

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 12 June 2018 Accepted 11 July 2018

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: furans; quinazolinones; acid anhydrides; three-component reaction; crystal structure; synchrotron radiation.

CCDC references: 1855145; 1855144; 1855143

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Three-component reaction between isatoic anhydride, amine and methyl-substituted furylacrylaldehydes: crystal structures of 3-benzyl-2-[(*E*)-2-(5-methylfuran-2-yl)vinyl]-2,3-dihydroquinazolin-4(1*H*)-one, 3-benzyl-2-[(*E*)-2-(furan-2yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1*H*)one and 3-(furan-2-ylmethyl)-2-[(*E*)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1*H*)-one

Vladimir P. Zaytsev,^a Elena A. Sorokina,^a Elisaveta A. Kvyatkovskaya,^a Flavien A. A. Toze,^b* Shashank N. Mhaldar,^c Pavel V. Dorovatovskii^d and Victor N. Khrustalev^{d,e}*

^aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, ^bDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, ^cDepartment of Chemistry, Goa University, Taleigao Plateau, Goa 403 206, India, ^dNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and ^eInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation. *Correspondence e-mail: toflavien@yahoo.fr, vnkhrustalev@gmail.com

Compounds (I), $C_{22}H_{20}N_2O_2$, (II), $C_{22}H_{20}N_2O_2$ and (III), $C_{20}H_{18}N_2O_3$ are the products of three-component reactions between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methylacrylaldehyde. Compound (I) crystallizes in the monoclinic space group $P2_1/n$, while compounds (II) and (III) are isostructural and crystallize in the orthorhombic space group Pbca. The tetrahydropyrimidine ring in (I)-(III) adopts a sofa conformation. The NH nitrogen atom has a trigonal-pyramidal geometry, whereas the N(R) nitrogen atom is flattened. The furyl-vinyl substituents in (I)-(III) are practically planar and have an E configuration at the C=C double bond. In (I), this bulky fragment occupies the axial position at the quaternary carbon atom of the tetrahydropyrimidine ring, whereas in (II) and (III) it is equatorially disposed. In the crystal of (I), molecules form hydrogen-bonded chains propagating along [001] by strong intermolecular $N-H\cdots O$ hydrogen bonds. The chains are packed in stacks along the *a*-axis direction. In the crystals of (II) and (III), molecules also form hydrogen-bonded chains propagating along [100] by strong intermolecular N-H···O hydrogen bonds. However, despite the fact that compounds (II) and (III) are isostructural, steric differences between the phenyl and furyl substituents result in chains with different geometries. Thus in the crystal of (II) the chains have a zigzag-like structure, whereas in the crystal of (III), they are almost linear. In both (II) and (III), the hydrogen-bonded chains are further packed in stacks along the *b*-axis direction.

1. Chemical context

3-Aryl- and 3-hetaryl-substituted allylamines and allylic alcohols are readily available and are common starting materials for the synthesis of complex cyclic systems with useful properties (Frackenpohl *et al.*, 2016; Celltech R&D Ltd, 2004).

As depicted in Fig. 1, these substances most often undergo an N-acylation reaction with unsaturated anhydrides or acyl

research communications

Figure 1

One of the synthetic pathways for the exploration of 3-substituted allylamines and allylic alcohols.

chlorides to trigger the subsequent intramolecular Diels-Alder cyclization. As a result, this sequence gives functionalized two- or three-membered heterocycles. A wide range of dienes (Tomberg *et al.*, 2015; Magedov *et al.*, 2012; Slauson *et al.*, 2015; Sun *et al.*, 2000), arenes (Hu *et al.*, 2010; Sun *et al.*, 2000; Yamazaki *et al.*, 2016; Kocsis *et al.*, 2015) and various heterocycles (Lu *et al.*, 2005; Kim *et al.*, 2014; He *et al.*, 2011) can be applied in this transformation.

Until now, only one example of the synthesis of 3-(furyl)allylamines linked to a quinazoline fragment has been described in literature (Zaytsev *et al.*, 2015). 2-Vinylfurylquinazolinones containing no methyl groups were obtained by a three-component reaction between isatoic anhydride, a primary amine, and furylacrolein. Some further transformation of these quinazolinones has been demonstrated.

This communication pursues the aim of acquiring structural information about 2-vinylfurylquinazolinones bearing a methyl group on the furan ring or at the double bond of the allylamine fragment, with the aim of further elucidating all aspects of its interaction with α , β -unsaturated acid anhydrides.

2. Structural commentary

Compounds (I), $C_{22}H_{20}N_2O_2$, (II), $C_{22}H_{20}N_2O_2$ and (III), $C_{20}H_{18}N_2O_3$ (Figs. 2-4) are the products of three-component reactions between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methylacryl-aldehyde. Compound (I) crystallizes in the monoclinic space

Figure 4

Molecular structure of (III). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Molecular structure of (II). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 5

Crystal structure of (I) illustrating the $N-H\cdots O$ hydrogen-bonded chains (dashed lines) propagating along [001].

group $P2_1/n$, while compounds (II) and (III) are isostructural and crystallize in the orthorhombic space group *Pbca*.

The tetrahydropyrimidine ring in (I)–(III) adopts a *sofa* conformation, with the C2 carbon atom deviating from the mean plane of the other atoms of the ring by 0.639 (2), 0.476 (3) and 0.465 (3) Å, respectively. The nitrogen atom N1 has a trigonal–pyramidal geometry [the sums of the bond angles are 345, 348 and 350° for (I)–(III), respectively], whereas the nitrogen atom N3 is flattened [the sums of the bond angles are 357.3, 356.2 and 356.8° for (I)–(III), respectively]. The furyl-vinyl substituents in (I)–(III) are practically planar and have an *E* configuration at the C9—C10 double bond. Interestingly, in (I) this bulky fragment occupies the

Figure 6

Crystal structure of (II) illustrating the zigzag $N-H\cdots O$ hydrogenbonded chains (dashed lines) propagating along [100].

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathrm{H} \cdots A$
$N1 - H1 \cdots O2^i$	0.92 (2)	1.92 (2)	2.817 (2)	164.4 (19)
Symmetry code: (i)	$x + \frac{1}{2}, -y + \frac{1}{2}, z +$	$+\frac{1}{2}$.		
Table 2 Hydrogen-bond	geometry (Å,	$^{\circ})$ for (II).		
$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots $
$N1 - H1 \cdots O2^i$	0.90 (3)	2.07 (3)	2.971 (3)	174 (2)
Symmetry code: (i)	$x + \frac{1}{2}, -y + \frac{3}{2}, -z$	z + 1.		
Table 3				
Table 3 Hydrogen-bond	geometry (Å,	°) for (III).		
Table 3Hydrogen-bond $D-H\cdots A$	geometry (Å,	°) for (III). H···A	D···A	D-H···

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

axial position at the quaternary C2 carbon atom of the tetrahydropyrimidine ring, whereas in (II) and (III) it is equatorially disposed. Apparently, this may be explained by the different directions of the three-component reactions.

The molecules of (I)–(III) possess an asymmetric center at the C2 carbon atom. The crystals of (I)–(III) are racemates.

3. Supramolecular features

In the crystal of (I), molecules form infinite hydrogen-bonded chains propagating along [001] by strong intermolecular N1-H1 \cdots O2ⁱ hydrogen bonds (Table 1, Fig. 5). Neighboring

molecules within the chains are rotated by 180° relative to each other. The chains are packed in stacks along the *a*-axis direction (Fig. 5).

In the crystals of (II) and (III), molecules also form infinite hydrogen-bonded chains propagating along [100] by strong intermolecular N1-H1···O2ⁱ (Table 2, Fig. 6) and N1-H1···O3ⁱ (Table 3, Fig. 7) hydrogen bonds, respectively, with neighboring molecules rotated by 180° relative to each other. However, despite the fact that compounds (II) and (III) are isostructural, steric differences between the phenyl and furyl substituents result in chains with different geometries. Thus, in the crystal of (II) the chains have a zigzag-like structure (Fig. 6), whereas in the crystal of (III) they are almost linear (Fig. 7). In both (II) and (III), the hydrogen-bonded chains are further packed in stacks along the *b*-axis direction (Figs. 6 and 7).

4. Synthesis and crystallization

3-Arylmethyl-2-[(E)-2-(furan-2-yl)vinyl]-2,3-dihydroquinazolin-4-ones (I)–(III) were synthesized using a method similar to the recently described procedure (Zaytsev *et al.*, 2017).

General procedure. *p*-TsOH (0.79 g, 4.6 mmol) was added to a mixture of isatoic anhydride (1.5 g, 9.2 mmol), corresponding amine (11.0 mmol), and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methylacrylaldehyde (9.2 mmol) in EtOH (50 mL) (Fig. 8). The reaction mixture was heated under reflux for 4 h. The progress of the reaction was monitored by TLC. When the reaction was complete, the mixture was diluted with H₂O (100 mL) and extracted with EtOAc (3×50 mL). The organic layers were combined, dried (MgSO₄), concentrated *in vacuo* and the residue was purified by column chromatography (3×20 cm) on SiO₂ using hexane and then EtOAc/ hexane ($1/10 \rightarrow 1/5$) mixtures as eluent. The resulting product was recrystallized from a mixture hexane–EtOAc to afford analytically pure samples of the target products.

3-Benzyl-2-[(*E***)-2-(5-methylfuran-2-yl)vinyl]-2,3-dihydroquinazolin-4(1***H***)-one (I). Colourless needles, yield 0.7 g (22%), m.p. 430.1–432.1 K. IR (KBr), \nu (cm⁻¹): 3272, 1632, 1611. ¹H NMR (CDCl₃, 400 MHz, 301 K): \delta = 2.25 (***s***, 3H, CH₃), 3.86 (***d***, 1H, CH₂–N,** *J* **= 15.1), 4.34 (***br s***, 1H, NH), 4.97 (***dd***, 1H, H2,** *J* **= 3.2,** *J* **= 4.6), 5.63 (***d***, 1H, CH₂–N,** *J* **= 15.1), 5.95 (***dd***, 1H, H4, furyl,** *J* **= 0.9,** *J* **= 3.2), 6.15–6.20 (***m***, 2H, – CH=CH–, H3, furyl), 6.59 (***d***, 1H, H8,** *J* **= 7.8), 6.87 (***br t***, 1H, H6,** *J* **= 7.8), 7.27–7.34 (***m***, 7H, HAr, –CH=CH–), 7.99 (***dd***, 1H, H5,** *J* **= 1.4,** *J* **= 7.8). ¹³C NMR (CDCl₃, 150.9 MHz, 301 K):**

Figure 8

Synthesis of (I)–(III) by the three-component reaction between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methylacrylaldehyde.

δ = 13.8 (CH₃), 46.6 (CH₂–N), 70.1 (C2), 107.8, 111.4, 114.8, 115.8, 119.3, 121.5, 121.8, 127.6, 128.1, 128.8, 128.9, 133.6, 137.1, 145.4, 149.6, 153.1 (CAr, -CH=CH-), 162.9 (NCO). MS (EI, 70 eV): m/z = 344 $[M]^+$ (2), 251 (16), 209 (14), 104 (10), 91 (100), 77 (20), 65 (27), 43 (24).

3-Benzyl-2-[(*E***)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1***H***)-one (II). Colourless plates, yield 0.95 g (30%), m.p. 405.1–406.1 K. IR (KBr), \nu (cm⁻¹): 3294, 1630. ¹H NMR (CDCl₃, 400 MHz, 301 K): \delta = 1.96 (***s***, 3H, CH₃), 3.77 (***d***, 1H, CH₂--N,** *J* **= 15.1), 4.36 (***br s***, 1H, NH), 5.12 (***br s***, 1H, H2), 5.63 (***d***, 1H, CH₂--N,** *J* **= 15.1), 6.11 (***s***, 1H, -C=CH–), 6.31 (***d***, 1H, H3, furyl,** *J* **= 3.2), 6.41 (***dd***, 1H, H4, furyl,** *J* **= 1.8,** *J* **= 3.2), 6.51 (***d***, 1H, H8,** *J* **= 7.8), 6.78 (***t***, 1H, H6,** *J* **= 7.8), 7.21–7.31 (***m***, 6H, HAr), 7.41 (***br d***, 1H, H5, furyl,** *J* **= 1.8), 7.94 (***dd***, 1H, H5,** *J* **= 1.4,** *J* **= 7.8). ¹³C NMR (CDCl₃, 150.9 MHz, 301 K): \delta = 13.6 (CH₃), 46.5 (CH₂--N), 75.1 (C2), 111.0, 111.5, 113.6, 114.4, 117.4, 118.6, 127.6, 128.2, 128.7, 128.8, 133.6, 133.8, 136.9, 142.3, 145.7, 151.8 (CAr, -C=CH-), 163.0 (NCO). MS (EI, 70 eV):** *m***/***z* **= 344 [***M***]⁺ (4), 237 (55), 207 (14), 167 (5), 91 (100), 77 (19), 65 (11), 44 (8).**

3-(2-Furylmethyl)-2-[(E)-2-(furan-2-yl)-1-methylvinyl]-2,3dihydroquinazolin-4(1H)-one (III). Yellow plates, yield 0.83 g (27%), m.p. 380.1–381.1 K (hexane–EtOAc). IR (KBr), v (cm^{-1}) : 3308, 1632. ¹H NMR (CDCl₃, 400 MHz, 301 K): $\delta =$ $1.99 (s, 3H, CH_3), 3.93 (d, 1H, CH_2 - N, J = 15.4), 4.22 (br s, 1H, CH_2 - N, J = 15.4), 4.2 (br s, 1H, CH_2 - N, J = 15.4), 4.2 (br s, 1H, CH_2 - N, J = 1$ NH), 5.32 (*br s*, 1H, H2), 5.39 (*d*, 1H, CH₂-N, *J* = 15.4), 6.26 (s, 1H, -C=CH-), 6.28 (br d, 1H, H3, furyl, J = 3.3), 6.30 (dd, 1H, H4, furyl, *J* = 1.7, *J* = 3.3), 6.35 (*br d*, 1H, H3, furyl, *J* = 3.3), 6.42 (dd, 1H, H4, furyl, J = 1.7, J = 3.3), 6.51 (d, 1H, H8, J = 7.7),6.78 (*t*, 1H, H6, *J* = 7.7), 7.23 (*dt*, 1H, H7, *J* = 1.1, *J* = 7.7), 7.34 (*br d*, 1H, H5, furyl, *J* = 1.7), 7.42 (*br d*, 1H, H5, furyl, *J* = 1.7), 7.92 (*dd*, 1H, H5, J = 1.1, J = 7.7). ¹³C NMR (CDCl₃, 150.9 MHz, 301 K): $\delta = 13.4$ (CH₃), 39.7 (CH₂-N), 75.8 (C2), 109.0, 110.5, 111.0, 111.5, 113.6, 114.4, 117.9, 118.6, 128.7, 133.4, 133.8, 142.3, 142.4, 145.7, 150.5, 151.8 (CAr, -C=CH-), 162.9 (NCO). MS (EI, 70 eV): $m/z = 334 [M]^+$ (16), 227 (24), 224 (10), 81 (100), 77 (14), 53 (22).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. X-ray diffraction studies were carried out on the 'Belok' beamline of the National Research Center 'Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images for each compound was collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the *SCALA* program (Evans, 2006). The data were indexed, integrated and scaled using the utility *iMosflm* in the CCP4 programme suite (Battye *et al.*, 2011).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters $[U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})]$. The other hydrogen atoms were placed in calculated positions with C–H = 0.95–1.00 Å and refined in the riding model with fixed

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{22}H_{20}N_2O_2$	$C_{22}H_{20}N_2O_2$	$C_{20}H_{18}N_2O_3$
$M_{\rm r}$	344.40	344.40	334.36
Crystal system, space group	Monoclinic, $P2_1/n$	Orthorhombic, Pbca	Orthorhombic, Pbca
Temperature (K)	100	100	100
a, b, c (Å)	7.9416 (16), 19.202 (4), 12.497 (3)	13.921 (3), 11.296 (2), 22.623 (5)	13.928 (3), 10.684 (2), 22.368 (5)
α, β, γ (°)	90, 99.663 (3), 90	90, 90, 90	90, 90, 90
$V(\dot{A}^3)$	1878.7 (7)	3557.5 (13)	3328.5 (12)
Z	4	8	8
Radiation type	Synchrotron, $\lambda = 0.96990 \text{ Å}$	Synchrotron, $\lambda = 0.96990 \text{ Å}$	Synchrotron, $\lambda = 0.96990 \text{ Å}$
$\mu (\text{mm}^{-1})$	0.16	0.17	0.19
Crystal size (mm)	$0.25 \times 0.08 \times 0.03$	$0.20 \times 0.15 \times 0.01$	$0.30\times0.30\times0.07$
Data collection			
Diffractometer	Rayonix SX165 CCD	Rayonix SX165 CCD	Rayonix SX165 CCD
Absorption correction	Multi-scan (SCALA; Evans, 2006)	Multi-scan (SCALA; Evans, 2006)	Multi-scan (SCALA; Evans, 2006)
T_{\min}, \hat{T}_{\max}	0.950, 0.990	0.960, 0.990	0.940, 0.980
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20568, 3781, 2264	18942, 3764, 2411	27461, 3460, 2414
R _{int}	0.080	0.070	0.097
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.640	0.640	0.641
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.097, 0.218, 1.00	0.074, 0.190, 1.05	0.089, 0.224, 1.05
No. of reflections	3781	3764	3460
No. of parameters	240	240	231
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.31	0.30, -0.28	0.42, -0.57

Computer programs: Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008).

isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C-methyl) \text{ or } 1.2U_{eq}(C) \text{ for all others}].$

A relatively large number of reflections (a few dozen) were omitted for the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections, we selected a longer exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from final steps of the refinement. (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity for some reflections. (3) The quality of the single crystals chosen for the diffraction experiments was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystals.

Funding information

This work was supported by the Ministry of Education and Science of the Russian Federation (grant No. 4.1154.2017/4.6) (X-ray structural analysis) and by the Russian Foundation for Basic Research (grant Nos. 16–03-00125, INT/RUS/RFBR/P-294 and 17–53-45016) (synthetic part).

References

Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.

Celltech R&D Ltd (2004). Patent WO2004/18462A1.

- Doyle, R. A. (2011). *Marced software manual*. Rayonix L. L. C. Evanston, Illinois, USA.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Frackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.
- He, Y., Krishnamoorthy, P., Lima, H. M., Chen, Y., Wu, H., Sivappa, R., Dias, H. V. R. & Lovely, C. J. (2011). Org. Biomol. Chem. 9, 2685–2701.
- Hu, Y., Qu, Y., Wu, F., Gui, J., Wei, Y., Hu, Q. & Wang, S. (2010). *Chem. Asian J.* **5**, 309–314.
- Kim, K. H., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254–3260.
- Kocsis, L. S., Kagalwala, H. N., Mutto, S., Godugu, B., Bernhard, S., Tantillo, D. J. & Brummond, K. M. (2015). *J. Org. Chem.* 80, 11686– 11698.
- Lu, K., Luo, T., Xiang, Z., You, Z., Fathi, R., Chen, J. & Yang, Z. (2005). J. Comb. Chem. 7, 958–967.
- Magedov, I. V., Evdokimov, N. M., Karki, M., Peretti, A. S., Lima, D. T., Frolova, L. V., Reisenauer, M. R., Romero, A. E., Tongwa, P., Fonari, A., Altig, J., Rogelj, S., Antipin, M. Yu., Shuster, C. B. & Kornienko, A. (2012). *Chem. Commun.* 48, 10416–10418.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Slauson, S. R., Pemberton, R., Ghosh, P., Tantillo, D. J. & Aubé, J. (2015). J. Org. Chem. 80, 5260–5271.
- Sun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555–2559.
- Tomberg, A., De Cesco, S., Huot, M. & Moitessier, N. (2015). *Tetrahedron Lett.* **56**, 6852–6856.

- Yamazaki, S., Sugiura, H., Ohashi, S., Ishizuka, K., Saimu, R., Mikata, Y. & Ogawa, A. (2016). J. Org. Chem. 81, 10863–10886.
- Zaytsev, V. P., Revutskaya, E. L., Kuzmenko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). *Russ. Chem. Bull.* **64**, 1345–1353.
- Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). *Synthesis*, **49**, 3749–3767.

Acta Cryst. (2018). E74, 1101-1106 [https://doi.org/10.1107/S2056989018009982]

Three-component reaction between isatoic anhydride, amine and methylsubstituted furylacrylaldehydes: crystal structures of 3-benzyl-2-[(*E*)-2-(5methylfuran-2-yl)vinyl]-2,3-dihydroquinazolin-4(1*H*)-one, 3benzyl-2-[(*E*)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1*H*)-one and 3-(furan-2-ylmethyl)-2-[(*E*)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1*H*)-one

Vladimir P. Zaytsev, Elena A. Sorokina, Elisaveta A. Kvyatkovskaya, Flavien A. A. Toze, Shashank N. Mhaldar, Pavel V. Dorovatovskii and Victor N. Khrustalev

Computing details

For all structures, data collection: *Marccd* (Doyle, 2011); cell refinement: *iMosflm* (Battye *et al.*, 2011); data reduction: *iMosflm* (Battye *et al.*, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

3-Benzyl-2-[(*E*)-2-(5-methylfuran-2-yl)vinyl]-2,3-dihydroquinazolin-4(1*H*)-one (I)

Crystal	data
---------	------

$C_{22}H_{20}N_2O_2$	F(000) = 728
$M_r = 344.40$	$D_{\rm x} = 1.218 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Synchrotron radiation, $\lambda = 0.96990$ Å
a = 7.9416 (16) Å	Cell parameters from 500 reflections
b = 19.202 (4) Å	$\theta = 3.5 - 35.0^{\circ}$
c = 12.497 (3) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 99.663 \ (3)^{\circ}$	T = 100 K
$V = 1878.7 (7) Å^3$	Needle, colourless
Z = 4	$0.25 \times 0.08 \times 0.03 \text{ mm}$
Data collection	
Rayonix SX165 CCD	3781 independent reflections
diffractometer	2264 reflections with $I > 2\sigma(I)$
/f scan	$R_{\rm int} = 0.080$
Absorption correction: multi-scan	$\theta_{\rm max} = 38.4^\circ, \ \theta_{\rm min} = 3.7^\circ$
(<i>SCALA</i> ; Evans, 2006)	$h = -8 \rightarrow 9$
$T_{\min} = 0.950, \ T_{\max} = 0.990$	$k = -24 \rightarrow 24$
20568 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.097$	and constrained refinement
$wR(F^2) = 0.218$	$w = 1/[\sigma^2(F_o^2)]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
3781 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
240 parameters	$\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: difference Fourier	Extinction correction: SHELXL,
map	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.085 (8)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.28682 (18)	0.44379 (6)	0.47756 (11)	0.0354 (5)
O2	0.2968 (2)	0.25305 (7)	0.07159 (12)	0.0523 (5)
N1	0.6282 (3)	0.24206 (7)	0.35460 (14)	0.0350 (5)
H1	0.701 (3)	0.2458 (8)	0.4204 (18)	0.042*
C2	0.4453 (3)	0.24277 (9)	0.35967 (16)	0.0346 (6)
H2	0.4234	0.2060	0.4124	0.042*
N3	0.3532 (2)	0.22258 (8)	0.25120 (12)	0.0351 (5)
C4	0.3922 (3)	0.25582 (9)	0.16113 (18)	0.0378 (6)
C4A	0.5591 (3)	0.29244 (9)	0.17600 (15)	0.0347 (6)
C5	0.6075 (3)	0.33384 (9)	0.09282 (15)	0.0428 (7)
Н5	0.5278	0.3418	0.0283	0.051*
C6	0.7685 (3)	0.36302 (10)	0.10347 (17)	0.0440 (7)
H6	0.7987	0.3912	0.0472	0.053*
C7	0.8863 (3)	0.35072 (9)	0.19744 (18)	0.0437 (6)
H7	0.9980	0.3698	0.2039	0.052*
C8	0.8432 (3)	0.31105 (9)	0.28204 (17)	0.0398 (6)
H8	0.9249	0.3032	0.3457	0.048*
C8A	0.6779 (3)	0.28254 (9)	0.27292 (15)	0.0348 (6)
C9	0.3811 (3)	0.31155 (9)	0.39732 (15)	0.0353 (6)
H9	0.3892	0.3518	0.3543	0.042*
C10	0.3141 (3)	0.31829 (10)	0.48751 (16)	0.0355 (6)
H10	0.3002	0.2769	0.5267	0.043*
C11	0.2603 (3)	0.38264 (9)	0.53159 (16)	0.0352 (6)
C12	0.1939 (3)	0.39832 (9)	0.62208 (16)	0.0415 (6)
H12	0.1636	0.3661	0.6733	0.050*
C13	0.1783 (3)	0.47279 (10)	0.62563 (16)	0.0417 (6)
H13	0.1359	0.4991	0.6798	0.050*

C14	0.2355 (3)	0.49853 (9)	0.53705 (17)	0.0355 (6)
C15	0.2558 (3)	0.56945 (8)	0.49272 (18)	0.0433 (6)
H15A	0.3767	0.5780	0.4903	0.065*
H15B	0.2143	0.6042	0.5395	0.065*
H15C	0.1897	0.5728	0.4193	0.065*
C16	0.1931 (3)	0.18476 (10)	0.24752 (16)	0.0416 (6)
H16A	0.1365	0.1808	0.1709	0.050*
H16B	0.1170	0.2122	0.2866	0.050*
C17	0.2130 (3)	0.11236 (10)	0.29657 (16)	0.0377 (6)
C18	0.0692 (3)	0.07756 (11)	0.31936 (18)	0.0490 (7)
H18	-0.0384	0.1003	0.3063	0.059*
C19	0.0799 (4)	0.00989 (12)	0.3611 (2)	0.0599 (8)
H19	-0.0201	-0.0134	0.3744	0.072*
C20	0.2384 (4)	-0.02327 (12)	0.38311 (18)	0.0601 (8)
H20	0.2472	-0.0691	0.4121	0.072*
C21	0.3821 (4)	0.01103 (10)	0.36237 (16)	0.0485 (7)
H21	0.4904	-0.0112	0.3779	0.058*
C22	0.3698 (3)	0.07805 (10)	0.31880 (16)	0.0410 (7)
H22	0.4697	0.1007	0.3040	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0423 (11)	0.0291 (8)	0.0371 (9)	-0.0006 (6)	0.0135 (7)	-0.0021 (5)
O2	0.0677 (14)	0.0512 (10)	0.0321 (10)	-0.0035 (8)	-0.0082 (9)	0.0004 (6)
N1	0.0476 (15)	0.0303 (10)	0.0265 (10)	0.0035 (8)	0.0042 (9)	0.0001 (7)
C2	0.0437 (17)	0.0324 (11)	0.0278 (12)	0.0006 (9)	0.0066 (11)	-0.0010 (8)
N3	0.0454 (14)	0.0274 (9)	0.0314 (10)	-0.0021 (8)	0.0028 (9)	-0.0021 (7)
C4	0.0564 (19)	0.0256 (10)	0.0298 (13)	0.0040 (10)	0.0024 (12)	-0.0020 (9)
C4A	0.0507 (17)	0.0254 (10)	0.0286 (12)	0.0041 (10)	0.0088 (11)	-0.0025 (8)
C5	0.069 (2)	0.0277 (11)	0.0327 (13)	0.0061 (12)	0.0115 (12)	-0.0006 (8)
C6	0.069 (2)	0.0262 (11)	0.0415 (14)	-0.0023 (12)	0.0215 (13)	0.0001 (9)
C7	0.0540 (18)	0.0276 (11)	0.0528 (15)	-0.0001 (10)	0.0192 (14)	-0.0041 (10)
C8	0.0499 (18)	0.0288 (11)	0.0418 (13)	0.0049 (10)	0.0110 (12)	-0.0034 (9)
C8A	0.0512 (17)	0.0240 (10)	0.0302 (12)	0.0036 (10)	0.0095 (11)	-0.0020 (8)
C9	0.0477 (16)	0.0259 (10)	0.0324 (12)	-0.0009 (9)	0.0069 (11)	-0.0011 (8)
C10	0.0397 (16)	0.0287 (11)	0.0382 (12)	-0.0031 (9)	0.0076 (11)	-0.0008 (8)
C11	0.0428 (16)	0.0291 (11)	0.0357 (12)	-0.0006 (10)	0.0125 (11)	0.0002 (8)
C12	0.0507 (17)	0.0327 (11)	0.0438 (14)	0.0032 (10)	0.0158 (12)	0.0045 (9)
C13	0.0508 (17)	0.0380 (12)	0.0396 (13)	0.0078 (11)	0.0168 (12)	-0.0041 (9)
C14	0.0389 (15)	0.0289 (11)	0.0382 (12)	0.0021 (9)	0.0048 (11)	-0.0066 (9)
C15	0.0516 (18)	0.0313 (12)	0.0471 (14)	0.0006 (10)	0.0084 (12)	-0.0017 (9)
C16	0.0421 (17)	0.0343 (12)	0.0463 (14)	0.0005 (11)	0.0016 (11)	-0.0091 (9)
C17	0.0490 (17)	0.0306 (11)	0.0336 (12)	-0.0009 (11)	0.0070 (11)	-0.0057 (9)
C18	0.0476 (18)	0.0475 (14)	0.0512 (15)	-0.0068 (12)	0.0063 (12)	-0.0027 (11)
C19	0.063 (2)	0.0498 (15)	0.0672 (18)	-0.0180 (14)	0.0125 (15)	0.0054 (11)
C20	0.088 (2)	0.0374 (13)	0.0567 (16)	-0.0095 (15)	0.0158 (15)	0.0045 (11)
C21	0.071 (2)	0.0307 (12)	0.0466 (14)	0.0065 (12)	0.0193 (13)	0.0005 (10)

C22	0.0602 (19)	0.0296 (11)	0.0371 (13)	0.0012 (11)	0.0192 (12)	-0.0031 (9)
Geomei	tric parameters (Å	,)				
01—C	14	1.388 (2	2)	С10—Н10		0.9500
01—C	11	1.388 (2	2)	C11—C12		1.359 (3)
O2—C	4	1.243 (2	2)	C12—C13		1.437 (3)
N1—C	8A	1.392 (2	2)	C12—H12	(0.9500
N1C2	2	1.465 (3	5)	C13—C14		1.358 (3)
N1—H	1	0.92 (2)		C13—H13	(0.9500
C2—N	3	1.480 (3	5)	C14—C15		1.489 (2)
C2—C	9	1.518 (2	2)	C15—H15A	(0.9800
С2—Н	2	1.0000		C15—H15B	(0.9800
N3—C4	4	1.374 (2	2)	C15—H15C	(0.9800
N3—C	16	1.459 (3	5)	C16—C17		1.517 (3)
C4—C4	4A	1.485 (3	5)	C16—H16A	(0.9900
C4A—	C5	1.412 (2	2)	C16—H16B	(0.9900
C4A—	C8A	1.417 (3	5)	C17—C18		1.393 (3)
С5—С	6	1.382 (3	5)	C17—C22		1.394 (3)
С5—Н	5	0.9500	-	C18—C19		1.397 (3)
C6—C	7	1.393 (3	5)	C18—H18	(0.9500
С6—Н	6	0.9500	-	C19—C20		1.396 (4)
C7—C	8	1.392 (3	5)	C19—H19	(0.9500
С7—Н	7	0.9500	-	C20—C21		1.380 (3)
C8—C	8A	1.410 (3	5)	C20—H20	(0.9500
С8—Н	8	0.9500	-	C21—C22		1.394 (2)
С9—С	10	1.331 (2	2)	C21—H21	(0.9500
С9—Н	9	0.9500		C22—H22	(0.9500
C10—C	C11	1.446 (2	2)			
C14—0	D1—C11	107.34	(15)	C12—C11—C10		133.37 (18)
C8A—	N1—C2	115.58	(17)	O1—C11—C10		117.32 (17)
C8A—	N1—H1	113.4 (1	2)	C11—C12—C13		107.09 (16)
C2—N	1—H1	116.0 (1	3)	C11—C12—H12		126.5
N1-C	2—N3	107.40	(15)	C13—C12—H12		126.5
N1-C	2—С9	114.10	(15)	C14—C13—C12		107.13 (15)
N3—C	2—С9	111.83 (16)	C14—C13—H13		126.4
N1-C	2—Н2	107.8		C12—C13—H13		126.4
N3—C	2—Н2	107.8		C13—C14—O1		109.23 (15)
С9—С	2—Н2	107.8		C13—C14—C15		135.07 (18)
C4—N	3—C16	121.37	(18)	O1—C14—C15		115.69 (17)
C4—N	3—С2	118.97 (17)	C14—C15—H15A		109.5
C16—N	N3—C2	116.97 ((15)	C14—C15—H15B		109.5
O2—C	4—N3	122.1 (2	2)	H15A—C15—H15B		109.5
O2—C	4—C4A	121.97	(19)	C14—C15—H15C		109.5
N3—C	4—C4A	115.89	(19)	H15A—C15—H15C		109.5
C5—C4	4A—C8A	118.7 (2	2)	H15B—C15—H15C	1	109.5
C5—C4	4A—C4	121.5 (2	2)	N3—C16—C17		114.34 (19)

C8A—C4A—C4	119.71 (18)	N3—C16—H16A	108.7
C6—C5—C4A	121.3 (2)	C17—C16—H16A	108.7
С6—С5—Н5	119.4	N3—C16—H16B	108.7
С4А—С5—Н5	119.4	C17—C16—H16B	108.7
C5—C6—C7	119.46 (18)	H16A—C16—H16B	107.6
С5—С6—Н6	120.3	C18—C17—C22	117.9 (2)
С7—С6—Н6	120.3	C18—C17—C16	119.2 (2)
C8—C7—C6	121.1 (2)	C22—C17—C16	122.9 (2)
С8—С7—Н7	119.4	C17—C18—C19	121.5 (2)
С6—С7—Н7	119.4	C17—C18—H18	119.3
C7—C8—C8A	119.7 (2)	C19—C18—H18	119.3
C7—C8—H8	120.1	C_{20} C_{19} C_{18}	119.6 (2)
C8A—C8—H8	120.1	C20-C19-H19	120.2
N1-C8A-C8	122.2 (2)	C18—C19—H19	120.2
N1 - C8A - C4A	1122.2(2) 1181(2)	C_{21} C_{20} C_{19}	1195(2)
C8 - C8A - C4A	119.62 (18)	$C_{21} = C_{20} = H_{20}$	120.3
C10-C9-C2	123 34 (17)	C19 - C20 - H20	120.3
C10 - C9 - H9	118.3	C_{20} C_{21} C_{22} C_{22}	120.5 120.5(2)
$C_2 - C_9 - H_9$	118.3	$C_{20} = C_{21} = C_{22}$	119.7
$C_{2} = C_{1} = C_{1}$	126 24 (18)	$C_{20} = C_{21} = H_{21}$	119.7
C_{9} C_{10} H_{10}	116.9	$C_{22} = C_{21} = H_{21}$	119.7 121.1(2)
$C_{11} - C_{10} - H_{10}$	116.9	$C_{21} = C_{22} = C_{17}$	110 5
C_{12} C_{11} C_{11} C_{12} C	109.20 (16)	$C_{17} = C_{22} = H_{22}$	119.5
012 011 01	109.20 (10)	017-022-1122	117.5
C8A—N1—C2—N3	54 70 (19)	N1-C2-C9-C10	-1176(2)
C8A - N1 - C2 - C9	-698(2)	$N_3 - C_2 - C_9 - C_{10}$	1202(2)
N1-C2-N3-C4	-499(2)	$C_2 - C_2 - C_{10} - C_{11}$	120.2(2) 175 94 (19)
C9-C2-N3-C4	76.0(2)	$C_{14} = 01 = C_{11} = C_{12}$	0.2(2)
N1-C2-N3-C16	14838(16)	$C_{14} = 01 = C_{11} = C_{10}$	-17656(17)
C9-C2-N3-C16	-85.71(19)	C9-C10-C11-C12	-1785(2)
$C_{16} = N_{3} = C_{4} = O_{2}^{2}$	-29(3)	C9-C10-C11-O1	-27(3)
$C_{2} = N_{3} = C_{4} = 0_{2}$	-163.75(17)	01 - C11 - C12 - C13	-0.2(2)
$C_{16} = N_{3} = C_{4} = C_{4A}$	179.93 (16)	C10-C11-C12-C13	175.8(2)
$C_2 N_3 C_4 C_4 A$	19.1 (2)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.1(2)
02-C4-C4A-C5	87(3)	C12 - C13 - C14 - O1	0.1(2)
$N_3 - C_4 - C_4 - C_5$	-174 14 (15)	C12 - C13 - C14 - C15	-1793(3)
Ω^2 C^4 C^4 C^8 Δ	-167.33(16)	$C_{11} = 01 = C_{14} = C_{13}$	-0.1(2)
$N_3 - C_4 - C_{4A} - C_{8A}$	98(3)	$C_{11} = 0_1 = C_{14} = C_{15}$	17934(18)
C8A - C4A - C5 - C6	1.6(3)	C4 - N3 - C16 - C17	177.94(10) 131.92(18)
C4-C4A-C5-C6	-17445(18)	C_{2} N3 C_{16} C_{17}	-66.9(2)
$C_{4} = C_{5} = C_{6} = C_{7}$	0.8(3)	N_{3} C_{16} C_{17} C_{18}	165.99(17)
$C_{-}C_{-}C_{-}C_{-}C_{-}$	-1.7(3)	N_{3} C_{16} C_{17} C_{22}	-150(3)
C6-C7-C8-C8A	0.1(3)	C^{22} C^{17} C^{18} C^{19}	-13(3)
C_{2} N1 C_{8} C8	0.1 (5)		1.3(3)
$C_2 = N_1 = C_8 = C_4 \Delta$	152 99 (17)	(16 - (1) / - (18 - (19))	
	152.99(17) -29.7(2)	C16-C17-C18-C19 C17-C18-C19-C20	1/7.8(2) 1.6(3)
C7-C8-C8A-N1	152.99(17) -29.7(2) 179 53(15)	C16-C17-C18-C19 C17-C18-C19-C20 C18-C19-C20-C21	1/7.8(2) 1.6(3) -0.6(4)
C7-C8-C8A-N1 C7-C8-C8A-C4A	-29.7 (2) 179.53 (15) 2 3 (3)	C16-C17-C18-C19 C17-C18-C19-C20 C18-C19-C20-C21 C19-C20-C21-C22	177.8(2) 1.6(3) -0.6(4) -0.6(3)
C7-C8-C8A-N1 C7-C8-C8A-C4A C5-C4A-C8A-N1	152.99 (17) -29.7 (2) 179.53 (15) 2.3 (3) 179.53 (15)	C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C20—C21—C22	177.8(2) 1.6(3) -0.6(4) -0.6(3) 0.9(3)

C4—C4A—C8A—N1	-4.3 (3)	C18—C17—C22—C21	0.1 (3)
C5—C4A—C8A—C8	-3.1 (3)	C16—C17—C22—C21	-178.98 (17)
C4—C4A—C8A—C8	172.99 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.92 (2)	1.92 (2)	2.817 (2)	164.4 (19)

Symmetry code: (i) *x*+1/2, -*y*+1/2, *z*+1/2.

3-Benzyl-2-[(E)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1H)-one (II)

Crystal data	
$C_{22}H_{20}N_{2}O_{2}$ $M_{r} = 344.40$ Orthorhombic, <i>Pbca</i> $a = 13.921 (3) \text{ Å}$ $b = 11.296 (2) \text{ Å}$ $c = 22.623 (5) \text{ Å}$ $W_{r} = 3557.5 (12) \text{ Å} 3$	$D_x = 1.286 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.96990 \text{ Å}$ Cell parameters from 500 reflections $\theta = 3.2-32.0^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 K
$V = 3537.3$ (13) A^3 Z = 8 F(000) = 1456	$0.20 \times 0.15 \times 0.01 \text{ mm}$
Data collection	
Rayonix SX165 CCD diffractometer /f scan Absorption correction: multi-scan (SCALA; Evans, 2006) $T_{min} = 0.960, T_{max} = 0.990$ 18942 measured reflections	3764 independent reflections 2411 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 38.4^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -17 \rightarrow 17$ $k = -14 \rightarrow 14$ $l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	Hydrogen site location: mixed

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.074$	and constrained refinement
$wR(F^2) = 0.190$	$w = 1/[\sigma^2(F_o^2) + 2P]$
<i>S</i> = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
3764 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
240 parameters	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: difference Fourier	Extinction correction: SHELXL,
map	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
Secondary atom site location: difmap2	Extinction coefficient: 0.0102 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.54343 (13)	0.33368 (16)	0.38217 (8)	0.0430 (5)	
02	0.13105 (12)	0.75727 (16)	0.49206 (8)	0.0405 (5)	
N1	0.42208 (15)	0.77868 (19)	0.48819 (9)	0.0339 (5)	
H1	0.486 (2)	0.772 (2)	0.4927 (11)	0.041*	
C2	0.37955 (17)	0.6658 (2)	0.47071 (11)	0.0328 (6)	
H2	0.3889	0.6072	0.5033	0.039*	
N3	0.27451 (14)	0.68234 (18)	0.46041 (9)	0.0326 (5)	
C4	0.21959 (18)	0.7574 (2)	0.49452 (11)	0.0329 (6)	
C4A	0.27357 (17)	0.8430 (2)	0.53208 (11)	0.0329 (6)	
C5	0.22296 (18)	0.9208 (2)	0.56907 (11)	0.0364 (6)	
Н5	0.1552	0.9134	0.5727	0.044*	
C6	0.27111 (19)	1.0090 (2)	0.60050 (11)	0.0395 (7)	
H6	0.2366	1.0619	0.6252	0.047*	
C7	0.3704 (2)	1.0183 (2)	0.59511 (11)	0.0392 (6)	
H7	0.4035	1.0785	0.6162	0.047*	
C8	0.42221 (18)	0.9407 (2)	0.55936 (11)	0.0365 (6)	
H8	0.4901	0.9476	0.5566	0.044*	
C8A	0.37381 (17)	0.8521 (2)	0.52727 (10)	0.0317 (6)	
C9	0.43039 (16)	0.6209 (2)	0.41535 (11)	0.0319 (6)	
C10	0.46061 (16)	0.5072 (2)	0.41468 (11)	0.0334 (6)	
H10	0.4491	0.4625	0.4495	0.040*	
C11	0.50873 (17)	0.4455 (2)	0.36658 (11)	0.0354 (6)	
C12	0.52915 (19)	0.4665 (2)	0.30866 (12)	0.0421 (7)	
H12	0.5136	0.5356	0.2867	0.051*	
C13	0.5792 (2)	0.3627 (3)	0.28702 (12)	0.0441 (7)	
H13	0.6028	0.3503	0.2481	0.053*	
C14	0.5856 (2)	0.2871 (3)	0.33296 (13)	0.0461 (7)	
H14	0.6156	0.2116	0.3313	0.055*	
C15	0.4437 (2)	0.7071 (2)	0.36493 (11)	0.0405 (7)	
H15A	0.5122	0.7138	0.3555	0.061*	
H15B	0.4188	0.7849	0.3765	0.061*	
H15C	0.4087	0.6786	0.3301	0.061*	
C16	0.22429 (17)	0.5853 (2)	0.42882 (11)	0.0356 (6)	
H16A	0.1591	0.5760	0.4456	0.043*	
H16B	0.2595	0.5104	0.4354	0.043*	
C17	0.21601 (17)	0.6074 (2)	0.36272 (11)	0.0337 (6)	
C18	0.16896 (19)	0.7080 (2)	0.34142 (12)	0.0387 (6)	
H18	0.1399	0.7615	0.3684	0.046*	
C19	0.1643 (2)	0.7306 (2)	0.28113 (12)	0.0406 (7)	
H19	0.1317	0.7992	0.2673	0.049*	
C20	0.2067 (2)	0.6539 (3)	0.24086 (12)	0.0428 (7)	
H20	0.2048	0.6708	0.1997	0.051*	
C21	0.2521 (2)	0.5522 (3)	0.26139 (13)	0.0461 (7)	
H21	0.2803	0.4983	0.2343	0.055*	
C22	0.25596 (19)	0.5296 (2)	0.32196 (12)	0.0421 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22	0.2865	0.	4596	0.3356	0.051*		
Atomic displacement parameters $(Å^2)$							
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}	
01	0.0384 (11)	0.0384 (11)	0.0522 (12)	0.0046 (8)	0.0039 (9)	-0.0038 (9)	
O2	0.0210 (9)	0.0485 (11)	0.0520 (12)	0.0021 (8)	0.0008 (8)	0.0008 (9)	
N1	0.0192 (10)	0.0379 (13)	0.0445 (13)	0.0006 (9)	0.0006 (9)	-0.0058 (10)	
C2	0.0225 (12)	0.0362 (14)	0.0397 (14)	-0.0014 (10)	-0.0003 (10)	0.0011 (11)	
N3	0.0210 (10)	0.0353 (12)	0.0415 (12)	-0.0007 (8)	0.0012 (9)	-0.0012 (10)	
C4	0.0243 (12)	0.0374 (14)	0.0370 (14)	0.0021 (10)	0.0016 (10)	0.0050 (11)	
C4A	0.0250 (13)	0.0368 (14)	0.0369 (14)	0.0040 (10)	0.0014 (10)	0.0034 (11)	
C5	0.0284 (13)	0.0405 (15)	0.0404 (14)	0.0057 (11)	0.0025 (11)	0.0034 (12)	
C6	0.0384 (15)	0.0401 (15)	0.0400 (15)	0.0085 (12)	0.0013 (12)	0.0007 (12)	
C7	0.0397 (15)	0.0359 (14)	0.0421 (15)	0.0002 (11)	-0.0026 (12)	-0.0011 (12)	
C8	0.0274 (12)	0.0369 (14)	0.0452 (15)	-0.0001 (11)	-0.0006 (11)	-0.0018 (12)	
C8A	0.0277 (13)	0.0332 (13)	0.0341 (14)	0.0024 (10)	0.0013 (10)	0.0025 (11)	
С9	0.0217 (11)	0.0358 (14)	0.0383 (14)	-0.0013 (10)	0.0011 (10)	0.0000 (11)	
C10	0.0222 (11)	0.0396 (15)	0.0383 (14)	-0.0004 (10)	0.0004 (10)	-0.0024 (12)	
C11	0.0252 (12)	0.0343 (14)	0.0466 (15)	0.0003 (10)	-0.0023 (11)	-0.0021 (12)	
C12	0.0397 (15)	0.0427 (16)	0.0439 (16)	-0.0075 (12)	-0.0004 (13)	-0.0037 (13)	
C13	0.0394 (16)	0.0513 (18)	0.0415 (16)	-0.0040 (13)	0.0065 (12)	-0.0111 (14)	
C14	0.0383 (15)	0.0447 (17)	0.0554 (18)	0.0001 (13)	0.0061 (13)	-0.0124 (15)	
C15	0.0373 (15)	0.0397 (16)	0.0446 (16)	-0.0034 (12)	0.0027 (12)	-0.0015 (12)	
C16	0.0233 (12)	0.0335 (14)	0.0500 (16)	-0.0038 (10)	-0.0020 (11)	-0.0011 (12)	
C17	0.0217 (11)	0.0326 (13)	0.0467 (15)	-0.0025 (10)	-0.0028 (10)	-0.0032 (12)	
C18	0.0339 (14)	0.0350 (14)	0.0471 (16)	0.0030 (11)	0.0001 (12)	-0.0014 (12)	
C19	0.0380 (15)	0.0338 (14)	0.0499 (17)	0.0027 (11)	-0.0050 (13)	-0.0001 (12)	
C20	0.0343 (15)	0.0474 (17)	0.0467 (16)	-0.0043 (12)	-0.0052 (12)	-0.0032 (13)	
C21	0.0382 (16)	0.0508 (17)	0.0493 (18)	0.0058 (13)	-0.0048 (13)	-0.0154 (14)	
C22	0.0365 (14)	0.0375 (15)	0.0524 (18)	0.0043 (12)	-0.0118 (12)	-0.0084 (13)	

Geometric parameters (Å, °)

01—C14	1.364 (3)	C10—H10	0.9500
01—C11	1.398 (3)	C11—C12	1.362 (4)
O2—C4	1.234 (3)	C12—C13	1.449 (4)
N1—C8A	1.386 (3)	C12—H12	0.9500
N1—C2	1.460 (3)	C13—C14	1.348 (4)
N1—H1	0.90 (3)	C13—H13	0.9500
C2—N3	1.493 (3)	C14—H14	0.9500
С2—С9	1.525 (3)	C15—H15A	0.9800
С2—Н2	1.0000	C15—H15B	0.9800
N3—C4	1.378 (3)	C15—H15C	0.9800
N3—C16	1.483 (3)	C16—C17	1.520 (4)
C4—C4A	1.490 (4)	C16—H16A	0.9900
C4A—C8A	1.403 (3)	C16—H16B	0.9900
C4A—C5	1.404 (3)	C17—C22	1.390 (4)

a. a.		~·-	
C5—C6	1.395 (4)	C17—C18	1.398 (4)
С5—Н5	0.9500	C18—C19	1.389 (4)
C6—C7	1.392 (4)	C18—H18	0.9500
С6—Н6	0.9500	C19—C20	1.389 (4)
C7—C8	1.393 (4)	C19—H19	0.9500
С7—Н7	0.9500	C20—C21	1.391 (4)
C8—C8A	1.408 (3)	C20—H20	0.9500
C8—H8	0.9500	$C_{21} - C_{22}$	1 395 (4)
C9-C10	1 351 (3)	C21_H21	0.9500
C_{0} C_{15}	1.551(5) 1.511(4)	C^{22} H^{22}	0.9500
C_{10} C_{11}	1.511(4) 1 455 (2)	022-1122	0.9500
e10—e11	1.455 (5)		
C14—O1—C11	107.0 (2)	C12—C11—C10	137.1 (2)
C8A—N1—C2	119.9 (2)	O1—C11—C10	113.8 (2)
C8A—N1—H1	1171(16)	C11—C12—C13	106.5(2)
C2—N1—H1	1112(17)	C11—C12—H12	126.7
N1 - C2 - N3	109.3(2)	C_{13} C_{12} H_{12}	126.7
N1 C2 C9	109.3(2) 108.0(2)	$C_{13} = C_{12} = M_{12}$	120.7 106.5(2)
$N_1 = C_2 = C_3$	108.9(2)	C14 - C13 - C12	100.3(2)
NJ C2 U2	100.0	$C_{12} = C_{12} = H_{12}$	120.7
N1 - C2 - H2	109.0	С12—С13—П13	120.7
$N_3 = C_2 = H_2$	109.0	C13 - C14 - O1	110.9 (3)
C9—C2—H2	109.0	C13—C14—H14	124.6
C4—N3—C16	117.6 (2)	01—C14—H14	124.6
C4—N3—C2	122.2 (2)	C9—C15—H15A	109.5
C16—N3—C2	116.39 (19)	C9—C15—H15B	109.5
O2—C4—N3	121.9 (2)	H15A—C15—H15B	109.5
O2—C4—C4A	122.0 (2)	C9—C15—H15C	109.5
N3—C4—C4A	116.0 (2)	H15A—C15—H15C	109.5
C8A—C4A—C5	119.9 (2)	H15B—C15—H15C	109.5
C8A—C4A—C4	120.3 (2)	N3—C16—C17	112.9 (2)
C5—C4A—C4	119.5 (2)	N3—C16—H16A	109.0
C6—C5—C4A	120.7 (2)	C17—C16—H16A	109.0
С6—С5—Н5	119.7	N3—C16—H16B	109.0
С4А—С5—Н5	119.7	C17—C16—H16B	109.0
C7—C6—C5	119.1 (2)	H16A—C16—H16B	107.8
C7—C6—H6	120.4	C_{22} C17 C18	118.2 (2)
C5—C6—H6	120.4	C^{22} C^{17} C^{16}	121.2(2)
C6-C7-C8	120.1 121.2(2)	C_{18} C_{17} C_{16}	121.2(2) 120.5(2)
C6-C7-H7	110 4	C19 - C18 - C17	120.5(2) 120.6(2)
C_{0} C_{7} H_{7}	110.4	$C_{10} = C_{10} = C_{17}$	120.0(2)
$C_{0} = C_{0} = C_{0}$	117.4	$C_{17} = C_{18} = H_{18}$	119.7
$C/-C\delta$	119.9 (2)	C17 - C10 - H18	119.7
$C_{1} = C_{0} = D_{0}$	120.1	$C_{10} = C_{10} = U_{10}$	120.0 (3)
$L\delta A - L\delta - H\delta$	120.1	C10 - C19 - H19	119./
NI-USA-U4A	119.2 (2)	C20—C19—H19	119.7
NI-C8A-C8	121.5 (2)	C19—C20—C21	119.3 (3)
C4A—C8A—C8	119.2 (2)	C19—C20—H20	120.4
C10—C9—C15	124.5 (2)	C21—C20—H20	120.4
C10—C9—C2	118.0 (2)	C20—C21—C22	119.8 (3)

C15—C9—C2	117.5 (2)	C20—C21—H21	120.1
C9—C10—C11	127.3 (2)	C22—C21—H21	120.1
С9—С10—Н10	116.3	C17—C22—C21	121.4 (3)
C11—C10—H10	116.3	C17—C22—H22	119.3
C12—C11—O1	109.1 (2)	C21—C22—H22	119.3
C8A—N1—C2—N3	41.3 (3)	N1—C2—C9—C10	131.6 (2)
C8A—N1—C2—C9	163.4 (2)	N3—C2—C9—C10	-107.7 (2)
N1-C2-N3-C4	-36.7 (3)	N1—C2—C9—C15	-48.3 (3)
C9—C2—N3—C4	-157.3 (2)	N3—C2—C9—C15	72.5 (3)
N1-C2-N3-C16	165.83 (19)	C15—C9—C10—C11	-1.3 (4)
C9-C2-N3-C16	45.3 (3)	C2-C9-C10-C11	178.8 (2)
C16—N3—C4—O2	-11.4 (3)	C14-01-C11-C12	0.3 (3)
C2—N3—C4—O2	-168.5 (2)	C14-01-C11-C10	179.6 (2)
C16—N3—C4—C4A	171.8 (2)	C9—C10—C11—C12	-9.7 (5)
C2—N3—C4—C4A	14.6 (3)	C9—C10—C11—O1	171.3 (2)
O2—C4—C4A—C8A	-170.6 (2)	O1—C11—C12—C13	-0.1 (3)
N3—C4—C4A—C8A	6.2 (3)	C10-C11-C12-C13	-179.2 (3)
O2—C4—C4A—C5	4.5 (4)	C11—C12—C13—C14	-0.1 (3)
N3—C4—C4A—C5	-178.7 (2)	C12-C13-C14-O1	0.3 (3)
C8A—C4A—C5—C6	1.1 (4)	C11-O1-C14-C13	-0.4 (3)
C4—C4A—C5—C6	-174.0 (2)	C4—N3—C16—C17	106.2 (2)
C4A—C5—C6—C7	-0.5 (4)	C2—N3—C16—C17	-95.3 (2)
C5—C6—C7—C8	-0.5 (4)	N3-C16-C17-C22	120.2 (3)
C6—C7—C8—C8A	0.9 (4)	N3-C16-C17-C18	-58.8 (3)
C2—N1—C8A—C4A	-24.3 (3)	C22-C17-C18-C19	-1.4 (4)
C2—N1—C8A—C8	159.8 (2)	C16-C17-C18-C19	177.7 (2)
C5—C4A—C8A—N1	-176.6 (2)	C17-C18-C19-C20	-0.4 (4)
C4—C4A—C8A—N1	-1.5 (4)	C18-C19-C20-C21	1.6 (4)
C5—C4A—C8A—C8	-0.7 (4)	C19—C20—C21—C22	-1.2 (4)
C4—C4A—C8A—C8	174.4 (2)	C18—C17—C22—C21	1.8 (4)
C7—C8—C8A—N1	175.5 (2)	C16—C17—C22—C21	-177.2 (2)
C7—C8—C8A—C4A	-0.3 (4)	C20-C21-C22-C17	-0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O2 ⁱ	0.90 (3)	2.07 (3)	2.971 (3)	174 (2)

Symmetry code: (i) x+1/2, -y+3/2, -z+1.

3-(Furan-2-ylmethyl)-2-[(*E*)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1*H*)-one (III)

Crystal data	
$C_{20}H_{18}N_2O_3$	c = 22.368 (5) Å
$M_r = 334.36$	$V = 3328.5 (12) \text{ Å}^3$
Orthorhombic, Pbca	Z = 8
a = 13.928 (3) Å	F(000) = 1408
b = 10.684 (2) Å	$D_{\rm x} = 1.334 {\rm ~Mg} {\rm ~m}^{-3}$

Synchrotron radiation, $\lambda = 0.96990$ Å Cell parameters from 600 reflections $\theta = 3.2 - 32.0^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$

Data collection

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.089$ $wR(F^2) = 0.224$ *S* = 1.05 where $P = (F_o^2 + 2F_c^2)/3$ 3460 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ 231 parameters $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$ 0 restraints Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map

T = 100 KPlate, yellow $0.30 \times 0.30 \times 0.07$ mm

3460 independent reflections 2414 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.097$ $\theta_{\text{max}} = 38.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -17 \rightarrow 17$ $k = -13 \rightarrow 13$ $l = -26 \rightarrow 26$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 6P]$ Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0078 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.53713 (18)	0.6665 (2)	0.63004 (12)	0.0493 (7)	
O2	0.1753 (2)	0.2666 (3)	0.64505 (16)	0.0672 (9)	
03	0.12657 (16)	0.2418 (3)	0.49520 (14)	0.0646 (9)	
N1	0.41678 (19)	0.2216 (3)	0.50272 (13)	0.0392 (7)	
H1	0.483 (3)	0.224 (3)	0.5002 (16)	0.047*	
C2	0.3738 (2)	0.3381 (3)	0.52287 (15)	0.0390 (8)	
H2	0.3852	0.4045	0.4922	0.047*	
N3	0.26847 (17)	0.3192 (3)	0.53043 (13)	0.0432 (8)	
C4	0.2161 (2)	0.2432 (4)	0.49362 (18)	0.0475 (10)	
C4A	0.2709 (2)	0.1577 (3)	0.45443 (16)	0.0434 (9)	
C5	0.2225 (3)	0.0789 (4)	0.41411 (19)	0.0551 (11)	
Н5	0.1550	0.0868	0.4093	0.066*	
C6	0.2718 (3)	-0.0095 (4)	0.3815 (2)	0.0597 (12)	
H6	0.2387	-0.0630	0.3546	0.072*	
C7	0.3707 (3)	-0.0196 (4)	0.38855 (19)	0.0537 (10)	

H7	0.4049	-0.0808	0.3663	0.064*
C8	0.4203 (3)	0.0584 (3)	0.42746 (17)	0.0461 (9)
H8	0.4879	0.0506	0.4314	0.055*
C8A	0.3708 (2)	0.1484 (3)	0.46093 (15)	0.0390 (8)
C9	0.4206 (2)	0.3773 (3)	0.58156 (15)	0.0346 (7)
C10	0.4528 (2)	0.4952 (3)	0.58733 (15)	0.0357 (7)
H10	0.4455	0.5483	0.5536	0.043*
C11	0.4974 (2)	0.5494 (3)	0.63964 (15)	0.0374 (8)
C12	0.5116 (3)	0.5158 (3)	0.69790 (16)	0.0477 (9)
H12	0.4917	0.4401	0.7164	0.057*
C13	0.5625 (3)	0.6176 (4)	0.72574 (19)	0.0569 (11)
H13	0.5826	0.6224	0.7663	0.068*
C14	0.5760 (3)	0.7043 (4)	0.68329 (19)	0.0533 (10)
H14	0.6083	0.7816	0.6893	0.064*
C15	0.4279 (2)	0.2790 (3)	0.62950 (16)	0.0388 (8)
H15A	0.4948	0.2721	0.6428	0.058*
H15B	0.4065	0.1983	0.6135	0.058*
H15C	0.3873	0.3026	0.6635	0.058*
C16	0.2168 (2)	0.4154 (4)	0.56476 (18)	0.0523 (10)
H16A	0.1519	0.4261	0.5476	0.063*
H16B	0.2512	0.4961	0.5607	0.063*
C17	0.2076 (2)	0.3842 (3)	0.62962 (17)	0.0402 (8)
C18	0.2340 (3)	0.4544 (3)	0.67787 (16)	0.0546 (11)
H18	0.2623	0.5353	0.6783	0.066*
C19	0.2087 (4)	0.3767 (5)	0.7279 (2)	0.0819 (17)
H19	0.2137	0.4003	0.7687	0.098*
C20	0.1777 (3)	0.2682 (5)	0.7084 (3)	0.0787 (17)
H20	0.1593	0.2003	0.7333	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0430 (14)	0.0457 (14)	0.0591 (17)	-0.0026 (11)	0.0040 (12)	0.0069 (12)
O2	0.0530 (17)	0.0562 (17)	0.092 (2)	-0.0120 (13)	0.0018 (16)	0.0252 (16)
03	0.0191 (12)	0.0779 (19)	0.097 (2)	-0.0025 (11)	-0.0024 (13)	0.0442 (16)
N1	0.0194 (13)	0.0550 (18)	0.0431 (17)	0.0007 (12)	-0.0018 (11)	-0.0013 (13)
C2	0.0246 (16)	0.053 (2)	0.0396 (19)	0.0017 (14)	0.0008 (13)	0.0122 (15)
N3	0.0180 (13)	0.0623 (18)	0.0494 (18)	0.0049 (12)	0.0032 (12)	0.0202 (15)
C4	0.0201 (15)	0.064 (2)	0.059 (2)	-0.0056 (15)	-0.0048 (15)	0.0344 (19)
C4A	0.0258 (16)	0.055 (2)	0.050(2)	-0.0099 (15)	-0.0069 (15)	0.0240 (17)
C5	0.040 (2)	0.056 (2)	0.069 (3)	-0.0214 (18)	-0.0226 (19)	0.033 (2)
C6	0.055 (2)	0.047 (2)	0.077 (3)	-0.0234 (19)	-0.027 (2)	0.019 (2)
C7	0.051 (2)	0.046 (2)	0.064 (3)	-0.0138 (17)	-0.0180 (19)	0.0059 (18)
C8	0.0353 (18)	0.049 (2)	0.053 (2)	-0.0092 (15)	-0.0078 (16)	0.0025 (17)
C8A	0.0268 (16)	0.0492 (19)	0.0411 (19)	-0.0095 (14)	-0.0055 (14)	0.0128 (15)
C9	0.0256 (15)	0.0421 (17)	0.0362 (18)	0.0072 (13)	0.0037 (12)	0.0089 (14)
C10	0.0281 (16)	0.0392 (17)	0.0398 (18)	0.0057 (13)	0.0058 (13)	0.0060 (14)
C11	0.0331 (17)	0.0330 (15)	0.046 (2)	0.0089 (13)	0.0101 (14)	0.0050 (14)

C12	0.064 (2)	0.0369 (18)	0.042 (2)	0.0108 (17)	0.0086 (18)	-0.0027 (15)	
C13	0.076 (3)	0.047 (2)	0.048 (2)	0.015 (2)	0.005 (2)	-0.0113 (18)	
C14	0.051 (2)	0.047 (2)	0.063 (3)	0.0034 (17)	0.0029 (19)	-0.0081 (19)	
C15	0.0380 (18)	0.0364 (17)	0.042 (2)	0.0068 (13)	0.0013 (15)	0.0079 (14)	
C16	0.0288 (17)	0.058 (2)	0.070 (3)	0.0146 (16)	0.0111 (17)	0.028 (2)	
C17	0.0269 (15)	0.0302 (16)	0.064 (2)	0.0049 (12)	0.0127 (15)	0.0106 (15)	
C18	0.098 (3)	0.0220 (15)	0.044 (2)	0.0102 (18)	0.025 (2)	-0.0029 (15)	
C19	0.127 (5)	0.070 (3)	0.049 (3)	0.047 (3)	0.032 (3)	0.002 (2)	
C20	0.068 (3)	0.067 (3)	0.102 (4)	0.020 (2)	0.046 (3)	0.043 (3)	

Geometric parameters (Å, °)

O1—C14	1.369 (5)	C8—H8	0.9500
O1—C11	1.386 (4)	C9—C10	1.342 (5)
O2—C17	1.378 (4)	C9—C15	1.504 (4)
O2—C20	1.418 (6)	C10-C11	1.446 (5)
O3—C4	1.247 (4)	C10—H10	0.9500
N1—C8A	1.377 (4)	C11—C12	1.366 (5)
N1—C2	1.453 (4)	C12—C13	1.441 (6)
N1—H1	0.92 (4)	C12—H12	0.9500
C2—N3	1.491 (4)	C13—C14	1.339 (6)
C2—C9	1.524 (5)	С13—Н13	0.9500
С2—Н2	1.0000	C14—H14	0.9500
N3—C4	1.367 (5)	C15—H15A	0.9800
N3—C16	1.471 (5)	C15—H15B	0.9800
C4—C4A	1.478 (6)	C15—H15C	0.9800
C4A—C8A	1.402 (4)	C16—C17	1.494 (5)
C4A—C5	1.406 (5)	C16—H16A	0.9900
C5—C6	1.376 (6)	C16—H16B	0.9900
С5—Н5	0.9500	C17—C18	1.365 (5)
C6—C7	1.390 (6)	C18—C19	1.437 (6)
С6—Н6	0.9500	C18—H18	0.9500
C7—C8	1.389 (5)	C19—C20	1.311 (7)
С7—Н7	0.9500	C19—H19	0.9500
C8—C8A	1.400 (5)	С20—Н20	0.9500
C14—O1—C11	106.8 (3)	C9—C10—H10	116.7
C17—O2—C20	103.4 (3)	C11—C10—H10	116.7
C8A—N1—C2	120.4 (3)	C12—C11—O1	109.1 (3)
C8A—N1—H1	116 (2)	C12—C11—C10	136.8 (3)
C2—N1—H1	114 (2)	O1—C11—C10	114.1 (3)
N1—C2—N3	108.9 (3)	C11—C12—C13	106.6 (3)
N1—C2—C9	109.1 (3)	C11—C12—H12	126.7
N3—C2—C9	111.1 (3)	C13—C12—H12	126.7
N1—C2—H2	109.2	C14—C13—C12	106.5 (4)
N3—C2—H2	109.2	C14—C13—H13	126.7
С9—С2—Н2	109.2	C12—C13—H13	126.7
C4—N3—C16	117.9 (3)	C13—C14—O1	111.0 (4)

C4—N3—C2	122.5 (3)	C13—C14—H14	124.5
C16—N3—C2	116.4 (3)	O1—C14—H14	124.5
O3—C4—N3	121.6 (4)	С9—С15—Н15А	109.5
O3—C4—C4A	121.7 (4)	С9—С15—Н15В	109.5
N3—C4—C4A	116.6 (3)	H15A—C15—H15B	109.5
C8A—C4A—C5	120.0 (4)	С9—С15—Н15С	109.5
C8A—C4A—C4	119.7 (3)	H15A—C15—H15C	109.5
C5—C4A—C4	120.2 (3)	H15B—C15—H15C	109.5
C6—C5—C4A	120.8 (3)	N3—C16—C17	113.1 (3)
С6—С5—Н5	119.6	N3—C16—H16A	109.0
C4A—C5—H5	119.6	C17—C16—H16A	109.0
C5-C6-C7	119.2 (4)	N3—C16—H16B	109.0
C5—C6—H6	120.4	C17—C16—H16B	109.0
C7—C6—H6	120.4	H16A—C16—H16B	107.8
C8-C7-C6	121.1 (4)	C18 - C17 - O2	113.0(3)
C8—C7—H7	119.4	C18 - C17 - C16	128.5(3)
C6-C7-H7	119.4	02-C17-C16	120.3(3)
C7 - C8 - C8A	120.2 (3)	C_{17} C_{18} C_{19}	103.4(4)
C7 - C8 - H8	119.9	C17 - C18 - H18	103.4 (4)
$C_8 = C_8 = H_8$	119.9	C19 - C18 - H18	120.5
N1 - C8 - C8	121.6 (3)	C_{20} C_{19} C_{18} C_{18}	120.5 109 5 (4)
N1 - C8A - C4A	121.0(3) 1195(3)	C_{20} C_{19} H_{19}	105.3 (4)
$C8 - C8 - C4 \Delta$	119.5 (3)	C_{18} C_{19} H_{19}	125.5
C_{10} C_{9} C_{15}	124.3(3)	C_{10} C_{20} O_{2}	125.5 110 5 (4)
$C_{10} = C_{9} = C_{13}$	124.3(3) 1180(3)	$C_{19} = C_{20} = 0_2$	124.8
$C_{10} - C_{9} - C_{2}$	116.9 (3)	$O_{2} = C_{20} = H_{20}$	124.0
$C_{13} - C_{3} - C_{2}$	110.0(3) 126.7(3)	02-020-1120	124.0
e9—e10—e11	120.7 (3)		
C8A—N1—C2—N3	404(4)	N1—C2—C9—C10	130 5 (3)
C8A - N1 - C2 - C9	161.8 (3)	$N_3 - C_2 - C_9 - C_{10}$	-1094(3)
N1-C2-N3-C4	-354(4)	N1-C2-C9-C15	-490(4)
C9-C2-N3-C4	-1556(3)	N_{3} C2 C9 C15	71.0 (4)
N1-C2-N3-C16	164 9 (3)	$C_{15} - C_{9} - C_{10} - C_{11}$	-1.5(5)
C9-C2-N3-C16	44 8 (4)	C_{2} C_{9} C_{10} C_{11}	1.5(3) 1790(3)
$C_{16} = N_{3} = C_{4} = O_{3}$	-105(5)	$C_{14} = 01 = C_{11} = C_{12}$	01(4)
C_{2} N ₃ C_{4} O ₃	-1699(3)	$C_{14} = 01 = C_{11} = C_{10}$	-1800(3)
$C_{16} N_{3} C_{4} C_{4}$	173.0(3)	C9-C10-C11-C12	-9.7(6)
$C_{10} = N_{3} = C_{4} = C_{4} = C_{4}$	175.0(5) 13.6(4)	$C_{10} - C_{11} - C_{12}$	170.4(3)
03-C4-C4A-C8A	-1699(3)	01 - C11 - C12 - C13	01(4)
$N_3 - C_4 - C_4 \Delta - C_8 \Delta$	67(4)	C10-C11-C12-C13	-1798(4)
$O_3 - C_4 - C_4 \Delta - C_5$	5.7(4)	C_{11} C_{12} C_{13} C_{14}	-0.3(4)
$N_{3} - C_{4} - C_{4} - C_{5}$	-1783(3)	C12 - C13 - C14 - O1	0.3(+) 0.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13(5)	$C_{12} = C_{13} = C_{14} = C_{14}$	
CA = CA = C5 = C6	-1737(3)	$C_{1} = 0_{1} = 0_{14} = 0_{15}$ $C_{4} = N_{3} = C_{16} = C_{17}$	105 9 (4)
$C_{1} = C_{1} = C_{2} = C_{2}$	-0.5(6)	$C_{1} = 10 = C_{1}$	-03.5(4)
$C_{TA} = C_{TA} = C_{TA} = C_{TA}$	-0.4(6)	$C_2 = 103 = C_{10} = C_{17}$	3 2 (A)
$C_{5} = C_{0} = C_{7} = C_{8}$	0.7(0)	$C_{20} = 0_2 = 0_1 = 0_{10}$	5.4 (1) 178 6 (2)
$C_{0} = C_{0} = C_{0} = C_{0}$	160 4 (2)	$V_{20} = 0_{2} = 0_{17} = 0_{10}$	170.0(3)
U2-INI-UOA-UO	100.4 (3)	NJ-UI0-UI/-UIð	123.0(4)

C2—N1—C8A—C4A C7—C8—C8A—N1 C7—C8—C8A—C4A C5—C4A—C8A—N1 C4—C4A—C8A—N1 C5—C4A—C8A—C8 C4—C4A—C8A—C8	-24.1 (5) 175.7 (3) 0.2 (5) -176.7 (3) -1.7 (5) -1.1 (5) 173.9 (3)	N3—C16—C17—O2 O2—C17—C18—C19 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—O2 C17—O2—C20—C19	-48.8 (4) -4.7 (4) -179.5 (4) 4.5 (5) -2.8 (6) -0.1 (5)
C4—C4A—C8A—C8	173.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O3 ⁱ	0.92 (4)	2.04 (4)	2.949 (4)	169 (3)

Symmetry code: (i) x+1/2, -y+1/2, -z+1.