	1.40980	0.55000	1.25270	0.0440*
H1NA	1.277 (3)	0.558 (2)	0.9278 (12)	0.050 (8)*
H2NA	1.408 (3)	0.662 (2)	0.9910 (17)	0.054 (8)*
H2BA	0.36580	0.22400	0.32900	0.0600*
H3BA	0.55380	0.15820	0.42360	0.0590*
H1NB	0.899 (3)	0.522 (2)	0.5781 (16)	0.056 (8)*
H2NB	0.852 (4)	0.6243 (18)	0.5396 (19)	0.058 (8)*
H3CA	0.60120	0.98250	0.81320	0.0620*
H2CA	0.46000	0.79050	0.84290	0.0630*
H2NC	0.944 (3)	1.1835 (18)	1.0753 (17)	0.051 (8)*
H1NC	0.922 (4)	1.094 (3)	1.1302 (14)	0.057 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.0279(1)	0.0191 (1)	0.0187 (1)	0.0026(1)	0.0010(1)	0.0052 (1)
O1A	0.0466 (10)	0.0316 (7)	0.0363 (8)	0.0040 (7)	-0.0098 (7)	0.0088 (6)
O1W	0.0354 (9)	0.0432 (9)	0.0391 (9)	-0.0078 (7)	-0.0091 (7)	0.0239 (8)
O2A	0.0760 (13)	0.0296 (7)	0.0301 (8)	0.0018 (8)	-0.0119 (8)	0.0061 (6)
O2W	0.0373 (9)	0.0416 (9)	0.0584 (11)	0.0173 (8)	0.0195 (8)	0.0289 (8)
O3A	0.0621 (12)	0.0221 (7)	0.0650 (11)	0.0003 (7)	0.0025 (9)	0.0102 (7)
O3W	0.0592 (11)	0.0419 (9)	0.0220 (7)	0.0289 (8)	-0.0022 (7)	0.0018 (7)
O4B	0.0344 (9)	0.0343 (8)	0.0657 (11)	0.0100 (7)	0.0055 (7)	0.0214 (8)
O4W	0.0438 (9)	0.0375 (8)	0.0214 (7)	-0.0074 (7)	0.0051 (6)	0.0050 (6)
O5B	0.0430 (9)	0.0302 (7)	0.0447 (9)	0.0103 (6)	0.0091 (7)	0.0053 (7)
O6B	0.0275 (10)	0.0495 (11)	0.136 (2)	0.0093 (8)	-0.0057 (11)	0.0178 (12)
O7C	0.0561 (10)	0.0297 (7)	0.0311 (7)	0.0154 (7)	0.0109 (7)	0.0097 (6)
O8C	0.0503 (10)	0.0314 (7)	0.0274 (7)	0.0086 (7)	0.0002 (6)	0.0095 (6)
O9C	0.149 (2)	0.0259 (9)	0.0656 (13)	0.0272 (11)	0.0117 (14)	0.0119 (9)
N4	0.0360 (10)	0.0243 (8)	0.0300 (8)	0.0028 (7)	0.0066 (7)	0.0055 (7)
N5	0.0319 (10)	0.0344 (9)	0.0490 (11)	0.0099 (8)	0.0088 (8)	0.0127 (8)

N6	0.0503 (12)	0.0267 (8)	0.0343 (9)	0.0114 (8)	-0.0023 (8)	0.0064 (7)
N1A	0.0435 (11)	0.0342 (9)	0.0362 (10)	-0.0060 (8)	0.0033 (8)	0.0125 (8)
N2A	0.0416 (11)	0.0311 (9)	0.0280 (8)	-0.0076 (8)	-0.0007 (7)	0.0067 (7)
N3A	0.0721 (16)	0.0466 (12)	0.0277 (10)	-0.0302 (11)	-0.0059 (10)	0.0107 (9)
N4A	0.0353 (10)	0.0287 (8)	0.0273 (8)	-0.0020 (7)	-0.0029 (7)	0.0028 (7)
C1A	0.0346 (11)	0.0268 (9)	0.0258 (9)	-0.0017 (8)	0.0022 (8)	0.0026 (8)
C2A	0.0486 (14)	0.0388 (11)	0.0323 (11)	0.0026 (10)	0.0051 (9)	0.0158 (9)
C3A	0.0432 (13)	0.0350 (10)	0.0262 (10)	0.0039 (9)	-0.0023 (8)	0.0049 (8)
N1B	0.0407 (11)	0.0585 (12)	0.0442 (11)	0.0157 (9)	0.0051 (9)	0.0248 (10)
N2B	0.0398 (11)	0.0408 (10)	0.0434 (10)	0.0136 (8)	0.0100 (8)	0.0230 (9)
N3B	0.0446 (12)	0.0340 (10)	0.0529 (13)	0.0113 (9)	0.0010 (9)	0.0080 (9)
N4B	0.0484 (12)	0.0318 (9)	0.0400 (10)	0.0139 (8)	0.0025 (8)	0.0139 (8)
C1B	0.0332 (11)	0.0311 (9)	0.0337 (10)	0.0125 (8)	0.0118 (8)	0.0120 (8)
C2B	0.0440 (15)	0.0515 (14)	0.0479 (14)	0.0046 (11)	-0.0021 (11)	0.0112 (12)
C3B	0.0580 (16)	0.0323 (11)	0.0544 (15)	0.0064 (11)	0.0023 (12)	0.0139 (11)
N1C	0.0499 (13)	0.0376 (10)	0.0443 (11)	-0.0094 (9)	0.0066 (9)	0.0127 (9)
N2C	0.0441 (11)	0.0355 (9)	0.0418 (10)	-0.0064 (8)	0.0036 (8)	0.0193 (8)
N3C	0.0659 (15)	0.0432 (11)	0.0392 (11)	-0.0177 (10)	-0.0091 (10)	0.0223 (9)
N4C	0.0496 (12)	0.0372 (9)	0.0314 (9)	-0.0029 (8)	0.0046 (8)	0.0140 (8)
C1C	0.0371 (12)	0.0316 (10)	0.0329 (10)	-0.0003 (9)	0.0058 (8)	0.0133 (8)
C2C	0.0560 (16)	0.0444 (13)	0.0403 (13)	-0.0134 (12)	-0.0004 (11)	0.0076 (11)
C3C	0.0609 (17)	0.0527 (14)	0.0317 (11)	-0.0053 (12)	0.0009 (11)	0.0156 (11)

Geometric parameters (Å, °)

Nd1—O1A	2.5876 (15)	N3A—C1A	1.318 (3)
Nd1—O1W	2.4826 (17)	N4A—C1A	1.356 (3)
Nd1—O2A	2.5480 (16)	N4A—C3A	1.309 (3)
Nd1—O2W	2.4603 (18)	C2A—C3A	1.388 (3)
Nd1—O3W	2.4790 (15)	N3A—H1NA	0.839 (18)
Nd1—O4B	2.5698 (17)	N3A—H2NA	0.85 (2)
Nd1—O4W	2.4540 (14)	N1B—C2B	1.314 (4)
Nd1—O5B	2.6402 (17)	N1B—N2B	1.331 (3)
Nd1—O7C	2.5428 (15)	C2A—H2AA	0.9300
Nd1—O8C	2.6161 (15)	N2B—C1B	1.348 (3)
O1A—N4	1.261 (2)	СЗА—НЗАА	0.9300
O2A—N4	1.263 (2)	N3B—C1B	1.327 (3)
O3A—N4	1.204 (2)	N4B—C1B	1.353 (3)
O4B—N5	1.258 (2)	N4B—C3B	1.305 (3)
O5B—N5	1.248 (2)	C2B—C3B	1.389 (4)
O6B—N5	1.225 (3)	N3B—H1NB	0.83 (2)
O7C—N6	1.276 (2)	N3B—H2NB	0.84 (2)
O8C—N6	1.253 (2)	N1C—C2C	1.319 (3)
O9C—N6	1.212 (3)	N1C—N2C	1.324 (3)
O1W—H1A	0.79 (3)	C2B—H2BA	0.9300
O1W—H1B	0.76 (3)	N2C—C1C	1.351 (3)
O2W—H2A	0.67 (3)	СЗВ—НЗВА	0.9300
O2W—H2B	0.81 (3)	N3C—C1C	1.317 (3)

O3W—H3A	0.83 (3)	N4C—C1C	1.356 (3)
O3W—H3B	0.82 (3)	N4C—C3C	1.313 (3)
O4W—H4A	0.82 (2)	C2C—C3C	1.386 (4)
O4W—H4B	0.84 (2)	N3C—H2NC	0.85 (2)
N1A—N2A	1.331 (3)	N3C—H1NC	0.83 (2)
N1A—C2A	1.311 (3)	C2C—H2CA	0.9300
N2A—C1A	1.348 (3)	СЗС—НЗСА	0.9300
O1A—Nd1—O1W	116.22 (6)	H3A—O3W—H3B	112 (3)
O1A—Nd1—O2A	49.01 (5)	O1A—N4—O2A	115.11 (16)
O1A—Nd1—O2W	73.35 (6)	O2A—N4—O3A	122.41 (17)
O1A—Nd1—O3W	67.84 (5)	O1A—N4—O3A	122.47 (17)
O1A—Nd1—O4B	113.84 (5)	Nd1—O4W—H4B	120.9 (16)
O1A—Nd1—O4W	100.47 (5)	H4A—O4W—H4B	104 (2)
O1A—Nd1—O5B	67.01 (5)	Nd1—O4W—H4A	125.6 (19)
O1A—Nd1—O7C	133.51 (5)	O4B—N5—O5B	117.28 (17)
O1A—Nd1—O8C	175.74 (5)	O5B—N5—O6B	121.91 (19)
O1W—Nd1—O2A	71.32 (6)	O4B—N5—O6B	120.81 (19)
O1W—Nd1—O2W	72.07 (6)	07C—N6—09C	121.41 (19)
O1W—Nd1—O3W	142.96 (5)	08C—N6—09C	121.8 (2)
O1W—Nd1—O4B	126.63 (6)	07C—N6—08C	116.75 (17)
O1W—Nd1—O4W	75.68 (5)	N2A—N1A—C2A	119.5 (2)
O1W—Nd1—O5B	150.73 (5)	N1A—N2A—C1A	117.99 (17)
01W—Nd1— $07C$	85.26 (5)	C1A - N4A - C3A	115.25 (18)
01W—Nd1— $08C$	65.98 (5)	N2A—C1A—N3A	117 07 (19)
O2A—Nd1— $O2W$	75.74 (7)	N2A—C1A—N4A	124.71 (18)
02A—Nd1— $03W$	115 37 (5)	N3A—C1A—N4A	1182(2)
02A—Nd1—O4B	138.98 (7)	NIA—C2A—C3A	121.0(2)
02A—Nd1— $04W$	71 11 (5)	N4A—C3A—C2A	121.6(2) 121.43(19)
02A—Nd1— $05B$	96.55 (6)	C1A = N3A = H1NA	119.2 (15)
02A—Nd1— $07C$	147.45 (7)	C1A = N3A = H2NA	122.1(17)
02A—Nd1— $08C$	131.19 (5)	HINA—N3A—H2NA	118(2)
02W—Nd1— $03W$	74.65 (6)	N2B—N1B—C2B	118.6(2)
O2W—Nd1—O4B	141.46 (6)	N1A—C2A—H2AA	119.00
02W—Nd1— $04W$	139.48 (6)	C3A - C2A - H2AA	119.00
O2W—Nd1— $O5B$	132.07 (6)	N1B - N2B - C1B	118.67 (19)
O2W—Nd1— $O7C$	75.71 (6)	C2A - C3A - H3AA	119.00
02W—Nd1— $08C$	110.91 (6)	N4A—C3A—H3AA	119.00
O3W—Nd1—O4B	74.02 (6)	C1B—N4B— $C3B$	115.0 (2)
O3W—Nd1—O4W	141.32 (5)	N2B—C1B—N3B	117.8 (2)
O3W—Nd1— $O5B$	66 28 (5)	N2B— $C1B$ — $N4B$	1245(2)
O3W—Nd1— $O7C$	71.06 (5)	N3B—C1B—N4B	117.6 (2)
03W—Nd1—08C	112.86 (5)	N1B-C2B-C3B	121.2(2)
O4B—Nd1—O4W	78.33 (5)	N4B—C3B—C2B	121.7(2)
04B—Nd1—05B	48.48 (5)	C1B—N3B—H1NB	118.5 (16)
O4B—Nd1— $O7C$	73.32 (5)	C1B - N3B - H2NB	120 (2)
04B—Nd1—08C	62.95 (5)	H1NB—N3B—H2NB	121(3)
O4W—Nd1—O5B	75.18 (5)	N2C - N1C - C2C	120.0 (2)
· · · · · · · · · · · · · · · · · · ·			··· (=)

O4W—Nd1—O7C	125.40 (5)	N1B—C2B—H2BA	119.00
O4W—Nd1—O8C	76.33 (5)	C3B—C2B—H2BA	119.00
O5B—Nd1—O7C	114.18 (5)	N1C—N2C—C1C	118.01 (19)
O5B—Nd1—O8C	109.20 (5)	С2В—С3В—Н3ВА	119.00
O7C—Nd1—O8C	49.31 (5)	N4B—C3B—H3BA	119.00
Nd1—O1A—N4	96.98 (11)	C1C—N4C—C3C	115.1 (2)
Nd1—O2A—N4	98.85 (12)	N2C—C1C—N3C	116.8 (2)
Nd1—O4B—N5	98.07 (12)	N2C—C1C—N4C	124.7 (2)
Nd1—O5B—N5	94.94 (11)	N3C—C1C—N4C	118.6 (2)
Nd1—O7C—N6	98.21 (12)	N1C—C2C—C3C	120.5 (2)
Nd1—O8C—N6	95.31 (11)	N4C—C3C—C2C	121.7 (2)
Nd1—O1W—H1B	120 (2)	C1C—N3C—H2NC	123.1 (17)
H1A—O1W—H1B	111 (3)	C1C—N3C—H1NC	123 (2)
Nd1—O1W—H1A	125 (2)	H2NC—N3C—H1NC	113 (3)
H2A—O2W—H2B	107 (3)	N1C—C2C—H2CA	120.00
Nd1—O2W—H2A	121 (3)	C3C—C2C—H2CA	120.00
Nd1—O2W—H2B	132 (2)	N4C—C3C—H3CA	119.00
Nd1—O3W—H3B	118 (2)	C2C—C3C—H3CA	119.00
Nd1—O3W—H3A	130(2)		119.00
	100 (-)		
O1W—Nd1—O1A—N4	-24.39(13)	O1W—Nd1—O8C—N6	-109.08 (14)
O2A—Nd1—O1A—N4	1.33 (11)	O2A—Nd1—O8C—N6	-140.23 (14)
O2W—Nd1—O1A—N4	-84.04 (12)	O2W—Nd1—O8C—N6	-51.15 (15)
O3W—Nd1—O1A—N4	-163.87 (13)	O3W—Nd1—O8C—N6	30.42 (15)
O4B—Nd1—O1A—N4	136.46 (11)	O4B—Nd1—O8C—N6	87.01 (14)
O4W—Nd1—O1A—N4	54.70 (12)	O4W—Nd1—O8C—N6	170.72 (14)
O5B—Nd1—O1A—N4	123.53 (12)	O5B—Nd1—O8C—N6	102.04 (14)
O7C—Nd1—O1A—N4	-134.30 (11)	O7C—Nd1—O8C—N6	-3.78 (13)
O1A—Nd1—O2A—N4	-1.33 (11)	Nd1—O1A—N4—O2A	-2.24(19)
O1W—Nd1—O2A—N4	154.40 (15)	Nd1—O1A—N4—O3A	176.58 (16)
O2W—Nd1—O2A—N4	78.84 (14)	Nd1-02A-N4-01A	2.28 (19)
O3W—Nd1—O2A—N4	13.85 (16)	Nd1-02A-N4-03A	-176.53 (16)
O4B—Nd1—O2A—N4	-80.79 (15)	Nd1-04B-N5-05B	-11.4 (2)
O4W—Nd1—O2A—N4	-124.82 (15)	Nd1-04B-N5-06B	168.5 (2)
O5B—Nd1—O2A—N4	-52.97 (14)	Nd1	10.98 (19)
O7C—Nd1—O2A—N4	108.17 (15)	Nd1	-168.9(2)
O8C—Nd1—O2A—N4	-175.68 (11)	Nd1-07C-N6-08C	-6.6 (2)
O1A—Nd1—O4B—N5	-9.63 (14)	Nd1-07C-N6-09C	172.2 (3)
O1W—Nd1—O4B—N5	148.87 (12)	Nd1—O8C—N6—O7C	6.4 (2)
O2A—Nd1—O4B—N5	44.60 (16)	Nd1-08C-N6-09C	-172.4(3)
O2W—Nd1—O4B—N5	-102.61 (14)	C2A—N1A—N2A—C1A	-0.6 (3)
O3W—Nd1—O4B—N5	-65.88 (13)	N2A—N1A—C2A—C3A	-1.5(4)
O4W—Nd1—O4B—N5	86.78 (13)	N1A—N2A—C1A—N3A	-177.0(2)
O5B—Nd1—O4B—N5	6.34 (11)	N1A—N2A—C1A—N4A	2.8 (3)
O7C—Nd1—O4B—N5	-140.42(13)	C3A—N4A—C1A—N2A	-2.5(3)
O8C—Nd1—O4B—N5	167.26 (14)	C3A—N4A—C1A—N3A	177.3 (2)
O1A—Nd1— $O5B$ —N5	157.78 (13)	C1A - N4A - C3A - C2A	0.2 (3)
01W Nd1 $05B$ N5	-99 23 (15)	N1A—C2A—C3A—N4A	18(4)

O2A—Nd1—O5B—N5	-162.21 (12)	C2B—N1B—N2B—C1B	-0.7 (3)	
O2W—Nd1—O5B—N5	121.11 (12)	N2B—N1B—C2B—C3B	-3.1 (4)	
O3W—Nd1—O5B—N5	82.92 (12)	N1B—N2B—C1B—N3B	-175.6 (2)	
O4B—Nd1—O5B—N5	-6.36 (11)	N1B—N2B—C1B—N4B	5.5 (3)	
O4W—Nd1—O5B—N5	-93.77 (12)	C3B—N4B—C1B—N2B	-5.9 (4)	
O7C—Nd1—O5B—N5	28.78 (13)	C3B—N4B—C1B—N3B	175.3 (2)	
O8C—Nd1—O5B—N5	-24.32 (13)	C1B—N4B—C3B—C2B	1.8 (4)	
O1A—Nd1—O7C—N6	-171.95 (13)	N1B—C2B—C3B—N4B	2.6 (4)	
O1W—Nd1—O7C—N6	65.87 (14)	C2C—N1C—N2C—C1C	0.2 (4)	
O2A—Nd1—O7C—N6	109.22 (15)	N2C—N1C—C2C—C3C	0.0 (4)	
O2W—Nd1—O7C—N6	138.56 (14)	N1C—N2C—C1C—N3C	178.9 (2)	
O3W—Nd1—O7C—N6	-143.06 (15)	N1C—N2C—C1C—N4C	-0.8 (4)	
O4B—Nd1—O7C—N6	-64.65 (14)	C3C—N4C—C1C—N2C	0.9 (4)	
O4W—Nd1—O7C—N6	-2.82(16)	C3C—N4C—C1C—N3C	-178.7 (3)	
O5B—Nd1—O7C—N6	-91.39 (14)	C1C—N4C—C3C—C2C	-0.6 (4)	
O8C—Nd1—O7C—N6	3.74 (13)	N1C—C2C—C3C—N4C	0.2 (5)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
$O1W$ —H1 A ···N4 A^{i}	0.79 (3)	2.09 (3)	2.876 (2)	179 (4)
O1W—H1 B ····N2 C ⁱⁱ	0.76 (3)	2.16 (3)	2.899 (3)	167 (3)
O2 <i>W</i> —H2 <i>A</i> ···O6 <i>B</i> ⁱⁱⁱ	0.67 (3)	2.14 (3)	2.791 (3)	168 (3)
$O2W - H2B \cdots N2B^{iv}$	0.81 (3)	2.01 (3)	2.806 (3)	166 (3)
$O3W$ —H3 A ···O7 C^{v}	0.83 (3)	2.04 (3)	2.864 (2)	173 (3)
O3 <i>W</i> —H3 <i>B</i> …N4 <i>B</i>	0.82 (3)	2.02 (3)	2.832 (3)	169 (3)
O4W—H4 A ····N4 C ^{vi}	0.82 (2)	2.05 (3)	2.871 (3)	172 (3)
O4 <i>W</i> —H4 <i>B</i> …N2 <i>A</i>	0.84 (2)	2.00 (2)	2.829 (2)	170 (2)
N3 <i>A</i> —H1 <i>NA</i> ···O2 <i>A</i>	0.84 (2)	2.06 (2)	2.883 (2)	168 (2)
N3C—H2NC···N1A ^{vii}	0.85 (2)	2.10(2)	2.916 (3)	163 (2)
$N3A - H2NA \cdot \cdot \cdot N1C^{iii}$	0.85 (2)	2.12 (2)	2.931 (3)	161 (2)
N3 <i>C</i> —H1 <i>NC</i> ···O8 <i>C</i> ⁱⁱ	0.83 (2)	2.17 (3)	2.980 (3)	164 (3)
N3 <i>B</i> —H1 <i>NB</i> ····O1 <i>A</i>	0.83 (2)	2.17 (2)	2.992 (3)	171 (2)
N3 <i>B</i> —H2 <i>NB</i> ····O9 <i>C</i> ^{vii}	0.84 (2)	2.46 (3)	3.046 (3)	128 (2)
C3A—H3AA····N1B ^{viii}	0.93	2.60	3.245 (3)	127
$C3B$ — $H3BA$ ···O $6B^{ix}$	0.93	2.58	3.475 (3)	161
C3 <i>C</i> —H3 <i>CA</i> ···O4 <i>B</i> ^{vii}	0.93	2.54	3.328 (3)	142

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*+2, -*y*, -*z*+1; (vi) *x*, *y*-1, *z*; (vii) *x*, *y*+1, *z*; (viii) *x*+1, *y*, *z*+1; (ix) -*x*+1, -*y*, -*z*+1.