

Received 29 May 2018 Accepted 22 June 2018

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; 5-substituted dimethyl isophthalates; $1 \cdots 0$ —C interaction; C— $H \cdots O$ and C— $H \cdots 1$ hydrogen bonding; π - π stacking.

CCDC references: 780476; 780475

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of dimethyl 5-iodoisophthalate and dimethyl 5-ethynylisophthalate

Ines Hauptvogel, Wilhelm Seichter and Edwin Weber*

TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany. *Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

In dimethyl 5-iodoisophthalate, $C_{10}H_9IO_4$, (I), the planes through the methyl carboxylate moieties are tilted with respect to the benzene ring, whereas the molecular framework of dimethyl 5-ethynylisophthalate, $C_{12}H_{10}O_4$, (II), is perfectly planar. The crystal structure of (I) is stabilized by a three-dimensional supramolecular network comprising C-H···O=C hydrogen bonds, as well as I···O=C interactions. In the crystal of (II), the molecules are connected *via* C-H_{ethynyl}···O=C hydrogen bonds to infinite strands. Moreover, π - π arene stacking interactions connect the molecular chains into two-dimensional supramolecular aggregates.

1. Chemical context

In recent years, the design of solid porous framework materials (MacGillivray, 2010; Furukawa *et al.*, 2013; Eddaoudi *et al.*, 2015) has become a very important topic in the field of supramolecular crystal engineering (Desiraju *et al.*, 2011). Associated with it, so-called linker molecules featuring a geometrically rigid structure frequently being of linear, trigonal or tetrahedral shape and having carboxylic acid functions as terminal groups play a key role in building such systems (Lin *et al.*, 2006; Hausdorf *et al.*, 2009; Zheng *et al.*, 2010). In the course of the synthesis of the respective linkers, the title compounds (I) and (II), both being 5-substituted dimethyl isophthalates, are much used intermediates. However, these compounds are not only synthetically significant but also show interesting structures in the crystalline state, as demonstrated herein.

The molecular structures of the title compounds, (I) and (II), are illustrated in Fig. 1*a* and 1*b*, respectively. Taking into account experimental error, the bond distances within the isophthalate framework agree well with those found in the crystal structure of dimethyl isophthalate (Gallagher, 2012). Compound (I) crystallizes in the orthorhombic space group $Pna2_1$ with one molecule in the asymmetric unit. The molecule adopts a twisted conformation with the mean planes defined

research communications

Figure 1

Perspective view of the molecular structures of the title compounds, (a) (I) and (b) (II), with atom labelling. Anisotropic displacement ellipsoids are drawn at the 40% probability level.

by the methyl carboxylate moieties inclined at angles of 12.6 (2) and 6.0 (2)° with respect to the plane of the benzene ring. Compound (II) crystallizes in the orthorhombic space group *Pnma* with the molecule located on a symmetry plane, *i.e.* the molecule is perfectly planar. However, the molecule adopts approximate $C_{2\nu}$ symmetry with the atoms C2, C5, C11 and C12 lying on a non-crystallographic bisecting symmetry plane.

3. Supramolecular features

Infinite strands with the molecules connected *via* $I \cdots O = C$ interactions $[I1 \cdots O3 - C9(x - \frac{1}{2}, y + \frac{3}{2}, z - 1; D \cdots A = 3.129 (2)$ (Desiraju & Steiner, 1999) (Politzer *et al.* 2007; Desiraju *et al.*, 2013), represent the basic supramolecular aggregates of the crystal structure of (I). Association of the molecular strands by $C - H \cdots O = C$ type hydrogen bonds (Table 1) (Desiraju & Steiner, 1999) and $\pi - \pi$ stacking interactions [centroid-centroid distance = 4.149 (2) Å] (Tiekink & Zukerman-Schpector, 2012) generate a three-dimensional supra-molecular network (Fig. 2). In the crystal structure of (II), the molecules are connected *via* $C_{ethynyl} - H \cdots O = C$ bonds (Table 2) into infinite strands, which are further arranged into molecular sheets that extend parallel to the *ac* plane (Fig. 3).

Figure 2

Packing diagram of compound (I) viewed down the a axis. Dashed lines represent hydrogen-bonding interactions.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).						
$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
C8-H8A···O1 ⁱ	0.98	2.55	3.257 (4)	129		

Symmetry code: (i) $-x + 1, -y + 1, z - \frac{1}{2}$.

Table	2				
Hydro	gen-bond	geometry	(Å,	°)	for

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots O1^{i}$	0.94	2.29	3.223 (1)	172

(II).

Symmetry code: (i) x - 1, y, z.

Furthermore, π - π arene interactions with a centroid-centroid distance of 3.566 (1) Å and a slippage of 1.325 Å between the interacting aromatic rings stabilize the crystal structure along the stacking axis of the molecular sheets.

4. Database survey

The search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom *et al.*, 2016) for *meta*substituted derivatives of dimethyl isophthalate excluding their metal complexes, solvates and salts gave 18 hits. None of these compounds represents a 5-halogen- and 5-alkynylsubstituted dimethyl isophalate. The parent compound, dimethyl isophthalate (CSD refcode GOHRUS; Gallagher & Mocilac, 2012) crystallizes in space group *Pna2*₁ with two conformationally similar molecules in the asymmetric unit. The independent molecules participate in different ways in non-covalent bonding. One of them is involved in the formation of linear strands with the molecules connected by $C-H_{aryl} \cdot \cdot O=C$ bonds. Interstrand association is accomplished by $\pi-\pi$ arene stacking. Molecules related by the twofold screw axis are also linked *via* $C-H_{aryl} \cdot \cdot O=C$

Figure 3 Packing excerpt of compound (II) viewed down the *b* axis. Dashed lines represent hydrogen-bonding interactions.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{10}H_0IO_4$	$C_{12}H_{10}O_4$
М.	320.07	218.20
Crystal system, space group	Orthorhombic, $Pna2_1$	Orthorhombic, Pnma
Temperature (K)	143	223
a, b, c (Å)	7.7483 (2), 19.3451 (6), 7.2338 (2)	10.1206(5), 6.6219(4), 16.3658(8)
$V(A^3)$	1084.29 (5)	1096.80 (10)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.94	0.10
Crystal size (mm)	$0.30 \times 0.22 \times 0.15$	$0.54 \times 0.12 \times 0.10$
Data collection		
Diffractometer	Bruker APEXII CCD area detector	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (SADABS; Sheldrick, 2008a)	Multi-scan (SADABS; Sheldrick, 2008a)
T_{\min}, \dot{T}_{\max}	0.472, 0.666	0.948, 0.990
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22794, 2909, 2806	12397, 1292, 932
R _{int}	0.026	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.684	0.638
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.015, 0.038, 1.05	0.039, 0.110, 1.03
No. of reflections	2909	1292
No. of parameters	139	87
No. of restraints	1	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.47, -0.44	0.17, -0.18
Absolute structure	Flack x determined using 1255 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	_
Absolute structure parameter	-0.004(8)	-

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008b).

bonding to form helical strands. In addition, these strands are stabilized by π - π stacking forces.

5. Synthesis and crystallization

Compounds (I) and (II) were synthesized following literature procedures. This involves a diazotization/iodination reaction of dimethyl 5-aminoisophthalate (Mazik & König, 2006) to give compound (I). Subsequent reaction of (I) with 2-methylbut-3-yne-2-ol (MEBYNOL) using a Pd-catalysed Sonogashira coupling procedure (Doucet & Hierso, 2007; Rafael & Carmen, 2007) yielded the corresponding blocked acetylenic diester as an intermediate (Hauptvogel *et al.*, 2011). Removal of the 2-hydroxypropyl blocking group was undertaken using sodium hydride in toluene and quenching with water to result in the title compound (II) (Havens & Hergenrother, 1985; Hauptvogel *et al.*, 2011).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically and refined using a riding model with C–H distances of 0.94–0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ or $U_{iso}(H) = 1.2U_{eq}(C)$ for other H atoms.

Funding information

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 'Porous Metal-Organic Frameworks').

References

- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). *Pure Appl. Chem.* **85**, 1711–1713.
- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond*. Oxford University Press.
- Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.
- Doucet, H. & Hierso, J. C. (2007). Angew. Chem. Int. Ed. 46, 834-871.
- Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.
- Gallagher, C. F. & Mocilac, P. (2012). *CSD Communication* (Refcode GOHRUS). CCDC, Cambridge, England.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.

research communications

- Hauptvogel, I. M., Seichter, W. & Weber, E. (2011). *Supramol. Chem.* **23**, 398–406.
- Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). *Dalton Trans.* pp. 1107–1113.
- Havens, S. J. & Hergenrother, P. M. (1985). J. Org. Chem. 50, 1863– 1865.
- Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364.
- MacGillivray, L. R. (2010). *Metal-Organic Frameworks*. Hoboken: Wiley.
- Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854-7857.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

- Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.
- Rafael, C. & Carmen, N. (2007). Chem. Rev. B107, 874-922.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In *The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering*. Chichester: Wiley.
- Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409.

Acta Cryst. (2018). E74, 1093-1096 [https://doi.org/10.1107/S205698901800912X]

Crystal structures of dimethyl 5-iodoisophthalate and dimethyl 5ethynylisophthalate

Ines Hauptvogel, Wilhelm Seichter and Edwin Weber

Computing details

For both structures, data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b) for (I); *SHELXL2014* (Sheldrick, 2015b) for (II). For both structures, molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008b).

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I)

Crystal data

$C_{10}H_9IO_4$ $M_r = 320.07$ Orthorhombic, <i>Pna2</i> ₁ a = 7.7483 (2) Å b = 19.3451 (6) Å c = 7.2338 (2) Å $V = 1084.29 (5) Å^3$ Z = 4 F(000) = 616	$D_{\rm x} = 1.961 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5755 reflections $\theta = 3.0-33.7^{\circ}$ $\mu = 2.94 \text{ mm}^{-1}$ T = 143 K Irregular, colourless $0.30 \times 0.22 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) $T_{min} = 0.472, T_{max} = 0.666$ 22794 measured reflections	2909 independent reflections 2806 reflections with $l > 2\sigma(l)$ $R_{int} = 0.026$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 1.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -26 \rightarrow 26$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.038$ S = 1.05 2909 reflections 139 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.019P)^2 + 0.3689P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.47 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 1255 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: -0.004 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.81504 (2)	0.66115 (2)	0.83115 (6)	0.02386 (5)
01	0.5202 (3)	0.54751 (11)	0.1864 (3)	0.0327 (5)
O2	0.3831 (3)	0.63417 (11)	0.0411 (3)	0.0260 (4)
O3	0.4971 (3)	0.87789 (10)	0.2029 (3)	0.0281 (5)
O4	0.6557 (3)	0.89701 (11)	0.4576 (3)	0.0282 (5)
C1	0.5514 (4)	0.66267 (12)	0.2993 (4)	0.0190 (8)
C2	0.5347 (3)	0.73272 (14)	0.2585 (4)	0.0198 (5)
H2	0.479369	0.746965	0.147720	0.024*
C3	0.5994 (3)	0.78152 (14)	0.3805 (3)	0.0194 (5)
C4	0.6796 (3)	0.76086 (15)	0.5445 (4)	0.0206 (5)
H4	0.723931	0.794439	0.627770	0.025*
C5	0.6940 (3)	0.69088 (15)	0.5850 (4)	0.0207 (5)
C6	0.6295 (4)	0.64128 (15)	0.4637 (4)	0.0209 (5)
H6	0.638485	0.593502	0.492478	0.025*
C7	0.4856 (4)	0.60819 (14)	0.1721 (4)	0.0223 (5)
C8	0.3221 (5)	0.58545 (18)	-0.0951 (5)	0.0330 (7)
H8A	0.418544	0.571014	-0.173823	0.049*
H8B	0.232932	0.607288	-0.171341	0.049*
H8C	0.273509	0.544937	-0.032593	0.049*
C9	0.5768 (3)	0.85636 (11)	0.3323 (8)	0.0214 (4)
C10	0.6363 (5)	0.97101 (16)	0.4293 (5)	0.0338 (7)
H10A	0.688803	0.984036	0.311034	0.051*
H10B	0.693716	0.995947	0.529896	0.051*
H10C	0.513396	0.982919	0.427800	0.051*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02804 (8)	0.02336 (8)	0.02019 (8)	-0.00006 (6)	-0.00121 (12)	0.00381 (11)
O1	0.0500 (14)	0.0174 (10)	0.0308 (12)	0.0032 (9)	-0.0060 (10)	-0.0006 (9)
O2	0.0300 (11)	0.0187 (10)	0.0293 (11)	0.0017 (8)	-0.0066 (9)	-0.0048 (8)
O3	0.0347 (12)	0.0194 (10)	0.0301 (11)	0.0027 (9)	-0.0082 (9)	0.0019 (8)
O4	0.0382 (12)	0.0165 (9)	0.0299 (11)	-0.0011 (8)	-0.0073 (9)	-0.0004 (9)
C1	0.0216 (11)	0.0183 (10)	0.017 (2)	0.0009 (9)	0.0020 (10)	-0.0004 (9)
C2	0.0196 (12)	0.0190 (12)	0.0209 (11)	0.0022 (10)	0.0042 (10)	0.0019 (10)
C3	0.0191 (11)	0.0183 (11)	0.0208 (13)	0.0013 (9)	0.0025 (9)	0.0012 (8)
C4	0.0217 (13)	0.0191 (13)	0.0211 (12)	-0.0014 (10)	0.0017 (10)	-0.0012 (10)
C5	0.0224 (13)	0.0217 (13)	0.0181 (12)	0.0022 (10)	0.0023 (10)	0.0017 (10)

C6	0.0242 (13)	0.0183 (12)	0.0201 (12)	0.0016 (10)	0.0024 (11)	0.0013 (10)
C7	0.0256 (13)	0.0197 (12)	0.0217 (13)	-0.0011 (10)	0.0035 (11)	-0.0011 (10)
C8	0.0409 (19)	0.0257 (15)	0.0323 (15)	0.0005 (13)	-0.0088 (13)	-0.0075 (13)
C9	0.0218 (10)	0.0173 (9)	0.0250 (10)	-0.0001 (8)	0.0096 (18)	-0.002 (2)
C10	0.0453 (19)	0.0174 (14)	0.0387 (19)	0.0014 (13)	-0.0064 (15)	-0.0021 (12)

Geometric parameters (Å, °)

I1—C5	2.093 (3)	C3—C4	1.398 (4)	
O1—C7	1.209 (3)	С3—С9	1.499 (4)	
O2—C7	1.335 (4)	C4—C5	1.390 (4)	
O2—C8	1.443 (4)	C4—H4	0.9500	
О3—С9	1.196 (5)	C5—C6	1.393 (4)	
O4—C9	1.347 (5)	С6—Н6	0.9500	
O4—C10	1.454 (4)	C8—H8A	0.9800	
C1—C2	1.393 (3)	C8—H8B	0.9800	
C1—C6	1.398 (4)	C8—H8C	0.9800	
C1—C7	1.489 (4)	C10—H10A	0.9800	
С2—С3	1.386 (4)	C10—H10B	0.9800	
С2—Н2	0.9500	C10—H10C	0.9800	
C7—O2—C8	115.7 (2)	C1—C6—H6	120.4	
C9—O4—C10	115.7 (3)	O1—C7—O2	124.0 (3)	
C2—C1—C6	120.5 (3)	O1—C7—C1	124.0 (3)	
C2—C1—C7	121.8 (3)	O2—C7—C1	112.1 (2)	
C6—C1—C7	117.7 (2)	O2—C8—H8A	109.5	
C3—C2—C1	119.7 (3)	O2—C8—H8B	109.5	
С3—С2—Н2	120.2	H8A—C8—H8B	109.5	
C1—C2—H2	120.2	O2—C8—H8C	109.5	
C2—C3—C4	120.4 (3)	H8A—C8—H8C	109.5	
С2—С3—С9	117.9 (3)	H8B—C8—H8C	109.5	
C4—C3—C9	121.7 (3)	O3—C9—O4	123.9 (2)	
C5—C4—C3	119.5 (3)	O3—C9—C3	125.3 (3)	
C5—C4—H4	120.2	O4—C9—C3	110.7 (3)	
С3—С4—Н4	120.2	O4—C10—H10A	109.5	
C4—C5—C6	120.6 (3)	O4—C10—H10B	109.5	
C4—C5—I1	118.9 (2)	H10A—C10—H10B	109.5	
C6—C5—I1	120.5 (2)	O4—C10—H10C	109.5	
C5—C6—C1	119.2 (3)	H10A—C10—H10C	109.5	
С5—С6—Н6	120.4	H10B—C10—H10C	109.5	
C6—C1—C2—C3	1.3 (4)	C8—O2—C7—O1	-4.1 (4)	
C7—C1—C2—C3	-179.4 (2)	C8—O2—C7—C1	176.3 (3)	
C1—C2—C3—C4	-0.6 (4)	C2—C1—C7—O1	168.0 (3)	
C1—C2—C3—C9	-179.3 (3)	C6—C1—C7—O1	-12.7 (4)	
C2—C3—C4—C5	-0.1 (4)	C2—C1—C7—O2	-12.5 (4)	
C9—C3—C4—C5	178.5 (3)	C6—C1—C7—O2	166.8 (3)	
C3—C4—C5—C6	0.1 (4)	C10—O4—C9—O3	1.1 (5)	

C3—C4—C5—I1	179.86 (19)	C10—O4—C9—C3	-177.5 (3)
C4—C5—C6—C1	0.7 (4)	C2—C3—C9—O3	5.3 (5)
I1—C5—C6—C1	-179.1 (2)	C4—C3—C9—O3	-173.3 (3)
C2-C1-C6-C5	-1.3 (4)	C2—C3—C9—O4	-176.1 (3)
C7—C1—C6—C5	179.4 (2)	C4—C3—C9—O4	5.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8A···O1 ⁱ	0.98	2.55	3.257 (4)	129

Symmetry code: (i) –*x*+1, –*y*+1, *z*–1/2.

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II)

Crystal data

$C_{12}H_{10}O_4$ $M_r = 218.20$ Orthorhombic, <i>Pnma</i> $a = 10.1206 (5) \text{ Å}$ $b = 6.6219 (4) \text{ Å}$ $c = 16.3658 (8) \text{ Å}$ $V = 1096.80 (10) \text{ Å}^3$ $Z = 4$ $F(000) = 456$	$D_x = 1.321 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2950 reflections $\theta = 2.4-23.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 223 K Column, colourless $0.54 \times 0.12 \times 0.10 \text{ mm}$
Data collection Bruker APEXII CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) $T_{\min} = 0.948, T_{\max} = 0.990$ 12397 measured reflections	1292 independent reflections 932 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -12 \rightarrow 12$ $k = -8 \rightarrow 5$ $l = -20 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.2932P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
1292 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
87 parameters	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	1.25864 (13)	0.2500	0.40733 (10)	0.0552 (4)	
02	1.08848 (14)	0.2500	0.32081 (9)	0.0519 (4)	
03	1.15356 (16)	0.2500	0.70802 (10)	0.0759 (6)	
O4	0.94247 (15)	0.2500	0.74402 (9)	0.0617 (5)	
C1	0.98919 (18)	0.2500	0.60451 (11)	0.0339 (4)	
C2	1.08100 (18)	0.2500	0.54143 (12)	0.0350 (4)	
H2	1.1718	0.2500	0.5536	0.042*	
C3	1.03958 (18)	0.2500	0.46063 (12)	0.0339 (4)	
C4	0.90505 (19)	0.2500	0.44325 (12)	0.0361 (4)	
H4	0.8767	0.2500	0.3886	0.043*	
C5	0.81192 (17)	0.2500	0.50582 (12)	0.0348 (4)	
C6	0.85496 (18)	0.2500	0.58682 (12)	0.0340 (4)	
H6	0.7929	0.2500	0.6296	0.041*	
C7	1.0392 (2)	0.2500	0.68995 (13)	0.0428 (5)	
C8	0.9818 (3)	0.2500	0.82935 (14)	0.0791 (9)	
H8A	1.0203	0.1202	0.8431	0.119*	0.5
H8B	0.9050	0.2740	0.8634	0.119*	0.5
H8C	1.0465	0.3558	0.8385	0.119*	0.5
C9	1.1418	0.2500	0.3949	0.039	
C10	1.1813	0.2500	0.2530	0.067	
H10A	1.1353	0.2149	0.2030	0.101*	0.5
H10B	1.2505	0.1519	0.2633	0.101*	0.5
H10C	1.2202	0.3832	0.2474	0.101*	0.5
C11	0.67260 (19)	0.2500	0.48649 (12)	0.0406 (5)	
C12	0.5604 (2)	0.2500	0.47022 (14)	0.0532 (6)	
H12	0.4700	0.2500	0.4571	0.064*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0293 (8)	0.0828 (11)	0.0536 (10)	0.000	0.0049 (7)	0.000	
O2	0.0409 (9)	0.0783 (11)	0.0364 (8)	0.000	0.0066 (7)	0.000	
03	0.0329 (9)	0.1475 (18)	0.0473 (10)	0.000	-0.0079 (8)	0.000	
O4	0.0362 (9)	0.1153 (14)	0.0336 (8)	0.000	-0.0026 (7)	0.000	
C1	0.0294 (10)	0.0371 (10)	0.0352 (11)	0.000	-0.0006 (8)	0.000	
C2	0.0257 (9)	0.0385 (10)	0.0408 (11)	0.000	-0.0029 (8)	0.000	
C3	0.0295 (10)	0.0338 (9)	0.0385 (11)	0.000	0.0023 (8)	0.000	
C4	0.0343 (11)	0.0404 (10)	0.0334 (10)	0.000	-0.0020 (9)	0.000	
C5	0.0275 (9)	0.0379 (10)	0.0389 (11)	0.000	-0.0002 (8)	0.000	
C6	0.0276 (9)	0.0398 (10)	0.0347 (11)	0.000	0.0011 (8)	0.000	
C7	0.0299 (11)	0.0568 (12)	0.0416 (12)	0.000	-0.0013 (9)	0.000	
C8	0.0550 (16)	0.151 (3)	0.0315 (13)	0.000	-0.0049 (12)	0.000	
C9	0.034	0.043	0.039	0.000	0.003	0.000	
C10	0.063	0.098	0.041	0.000	0.018	0.000	
C11	0.0341 (11)	0.0558 (12)	0.0319 (10)	0.000	0.0003 (9)	0.000	

C12	0.0340 (12)	0.0849 (17)	0.0409 (13)	0.000	-0.0041 (10)	0.000	
Geometr	Geometric parameters (Å, °)						
01—C9		1.1998 (14)	C4—C	25	1.392	(3)	
O2—C9		1.3272 (15)	C4—H	I4	0.9400	0	
O2—C1	0	1.4544 (14)	C5—C	C6	1.395	(3)	
O3—C7		1.195 (3)	С5—С	211	1.445	(3)	
O4—C7		1.319 (3)	C6—H	16	0.9400	0	
O4—C8		1.452 (3)	C8—H	I8A	0.9700)	
C1—C2		1.389 (3)	C8—H	I8B	0.9700	C	
C1—C6		1.389 (3)	C8—H	I8C	0.9700	C	
C1—C7		1.487 (3)	C10—	H10A	0.970	C	
C2—C3		1.387 (3)	C10—	H10B	0.9700	C	
С2—Н2		0.9400	C10—	H10C	0.9700	0	
C3—C4		1.391 (3)	C11—	C12	1.166	(3)	
С3—С9		1.4925 (18)	C12—	H12	0.940	0	
C9—O2	—C10	115.75 (10)	03—0	C7—O4	123.6	(2)	
C7—O4	—C8	116.19 (18)	03—0	C7—C1	124.2	1 (19)	
C2-C1-	—С6	119.96 (18)	04—0	C7—C1	112.23	3 (17)	
C2-C1-	—С7	118.13 (17)	04—0	C8—H8A	109.5		
C6-C1-	—С7	121.91 (17)	04—0	C8—H8B	109.5		
C3—C2-	—C1	120.42 (17)	H8A—	-C8—H8B	109.5		
C3—C2-	—H2	119.8	04—0	C8—H8C	109.5		
C1-C2-	—H2	119.8	H8A—	-C8—H8C	109.5		
C2—C3-	—C4	119.39 (18)	H8B—	-C8—H8C	109.5		
C2—C3-	—С9	118.53 (15)	01—0	C9—O2	123.70	5 (10)	
C4—C3	—С9	122.09 (16)	01—0	С9—С3	124.12	2 (11)	
C3—C4	—C5	120.83 (18)	02—0	С9—С3	112.12	2 (9)	
C3—C4	—H4	119.6	02—0	C10—H10A	109.5		
C5—C4	—H4	119.6	02—0	C10—H10B	109.5		
C4—C5	—C6	119.18 (17)	H10A-		109.5		
C4—C5	C11	119.98 (18)	02—0	C10—H10C	109.5		
C6—C5	C11	120.84 (17)	H10A-		109.5		
C1-C6	—C5	120.21 (17)	H10B-		109.5		
C1-C6	—Н6	119.9	C12—	C11—C5	179.5	(2)	
C5—C6	—Н6	119.9	C11—	C12—H12	180.0		
C6—C1-	—C2—C3	0.000 (1)	C8—C	04—C7—O3	0.000	(1)	
C7—C1-	—С2—С3	180.000(1)	C8—C	04—C7—C1	180.00	00 (1)	
C1-C2	—C3—C4	0.000(1)	C2—C	С1—С7—О3	0.000	(1)	
C1-C2-	—C3—C9	180.000(1)	C6—C	С1—С7—О3	180.00	00 (1)	
C2—C3-	C4C5	0.000(1)	C2—C	C1—C7—O4	180.00	00 (1)	
С9—С3-	C4C5	180.000(1)	C6—C	C1—C7—O4	0.000	(1)	
C3—C4	—C5—C6	0.000(1)	C10—	O2—C9—O1	0.000	(1)	
C3—C4	C5C11	180.000 (1)	C10—	·O2—C9—C3	180.00	00 (1)	
C2-C1-		0.000(1)	C2—C	С3—С9—О1	0.000	(1)	

C7—C1—C6—C5	180.000 (1)	C4—C3—C9—O1	180.000 (1)
C4—C5—C6—C1	0.000(1)	C2—C3—C9—O2	180.000 (1)
C11—C5—C6—C1	180.000 (1)	C4—C3—C9—O2	0.000(1)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12···O1 ⁱ	0.94	2.29	3.223 (1)	172

Symmetry code: (i) x-1, y, z.