

Received 9 July 2018 Accepted 17 July 2018

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: crystal structure; copper(II); tripodal ligand; Jahn–Teller distortion.

CCDC reference: 1856400

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure of a mononuclear copper(II) complex with 2-methoxy-*N*,*N*-bis(quinolin-2-ylmethyl)ethylamine (DQMEA)

Steven T. Frey,^a* Jason Li,^a Manpreet Kaur^b and Jerry P. Jasinski^b

^aDepartment of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. *Correspondence e-mail: sfrey@skidmore.edu

Structural characterization of the compound $[Cu(C_2H_3N)(C_{23}H_{23}N_3O)](ClO_4)_2]$ or $[Cu(C_2H_3N)(DQMEA)](ClO_4)_2$ [DQMEA = 2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine] {systematic name: (acetonitrile)[2-methoxy-N,N-bis-(quinolin-2-vlmethyl)ethylamine]copper(II) diperchlorate} by single-crystal X-ray diffraction reveals a complex cation with a tetradentate coordination of the DQMEA ligand along with monodentate coordination of a CH₃CN ligand to a single Cu^{II} center, with two perchlorate anions providing charge balance. The Cu^{II} center has a distorted square-pyramidal geometry in which the nitrogen atoms of the DQMEA and CH₃CN ligands occupy the equatorial positions, while the oxygen atom of the DQMEA ligand resides in the axial position with an elongated Cu-O bond. The quinoline ring systems are nearly co-planar in the structure, while the linear CH₃CN ligand is tilted significantly below this plane, and the central nitrogen of DQMEA is above it. Within the complex, weak $C-H \cdots N$ hydrogen bonding takes place between the nitrogen of CH_3CN and a neighboring quinolyl group. The perchlorate ions are disordered within the structure, but undergo a number of weak intermolecular C-H···O hydrogen-bonding interactions. Additional weak π -stacking interactions between the quinolyl groups of neighboring complexes further stabilize the crystal packing.

1. Chemical context

Copper proteins are numerous in living systems, owing largely to their ability to bind and process dioxygen (Karlin & Tyeklár, 1993; Karlin, 1993; Kopf & Karlin, 1999). Much of what is known about these proteins comes from modeling studies that involve the synthesis of low molecular weight copper complexes with organic-based ligands (Mirica *et al.*, 2004; Lewis & Tolman, 2004; Hatcher & Karlin, 2004; Peterson *et al.*, 2013). Many of these involve N-centered, tripodal, tetradentate ligands containing pyridine or quinoline moieties (Wei *et al.*, 1994; Young *et al.*, 1995; Kim *et al.*, 2015). These ligands give stable complexes that provide access to both the Cu^I and Cu^{II} oxidation states, and leave open or solventbound coordination sites for the binding of dioxygen species (Wei *et al.*, 1994).

More recently, copper(II) complexes have been targeted as potential anticancer agents (Santini *et al.*, 2014). Indeed, copper(II) has been shown to promote tumor cell death through a variety of mechanisms while remaining less toxic systematically than platinum-based drugs (Angel *et al.*, 2017). A number of the compounds that have been studied employ pyridyl, quinolyl, and other aromatic amine-containing ligands

because of their ability to form stable complexes with copper(II) ions that display promising anticancer activity (Angel *et al.*, 2017; Santini *et al.*, 2014). Given the rich variety of ligands of this type, copper(II) complexes with a range of coordination numbers, geometries, redox potentials, biological compatibility, and cytotoxicity are possible.

Based on their relevance to biology, we have begun to explore copper(II) complexes with novel *N*-tripodal ligands containing either pyridine or quinoline moieties. We report here the synthesis and structural characterization of $[Cu(DQMEA)(CH_3CN)](CIO_4)_2$ [DQMEA = 2-methoxy-*N*,*N*-bis(quinolin-2-ylmethyl)ethylamine]. This compound is formed by the reaction of copper(II) perchlorate with DQMEA in acetonitrile, followed by the addition of diethyl ether (see reaction scheme) to afford dark-blue crystals suitable for X-ray diffraction studies.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic $P2_1/n$ space group. The structure reveals a monomeric cation of $[Cu(DQMEA)(CH_3CN)]^{2+}$ with two disordered perchlorate counter-anions. The copper(II) center is pentacoordinate with a distorted square-pyramidal geometry as indicated by the trigonality index, $\tau = 0.03$ defined as $\tau = |\theta - \varphi|/60$, where θ and φ are the two largest angles in the coordination sphere (Addison *et al.*, 1984). These angles are 164.97 (8) and 163.04 (9)° (Table 1). According to this index, τ values of five-coordinate complexes range from 0 for perfectly square-planar to 1 for perfectly trigonal–bipyramidal geometries. The DQMEA ligand is tetradentate with its central (N1) nitrogen

Figure 1

Structure of the title compound, $[Cu(DQMEA)(CH_3CN)](ClO_4)_2$, with atom labels, shown with displacement ellipsoids drawn at the 30% probability level. Both perclorate anions are disordered, with oxygen occupancy ratios of 0.900 (10):0 1.100 (10) and 0.779 (16):0.319 (7).

Table 1		
Selected	geometric parameters (Å, °).	

e	1 ()	·	
Cu1-O1	2.3570 (19)	Cu1-N3	2.0251 (18)
Cu1-N1	2.001 (2)	Cu1-N4	1.968 (2)
Cu1-N2	2.0311 (19)		
N1-Cu1-O1	81.40 (8)	N3-Cu1-O1	90.45 (7)
N1-Cu1-N2	84.06 (8)	N3-Cu1-N2	164.97 (8)
N1-Cu1-N3	80.92 (8)	N4-Cu1-O1	115.14 (8)
N2-Cu1-O1	87.91 (7)	N4-Cu1-N1	163.04 (9)

and two quinolvl nitrogen atoms (N2 and N3) lying in the equatorial plane, and the methoxy oxygen atom (O1) taking up the axial position. The fourth position in the equatorial plane is occupied by the nitrogen atom (N4) of a coordinated acetonitrile molecule. The two quinoline ring systems of DQMEA are nearly co-planar with each other [dihedral angle = $14.58 (7)^{\circ}$], which results in a steric interaction between hydrogen atoms H11 and H21 and the coordinated acetonitrile molecule. This causes the linear acetonitrile molecule to drop below the quinolyl plane, such that the bond angle that its nitrogen atom makes with the copper ion and the axial oxygen of DQMEA, O1-Cu1-N4, is 115.14 (8)°. The bite angles imposed by the tetradentate chelation of the DQMEA ligand cause further constraints leading to some distortion of the structure. For example, the central nitrogen and methoxy oxygen atoms, spanning the equatorial and axial positions, form a five-membered metallocycle with an N1-Cu1-O1 bond angle of 81.40 (8)°. This moves N1 slightly above the quinolyl plane, and causes the non-linearity of N2-Cu1-N3 $[164.97 (8)^{\circ}]$. The equatorial bond angles N1-Cu1-N2 $[84.06 (8)^{\circ}]$ and N1-Cu1-N3 $[80.92 (8)^{\circ}]$ are also significantly reduced from 90° because of the constraints of the DQMEA coordination. The equatorial Cu-N bond lengths fall in the narrow range of 1.968 (2) to 2.0311 (19) Å, consistent with values reported previously (Wei et al., 1994), while the axial Cu-O bond is significantly longer at 2.3570 (19) Å. The latter is consistent with a weak axial interaction due to Jahn-Teller distortion as noted previously for square-pyramidal copper(II) complexes (Chavez et al., 1996; Warda, 1998; Rowland et al., 2002; Roy et al., 2011). Finally, a weak intramolecular C-H···N hydrogen-bonding interaction takes place between a quinolyl hydrogen (H11) and the nitrogen atom of the acetonitrile ligand (N4), which may help stabilize the coordination of this monodentate ligand.

3. Supramolecular features

Within the crystal, a network of weak C-H···O hydrogenbonding interactions (Table 2) takes place between the hydrogen atoms of the DQMEA ligand and the oxygen atoms of the perchlorate anions (Fig. 2). In addition, weak π - π stacking interactions between nearby pyridine rings ($Cg5 \cdots Cg5$) of a quinoline group and between the pyridine and phenyl rings ($Cg5 \cdots Cg7$) of other nearby quinoline groups (where Cg5 and Cg7 are the centroids of the N3/C14-C17/C22 and C17-C22 rings, respectively) serve to further stabilize the crystal packing.

research communications

Figure 2

Crystal packing of the title compound viewed along the *a* axis. The intermolecular C–H···O hydrogen bonds (Table 2) are shown as dashed lines. π - π stacking of the quinoline rings along the *a* axis can be seen in the center of the diagram.

In addition, weak slipped parallel C–H··· π -ring [C8– H8···Cg7, X–H, $\pi = 50^{\circ}$; C19–H19···Cg6, X–H, $\pi = 47^{\circ}$] and Y–X···Cg [Cl1–O3···Cg4, X–H, $\pi = 27.35^{\circ}$ and Cl1– O2A···Cg4, X–-H, $\pi = 3.33^{\circ}$, where Cg4 = N2/C4/C5/C6/C7/ C12 and Cg6 = C7–C12] intermolecular interactions (Table 2) are also present and contibute additionally to the crystal packing.

4. Database survey

To the best of our knowledge, a structure of the title compound has not been published previously. However, analogous structures of copper(II) complexes with tripodal ligands formed by tethering two quinolyl groups to either a chiral amino alcohol or amino acid have been reported (Holmes *et al.*, 2005; Zahn *et al.*, 2006). Within these chiral structures, the quinolyl groups are not coplanar, but are instead twisted relative to each other in a propeller-like fashion.

5. Synthesis and crystallization

All chemicals were obtained from commercial sources and used without further preparation. Deionized water was used throughout. The ¹H NMR spectrum was recorded with a JEOL ECX-300 NMR spectrometer and referenced against the ¹H peak of the chloroform solvent. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

Hydrogen-bond geometry and π - π stacking interactions (Å, °).

Cg4, Cg5, Cg6 and Cg7 are the centroids of the N2/C4–C7/C12, N3/C14–C17/C22, C7–C12 and C17–C22 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1-H1A\cdots O3^{i}$	0.97	2.68	3.402 (4)	132
$C1 - H1B \cdots O9^{ii}$	0.97	2.57	3.397 (4)	143
$C3-H3B\cdots O8^{iii}$	0.97	2.58	3.446 (6)	148
$C5-H5\cdots O5^{iv}$	0.93	2.87	3.441 (6)	121
$C6-H6\cdots O5^{iv}$	0.93	2.70	3.366 (6)	129
$C9-H9\cdots O5A^{ii}$	0.93	2.65	3.29 (4)	127
$C10-H10\cdots O2^{ii}$	0.93	2.77	3.427 (5)	128
$C10-H10\cdots O8A^{v}$	0.93	2.64	3.329 (13)	131
$C11 - H11 \cdots N4$	0.93	2.43	3.074 (3)	126
$C11 - H11 \cdots O8^{v}$	0.93	2.85	3.443 (6)	123
$C13 - H13A \cdots O4$	0.97	2.59	3.220 (3)	123
$C13-H13A\cdots O8^{iii}$	0.97	2.70	3.378 (7)	128
$C15-H15\cdots O2^{i}$	0.93	2.65	3.440 (5)	143
$C15-H15\cdots O2A^{i}$	0.93	2.57	3.24 (3)	129
$C18-H18\cdots O4^{v}$	0.93	2.55	3.417 (3)	156
$C20-H20\cdots O6^{v}$	0.93	2.63	3.248 (8)	125
$C21 - H21 \cdots O6^{v}$	0.93	2.64	3.252 (8)	124
$C23-H23B\cdots O2^{vi}$	0.96	2.47	3.347 (6)	152
$C8-H8\cdots Cg7^{vii}$	0.93	2.75	3.511 (3)	139
$C19-H19\cdots Cg6^{viii}$	0.93	2.76	3.377 (3)	125
$Cl1 - O3 \cdots Cg4$		3.43 (1)	4.2079 (13)	114(1)
$Cl1 - O2A \cdots Cg4$		3.90 (5)	4.2079 (13)	89 (2)
$Cg5 \cdots Cg5^{v}$			4.0264 (14)	. /
$Cg5\cdots Cg7^{v}$			3.7767 (14)	

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z + 1; (vi) x + 1, y, z; (vii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (viii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

2-Methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine (DQMEA). In a 250 mL round-bottom flask, 5 g (23 mmol) of 2-chloromethylquinoline hydrochloride was dissolved in 10 mL H₂O and cooled to 273 K in an ice bath. A solution of 1.9 g (47 mmol) of NaOH in 10 mL H₂O was added dropwise under stirring. Following this, a solution of 0.9 g (12 mmol) of 2-methoxoethylamine in 10 mL CH₂Cl₂ was added. The reaction mixture was then removed from the ice bath, and brought to reflux. After seven days, the mixture was cooled to room temperature and the CH₂Cl₂ layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80-200 mesh) eluting with 20:1 CH₂Cl₂/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH_2Cl_2 /methanol) with an R_F value of 0.33. Rotary evaporation of these fractions gave 2.4 g (58%) of a light-yellow solid. ¹H NMR (CDCl₃, 300 MHz) δ 2.87 (t, 2H), 3.25 (s, 3H), 3.54 (t, 2H), 4.09 (s, 4H), 7.45 (t, 2H), 7.66 (t, 2H), 7.75 (m, 4H), 8.01 (d, 2H), 8.10 (d, 2H).

[Cu(DQMEA)(CH₃CN)](ClO₄)₂]. In a 50 mL roundbottom flask, 0.100 g (0.28 mmol) of copper(II) perchlorate hexahydrate and 0.104 g (0.28 mmol) of DQMEA were dissolved in 10 mL of acetonitrile. The reaction mixture was capped and allowed to stir for 30 minutes. Approximately 10 mL of anhydrous diethyl ether was added until crystals began to form on the side of the flask, and the mixture was capped and placed in a refrigerator. After seven days, 0.15 g (84%) of dark-blue crystals suitable for X-ray diffraction were collected by filtration and washed with diethyl ether. IR (ATR, cm⁻¹) 2800–3200 (aromatic C–H, w), 1604, 1516, and 1436 (aromatic C–C, m), 1064 (ClO₄⁻, s, br), 781, 843 (aromatic C–H, s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model: C-H = 0.93-0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C-methyl)$. Both perchlorate ions were disordered [occupancy ratios of 0.900 (10):0.100 (10) and 0.656 (7):0.348 (7)].

Funding information

Funding for this research was provided by: NSF–MRI (grant No. CHE-1039027 to Jerry P. Jasinski).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Angel, N. R., Khatib, R. M., Jenkins, J., Smith, M., Rubalcava, J. M., Khoa Le, B., Lussier, D., Chen, Z. (G.), Tham, F. S., Wilson, E. H. & Eichler, J. F. (2017). J. Inorg. Biochem. 166, 12–25.
- Chavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). *Inorg. Chem.* **35**, 1410–1412.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Hatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669-683.
- Holmes, A. E., Simpson, S. A. & Canary, J. W. (2005). *Monatsh. Chem.* **136**, 461–475.
- Karlin, K. D. (1993). Science, 261, 701-708.
- Karlin, K. D. & Tyeklár, Z. (1993). *Bioinorganic Chemistry of Copper*. New York: Chapman & Hall.
- Kim, S., Lee, J. Y., Cowley, R. E., Ginsbach, J. W., Siegler, M. A., Solomon, E. I. & Karlin, K. D. (2015). J. Am. Chem. Soc. 137, 2796– 2799.
- Kopf, M.-A. & Karlin, K. D. (1999). *Biomimetic Oxidations Catalyzed by Transition Metal Complexes*, edited by B. Meunier, pp. 309–362. London: Imperial College Press.
- Lewis, E. A. & Tolman, W. B. (2004). Chem. Rev. 104, 1047-1076.
- Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013–1046.
- Peterson, R. L., Kim, S. & Karlin, K. D. (2013). *Comprehensive Inorganic Chemistry II*, 2nd ed., edited by J. Reedijk & K. R. Poeppelmeier, pp. 149–177. Amsterdam: Elsevier.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Cu(C_2H_3N)(C_{23}H_{23}N_3O)](ClO_4)_2$
M _r	660.94
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	11.3597 (3), 16.9611 (4), 14.5514 (3)
β (°)	95.622 (2)
$V(Å^3)$	2790.18 (11)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.03
Crystal size (mm)	$0.26\times0.16\times0.12$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Gemini Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.883, 1.000
No. of measured, independent and	21447, 9280, 6238
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.762
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.141, 1.02
No. of reflections	9280
No. of parameters	392
H-atom treatment	H-atom parameters constrained
$\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$	0.63 - 0.62
$-r \max$, $-r \min (-r r)$	0.00, 0.02

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

- Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.
- Rowland, J. M., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37–40.
- Roy, S., Mitra, P. & Patra, A. K. (2011). Inorg. Chim. Acta, 370, 247– 253.
- Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). *Chem. Rev.* **114**, 815–862.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Warda, S. A. (1998). Acta Cryst. C54, 916-918.
- Wei, N., Murthy, N. N. & Karlin, K. D. (1994). *Inorg. Chem.* **33**, 6093–6100.
- Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447.
- Zahn, S., Das, D. & Canary, J. W. (2006). Inorg. Chem. 45, 6056-6063.

supporting information

Acta Cryst. (2018). E74, 1138-1141 [https://doi.org/10.1107/S2056989018010319]

Crystal structure of a mononuclear copper(II) complex with 2-methoxy-*N*,*N*-bis(quinolin-2-ylmethyl)ethylamine (DQMEA)

Steven T. Frey, Jason Li, Manpreet Kaur and Jerry P. Jasinski

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015a); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(Acetonitrile)[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine]copper(II) bis(perchlorate)

Crystal data

$[C_{11}(C_{2}H_{2}N)(C_{22}H_{22}N_{2}O)](C O_{4})_{2}$
$M_r = 660.94$
Monoclinic, $P2_1/n$
a = 11.3597 (3) Å
b = 16.9611 (4) Å
c = 14.5514 (3) Å
$\beta = 95.622$ (2)°
V = 2790.18 (11) Å ³
Z=4

Data collection

Rigaku Oxford Diffraction Gemini Eos	$T_{\min} = 0.883, T_{\max} = 1.000$
diffractometer	21447 measured reflections
Radiation source: fine-focus sealed X-ray tube,	9280 independent reflections
Enhance (Mo) X-ray Source	6238 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
Detector resolution: 16.0416 pixels mm ⁻¹	$\theta_{\rm max} = 32.8^\circ, \ \theta_{\rm min} = 3.2^\circ$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan	$k = -25 \rightarrow 16$
(CrysAlisPro; Rigaku OD, 2015)	$l = -22 \rightarrow 20$
P 4	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.141$ S = 1.029280 reflections 392 parameters 0 restraints Primary atom site location: dual F(000) = 1356 $D_x = 1.573 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4574 reflections $\theta = 3.4-30.8^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 293 KPrism, blue $0.26 \times 0.16 \times 0.12 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0599P)^2 + 1.6959P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.63$ e Å⁻³ $\Delta\rho_{min} = -0.62$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.55099 (2)	0.71839 (2)	0.33686 (2)	0.03253 (9)	
01	0.75176 (16)	0.75392 (12)	0.33841 (14)	0.0470 (4)	
N1	0.55979 (18)	0.79512 (12)	0.44173 (14)	0.0367 (4)	
N2	0.51058 (16)	0.81527 (11)	0.25797 (13)	0.0336 (4)	
N3	0.59144 (16)	0.64254 (11)	0.44274 (13)	0.0322 (4)	
N4	0.49754 (19)	0.63548 (13)	0.24774 (14)	0.0415 (5)	
C1	0.6863 (2)	0.81542 (16)	0.4695 (2)	0.0463 (6)	
H1A	0.721959	0.773908	0.508802	0.056*	
H1B	0.689753	0.863821	0.505207	0.056*	
C2	0.7563 (2)	0.82575 (17)	0.3879 (2)	0.0507 (7)	
H2A	0.722827	0.867986	0.348680	0.061*	
H2B	0.837625	0.839065	0.408536	0.061*	
C3	0.4872 (3)	0.86476 (15)	0.41151 (19)	0.0466 (6)	
H3A	0.521876	0.911629	0.441284	0.056*	
H3B	0.408261	0.858502	0.430467	0.056*	
C4	0.4795 (2)	0.87510 (14)	0.30860 (18)	0.0389 (5)	
C5	0.4372 (2)	0.94704 (16)	0.2706 (2)	0.0483 (6)	
Н5	0.419262	0.988444	0.308724	0.058*	
C6	0.4228 (2)	0.95522 (16)	0.1773 (2)	0.0488 (6)	
H6	0.392258	1.001824	0.151054	0.059*	
C7	0.4541 (2)	0.89326 (15)	0.12037 (19)	0.0397 (5)	
C8	0.4441 (2)	0.89886 (18)	0.0231 (2)	0.0497 (7)	
H8	0.411205	0.943900	-0.005389	0.060*	
C9	0.4815 (3)	0.83981 (18)	-0.0292 (2)	0.0512 (7)	
H9	0.472685	0.843926	-0.093188	0.061*	
C10	0.5335 (2)	0.77235 (17)	0.01305 (19)	0.0458 (6)	
H10	0.561192	0.732642	-0.023301	0.055*	
C11	0.5441 (2)	0.76417 (15)	0.10707 (18)	0.0390 (5)	
H11	0.579267	0.719209	0.134112	0.047*	
C12	0.50211 (19)	0.82345 (13)	0.16290 (16)	0.0332 (4)	
C13	0.5108 (2)	0.75237 (16)	0.51870 (17)	0.0426 (5)	
H13A	0.425154	0.751374	0.508990	0.051*	
H13B	0.533815	0.778812	0.576811	0.051*	
C14	0.5585 (2)	0.67007 (15)	0.52143 (16)	0.0366 (5)	
C15	0.5679 (2)	0.62524 (17)	0.60341 (17)	0.0451 (6)	
H15	0.545784	0.646621	0.658017	0.054*	
C16	0.6095 (2)	0.55061 (17)	0.60134 (18)	0.0461 (6)	
H16	0.612713	0.519495	0.654150	0.055*	
C17	0.6478 (2)	0.52007 (14)	0.52018 (17)	0.0385 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C18	0.6968 (2)	0.44325 (16)	0.5147 (2)	0.0486 (7)	
H18	0.699525	0.409785	0.565488	0.058*	
C19	0.7394 (3)	0.41860 (17)	0.4359 (2)	0.0539 (7)	
H19	0.769698	0.367859	0.432606	0.065*	
C20	0.7383 (2)	0.46862 (16)	0.3597 (2)	0.0478 (6)	
H20	0.770800	0.451518	0.306934	0.057*	
C21	0.6902 (2)	0.54223 (15)	0.36142 (17)	0.0386 (5)	
H21	0.689727	0.574828	0.309996	0.046*	
C22	0.64130 (19)	0.56881 (13)	0.44086 (16)	0.0332 (4)	
C23	0.8218 (3)	0.7556 (3)	0.2623 (2)	0.0666 (9)	
H23A	0.824998	0.703717	0.236289	0.100*	
H23B	0.900357	0.772868	0.283065	0.100*	
H23C	0.787033	0.791379	0.216179	0.100*	
C24	0.4563 (3)	0.58873 (19)	0.2001 (2)	0.0513 (7)	
C25	0.4030 (5)	0.5283 (3)	0.1392 (3)	0.1066 (17)	
H25A	0.403103	0.545212	0.076221	0.160*	
H25B	0.323120	0.519299	0.152765	0.160*	
H25C	0.447537	0.480328	0.148139	0.160*	
Cl1	0.21788 (6)	0.71417 (6)	0.27686 (5)	0.0607 (2)	
O2	0.1175 (4)	0.7570 (4)	0.2958 (3)	0.131 (2)	0.900 (10)
O2A	0.176 (4)	0.804 (4)	0.301 (3)	0.131 (2)	0.100 (10)
O3	0.2582 (2)	0.73903 (19)	0.19302 (15)	0.0759 (8)	
O4	0.31026 (19)	0.72130 (14)	0.35046 (14)	0.0593 (6)	
O5	0.1964 (8)	0.6280 (5)	0.2656 (5)	0.120 (3)	0.779 (16)
O5A	0.144 (3)	0.6625 (17)	0.2953 (18)	0.120 (3)	0.221 (16)
Cl2	0.23843 (8)	0.43937 (5)	0.92382 (6)	0.0615 (2)	
O6	0.2005 (11)	0.4593 (6)	0.8369 (4)	0.199 (4)	0.681 (7)
O6A	0.132 (2)	0.4040 (13)	0.8829 (9)	0.199 (4)	0.319 (7)
07	0.3251 (8)	0.4841 (5)	0.8889 (7)	0.164 (3)	0.652 (7)
O7A	0.3697 (14)	0.4290 (10)	0.9530 (13)	0.164 (3)	0.348 (7)
O8	0.2279 (7)	0.3596 (3)	0.9373 (5)	0.130 (3)	0.700 (7)
O8A	0.3117 (19)	0.3946 (7)	0.9791 (12)	0.130 (3)	0.300 (7)
O9	0.1885 (3)	0.48505 (17)	0.9896 (2)	0.0946 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.04023 (16)	0.02837 (14)	0.02880 (14)	0.00429 (11)	0.00239 (10)	0.00066 (11)
)1	0.0397 (9)	0.0505 (10)	0.0513 (11)	0.0031 (8)	0.0075 (8)	0.0029 (9)
J1	0.0433 (11)	0.0329 (10)	0.0334 (10)	0.0046 (8)	0.0011 (8)	-0.0026 (8)
12	0.0336 (9)	0.0309 (9)	0.0360 (10)	0.0039 (7)	0.0019 (7)	0.0020 (8)
13	0.0352 (9)	0.0329 (9)	0.0279 (8)	-0.0001 (7)	0.0009 (7)	0.0015 (7)
J4	0.0485 (12)	0.0384 (10)	0.0363 (10)	0.0044 (9)	-0.0021 (9)	0.0012 (9)
C1	0.0501 (14)	0.0392 (13)	0.0479 (14)	-0.0032 (11)	-0.0042 (11)	-0.0070 (12)
22	0.0440 (14)	0.0449 (14)	0.0618 (18)	-0.0057 (12)	-0.0021 (12)	0.0057 (13)
23	0.0605 (16)	0.0357 (12)	0.0436 (14)	0.0153 (12)	0.0050 (12)	-0.0049 (11)
24	0.0360 (11)	0.0347 (11)	0.0456 (13)	0.0077 (9)	0.0018 (10)	0.0000 (10)
25	0.0489 (14)	0.0372 (12)	0.0583 (17)	0.0158 (11)	0.0036 (12)	-0.0011 (12)
22 23 24 25	0.0440 (14) 0.0605 (16) 0.0360 (11) 0.0489 (14)	0.0449 (14) 0.0357 (12) 0.0347 (11) 0.0372 (12)	0.0618 (18) 0.0436 (14) 0.0456 (13) 0.0583 (17)	-0.0057 (12) 0.0153 (12) 0.0077 (9) 0.0158 (11)	-0.0021 (12) 0.0050 (12) 0.0018 (10) 0.0036 (12)	0.0057 -0.0049 0.0000 -0.0011

supporting information

C6	0.0442 (14)	0.0376 (13)	0.0631 (17)	0.0127 (11)	-0.0026 (12)	0.0099 (12)
C7	0.0285 (10)	0.0396 (12)	0.0497 (14)	0.0015 (9)	-0.0033 (9)	0.0095 (11)
C8	0.0444 (14)	0.0549 (16)	0.0470 (14)	0.0005 (12)	-0.0094 (11)	0.0176 (13)
C9	0.0503 (15)	0.0609 (17)	0.0404 (14)	-0.0093 (13)	-0.0053 (11)	0.0104 (13)
C10	0.0488 (14)	0.0499 (15)	0.0387 (13)	-0.0065 (12)	0.0046 (11)	-0.0004 (12)
C11	0.0426 (12)	0.0356 (11)	0.0388 (12)	-0.0006 (10)	0.0047 (10)	0.0040 (10)
C12	0.0281 (10)	0.0339 (11)	0.0373 (11)	-0.0016 (8)	0.0017 (8)	0.0034 (9)
C13	0.0505 (14)	0.0468 (13)	0.0310 (11)	0.0038 (12)	0.0063 (10)	-0.0066 (11)
C14	0.0361 (11)	0.0415 (12)	0.0317 (11)	-0.0038 (9)	0.0011 (9)	-0.0006 (10)
C15	0.0513 (14)	0.0561 (15)	0.0273 (11)	-0.0071 (12)	0.0015 (10)	0.0016 (11)
C16	0.0504 (14)	0.0526 (15)	0.0333 (12)	-0.0120 (12)	-0.0055 (10)	0.0145 (11)
C17	0.0362 (11)	0.0364 (11)	0.0404 (12)	-0.0066 (9)	-0.0090 (9)	0.0075 (10)
C18	0.0454 (14)	0.0374 (12)	0.0590 (17)	-0.0055 (11)	-0.0156 (12)	0.0149 (12)
C19	0.0480 (15)	0.0367 (13)	0.073 (2)	0.0064 (11)	-0.0151 (14)	0.0009 (14)
C20	0.0427 (13)	0.0437 (14)	0.0554 (16)	0.0095 (11)	-0.0040 (11)	-0.0063 (12)
C21	0.0363 (11)	0.0381 (12)	0.0403 (12)	0.0030 (10)	-0.0020 (9)	0.0007 (10)
C22	0.0313 (10)	0.0317 (10)	0.0352 (11)	-0.0021 (8)	-0.0038 (8)	0.0031 (9)
C23	0.0497 (17)	0.090 (2)	0.062 (2)	0.0048 (17)	0.0169 (14)	0.0101 (19)
C24	0.0553 (16)	0.0592 (17)	0.0383 (13)	-0.0059 (14)	-0.0014 (11)	-0.0038 (13)
C25	0.121 (4)	0.123 (4)	0.073 (3)	-0.044 (3)	0.001 (3)	-0.048 (3)
Cl1	0.0402 (3)	0.0946 (6)	0.0459 (4)	-0.0098 (4)	-0.0030 (3)	0.0243 (4)
O2	0.053 (2)	0.254 (6)	0.091 (2)	0.053 (3)	0.0304 (18)	0.067 (3)
O2A	0.053 (2)	0.254 (6)	0.091 (2)	0.053 (3)	0.0304 (18)	0.067 (3)
03	0.0582 (13)	0.126 (2)	0.0432 (12)	0.0025 (14)	0.0045 (10)	0.0245 (14)
O4	0.0571 (12)	0.0754 (15)	0.0433 (11)	-0.0029 (10)	-0.0054 (9)	0.0094 (10)
O5	0.154 (6)	0.092 (4)	0.105 (4)	-0.068 (4)	-0.031 (4)	0.007 (3)
O5A	0.154 (6)	0.092 (4)	0.105 (4)	-0.068 (4)	-0.031 (4)	0.007 (3)
Cl2	0.0803 (5)	0.0500 (4)	0.0570 (4)	-0.0022 (4)	0.0211 (4)	-0.0034 (4)
06	0.324 (12)	0.213 (8)	0.058 (3)	0.033 (8)	0.004 (4)	0.030 (4)
06A	0.324 (12)	0.213 (8)	0.058 (3)	0.033 (8)	0.004 (4)	0.030 (4)
O7	0.162 (6)	0.138 (6)	0.213 (9)	-0.031 (5)	0.126 (7)	-0.003 (5)
O7A	0.162 (6)	0.138 (6)	0.213 (9)	-0.031 (5)	0.126 (7)	-0.003 (5)
08	0.202 (7)	0.047 (2)	0.154 (5)	0.018 (3)	0.078 (5)	0.004 (3)
O8A	0.202 (7)	0.047 (2)	0.154 (5)	0.018 (3)	0.078 (5)	0.004 (3)
O9	0.109 (2)	0.0719 (17)	0.110 (2)	-0.0034 (16)	0.0437 (18)	-0.0223 (17)

Geometric parameters (Å, °)

Cu1—O1	2.3570 (19)	C13—H13B	0.9700
Cu1—N1	2.001 (2)	C13—C14	1.496 (4)
Cu1—N2	2.0311 (19)	C14—C15	1.410 (3)
Cu1—N3	2.0251 (18)	C15—H15	0.9300
Cu1—N4	1.968 (2)	C15—C16	1.353 (4)
O1—C2	1.414 (4)	C16—H16	0.9300
O1—C23	1.426 (4)	C16—C17	1.397 (4)
N1—C1	1.494 (3)	C17—C18	1.422 (4)
N1—C3	1.482 (3)	C17—C22	1.416 (3)
N1—C13	1.487 (3)	C18—H18	0.9300

supporting information

N2—C4	1.322 (3)	C18—C19	1.353 (5)
N2—C12	1.384 (3)	C19—H19	0.9300
N3—C14	1.324 (3)	C19—C20	1.396 (4)
N3—C22	1.374 (3)	C20—H20	0.9300
N4—C24	1.124 (3)	C20—C21	1.364 (4)
C1—H1A	0.9700	C21—H21	0.9300
C1—H1B	0.9700	C21—C22	1.405 (3)
C1—C2	1.503 (4)	C23—H23A	0.9600
C2—H2A	0.9700	C23—H23B	0.9600
C2—H2B	0.9700	C23—H23C	0.9600
С3—НЗА	0.9700	C24—C25	1.449 (5)
С3—Н3В	0.9700	C25—H25A	0.9600
C3—C4	1.502 (4)	C25—H25B	0.9600
C4—C5	1.405 (3)	C25—H25C	0.9600
C5—H5	0.9300	Cl1—O2	1.402 (4)
C5—C6	1.359 (4)	Cl1—O2A	1.65 (6)
C6—H6	0.9300	Cl1—O3	1.00(0)
C6-C7	1 405 (4)	C11—O4	1.109(2) 1.429(2)
C7 - C8	1.103(1) 1 412(4)	Cl1—05	1.129(2) 1 489(8)
C7-C12	1.412(4) 1 420(3)	C1105A	1.469(0)
C8—H8	0.9300	C12-O6	1.20(2)
C8-C9	1 351 (4)	C12 - O6A	1.337(0) 1.43(2)
$C_0 + H_0$	0.0300	C12 = 00A	1.43(2) 1 370(6)
C_{0} C_{10}	1,402(4)	C12 = 07	1.579(0) 1.520(18)
C10 H10	1.402(4)	C12 = O/A	1.320(10) 1.375(5)
C_{10} C_{11}	1.360(4)	C_{12} C_{12} C_{12} C_{13} C_{12} C_{13} C	1.375(3) 1.326(17)
C11 H11	0.0300	C12 = O8A	1.330(17) 1.204(2)
	0.9300	06 07	1.394(3) 1.505(12)
C12 U12	1.403 (3)		1.393(12)
С13—П13А	0.9700	0/A08A	0.984 (17)
N1—Cu1—O1	81.40 (8)	N1—C13—H13B	110.0
N1—Cu1—N2	84.06 (8)	N1-C13-C14	108.3 (2)
N1—Cu1—N3	80.92 (8)	H13A—C13—H13B	108.4
N2—Cu1—O1	87.91 (7)	C14—C13—H13A	110.0
N3—Cu1—O1	90.45 (7)	C14—C13—H13B	110.0
N3—Cu1—N2	164.97 (8)	N3—C14—C13	116.0 (2)
N4—Cu1—O1	115.14 (8)	N3—C14—C15	122.5 (2)
N4—Cu1—N1	163.04 (9)	C15—C14—C13	121.5 (2)
N4—Cu1—N2	99.65 (8)	C14—C15—H15	120.5
N4—Cu1—N3	94.57 (8)	C16—C15—C14	118.9 (2)
C2—O1—Cu1	102.24 (15)	C16—C15—H15	120.5
C2—O1—C23	112.5 (3)	C15—C16—H16	119.9
C23—O1—Cu1	127.62 (19)	C15—C16—C17	120.3 (2)
C1—N1—Cu1	109.34 (15)	С17—С16—Н16	119.9
C3—N1—Cu1	107.90 (15)	C16—C17—C18	122.9 (2)
C3—N1—C1	112.9 (2)	C16—C17—C22	118.5 (2)
C3—N1—C13	112.0 (2)	C22—C17—C18	118.6 (3)
C13—N1—Cu1	105.24 (15)	C17—C18—H18	119.8

C13—N1—C1	109.2 (2)	C19—C18—C17	120.3 (3)
C4—N2—Cu1	111.34 (16)	C19—C18—H18	119.8
C4—N2—C12	118.9 (2)	C18—C19—H19	119.7
C12—N2—Cu1	129.47 (16)	C18—C19—C20	120.6 (3)
C14—N3—Cu1	111.82 (16)	С20—С19—Н19	119.7
C14—N3—C22	119.3 (2)	C19—C20—H20	119.5
C22—N3—Cu1	128.77 (15)	$C_{21} - C_{20} - C_{19}$	120.9 (3)
C_24 —N4—Cul	173 1 (2)	$C_{21} = C_{20} = H_{20}$	119.5
N1—C1—H1A	109.1	C_{20} C_{21} H_{21}	120.0
N1—C1—H1B	109.1	C_{20} C_{21} C_{22}	120.0(2)
N1 C1 C2	109.1 112.5(2)	$C_{20} = C_{21} = C_{22}$	120.0 (2)
$H_{1} C_{1} H_{1} B$	107.8	$N_{22} = C_{21} = H_{21}$	120.0 120.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8	N3-C22-C17	120.2(2)
$C_2 = C_1 = H_1 R$	109.1	$N_{3} = C_{22} = C_{21}$	120.4(2)
	109.1	$C_{21} = C_{22} = C_{17}$	119.4 (2)
01 - 02 - 01	107.9 (2)	$01 - C_{23} - H_{23}$	109.5
OI = C2 = H2A	110.1	OI = C23 = H23B	109.5
01—C2—H2B	110.1	01—C23—H23C	109.5
C1—C2—H2A	110.1	H23A—C23—H23B	109.5
C1—C2—H2B	110.1	H23A—C23—H23C	109.5
H2A—C2—H2B	108.4	H23B—C23—H23C	109.5
N1—C3—H3A	109.3	N4—C24—C25	179.7 (4)
N1—C3—H3B	109.3	C24—C25—H25A	109.5
N1—C3—C4	111.4 (2)	C24—C25—H25B	109.5
НЗА—СЗ—НЗВ	108.0	C24—C25—H25C	109.5
С4—С3—Н3А	109.3	H25A—C25—H25B	109.5
С4—С3—Н3В	109.3	H25A—C25—H25C	109.5
N2—C4—C3	118.3 (2)	H25B—C25—H25C	109.5
N2—C4—C5	123.2 (2)	O2—C11—O3	110.8 (2)
C5—C4—C3	118.6 (2)	O2—C11—O4	111.1 (2)
С4—С5—Н5	120.5	O2—C11—O5	113.7 (5)
C6—C5—C4	119.0 (3)	O3—C11—O2A	91.7 (14)
С6—С5—Н5	120.5	O3-C11-O4	110.24 (14)
С5—С6—Н6	120.0	03-01-05	105.2 (4)
C_{5} C_{6} C_{7}	120.0(2)	04-C11-02A	88.1 (16)
C7—C6—H6	120.0 (2)	04-C11-05	1054(3)
$C_{6} - C_{7} - C_{8}$	122.0 122.7(2)	05A - C11 - 02A	103.1(3)
C6-C7-C12	122.7(2) 118.4(2)	05A - C11 - 03	113(3)
$C_{0}^{8} = C_{1}^{7} = C_{12}^{12}$	110.4(2)	05A Cl1 04	132.2(12)
$C_{0} = C_{1} = C_{12}$	110.9 (2)	05A - 01 - 04	71.0 (6)
C^{-}	117.3 121.0(2)	06 - 012 - 07	71.9(0)
C_{2}	121.0 (5)	06 - 012 - 08	111.1(0)
C_{2} C_{2} H_{3}	119.5	06-012-09	113.1(4)
	120.0	U0A - U12 - U/A	146.7 (10)
C8-C9-C10	120.0 (3)	0/	107.5 (4)
С10—С9—Н9	120.0	08-012-07	132.0 (4)
C9—C10—H10	119.6	08—Cl2—O9	113.7 (3)
C11—C10—C9	120.9 (3)	O8A—Cl2—O6A	117.7 (11)
C11—C10—H10	119.6	08A—Cl2—O7A	39.6 (8)
C10-C11-H11	119.9	O8A—C12—O9	100.0 (6)

C10—C11—C12	120.2 (2)	09—Cl2—O6A	97.7 (8)
C12—C11—H11	119.9	09—Cl2—O7A	109.1 (6)
N2—C12—C7	120.4 (2)	Cl2—O6—O7	55.2 (4)
N2—C12—C11	120.8 (2)	Cl2—O7—O6	52.9 (4)
C11—C12—C7	118.8 (2)	O8A—O7A—Cl2	60.1 (15)
N1—C13—H13A	110.0	O7A—O8A—Cl2	80.3 (16)
Cu1—O1—C2—C1	43.6 (2)	C9—C10—C11—C12	0.4 (4)
Cu1—N1—C1—C2	40.5 (3)	C10-C11-C12-N2	178.9 (2)
Cu1—N1—C3—C4	-26.8 (3)	C10—C11—C12—C7	-3.1 (3)
Cu1—N1—C13—C14	42.2 (2)	C12—N2—C4—C3	179.0 (2)
Cu1—N2—C4—C3	4.3 (3)	C12—N2—C4—C5	0.5 (4)
Cu1—N2—C4—C5	-174.2 (2)	C12—C7—C8—C9	-1.3 (4)
Cu1—N2—C12—C7	169.80 (16)	C13—N1—C1—C2	155.2 (2)
Cu1—N2—C12—C11	-12.2 (3)	C13—N1—C3—C4	-142.2 (2)
Cu1—N3—C14—C13	-5.9 (3)	C13-C14-C15-C16	178.8 (2)
Cu1—N3—C14—C15	174.49 (19)	C14—N3—C22—C17	5.5 (3)
Cu1—N3—C22—C17	-171.17 (16)	C14—N3—C22—C21	-172.1 (2)
Cu1—N3—C22—C21	11.2 (3)	C14-C15-C16-C17	3.0 (4)
N1-C1-C2-O1	-60.0 (3)	C15—C16—C17—C18	177.4 (2)
N1—C3—C4—N2	15.5 (3)	C15—C16—C17—C22	-0.3 (4)
N1—C3—C4—C5	-166.0 (2)	C16—C17—C18—C19	-175.7 (2)
N1-C13-C14-N3	-24.7 (3)	C16—C17—C22—N3	-4.0 (3)
N1-C13-C14-C15	154.9 (2)	C16—C17—C22—C21	173.6 (2)
N2-C4-C5-C6	2.6 (4)	C17—C18—C19—C20	1.4 (4)
N3—C14—C15—C16	-1.6 (4)	C18—C17—C22—N3	178.1 (2)
C1—N1—C3—C4	94.1 (3)	C18—C17—C22—C21	-4.2 (3)
C1—N1—C13—C14	-75.1 (2)	C18—C19—C20—C21	-2.6 (4)
C3—N1—C1—C2	-79.6 (3)	C19—C20—C21—C22	0.3 (4)
C3—N1—C13—C14	159.2 (2)	C20-C21-C22-N3	-179.2 (2)
C3—C4—C5—C6	-175.9 (3)	C20-C21-C22-C17	3.1 (3)
C4—N2—C12—C7	-3.8 (3)	C22—N3—C14—C13	176.9 (2)
C4—N2—C12—C11	174.2 (2)	C22—N3—C14—C15	-2.7 (3)
C4—C5—C6—C7	-2.2 (4)	C22-C17-C18-C19	2.0 (4)
C5—C6—C7—C8	-178.4 (3)	C23—O1—C2—C1	-176.4 (2)
C5—C6—C7—C12	-0.9 (4)	O6A—Cl2—O7A—O8A	-59 (2)
C6—C7—C8—C9	176.1 (3)	O6A—Cl2—O8A—O7A	147.8 (14)
C6—C7—C12—N2	4.0 (3)	O8—Cl2—O6—O7	-129.0 (5)
C6—C7—C12—C11	-174.0 (2)	O8—Cl2—O7—O6	102.4 (7)
C7—C8—C9—C10	-1.4 (4)	O9—Cl2—O6—O7	101.7 (5)
C8—C7—C12—N2	-178.4 (2)	O9—Cl2—O7—O6	-109.3 (5)
C8—C7—C12—C11	3.5 (3)	O9—Cl2—O7A—O8A	82.6 (13)
C8—C9—C10—C11	1.9 (4)	09—Cl2—O8A—O7A	-107.9 (12)

Hydrogen-bond geometry (Å, °)

Cg4, Cg5, Cg6 and Cg7 are the centroids of the N2/C4–C7/C12, N3/C14–C17/C22, C7–C12 and C17–C22 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1A····O3 ⁱ	0.97	2.68	3.402 (4)	132
C1—H1 <i>B</i> ···O9 ⁱⁱ	0.97	2.57	3.397 (4)	143
C3—H3 <i>B</i> ···O8 ⁱⁱⁱ	0.97	2.58	3.446 (6)	148
C5—H5···O5 ^{iv}	0.93	2.87	3.441 (6)	121
C6—H6···O5 ^{iv}	0.93	2.70	3.366 (6)	129
С9—Н9…О5А ^{іі}	0.93	2.65	3.29 (4)	127
C10—H10…O2 ⁱⁱ	0.93	2.77	3.427 (5)	128
C10—H10···O8 <i>A</i> ^v	0.93	2.64	3.329 (13)	131
C11—H11···N4	0.93	2.43	3.074 (3)	126
C11—H11···O8 ^v	0.93	2.85	3.443 (6)	123
C13—H13A···O4	0.97	2.59	3.220 (3)	123
C13—H13 <i>A</i> ···O8 ⁱⁱⁱ	0.97	2.70	3.378 (7)	128
C15—H15···O2 ⁱ	0.93	2.65	3.440 (5)	143
C15—H15···O2 <i>A</i> ⁱ	0.93	2.57	3.24 (3)	129
C18—H18…O4 ^v	0.93	2.55	3.417 (3)	156
C20—H20···O6 ^v	0.93	2.63	3.248 (8)	125
C21—H21···O6 ^v	0.93	2.64	3.252 (8)	124
C23—H23 <i>B</i> ···O2 ^{vi}	0.96	2.47	3.347 (6)	152
C8—H8··· <i>Cg</i> 7 ^{vii}	0.93	2.75	3.511 (3)	139
C19—H19…Cg6 ^{viii}	0.93	2.76	3.377 (3)	125
Cl1—O3… <i>Cg</i> 4		3.43 (1)	4.2079 (13)	114 (1)
Cl1—O2 <i>A</i> ··· <i>Cg</i> 4		3.90 (5)	4.2079 (13)	89 (2)
$Cg5\cdots Cg5^{\vee}$			4.0264 (14)	
$Cg5$ ···· $Cg7^{\vee}$			3.7767 (14)	

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) x+1/2, -y+3/2, z-1/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z; (vii) x-1/2, -y+3/2, z-1/2; (viii) -x+3/2, y-1/2, -z+1/2.