CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 July 2018
Accepted 24 July 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; transition metal vanadate; solid-state reaction; alluaudite structure type.; crystal structure.

CCDC reference: 1857879

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of disilver(I) dizinc(II) iron(III) tris(orthovanadate) with an alluaudite-type structure

Nour El Houda Lamsakhar,* Mohammed Zriouil, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: nlamsakhar@gmail.com

The title compound, $\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$, has been synthesized by solid-state reactions and belongs to the alluaudite structure family. In the crystal structure, four sites are positioned at special positions. One silver site is located on an inversion centre (Wyckoff position $4 b$), and an additional silver site, as well as one zinc and one vanadium site, on twofold rotation axes ($4 e$). One site on a general position is statistically occupied by $\mathrm{Fe}^{\text {III }}$ and $\mathrm{Zn}^{\mathrm{II}}$ cations that are octahedrally surrounded by O atoms. The three-dimensional framework structure of the title vanadate results from $\left[(\mathrm{Zn}, \mathrm{Fe})_{2} \mathrm{O}_{10}\right]$ units of edge-sharing $\left[(\mathrm{Zn}, \mathrm{Fe}) \mathrm{O}_{6}\right]$ octahedra that alternate with $\left[\mathrm{ZnO}_{6}\right]$ octahedra so as to form infinite chains parallel to [10 $\overline{1}]$. These chains are linked through VO_{4} tetrahedra by sharing vertices, giving rise to layers extending parallel to (010). Such layers are shared by common vanadate tetrahedra. The resulting three-dimensional framework delimits two types of channels parallel to [001] in which the silver sites are located with four- and sixfold coordination by oxygen.

1. Chemical context

The crystal structure of the mineral alluaudite with general formula $A(1) A(2) M(1) M(2)_{2}\left(\mathrm{XO}_{4}\right)_{3}$ was determined nearly fifty years ago by Moore (1971). In the structure, the two A sites can be occupied by mono- or divalent cations of medium size, and the $M(1)$ and $M(2)$ sites can accommodate di- or trivalent cations, which are generally transition metals and are octahedrally surrounded. The specific feature of the alluaudite structure is the existence of two channels parallel to [001] in which the A-site cations are located. As a result, alluauditetype compounds can exhibit electronic and/or ionic conductivity (Hatert, 2008). In addition, alluaudite-type compounds have been reported as materials for fossil energy conversion, as sensor materials and storage energy materials (Korzenski et al., 1998), and as materials used in catalysis (Kacimi et al., 2005).

Accordingly, the synthesis and structural characterization of new alluaudite-type phosphates and vanadates within pseudoternary $A_{2} \mathrm{O} / M \mathrm{O} / \mathrm{P}_{2} \mathrm{O}_{5}$ or pseudo-quaternary $A_{2} \mathrm{O} / M \mathrm{O} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ $\mathrm{P}_{2} \mathrm{O}_{5}$ systems using hydrothermal or solid-state reactions was the focus of our current research. Obtained phases are, for example, $\mathrm{NaMg}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ (Ould Saleck et al., 2015), $\mathrm{Na}_{2} \mathrm{Co}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ (Bouraima et al., 2015) or $\mathrm{Na}_{1.67} \mathrm{Zn}_{1.67}$ $\mathrm{Fe}_{1.33}\left(\mathrm{PO}_{4}\right)_{3}$ (Khmiyas et al., 2015). We have also succeeded in preparing the first vanadate-based alluaudite-type phase $\left(\mathrm{Na}_{0.70}\right)\left(\mathrm{Na}_{0.70}, \mathrm{Mn}_{0.30}\right)\left(\mathrm{Fe}^{\mathrm{III}}, \mathrm{Fe}^{\mathrm{II}}\right)_{2} \mathrm{Fe}^{\mathrm{II}}\left(\mathrm{VO}_{4}\right)_{3}$ (Benhsina et al.,

Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+1, y,-z+\frac{3}{2}$; (iv) $x,-y, z-\frac{1}{2}$; (v) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (vi) $-x+\frac{1}{2}, y-\frac{1}{2}$, $-z+\frac{3}{2}$; (vii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (viii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ix) $-x+1, y,-z+\frac{1}{2}$, (x) $x, y, z-1$.]
2016). A second alluaudite-type vanadate with composition $\mathrm{Na}_{2}\left(\mathrm{Fe}^{\mathrm{III}} / \mathrm{Co}^{\mathrm{II}}\right)_{2} \mathrm{Co}^{\mathrm{II}}\left(\mathrm{VO}_{4}\right)_{3}$ was prepared by Hadouchi et al. (2016) shortly afterwards.

In this context, the current exploration of $A_{2} \mathrm{O} / M \mathrm{O} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ $\mathrm{V}_{2} \mathrm{O}_{5}$ systems, where A is a monovalent cation and M a divalent cation, led to another vandanate with alluaudite-type structure, namely $\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$. Its synthesis and crystal structure are reported in this article.

2. Structural commentary

The principal building units of the crystal structure of the new member of the alluaudite-type family are represented in Fig. 1. All atoms are in general positions except for four atoms that are located on special positions. Ag 1 is located on an inversion centre (Wyckoff position $4 b$), and Ag 2 as well as Zn 2 and V 2 are located on twofold rotation axes ($4 e$) of space group $C 2 / c$. The $M 2$ site is in a general position ($8 f$) and statistically occupied by Fe 1 and Zn 1 atoms that are octahedrally surrounded by O atoms. Such a partial cationic disorder was

Figure 2
Edge-sharing $\left[(\mathrm{Zn}, \mathrm{Fe}) 1 \mathrm{O}_{6}\right]$ and $\left[\mathrm{Zn2O}_{6}\right]$ octahedra forming a kinked chain running parallel to [101]].

Figure 3 A layer perpendicular to (010), resulting from the connection of chains via the vertices of VO_{4} tetrahedra and $\left[\mathrm{ZnO}_{6}\right]$ octahedra.
also reported for the cobalt homologue $\mathrm{Na}_{2}\left(\mathrm{Fe}^{\mathrm{III}} / \mathrm{Co}^{\mathrm{II}}\right)_{2^{-}}$ $\mathrm{Co}^{\mathrm{II}}\left(\mathrm{VO}_{4}\right)_{3}$ (Hadouchi et al., 2016).

The crystal structure of $\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$ is made up from $\left[(\mathrm{Zn}, \mathrm{Fe}) 1_{2} \mathrm{O}_{10}\right]$ dimers, resulting from edge-sharing $\left[(\mathrm{Zn}, \mathrm{Fe}) 1 \mathrm{O}_{6}\right]$ octahedra, that are connected by a common edge to $\left[\mathrm{Zn}_{2} \mathrm{O}_{6}\right]$ octahedra. The linkage of alternating $\left[(\mathrm{Zn}, \mathrm{Fe}) 1_{2} \mathrm{O}_{10}\right]$ and $\left[\mathrm{Zn} 2 \mathrm{O}_{6}\right]$ units leads to infinite zigzag chains along $[10 \overline{1}]$ (Fig. 2). These chains are linked via the vertices of VO_{4} tetrahedra into layers parallel to (010), as shown in Fig. 3. Adjacent layers are linked by $\mathrm{V1O}_{4}$ tetrahedra into a three-dimensional framework structure that delimits two types of channels in which the Ag^{I} cations reside (Fig. 4). The Ag1 site is located in one channel and is surrounded by

Figure 4
Polyhedral representation of $\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$ showing the channels running parallel to the [001] direction.

Table 1
Experimental details.

Crystal data
Chemical formula M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
Ag}\mp@subsup{\textrm{Zn}}{2}{}\textrm{Fe}(\mp@subsup{\textrm{VO}}{4}{}\mp@subsup{)}{3}{
7 4 7 . 1 5
Monoclinic, C2/c
296
11.8025 (2), 12.9133 (2), 6.8000 (1)
110.759 (1)
969.10 (3)
4
Mo K\alpha
1 3 . 0 9
0.31\times0.26 }\times0.2
Bruker X8 APEX
Multi-scan (SADABS; Krause et
    al., 2015)
0.596, 0.748
30791, 2662, }243
0.042
0.869
0.021, 0.048, 1.13
2662
95
1.36, -2.41
```

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).
four oxygen atoms, whereas the Ag 2 site in the second channel is surrounded by six oxygen atoms.

The calculated bond-valences sums (Brown \& Altermatt, 1985) of the atoms in the structure are in the expected ranges for $\mathrm{Ag}^{\mathrm{I}}, \mathrm{Zn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{III}}$ and V^{V} and are as follows (values in valence units): Ag 1 (0.83), Ag 2 (1.11), Zn 1 (1.95), Zn 2 (2.20), Fe1 (2.67), V1 (4.98) and V2 (4.93); values of oxygen atoms range between 1.90 and 2.01 valence units.

3. Database Survey

Over the last twenty years, many synthetic alluaudite-type phosphates, arsenates, sulfates and molybdates have been reported, such as $\mathrm{NaMnFe} 2_{2}\left(\mathrm{PO}_{4}\right)_{3}$ used as the positive electrode in sodium and lithium batteries (Trad et al., 2010; Kim et al., 2014; Huang et al., 2015), $\mathrm{Na}_{2.44} \mathrm{Mn}_{1.79}\left(\mathrm{SO}_{4}\right)_{3}$ used as a potential high-voltage cathode material (ca4.4 V) for sodium batteries (Dwibedi et al., 2015), $\mathrm{K}_{0.13} \mathrm{Na}_{3.87} \mathrm{Mg}\left(\mathrm{MoO}_{4}\right)_{3}$ as a promising compound for developing new materials with high ionic conductivity (Ennajeh et al., 2015), or $\mathrm{NaZn}_{3}\left(\mathrm{AsO}_{4}\right)$ $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}$ (Đorđević et al., 2015).

4. Synthesis and crystallization

$\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$ was prepared by a solid-state reaction. A stoichiometric amount of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$, zinc acetate $\left(\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, iron nitrate $\left.\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right) \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)$ and vanadium oxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$ was employed in the molar ratio Ag :
$\mathrm{Zn}: \mathrm{Fe}: \mathrm{V}=2: 2: 1: 3$ and put into a platinum cruicible. After different heat treatments at lower temperatures to remove water and other voliatile gaseous products, the reaction mixture was melted at 1033 K for 30 minutes, followed by slow cooling with a $5 \mathrm{~K} \mathrm{~h}^{-1}$ rate to room temperature. The resulting product contained parallelepipedic orange crystals corresponding to the studied title vanadate. In addition, small blocklike crystals with poor quality and unidentified by X-ray powder diffraction were present.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The remaining maximum and minimum electron density peaks in the final Fourier map are $0.40 \AA$ away from Fe 1 and $0.62 \AA$ from Ag1, respectively. Due to charge neutrality, sites Zn 1 and Fe 2 were modelled as statistically occupied, assuming a trivalent oxidation state for the iron site.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

The authors thank Mohammed V University, Rabat, Morocco, for financial support.

References

Benhsina, E., Assani, A., Saadi, M. \& El Ammari, L. (2016). Acta Cryst. E72, 220-222.
Bouraima, A., Assani, A., Saadi, M., Makani, T. \& El Ammari, L. (2015). Acta Cryst. E71, 558-560.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Đorđević, T., Wittwer, A. \& Krivovichev, S. V. (2015). Eur. J. Mineral. 27, 559-573.
Dwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. \& Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564-18571.
Ennajeh, I., Georges, S., Smida, Y. B., Guesmi, A., Zid, M. F. \& Boughazala, H. (2015). RSC Adv. 5, 38918-38925.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hadouchi, M., Assani, A., Saadi, M. \& El Ammari, L. (2016). Acta Cryst. E72, 1017-1020.
Hatert, F. (2008). J. Solid State Chem. 181, 1258-1272.
Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. \& Wu, Z. (2015). Chem. Eur. J. 21, 851-860.
Kacimi, M., Ziyad, M. \& Hatert, F. (2005). Mater. Res. Bull. 40, 682693.

Khmiyas, J., Assani, A., Saadi, M. \& El Ammari, L. (2015). Acta Cryst. E71, 690-692.
Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. \& Kang, K. (2014). J. Mater. Chem. A, 2, 8632-8636.

Korzenski, M. B., Schimek, G. L., Kolis, J. W. \& Long, G. J. (1998). J. Solid State Chem. 139, 152-160.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.
Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. \& El Ammari, L. (2015). Acta Cryst. E71, 813-815.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. \& Delmas, C. (2010). Chem. Mater. 22, 5554-5562.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 1155-1158 [https://doi.org/10.1107/S205698901801071X]
Crystal structure of disilver(I) dizinc(II) iron(III) tris(orthovanadate) with an alluaudite-type structure

Nour El Houda Lamsakhar, Mohammed Zriouil, Abderrazzak Assani, Mohamed Saadi and

Lahcen El Ammari

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Disilver(I) dizinc(II) iron(III) tris(orthovanadate)

Crystal data

$\mathrm{Ag}_{2} \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{3}$
$M_{r}=747.15$
Monoclinic, $C 2 / c$
$a=11.8025$ (2) \AA
$b=12.9133(2) \AA$
$c=6.8000(1) \AA$
$\beta=110.759(1)^{\circ}$
$V=969.10(3) \AA^{3}$
$Z=4$

Data collection

Bruker X8 APEX diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.596, T_{\text {max }}=0.748$
$F(000)=1380$
$D_{\mathrm{x}}=5.121 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2662 reflections
$\theta=2.4-38.1^{\circ}$
$\mu=13.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Parallelepiped, orange
$0.31 \times 0.26 \times 0.20 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.048$
$S=1.13$
2662 reflections
95 parameters

30791 measured reflections
2662 independent reflections
2437 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=38.1^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-18 \rightarrow 20$
$k=-22 \rightarrow 22$
$l=-11 \rightarrow 9$

$$
\begin{aligned}
& 0 \text { restraints } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0126 P)^{2}+4.2342 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.36 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-2.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

supporting information

Extinction correction: SHELXL2016
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00163 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ag 1	0.500000	$0.49090(3)$	0.750000	$0.02736(7)$	
Ag 2	0.500000	0.000000	0.500000	$0.02115(6)$	
Zn 2	0.500000	$0.23529(2)$	0.250000	$0.00945(6)$	
Zn 1	$0.29222(2)$	$0.34062(2)$	$0.38041(3)$	$0.00652(5)$	0.5
Fe 1	$0.29222(2)$	$0.34062(2)$	$0.38041(3)$	$0.00652(5)$	0.5
V 1	$0.27045(3)$	$0.38683(2)$	$0.88206(4)$	$0.00612(5)$	
V2	0.500000	$0.20643(3)$	0.750000	$0.00602(6)$	
O1	$0.12116(12)$	$0.39616(11)$	$0.8338(2)$	$0.0128(2)$	
O2	$0.28524(13)$	$0.31700(11)$	$0.6746(2)$	$0.0124(2)$	
O3	$0.33803(14)$	$0.50767(11)$	$0.8997(2)$	$0.0139(2)$	
O4	$0.33926(12)$	$0.32576(11)$	$1.1233(2)$	$0.0112(2)$	
O5	$0.46319(12)$	$0.27705(11)$	$0.5152(2)$	$0.0099(2)$	
O6	$0.38484(12)$	$0.12416(10)$	$0.7343(2)$	$0.0115(2)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag 1	$0.01209(9)$	$0.05204(18)$	$0.01674(11)$	0.000	$0.00362(8)$	0.000
Ag 2	$0.03519(13)$	$0.01557(9)$	$0.01224(9)$	$-0.01110(8)$	$0.00786(9)$	$-0.00296(7)$
Zn 2	$0.00905(11)$	$0.01104(12)$	$0.00942(12)$	0.000	$0.00472(9)$	0.000
Zn 1	$0.00607(8)$	$0.00863(9)$	$0.00535(9)$	$0.00074(6)$	$0.00264(6)$	$0.00062(6)$
Fe 1	$0.00607(8)$	$0.00863(9)$	$0.00535(9)$	$0.00074(6)$	$0.00264(6)$	$0.00062(6)$
V 1	$0.00655(10)$	$0.00709(10)$	$0.00474(10)$	$0.00040(8)$	$0.00202(8)$	$0.00021(8)$
V 2	$0.00649(14)$	$0.00644(14)$	$0.00448(14)$	0.000	$0.00112(11)$	0.000
O1	$0.0095(5)$	$0.0130(5)$	$0.0160(6)$	$0.0017(4)$	$0.0045(5)$	$0.0008(5)$
O2	$0.0140(6)$	$0.0155(6)$	$0.0082(5)$	$0.0017(5)$	$0.0046(4)$	$-0.0004(4)$
O3	$0.0149(6)$	$0.0116(5)$	$0.0158(6)$	$-0.0010(4)$	$0.0061(5)$	$0.0017(5)$
O4	$0.0123(5)$	$0.0133(5)$	$0.0078(5)$	$0.0037(4)$	$0.0034(4)$	$0.0019(4)$
O5	$0.0090(5)$	$0.0135(5)$	$0.0075(5)$	$0.0019(4)$	$0.0035(4)$	$0.0027(4)$
O6	$0.0087(5)$	$0.0103(5)$	$0.0136(6)$	$-0.0007(4)$	$0.0019(4)$	$0.0016(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ag} 1-\mathrm{O}^{\mathrm{i}}$	$2.4699(15)$	$\mathrm{Zn} 2-\mathrm{O} 1^{\mathrm{v}}$	$2.1619(15)$
$\mathrm{Ag} 1-\mathrm{O}^{\mathrm{ii}}$	$2.4699(16)$	$\mathrm{Zn} 1-\mathrm{O}^{\text {viii }}$	$2.0068(14)$

$\mathrm{Ag} 1-\mathrm{O}^{\text {iii }}$	2.4734 (16)
Ag1-O3	2.4734 (16)
Ag2-06 ${ }^{\text {iv }}$	2.4374 (14)
Ag2- $\mathrm{O6}^{\text {iii }}$	2.4374 (14)
Ag2-O1 ${ }^{\text {v }}$	2.5032 (15)
Ag2- $\mathrm{Ol}^{\text {vi }}$	2.5032 (15)
Ag2-O1 ${ }^{\text {vii }}$	2.5873 (14)
Ag2-O1 ${ }^{\text {viii }}$	2.5873 (14)
$\mathrm{Zn} 2-\mathrm{O} 5^{\text {ix }}$	2.0704 (14)
Zn2-O5	2.0705 (14)
$\mathrm{Zn} 2-\mathrm{O} 4{ }^{\text {iii }}$	2.1325 (13)
$\mathrm{Zn} 2-\mathrm{O} 4^{\text {x }}$	2.1325 (13)
$\mathrm{Zn} 2-\mathrm{O} 1^{\text {viii }}$	2.1619 (15)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{O} 3^{\text {ii }}$	179.15 (7)
O3 ${ }^{\text {i }}$-Ag1-O3 $3^{\text {iii }}$	92.83 (5)
O3 ${ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{O} 3{ }^{\text {iii }}$	87.10 (5)
O3i-Ag1-O3	87.10 (5)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{Ag} 1-\mathrm{O} 3$	92.83 (5)
O3iii-Ag1-O3	169.95 (7)
O6 ${ }^{\text {iv }}-\mathrm{Ag} 2-\mathrm{O} 6^{\text {iii }}$	180.00 (6)
$\mathrm{O}^{\text {iv }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {v }}$	105.99 (5)
$\mathrm{O} 6^{\text {iii] }}$-Ag2-O1 ${ }^{\text {v }}$	74.01 (5)
$\mathrm{O}^{\text {iv }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vi }}$	74.01 (5)
O6 ${ }^{\text {iii }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vi }}$	105.99 (5)
$\mathrm{O} 1^{\mathrm{v}}$ - $\mathrm{Ag} 2-\mathrm{O} 1^{\text {vi }}$	180.00 (6)
$\mathrm{O6}^{\text {iv }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vii }}$	107.39 (5)
O6 $6^{\text {iii }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vii }}$	72.61 (5)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vii }}$	116.56 (6)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {vii }}$	63.44 (6)
O6 ${ }^{\text {iv }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {viii }}$	72.61 (5)
O6 ${ }^{\text {iiii }}$-Ag2- $1^{\text {viii }}$	107.39 (5)
$\mathrm{O} 1{ }^{\mathrm{v}}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {viii }}$	63.44 (6)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {viii }}$	116.56 (6)
$\mathrm{O} 1{ }^{\text {vii }}-\mathrm{Ag} 2-\mathrm{O} 1^{\text {viii }}$	180.0
$\mathrm{O} 5^{\mathrm{ix}}-\mathrm{Zn} 2-\mathrm{O} 5$	149.81 (8)
O5 ${ }^{\text {ix }}-\mathrm{Zn} 2-\mathrm{O} 4{ }^{\text {iii }}$	77.17 (5)
O5-Zn2-O4 ${ }^{\text {iii }}$	86.37 (5)
$\mathrm{O} 5^{\mathrm{ix}}-\mathrm{Zn} 2-\mathrm{O} 4^{\mathrm{x}}$	86.37 (5)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{O} 4^{\text {x }}$	77.17 (5)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 4^{\text {x }}$	113.56 (8)
$\mathrm{O} 5^{\mathrm{ix}}$ - $\mathrm{Zn} 2-\mathrm{O} 1^{\text {viii }}$	107.36 (5)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{O} 1^{\text {viii }}$	96.35 (6)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 1^{\text {viii }}$	161.31 (5)

179.15 (7)
92.83 (5)
87.10 (5)
87.10 (5)
92.83 (5)
169.95 (7)
180.00 (6)
105.99 (5)
74.01 (5)
74.01 (5)
180.00 (6)
107.39 (5)
72.61 (5)
116.56 (6)
63.44 (6)
72.61 (5)
107.39 (5)
3.44 (6)
180.0
149.81 (8)
86.37 (5)
86.37 (5)
77.17 (5)
107.36 (5)
161.31 (5)

$\mathrm{Zn} 1-\mathrm{O} 4^{\text {x }}$	2.0222 (14)
$\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	2.0241 (15)
Zn1-O2	2.0540 (14)
Zn1-O5	2.0675 (13)
$\mathrm{Zn} 1-\mathrm{O} 2^{\text {viii }}$	2.2082 (15)
V1-O1	1.6784 (14)
V1-O2	1.7343 (14)
V1-O3	1.7372 (15)
V1-O4	1.7402 (13)
V2-06	1.6984 (14)
V2-O6 ${ }^{\text {iii }}$	1.6984 (14)
V2-O5 ${ }^{\text {iii }}$	1.7544 (13)
V2-O5	1.7544 (13)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{O} 1^{\text {v }}$	107.36 (5)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 1^{\mathrm{v}}$	85.01 (5)
$\mathrm{O} 4 \times-\mathrm{Zn} 2-\mathrm{O} 1^{\text {v }}$	161.31 (5)
$\mathrm{O} 1^{\text {viii }} \mathrm{Z} \mathrm{Zn} 2-\mathrm{O} 1^{v}$	76.52 (7)
$\mathrm{O} 6^{\text {viii }}-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{x}}$	104.63 (6)
$\mathrm{O} 6^{\text {viii }}-\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	91.33 (6)
$\mathrm{O} 4 \times-\mathrm{Znl}-\mathrm{O}^{\text {i }}$	89.94 (6)
O6 ${ }^{\text {viii- }} \mathrm{Zn} 1-\mathrm{O} 2$	90.95 (6)
$\mathrm{O} 4 \times-\mathrm{Zn} 1-\mathrm{O} 2$	161.09 (6)
O3 ${ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 2$	100.52 (6)
O6 ${ }^{\text {viii-Z }} \mathrm{Zn} 1-\mathrm{O} 5$	168.70 (6)
O4x-Zn1-O5	79.73 (5)
O3 ${ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 5$	99.16 (6)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 5$	83.05 (5)
$\mathrm{O} 6^{\text {viii }} \mathrm{Zn} 1-\mathrm{O} 2^{\text {viii }}$	80.30 (5)
$\mathrm{O} 4 \times-\mathrm{Zn} 1-\mathrm{O} 2^{\text {viii }}$	89.43 (5)
$\mathrm{O} 3^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 2^{\text {viii }}$	171.16 (6)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {viii }}$	82.59 (6)
$\mathrm{O} 5-\mathrm{Zn} 1-\mathrm{O} 2^{\text {viii }}$	89.40 (5)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 2$	106.24 (7)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 3$	111.93 (7)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 3$	110.32 (7)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 4$	108.88 (7)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 4$	112.54 (7)
$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 4$	107.01 (7)
$\mathrm{O} 6-\mathrm{V} 2-\mathrm{O} 6^{\text {iii }}$	102.56 (10)
$\mathrm{O} 6-\mathrm{V} 2-\mathrm{O} 5^{\text {iii }}$	108.46 (7)
O6 ${ }^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 5^{\text {iii }}$	109.48 (6)
O6-V2-O5	109.48 (6)
O6 ${ }^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 5$	108.47 (7)

supporting information

$\mathrm{O} 4 \mathrm{x}-\mathrm{Zn} 2-\mathrm{O} 1^{\text {viii }}$	$85.01(5)$	$\mathrm{O}^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 5$
$\mathrm{O}^{\mathrm{ix}}-\mathrm{Zn} 2-\mathrm{O1}^{\mathrm{v}}$	$96.35(6)$	

Symmetry codes: (i) $x,-y+1, z-1 / 2$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+1, y,-z+3 / 2$; (iv) $x,-y, z-1 / 2$; (v) $x+1 / 2,-y+1 / 2, z-1 / 2$; (vi) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (vii) $x+1 / 2, y-1 / 2, z$; (viii) $-x+1 / 2,-y+1 / 2,-z+1$; (ix) $-x+1, y,-z+1 / 2$; (x) $x, y, z-1$.

