

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 20 July 2018 Accepted 24 July 2018

Edited by T. J. Prior, University of Hull, England

Keywords: TIGa₂As(HAsO₄)₆; CsGa₂As(HAsO₄)₆; CsAl₂As(HAsO₄)₆; AsO₆; AsO₆ octahedra; arsenate; crystal structure.

CCDC references: 1857884; 1857883; 1857882

Supporting information: this article has supporting information at journals.iucr.org/e

$M^+M_2^{3+}$ As(HAsO₄)₆ (M^+M^{3+} = TIGa, CsGa, CsAl): three new metal arsenates containing AsO₆ octahedra

Karolina Schwendtner^a* and Uwe Kolitsch^{b,c}

^aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Wien, Austria, ^bNaturhistorisches Museum, Burgring 7, 1010 Wien, Austria, and ^cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria. *Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

The crystal structures of hydrothermally synthesized (T = 493 K, 7 d) thallium(I) digallium arsenic(V) hexakis[hydrogenarsenate(V)], TlGa₂As(HAsO₄)₆, caesium digallium arsenic(V) hexakis[hydrogenarsenate(V)], CsGa₂As(HAsO₄)₆, and caesium dialuminium arsenic(V) hexakis[hydrogenarsenate(V)], CsGa₂As(HAsO₄)₆, were solved by single-crystal X-ray diffraction. The three compounds are isotypic and adopt the structure type of RbAl₂As(HAsO₄)₆ ($R\overline{3}c$), which itself represents a modification of the RbFe(HPO₄)₂ structure type and consists of a tetrahedral–octahedral framework in which the slightly disordered M^+ cations are located in channels. The three new compounds contain AsO₆ octahedra assuming the topological role of $M^{3+}O_6$ octahedra. The As–O bond lengths are among the shortest As–O bond lengths known so far in AsO₆ octahedra.

1. Chemical context

Compounds with mixed tetrahedral–octahedral (T–O) framework structures feature a broad range of different atomic arrangements, resulting in topologies with various interesting properties such as ion exchange (Masquelier *et al.*, 1996) and ion conductivity (Chouchene *et al.*, 2017), as well as unusual piezoelectric (Ren *et al.*, 2015), magnetic (Ouerfelli *et al.*, 2007) or non-linear optical features (frequency doubling) (Sun *et al.*, 2017).

The three new compounds were obtained during an extensive experimental study of the system M^+-M^{3+} –O–(H)–As⁵⁺ (M^+ = Li, Na, K, Rb, Cs, Ag, Tl, NH₄; M^{3+} = Al, Ga, In, Sc, Fe, Cr, Tl). This system was found to contain representatives of a large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007*a*,*b*,*c*, 2017*a*, 2018*a*; Schwendtner, 2006).

Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO₄)₂-type (Lii & Wu, 1994; $R\overline{3}c$), and relatives thereof (Schwendtner & Kolitsch, 2018*a*) was observed to show a large crystalchemical flexibility that allows the incorporation of a wide variety of cations. The three title compounds, TlGa₂As(H-AsO₄)₆, CsGa₂As(HAsO₄)₆ and CsAl₂As(HAsO₄)₆ are further representatives of one of these recently described variations of the RbFe(HPO₄)₂ type, *viz*. the RbAl₂As(H-AsO₄)₆ type (Schwendtner & Kolitsch, 2018*a*). It also crystallizes in $R\overline{3}c$ and up to now members with RbAl and CsFe

research communications

Table 1

Comparison of unit-compounds.	ell parameters (A	(\dot{A}, \dot{A}^3) for the six	known isotypic
Compound	а	С	V
TIGa2As(HAsO4)	8 484 (1)	50.724 (11)	3161.9 (10)

Compound	а	С	V
TlGa2As(HAsO4)6	8.484 (1)	50.724 (11)	3161.9 (10)
RbGa ₂ As(HAsO ₄) ₆	8.491 (1)	50.697 (11)	3165.4 (10)
CsGa ₂ As(HAsO ₄) ₆	8.520(1)	50.608 (11)	3181.4 (10)
RbAl ₂ As(HAsO ₄) ₆	8.410(1)	50.287 (11)	3080.2 (10)
$CsAl_2As(HAsO_4)_6$	8.439 (1)	50.169 (11)	3094.2 (10)
CsFe ₂ As(HAsO ₄) ₆	8.582 (1)	50.942 (11)	3249.3 (10)

(Schwendtner & Kolitsch, 2018*a*) and RbGa (Schwendtner & Kolitsch, 2018*c*) as M^+M^{3+} cation combinations are known (Table 1). While all previously known M^+M^{3+} combinations adopting this structure type also have representatives adopting the RbFe(HPO₄)₂ type, this is not the case for the three new members.

The title compounds are rare examples of compounds containing AsO₆ octahedra. According to our review article, only about 3% of all reported arsenates(V) contain AsO₆ polyhedra (Schwendtner & Kolitsch, 2007a). Presently (Schwendtner & Kolitsch, 2018a), 41 inorganic compounds containing As in an octahedral coordination are known, including the recently published RbGa₂As(HAsO₄)₆ (Schwendtner & Kolitsch, 2018c) and the three new compounds of this study. While no arsenates(V) containing both Tl and Ga are known in the ICSD (FIZ, 2018) so far, there are two arsenates(V) containing both Cs and Ga, namely $Cs_2Ga_3(As_3O_{10})(AsO_4)_2$ (Lin & Lii, 1996) and CsGa(H_{1.5}AsO₄)₂(H₂AsO₄) (Schwendtner & Kolitsch, 2005), and one arsenate(V) containing both Cs and Al, CsAl(H₂AsO₄)(HAsO₄) (Schwendtner & Kolitsch, 2007b). In addition to the crystal structures contained in the ICSD, an indexed powder diffraction pattern of the diarsenate CsAlAs₂O₇ has been published (Boughzala & Jouini, 1992).

2. Structural commentary

The three title compounds are isotypic and new representatives of the RbAl₂As(HAsO₄)₆-structure type ($R\overline{3}c$; Schwendtner & Kolitsch, 2018*a*), which is a recently described variation of the RbFe(HPO₄)₂ structure type ($R\overline{3}c$; Lii & Wu, 1994) and closely related to the following two structure types:

Structure drawing of TlGa₂As(HAsO₄)₆ viewed along *c*. Red octahedra = AsO₆, blue-green octahedra = GaO₆, yellow tetrahedra = AsO₄; hydrogen atoms are shown as small grey spheres. Hydrogen bonds are shown as blue lines (solid for D-H and dotted for $H \cdots A$). For the three disordered Tl positions, the displacement parameters are drawn at the 80% probability level. The unit cell is outlined.

 $(NH_4)Fe(HPO_4)_2$ (P1; Yakubovich, 1993) and RbAl(HAsO₄)₂ (R32; Schwendtner & Kolitsch, 2018a). The reader is referred to our latest papers for a detailed discussion of the four related structure types (Schwendtner & Kolitsch, 2018a) and a review of compounds crystallizing in the $RbFe(HPO_4)_2$ and $(NH_4)Fe(HPO_4)_2$ structure types (Schwendtner & Kolitsch, 2018b). All of these modifications share a basic tetrahedraloctahedral framework structure featuring interpenetrating channels, which host the M^+ cations (Figs. 1, 2). The fundamental building unit in all these structure types contains $M^{3+}O_6$ octahedra, which are connected *via* their six corners to six protonated AsO₄ tetrahedra, thereby forming an $M^{3+}As_6O_{24}$ unit (Fig. 3). These units are in turn connected via three corners to other $M^{3+}O_6$ octahedra. The free, protonated corner of each AsO₄ tetrahedron forms a hydrogen bond to the neighbouring M^{3+} As₆O₂₄ group (Table 2). The M^{3+} As₆O₂₄ units are arranged in layers perpendicular to the c_{hex} axis (Fig. 2). When compared to the $RbFe(HPO_4)_2$ structure type, in TlGa₂As(HAsO₄)₆, CsGa₂As(HAsO₄)₆ and CsAl₂As- $(HAsO_4)_6$ one third of all M^{3+} cations are replaced by As^{5+} .

Structure drawing of the framework structure of $TIGa_2As(HAsO_4)_6$ viewed along *a*. The unit cell is outlined.

	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
CsAl ₂ As(HAsO ₄) ₆	$O3-H\cdots O4^{xiv}$	0.875 (19)	1.94 (2)	2.7321 (18)	150 (3)
CsGa ₂ As(HAsO ₄) ₆	$O3-H \cdots O4^{xiv}$	0.861 (18)	1.93 (2)	2.727 (2)	154 (3)
TlGa ₂ As(HAsO ₄) ₆	$O3-H$ ··· $O4^{xiv}$	0.871 (19)	1.94 (3)	2.728 (2)	150 (4)

Hydrogen-bond geometry (A	Å, °) for CsAl ₂ As(HAsO ₄) ₆	, CsGa ₂ As(HAsO ₄) ₆ and	TlGa2As(HAsO4)6.

Symmetry code: (xiv) $y, x - 1, -z + \frac{3}{2}$.

Table 3

This requires that two thirds of all M^+ cations are omitted to achieve charge balance.

Like many other and all isotypic compounds containing AsO_6 octahedra, the three title compounds were grown by 'dry' hydrothermal techniques (using arsenic acid without the addition of water). The extreme abundance of As during the synthesis and the formation of a melt of arsenic acid promotes the octahedral coordination of As. As a result of the smaller ionic radius of As⁵⁺ this substitution also has an effect on the unit-cell parameters (Table 3) and the pore diameter. While the lengths of the c axis of all so far known $RbFe(HPO_4)_2$ -type arsenates range from 52.87 (1) to 56.99 (1) Å (Schwendtner and Kolitsch, 2018b) and correlate well with the sizes of the involved M^+ and M^{3+} cations, the length of this axis in the RbAl₂As(HAsO₄)₆-type compounds is much smaller and the range of lengths much narrower [50.17 (1)-50.94 (1) Å, see Table 1]. The c unit-cell parameter correlates with the size of the involved M^{3+} cation, while the M^+ cations seem to show a negative correlation with the *c* parameter (Table 1). The unitcell parameters a and V correlate well with the size of both cations, but the influence of the M^+ cations is stronger. It seems that in order to incorporate the small AsO₆ octahedron in the structure the cell widens along the *a* axis to incorporate the large M^+ cations and is strongly compressed along c. This effect is also visible in the hydrogen bonds that are very strong in the RbFe(HPO₄)₂-type arsenates with $D-H\cdots A$ bond lengths ranging from 2.598 (2) to 2.634 (2) Å, while for the $RbAl_2As(HAsO_4)_6$ -type arsenates they range from 2.727 (2) to 2.7481 (19) Å (Schwendtner & Kolitsch, 2017b, 2018a,b,c; this paper).

Та	bl	e	3
----	----	---	---

Comparison	of	selected	bond	lengths	(Å)	and	BVSs ^a	for	CsAl ₂ A-
$s(HAsO_4)_6, 0$	CsG	a2As(HA	$(sO_4)_6$	and TlGa	a ₂ As(HAs	$O_4)_6.$		

	CsAl ₂ As(HAsO ₄) ₆	CsGa ₂ As(HAsO ₄) ₆	TlGa2As(HAsO4)6
$M^{+}1A - O2(6 \times)$	3.4707 (12)	3.4719 (15)	3.4419 (15)
$M^+1A - O3(6\times)$	3.4066 (16)	3.4829 (19)	3.4358 (19)
$< M^{+}1A - O > /BVS$	3.439/0.75	3.477/0.68	3.439/0.46
M^{3+} -O2 (3×)	1.8933 (13)	1.9612 (15)	1.9648 (14)
$M^{3+} - O4(3 \times)$	1.8963 (12)	1.9679 (15)	1.9609 (14)
$< M^{3+} - O > / BVS$	1.895/3.07	1.965/3.09	1.963/3.11
$^{[6]}As - O(6 \times)$	1.8104 (11)	1.8109 (14)	1.8062 (14)
< ^[6] As-O>/BVS	1.810/5.27	1.811/5.27	1.806/5.34
^[4] As-O1	1.7094 (12)	1.7089 (14)	1.7094 (14)
^[4] As-O2	1.6641 (11)	1.6646 (14)	1.6641 (14)
^[4] As-O4	1.6639 (12)	1.6670 (15)	1.6672 (14)
^[4] As-O3(H)	1.7108 (13)	1.7125 (17)	1.7115 (16)
< ^[4] As-O>/BVS	1.687/5.00	1.688/4.98	1.688/4.99

Note: (a) Gagné & Hawthorne (2015).

Acta Cryst. (2018). E74, 1163-1167

In all three title compounds, the M^+ cations are 12-coordinated (Figs. 3, 4), and the average M^+ —O bond lengths (Table 3) are longer than the average bond lengths of M^+O_{12} polyhedra of 3.377 Å for Cs (Gagné & Hawthorne, 2016) and 3.195 Å for Tl⁺ (Gagné & Hawthorne, 2018), thus leading to rather low bond-valence sums (BVSs) (Gagné & Hawthorne, 2015) of only 0.46–0.75 valence units (v.u.). The lowest BVS sum was found for ^[12]Tl, which shows an extremely long average Tl—O bond length (3.439 Å), considerably longer than the longest previously reported value in the literature, 3.304 Å (Gagné & Hawthorne, 2018). Considering the positions of the disordered Tl-atom positions, the BVSs would increase to 0.54 (Tl1*B*) and 0.68 v.u. (Tl1*C*).

Figure 3

Figure 4

Tl positional disorder and Tl-O bonding scheme for TlGa₂As(HAsO₄)₆ viewed along *a* (*a*) and *c* (*b*). Displacement ellipsoids for Tl are drawn at the 80% probability level.

research communications

Table 4Experimental details.

	CsAl ₂ As(HAsO ₄) ₆	CsGa ₂ As(HAsO ₄) ₆	TlGa2As(HAsO4)6
Crystal data			
M _r	1101.36	1186.84	1258.30
Crystal system, space group	Trigonal, R3c:H	Trigonal, $R\overline{3}c:H$	Trigonal, $R\overline{3}c:H$
Temperature (K)	293	293	293
<i>a</i> , <i>c</i> (Å)	8.439 (1), 50.169 (11)	8.5199 (10), 50.608 (11)	8.484 (1), 50.724 (11)
$V(Å^3)$	3094.2 (10)	3181.4 (10)	3161.9 (10)
Ζ	6	6	6
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	13.14	15.18	21.18
Crystal size (mm)	$0.08\times0.07\times0.06$	$0.07 \times 0.07 \times 0.07$	$0.08\times0.07\times0.05$
Data collection			
Diffractometer	Nonius KappaCCD single-crystal four-circle	Nonius KappaCCD single-crystal four-circle	Nonius KappaCCD single-crystal four-circle
Absorption correction	Multi-scan (<i>HKL SCALEPACK</i> ; Otwinowski <i>et al.</i> , 2003)	Multi-scan (<i>HKL SCALEPACK</i> ; Otwinowski <i>et al.</i> , 2003)	Multi-scan HKL SCALEPACK (Otwinowski et al., 2003)
T_{\min}, T_{\max}	0.420, 0.506	0.416, 0.416	0.200, 0.347
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4584, 1259, 1153	4712, 1293, 1134	4682, 1285, 1129
R _{int}	0.014	0.018	0.024
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.757	0.757	0.757
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.015, 0.034, 1.11	0.018, 0.041, 1.16	0.018, 0.041, 1.10
No. of reflections	1259	1293	1285
No. of parameters	65	65	71
No. of restraints	2	2	2
H-atom treatment	All H-atom parameters refined	All H-atom parameters refined	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.61, -0.45	0.86, -0.73	0.74, -0.73

Computer programs: COLLECT (Nonius, 2003), HKL DENZO, SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

These loose bondings lead to considerable positional disorder of the M^+ cations in their hosting voids, which were modelled by two overlapping Cs positions between 0.15 (2) and 0.25 (5) Å apart (Fig. 3). The main Cs-atom electron densities with 62 and 72% for the Al- and Ga-containing compounds, respectively, are located on the central position Cs1A. For the Tl compound, only 33% of the electron-density distribution is explained by the central Tl1A position, 36% by the next nearest position Tl1B 0.407 (7) Å away and 27% by the furthest Tl1C position 0.766 (9) Å apart from the central position - so three positions for Tl were needed to get a good fit explaining the electron-density distribution (Fig. 4). The effect of slightly disordered M^+ cations in this type of compound is well known and was found for most of the previously cited compounds crystallizing in these related structure types; in TlGa₂As(HAsO₄)₆ the positional disorder shows its most extreme form, probably as a result of the influence of the lone electron pair on the Tl⁺ cation.

In contrast to the underbonded M^+ cations the AsO₆ octahedra are overbonded. The six As—O distances in each of these isotypic compounds are identical and among the shortest of all known AsO₆-containing compounds. TlGa₂As(HAsO₄)₆ shows the shortest average ^[6]As—O distance known so far of 1.806 Å, leading to rather high BVSs of 5.34 v.u. (after Gagné & Hawthorne, 2015). The grand mean As—O bond distance in AsO₆ octahedra in inorganic compounds is 1.830 (2) Å according to Schwendtner & Kolitsch (2007*a*); this value was determined from 33 AsO₆ octahedra of 31 compounds. Gagné

& Hawthorne (2018) determined an identical, but less precise, value of 1.83 (3) Å, based on only 13 AsO₆ octahedra in AsO₆-containing compounds.

A further, indirect effect of the substituting AsO_6 octahedra is a notable change in the As-O distances of the protonated AsO_4 tetrahedra. The average As-O distance in these AsO_4 tetrahedra, with values between 1.687 and 1.688 Å, is slightly larger in all three compounds than the statistical average of 1.686 (10) Å (Schwendtner, 2008). The BVSs (Gagné & Hawthorne, 2015) are close to ideal values (4.98–5.00 v.u.). The AsO₄ tetrahedra have two short bond lengths to connected $M^{3+}O_6$ octahedra, but the ^[4]As-O bond length of the O atom shared with the AsO₆ octahedra is elongated (Table 3) because of ^[4]As-O-^[6]As repulsion. The ^[4]As-O···H bond is therefore shorter than the average distance of As-O···H bonds in HAsO₄ groups [1.72 (3) Å; Schwendtner, 2008].

The average M^{3+} —O bond lengths of the octahedrally coordinated Ga cations (1.963–1.965 Å) and Al cations (1.895 Å) are slightly shorter than the grand mean averages of 1.978 (17) and 1.903 (14) Å for ^[6]Ga—O and ^[6]Al—O, respectively (Gagné & Hawthorne, 2018), explaining the slightly higher corresponding BVSs of 3.07 to 3.11 v.u.

3. Synthesis and crystallization

The compounds were grown by hydrothermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using

Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm³. Reagent-grade Cs₂CO₃, Tl₂CO₃, Ga₂O₃, Al₂O₃ and H₃AsO₄·0.5H₂O were used as starting reagents in approximate volume ratios of $M^+:M^{3+}:As$ of 1:1:3, 1:2:4 and 1:1:2 for the TlGa-, CsGa- and CsAl-synthesis batches, respectively. No additional water was added and arsenic acid was present in excess to promote the growth of crystals from a melt or even vapor of arsenic acid under extremely acidic conditions. All three compounds formed large, colourless, pseudo-octahedral crystals, TlGa₂As-(HAsO₄)₆ was accompanied by colourless, acicular-to-prismatic crystals of Ga(H₂AsO₄)(H₂As₂O₇) (Schwendtner & Kolitsch, 2017*a*). All crystals were extracted mechanically and not further washed; they are slightly hygroscopic and decompose slowly over a period of several years.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4.

For reasons of comparison, the coordinates of RbAl₂As-(HAsO₄)₆ (Schwendtner & Kolitsch, 2018*a*) were used for the refinement. These coordinates are also comparable to the related RbFe(HPO₄)₂ structure type ($R\overline{3}c$; Lii & Wu, 1994). In all compounds, O—H bonds were restrained to 0.9±0.02 Å. During the last refinement steps, residual electron-density peaks of up to 5.54 e Å⁻³ were located close to the M^+ sites, suggesting irregular displacement parameters and split positions, similar to what was found for many other RbFe(HPO₄)₂type compounds and relatives thereof (Lesage *et al.*, 2007; Schwendtner and Kolitsch, 2018*a*,*b*). Therefore, a further position M^+1B was included in the refinements, which refined to low occupancies and led to considerable decreases in the *R* factors and weight parameters for all compounds.

This, however, was not satisfactory for TlGa₂As(HAsO₄)₆, where it led to negative electron densities of $-2.3 \text{ e} \text{ Å}^{-3}$ at the centre of the Tl1*A* position, probably an effect of the lone electron pair. Therefore, the Tl atoms were again removed from the model and the three highest residual electron densities from the difference-Fourier map were then refined simultaneously as Tl1*a*, Tl1*b* and Tl1*c*. This led to a much better fit explaining the disordered electron density. The refined bulk occupancies on the disordered *M*⁺ positions in all compounds were very close to 1, but a restraint was still set in all cases to give a total occupancy of 1.00. The final residual electron densities in all title compounds are < 1 e Å⁻³.

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner. The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

References

- Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419-1422.
- Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
- Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, **301**, 78–85.
- FIZ (2018). Inorganic Crystal Structure Database. Version build, 20180504–0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.
- Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.
- Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.
- Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
- Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.
- Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.
- Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137-1138.
- Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.
- Nonius, B. V. (2003). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.
- Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
- Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
- Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.
- Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
- Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.
- Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.
- Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.
- Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.
- Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.
- Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.
- Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.
- Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.
- Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.
- Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74. Submitted (Co-editor code ff2155).
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.

Acta Cryst. (2018). E74, 1163-1167 [https://doi.org/10.1107/S2056989018010721]

 $M^+M^{3+}_2$ As(HAsO₄)₆ (M^+M^{3+} = TIGa, CsGa, CsAl): three new metal arsenates containing AsO₆ octahedra

Karolina Schwendtner and Uwe Kolitsch

Computing details

For all structures, data collection: *COLLECT* (Nonius, 2003). Cell refinement: (*HKL SCALEPACK*; Otwinowski *et al.*, 2003) for CsAl2AsHAsO46; *HKL SCALEPACK* (Otwinowski *et al.*, 2003) for CsGa2AsHAsO46, TlGa2AsHAsO46. For all structures, data reduction: *HKL DENZO*, *SCALEPACK* (Otwinowski *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Caesium dialuminium arsenic(V) hexakis[hydrogen arsenate(V)] (CsAl2AsHAsO46)

Crystal data

CsAl₂As(HAsO₄)₆ $M_r = 1101.36$ Trigonal, $R\overline{3}c$:H a = 8.439 (1) Å c = 50.169 (11) Å V = 3094.2 (10) Å³ Z = 6F(000) = 3060

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski *et al.*, 2003) $T_{\min} = 0.420, T_{\max} = 0.506$ 4584 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.034$ S = 1.111259 reflections 65 parameters 2 restraints Primary atom site location: structure-invariant direct methods $D_x = 3.546 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2513 reflections $\theta = 2.4-32.5^{\circ}$ $\mu = 13.14 \text{ mm}^{-1}$ T = 293 KLarge pseudo-octahedra, colourless $0.08 \times 0.07 \times 0.06 \text{ mm}$

1259 independent reflections 1153 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 32.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -75 \rightarrow 75$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0121P)^2 + 14.2108P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.61$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³ Extinction correction: SHELXL-2016/6 (Sheldrick 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.000152 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Cs1A	0.000000	0.000000	0.750000	0.0317 (19)	0.624 (3)	
Cs1B	0.000000	-0.018 (3)	0.750000	0.023 (2)	0.1254 (9)	
Al1	0.333333	0.666667	0.75637 (2)	0.00616 (14)		
As2	0.333333	0.666667	0.666667	0.00670 (8)		
As1	-0.44835 (2)	-0.41203 (2)	0.71182 (2)	0.00739 (5)		
01	0.39564 (16)	-0.47264 (16)	0.68660 (2)	0.0100 (2)		
O2	-0.46035 (16)	-0.27705 (16)	0.73495 (2)	0.0099 (2)		
O3	-0.23352 (18)	-0.28644 (19)	0.69863 (3)	0.0178 (3)		
O4	0.48577 (16)	-0.13040 (16)	0.77831 (2)	0.0102 (2)		
Н	-0.184 (5)	-0.355 (5)	0.7004 (7)	0.066 (11)*		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1A	0.029 (2)	0.029 (2)	0.0366 (19)	0.0146 (12)	0.000	0.000
Cs1B	0.016 (3)	0.028 (4)	0.021 (2)	0.0082 (15)	0.0021 (18)	0.0011 (9)
Al1	0.0066 (2)	0.0066 (2)	0.0053 (3)	0.00329 (11)	0.000	0.000
As2	0.00756 (11)	0.00756 (11)	0.00499 (15)	0.00378 (5)	0.000	0.000
As1	0.00831 (8)	0.00780 (8)	0.00710 (8)	0.00481 (6)	-0.00008(5)	0.00030 (5)
01	0.0132 (5)	0.0097 (5)	0.0085 (5)	0.0067 (4)	-0.0030 (4)	0.0000 (4)
O2	0.0106 (5)	0.0099 (5)	0.0097 (5)	0.0055 (4)	0.0007 (4)	-0.0017 (4)
03	0.0104 (5)	0.0177 (6)	0.0245 (6)	0.0065 (5)	0.0071 (5)	0.0057 (5)
O4	0.0115 (5)	0.0082 (5)	0.0123 (5)	0.0060 (4)	-0.0028 (4)	-0.0035 (4)

Geometric parameters (Å, °)

Cs1A—Cs1B ⁱ	0.15 (2)	Cs1B—O2 ⁱⁱⁱ	3.457 (2)	
Cs1A—Cs1B ⁱⁱ	0.15 (2)	Cs1B—O3 ⁱⁱ	3.507 (14)	
Cs1A—O3 ⁱⁱⁱ	3.4066 (15)	Cs1B—O3 ^v	3.507 (14)	
Cs1A—O3 ⁱⁱ	3.4066 (16)	Cs1B—O2 ^v	3.609 (19)	
Cs1A—O3 ^{iv}	3.4066 (16)	Cs1B—O2 ⁱⁱ	3.609 (19)	
Cs1A—O3	3.4066 (16)	Cs1B—O4 ^{vi}	4.018 (19)	
Cs1A—O3 ^v	3.4066 (15)	Cs1B—O4 ^{vii}	4.018 (19)	
Cs1A—O3 ⁱ	3.4066 (16)	Cs1B—As1 ⁱ	4.039 (10)	
Cs1A—O2	3.4707 (13)	Cs1B—As1 ^{iv}	4.039 (10)	

$Cs1A - O2^{v}$	3.4707 (12)	Cs1B—As1	4.057 (7)
Cs1A—O2 ⁱ	3.4707 (12)	Cs1B—As1 ⁱⁱⁱ	4.057 (7)
Cs1A—O2 ^{iv}	3.4708 (13)	Al1—O2 ^{viii}	1.8933 (12)
Cs1A—O2 ⁱⁱⁱ	3.4708 (13)	Al1—O2 ⁱⁱ	1.8933 (13)
Cs1A—O2 ⁱⁱ	3.4708 (13)	Al1—O2 ^{ix}	1.8934 (12)
Cs1A—As1	4.1132 (5)	Al1—O4 ^x	1.8963 (13)
Cs1A—As1 ^v	4.1132 (4)	Al1—O4 ⁱ	1.8963 (12)
Cs1A—As1 ⁱ	4.1132 (5)	Al1—O4 ^{xi}	1.8963 (12)
Cs1A—As1 ^{iv}	4.1133 (4)	As2—O1 ^{xii}	1.8103 (12)
Cs1A—As1 ⁱⁱⁱ	4.1133 (4)	As2—O1 ^{xiii}	1.8103 (12)
Cs1A—As1 ⁱⁱ	4.1133 (5)	As2—O1 ^{xi}	1.8104 (11)
Cs1B—Cs1B ⁱ	0.27 (4)	As2—O1 ⁱ	1.8104 (12)
Cs1B—Cs1B ⁱⁱ	0.27 (4)	As2—O1 ^{xiv}	1.8104 (11)
Cs1B—O3 ⁱⁱⁱ	3.345 (8)	As2—O1 ^x	1.8104 (11)
Cs1B—O3	3.345 (8)	As1—O4 ⁱⁱⁱ	1.6639 (12)
Cs1B—O2 ⁱ	3.352 (16)	As1—O2	1.6641 (11)
Cs1B—O2 ^{iv}	3.352 (16)	As1—O1 ^{xv}	1.7094 (12)
Cs1B—O3 ^{iv}	3.376 (4)	As1—O3	1.7108 (13)
Cs1B—O3 ⁱ	3.376 (4)	О3—Н	0.875 (19)
Cs1B—O2	3.457 (2)		
Cs1B ⁱ —Cs1A—Cs1B ⁱⁱ	120.0 (2)	O3 ^v —Cs1B—O4 ^{vii}	153.1 (3)
Cs1B ⁱ —Cs1A—O3 ⁱⁱⁱⁱ	77.07 (3)	O2 ^v —Cs1B—O4 ^{vii}	143.57 (3)
Cs1B ⁱⁱ —Cs1A—O3 ⁱⁱⁱ	130.09 (4)	O2 ⁱⁱ —Cs1B—O4 ^{vii}	146.38 (3)
Cs1B ⁱ —Cs1A—O3 ⁱⁱ	77.07 (3)	O4 ^{vi} —Cs1B—O4 ^{vii}	50.4 (3)
Cs1B ⁱⁱ —Cs1A—O3 ⁱⁱ	65.14 (12)	Cs1B ⁱ —Cs1B—As1 ⁱ	91.9 (2)
O3 ⁱⁱⁱ —Cs1A—O3 ⁱⁱ	154.15 (5)	Cs1B ⁱⁱ —Cs1B—As1 ⁱ	141.11 (14)
Cs1B ⁱ —Cs1A—O3 ^{iv}	130.09 (3)	O3 ⁱⁱⁱ —Cs1B—As1 ⁱ	78.8 (2)
Cs1B ⁱⁱ —Cs1A—O3 ^{iv}	65.14 (12)	O3—Cs1B—As1 ⁱ	80.6 (2)
O3 ⁱⁱⁱ —Cs1A—O3 ^{iv}	68.99 (4)	O2 ⁱ —Cs1B—As1 ⁱ	23.77 (5)
O3 ⁱⁱ —Cs1A—O3 ^{iv}	130.29 (5)	$O2^{iv}$ —Cs1B—As1 ⁱ	101.5 (5)
Cs1B ⁱ —Cs1A—O3	130.09 (3)	$O3^{iv}$ — $Cs1B$ — $As1^i$	137.7 (6)
Cs1B ⁱⁱ —Cs1A—O3	77.07 (14)	O3 ⁱ —Cs1B—As1 ⁱ	24.66 (9)
O3 ⁱⁱⁱ —Cs1A—O3	130.29 (5)	O2—Cs1B—As1 ⁱ	126.1 (3)
O3 ⁱⁱ —Cs1A—O3	68.99 (4)	O2 ⁱⁱⁱ —Cs1B—As1 ⁱ	49.09 (10)
O3 ^{iv} —Cs1A—O3	99.81 (5)	O3 ⁱⁱ —Cs1B—As1 ⁱ	92.71 (5)
Cs1B ⁱ —Cs1A—O3 ^v	65.14 (4)	O3 ^v —Cs1B—As1 ⁱ	125.43 (12)
Cs1B ⁱⁱ —Cs1A—O3 ^v	77.07 (14)	O2 ^v —Cs1B—As1 ⁱ	143.1 (4)
O3 ⁱⁱⁱ —Cs1A—O3 ^v	68.99 (4)	O2 ⁱⁱ —Cs1B—As1 ⁱ	92.74 (12)
O3 ⁱⁱ —Cs1A—O3 ^v	99.81 (5)	O4 ^{vi} —Cs1B—As1 ⁱ	64.3 (3)
O3 ^{iv} —Cs1A—O3 ^v	68.99 (4)	O4 ^{vii} —Cs1B—As1 ⁱ	65.5 (3)
O3—Cs1A—O3 ^v	154.15 (5)	Cs1B ⁱ —Cs1B—As1 ^{iv}	141.1 (3)
Cs1B ⁱ —Cs1A—O3 ⁱ	65.14 (4)	Cs1B ⁱⁱ —Cs1B—As1 ^{iv}	91.9 (4)
Cs1B ⁱⁱ —Cs1A—O3 ⁱ	130.09 (4)	O3 ⁱⁱⁱ —Cs1B—As1 ^{iv}	80.6 (2)
O3 ⁱⁱⁱ —Cs1A—O3 ⁱ	99.81 (5)	O3—Cs1B—As1 ^{iv}	78.8 (2)
O3 ⁱⁱ —Cs1A—O3 ⁱ	68.99 (4)	O2 ⁱ —Cs1B—As1 ^{iv}	101.5 (5)
O3 ^{iv} —Cs1A—O3 ⁱ	154.15 (5)	O2 ^{iv} —Cs1B—As1 ^{iv}	23.77 (5)
O3—Cs1A—O3 ⁱ	68.99 (4)	O3 ^{iv} —Cs1B—As1 ^{iv}	24.66 (9)
	× /		

O3 ^v —Cs1A—O3 ⁱ	130.29 (5)	O3 ⁱ —Cs1B—As1 ^{iv}	137.7 (6)
Cs1B ⁱ —Cs1A—O2	153.70 (4)	O2—Cs1B—As1 ^{iv}	49.09 (10)
Cs1B ⁱⁱ —Cs1A—O2	38.5 (2)	O2 ⁱⁱⁱ —Cs1B—As1 ^{iv}	126.1 (3)
O3 ⁱⁱⁱ —Cs1A—O2	127.04 (3)	O3 ⁱⁱ —Cs1B—As1 ^{iv}	125.43 (12)
O3 ⁱⁱ —Cs1A—O2	78.39 (3)	O3 ^v —Cs1B—As1 ^{iv}	92.71 (5)
O3 ^{iv} —Cs1A—O2	62.83 (3)	O2 ^v —Cs1B—As1 ^{iv}	92.74 (12)
O3—Cs1A—O2	45.72 (3)	O2 ⁱⁱ —Cs1B—As1 ^{iv}	143.1 (4)
O3 ^v —Cs1A—O2	110.37 (3)	O4 ^{vi} —Cs1B—As1 ^{iv}	65.5 (3)
O3 ⁱ —Cs1A—O2	113.93 (3)	O4 ^{vii} —Cs1B—As1 ^{iv}	64.3 (3)
Cs1B ⁱ —Cs1A—O2 ^v	83.46 (2)	As1 ⁱ —Cs1B—As1 ^{iv}	124.1 (5)
$Cs1B^{ii}$ — $Cs1A$ — $O2^{v}$	38.5 (2)	Cs1B ⁱ —Cs1B—As1	135.2 (3)
O3 ⁱⁱⁱ —Cs1A—O2 ^v	113.93 (3)	Cs1B ⁱⁱ —Cs1B—As1	84.4 (4)
O3 ⁱⁱ —Cs1A—O2 ^v	62.83 (3)	O3 ⁱⁱⁱ —Cs1B—As1	129.9 (5)
$O3^{iv}$ —Cs1A—O2 ^v	78.39 (3)	O3—Cs1B—As1	24.38 (5)
O3—Cs1A—O2 ^v	110.37 (3)	O2 ⁱ —Cs1B—As1	96.4 (4)
$O3^{v}$ —Cs1A—O2 ^v	45.72 (3)	O2 ^{iv} —Cs1B—As1	49.35 (14)
$O3^{i}$ —Cs1A— $O2^{v}$	127.04 (3)	O3 ^{iv} —Cs1B—As1	78.22 (15)
$O2$ —Cs1A— $O2^{v}$	77.02 (4)	O3 ⁱ —Cs1B—As1	94.4 (2)
Cs1B ⁱ —Cs1A—O2 ⁱ	83.46 (2)	O2—Cs1B—As1	23.92 (7)
Cs1B ⁱⁱ —Cs1A—O2 ⁱ	153.70 (19)	O2 ⁱⁱⁱ —Cs1B—As1	149.8 (5)
O3 ⁱⁱⁱ —Cs1A—O2 ⁱ	62.83 (3)	O3 ⁱⁱ —Cs1B—As1	78.48 (6)
O3 ⁱⁱ —Cs1A—O2 ⁱ	113.93 (3)	O3 ^v —Cs1B—As1	132.2 (2)
O3 ^{iv} —Cs1A—O2 ⁱ	110.37 (3)	O2 ^v —Cs1B—As1	96.79 (18)
$O3$ — $Cs1A$ — $O2^i$	78.39 (3)	O2 ⁱⁱ —Cs1B—As1	121.4 (3)
$O3^{v}$ —Cs1A—O2 ⁱ	127.04 (3)	O4 ^{vi} —Cs1B—As1	92.2 (4)
O3 ⁱ —Cs1A—O2 ⁱ	45.72 (3)	O4 ^{vii} —Cs1B—As1	47.32 (16)
$O2$ —Cs1A— $O2^i$	115.404 (13)	As1 ⁱ —Cs1B—As1	102.3 (3)
$O2^{v}$ —Cs1A—O2 ⁱ	166.91 (4)	As1 ^{iv} —Cs1B—As1	57.07 (13)
Cs1B ⁱ —Cs1A—O2 ^{iv}	153.70 (4)	Cs1B ⁱ —Cs1B—As1 ⁱⁱⁱ	84.4 (2)
Cs1B ⁱⁱ —Cs1A—O2 ^{iv}	83.5 (2)	Cs1B ⁱⁱ —Cs1B—As1 ⁱⁱⁱ	135.20 (15)
O3 ⁱⁱⁱ —Cs1A—O2 ^{iv}	78.39 (3)	O3 ⁱⁱⁱ —Cs1B—As1 ⁱⁱⁱ	24.38 (5)
O3 ⁱⁱ —Cs1A—O2 ^{iv}	127.04 (3)	O3—Cs1B—As1 ⁱⁱⁱ	129.9 (5)
O3 ^{iv} —Cs1A—O2 ^{iv}	45.72 (3)	O2 ⁱ —Cs1B—As1 ⁱⁱⁱ	49.35 (14)
O3—Cs1A—O2 ^{iv}	62.83 (3)	O2 ^{iv} —Cs1B—As1 ⁱⁱⁱ	96.4 (4)
O3 ^v —Cs1A—O2 ^{iv}	113.93 (3)	O3 ^{iv} —Cs1B—As1 ⁱⁱⁱ	94.4 (2)
O3 ⁱ —Cs1A—O2 ^{iv}	110.37 (3)	O3 ⁱ —Cs1B—As1 ⁱⁱⁱ	78.22 (15)
O2—Cs1A—O2 ^{iv}	52.60 (4)	O2—Cs1B—As1 ⁱⁱⁱ	149.8 (5)
$O2^{v}$ —Cs1A—O2 ^{iv}	115.404 (13)	O2 ⁱⁱⁱ —Cs1B—As1 ⁱⁱⁱ	23.92 (7)
O2 ⁱ —Cs1A—O2 ^{iv}	77.02 (4)	O3 ⁱⁱ —Cs1B—As1 ⁱⁱⁱ	132.2 (2)
Cs1B ⁱ —Cs1A—O2 ⁱⁱⁱ	38.51 (2)	O3 ^v —Cs1B—As1 ⁱⁱⁱ	78.48 (6)
Cs1B ⁱⁱ —Cs1A—O2 ⁱⁱⁱ	153.70 (19)	O2 ^v —Cs1B—As1 ⁱⁱⁱ	121.4 (3)
O3 ⁱⁱⁱ —Cs1A—O2 ⁱⁱⁱ	45.72 (3)	O2 ⁱⁱ —Cs1B—As1 ⁱⁱⁱ	96.80 (18)
O3 ⁱⁱ —Cs1A—O2 ⁱⁱⁱ	110.37 (3)	O4 ^{vi} —Cs1B—As1 ⁱⁱⁱ	47.32 (16)
O3 ^{iv} —Cs1A—O2 ⁱⁱⁱ	113.93 (3)	O4 ^{vii} —Cs1B—As1 ⁱⁱⁱ	92.2 (4)
O3—Cs1A—O2 ⁱⁱⁱ	127.04 (3)	As1 ⁱ —Cs1B—As1 ⁱⁱⁱ	57.07 (13)
O3 ^v —Cs1A—O2 ⁱⁱⁱ	78.39 (3)	As1 ^{iv} —Cs1B—As1 ⁱⁱⁱ	102.3 (3)
O3 ⁱ —Cs1A—O2 ⁱⁱⁱ	62.83 (3)	As1—Cs1B—As1 ⁱⁱⁱ	138.7 (6)
O2—Cs1A—O2 ⁱⁱⁱ	166.91 (4)	O2 ^{viii} —Al1—O2 ⁱⁱ	90.96 (6)
	· ·		

O2 ^v —Cs1A—O2 ⁱⁱⁱ	115.403 (13)	O2 ^{viii} —Al1—O2 ^{ix}	90.96 (6)
O2 ⁱ —Cs1A—O2 ⁱⁱⁱ	52.60 (4)	O2 ⁱⁱ —Al1—O2 ^{ix}	90.96 (6)
O2 ^{iv} —Cs1A—O2 ⁱⁱⁱ	115.402 (13)	O2 ^{viii} —Al1—O4 ^x	88.82 (5)
Cs1B ⁱ —Cs1A—O2 ⁱⁱ	38.51 (2)	$O2^{ii}$ —Al1—O4 ^x	178.50 (6)
Cs1B ⁱⁱ —Cs1A—O2 ⁱⁱ	83.5 (2)	$O2^{ix}$ —Al1—O4 ^x	90.53 (5)
O3 ⁱⁱⁱ —Cs1A—O2 ⁱⁱ	110.37 (3)	O2 ^{viii} —Al1—O4 ⁱ	178.50 (6)
O3 ⁱⁱ —Cs1A—O2 ⁱⁱ	45.72 (3)	$O2^{ii}$ —Al1—O4 ⁱ	90.53 (5)
O3 ^{iv} —Cs1A—O2 ⁱⁱ	127.04 (3)	$O2^{ix}$ —Al1—O4 ⁱ	88.82 (5)
O3—Cs1A—O2 ⁱⁱ	113.93 (3)	O4 ^x —A11—O4 ⁱ	89.70 (6)
O3 ^v —Cs1A—O2 ⁱⁱ	62.83 (3)	O2 ^{viii} —Al1—O4 ^{xi}	90.53 (5)
O3 ⁱ —Cs1A—O2 ⁱⁱ	78.39 (3)	O2 ⁱⁱ —Al1—O4 ^{xi}	88.82 (5)
O2—Cs1A—O2 ⁱⁱ	115.404 (13)	$O2^{ix}$ —Al1—O4 ^{xi}	178.50 (6)
O2 ^v —Cs1A—O2 ⁱⁱ	52.60 (4)	$O4^{x}$ —Al1— $O4^{xi}$	89.70 (6)
O2 ⁱ —Cs1A—O2 ⁱⁱ	115.404 (13)	$O4^{i}$ —Al1—O4 ^{xi}	89.70 (6)
O2 ^{iv} —Cs1A—O2 ⁱⁱ	166.91 (4)	O2 ^{viii} —Al1—Cs1B ^x	123.30 (10)
O2 ⁱⁱⁱ —Cs1A—O2 ⁱⁱ	77.02 (4)	$O2^{ii}$ —Al1—Cs1B ^x	99.54 (13)
Cs1B ⁱ —Cs1A—As1	151.960 (16)	$O2^{ix}$ —Al1—Cs1B ^x	33.98 (6)
Cs1B ⁱⁱ —Cs1A—As1	60.19 (18)	$O4^{x}$ —Al1—Cs1B ^x	81.81 (12)
O3 ⁱⁱⁱ —Cs1A—As1	126.11 (2)	$O4^{i}$ —A11—Cs1B ^x	56.21 (9)
$O3^{ii}$ —Cs1A—As1	78.79 (2)	$O4^{xi}$ —Al1—Cs1B ^x	144.65 (7)
O3 ^{iv} —Cs1A—As1	77.08 (3)	$O2^{\text{viii}}$ —Al1—Cs1B ⁱ	99.54 (12)
O3-Cs1A-As1	24.02 (2)	$O2^{ii}$ All Cs1B ⁱ	33.98 (5)
$O3^{v}$ —Cs1A—As1	133.70 (2)	$O2^{ix}$ All Cs1B ⁱ	123.30 (9)
$O3^{i}$ —Cs1A—As1	92.93 (3)	$O4^{x}$ —Al1—Cs1B ⁱ	144.65 (6)
Ω_{2} Cs1A As1	23.442 (18)	$O4^{i}$ —Al1—Cs1B ⁱ	81.81 (12)
$O2^{v}$ —Cs1A—As1	98.010 (19)	$O4^{xi}$ All Cs1B ⁱ	56.21 (9)
$O2^{i}$ —Cs1A—As1	93.54 (2)	$Cs1B^{x}$ —A11—Cs1B ⁱ	119.552 (13)
$O2^{iv}$ —Cs1A—As1	48.32 (2)	$O2^{\text{viii}}$ —Al1—Cs1B ^{xi}	33.98 (6)
O2 ⁱⁱⁱ —Cs1A—As1	146.060 (19)	$O2^{ii}$ —A11—Cs1B ^{xi}	123.30 (10)
O2 ⁱⁱ —Cs1A—As1	123.48 (2)	$O2^{ix}$ —Al1—Cs1B ^{xi}	99.54 (14)
Cs1B ⁱ —Cs1A—As1 ^v	67.330 (11)	O4 ^x —Al1—Cs1B ^{xi}	56.21 (10)
Cs1B ⁱⁱ —Cs1A—As1 ^v	60.19 (18)	$O4^{i}$ —Al1—Cs1B ^{xi}	144.65 (7)
$O3^{iii}$ —Cs1A—As1 ^v	92.93 (3)	$O4^{xi}$ —Al1—Cs1B ^{xi}	81.81 (14)
$O3^{ii}$ —Cs1A—As1 ^v	77.09 (3)	$Cs1B^{x}$ —A11—Cs1 B^{xi}	119.552 (7)
$O3^{iv}$ —Cs1A—As1 ^v	78.78 (2)	$Cs1B^{i}$ —A11—Cs1B ^{xi}	119.552 (4)
$O3-Cs1A-As1^{v}$	133.71 (2)	$O2^{\text{viii}}$ All Cs1A ^x	122.73 (4)
$O3^{v}$ — $Cs1A$ — $As1^{v}$	24.02 (2)	$O2^{ii}$ All Csl A ^x	100.35 (4)
$O3^{i}$ —Cs1A—As1 ^v	126.11(2)	$O2^{ix}$ All Csl A ^x	33.72.(4)
$02-Cs1A-As1^{v}$	98.010 (19)	$O4^{x}$ All Csl A ^x	81.01 (3)
$\Omega^{2^{v}}$ Cs1A As1 ^v	23.441 (19)	$O4^{i}$ All Cs1 A ^x	56.75 (4)
Ω^{2i} CS1A As1 ^v	146.06(2)	$O4^{xi}$ All $Csl A^{x}$	144 92 (4)
Ω^{2iv} —Cs1A—As1 ^v	123484(19)	$Cs1B^{x}$ All $Cs1A^{x}$	0.93(14)
Ω^{2ii} Cs1A As1 ^v	93 54 (2)	$C_{s1}B^{i}$ All $C_{s1}A^{x}$	120.48(13)
Ω^{2ii} Cs1A As1 ^v	48 32 (2)	$C_{s1}B^{xi}$ All $C_{s1}A^{x}$	120.10(13) 118.65(14)
$As1-Cs1A-As1^{v}$	120.371 (6)	$O2^{\text{viii}}$ All—Cs1A	100.35 (4)
$Cs1B^{i}$ — $Cs1A$ — $As1^{i}$	67.330 (8)	$O2^{ii}$ $A11$ $Cs1A$	33.72.(4)
$Cs1B^{ii}$ — $Cs1A$ — $As1^{i}$	151.96 (3)	O^{2ix} All -Cs1A	122.73 (4)
$O3^{iii}$ $Cs1A$ $As1^{i}$	77.09(3)	$O4^{x}$ All $Cs1A$	122.73(4) 144 92 (4)
0.5 0.5111 1101	() ()		(T) <u>2(</u> T)

O3 ⁱⁱ —Cs1A—As1 ⁱ	92.93 (3)	O4 ⁱ —Al1—Cs1A	81.01 (4)
O3 ^{iv} —Cs1A—As1 ⁱ	133.71 (2)	O4 ^{xi} —Al1—Cs1A	56.75 (4)
O3—Cs1A—As1 ⁱ	78.79 (2)	Cs1B ^x —Al1—Cs1A	118.65 (14)
O3 ^v —Cs1A—As1 ⁱ	126.11 (2)	Cs1B ⁱ —Al1—Cs1A	0.93 (13)
O3 ⁱ —Cs1A—As1 ⁱ	24.02 (2)	Cs1B ^{xi} —Al1—Cs1A	120.48 (13)
O2—Cs1A—As1 ⁱ	123.48 (2)	Cs1A ^x —Al1—Cs1A	119.576 (2)
O2 ^v —Cs1A—As1 ⁱ	146.06 (2)	O2 ^{viii} —Al1—Cs1A ^{viii}	33.72 (4)
O2 ⁱ —Cs1A—As1 ⁱ	23.441 (19)	O2 ⁱⁱ —Al1—Cs1A ^{viii}	122.74 (4)
O2 ^{iv} —Cs1A—As1 ⁱ	98.010 (19)	O2 ^{ix} —Al1—Cs1A ^{viii}	100.35 (4)
O2 ⁱⁱⁱ —Cs1A—As1 ⁱ	48.32 (2)	O4 ^x —Al1—Cs1A ^{viii}	56.75 (4)
O2 ⁱⁱ —Cs1A—As1 ⁱ	93.54 (2)	O4 ⁱ —Al1—Cs1A ^{viii}	144.92 (4)
As1—Cs1A—As1 ⁱ	100.065 (9)	O4 ^{xi} —Al1—Cs1A ^{viii}	81.01 (4)
As1 ^v —Cs1A—As1 ⁱ	134.660 (5)	Cs1B ^x —Al1—Cs1A ^{viii}	120.48 (14)
Cs1B ⁱ —Cs1A—As1 ^{iv}	151.959 (16)	Cs1B ⁱ —Al1—Cs1A ^{viii}	118.65 (13)
Cs1B ⁱⁱ —Cs1A—As1 ^{iv}	67.33 (18)	Cs1B ^{xi} —Al1—Cs1A ^{viii}	0.93 (14)
O3 ⁱⁱⁱ —Cs1A—As1 ^{iv}	78.79 (2)	Cs1A ^x —Al1—Cs1A ^{viii}	119.576 (2)
O3 ⁱⁱ —Cs1A—As1 ^{iv}	126.11 (2)	Cs1A—Al1—Cs1A ^{viii}	119.576 (2)
O3 ^{iv} —Cs1A—As1 ^{iv}	24.02 (2)	O1 ^{xii} —As2—O1 ^{xiii}	92.41 (5)
O3—Cs1A—As1 ^{iv}	77.08 (3)	O1 ^{xii} —As2—O1 ^{xi}	180.0
O3 ^v —Cs1A—As1 ^{iv}	92.93 (3)	O1 ^{xiii} —As2—O1 ^{xi}	87.59 (5)
O3 ⁱ —Cs1A—As1 ^{iv}	133.70 (2)	$O1^{xii}$ —As2— $O1^{i}$	87.59 (5)
O2—Cs1A—As1 ^{iv}	48.31 (2)	O1 ^{xiii} —As2—O1 ⁱ	180.00 (10)
O2 ^v —Cs1A—As1 ^{iv}	93.54 (2)	$O1^{xi}$ —As2— $O1^{i}$	92.41 (5)
O2 ⁱ —Cs1A—As1 ^{iv}	98.010 (19)	O1 ^{xii} —As2—O1 ^{xiv}	92.41 (5)
O2 ^{iv} —Cs1A—As1 ^{iv}	23.441 (18)	O1 ^{xiii} —As2—O1 ^{xiv}	92.41 (5)
O2 ⁱⁱⁱ —Cs1A—As1 ^{iv}	123.482 (19)	O1 ^{xi} —As2—O1 ^{xiv}	87.59 (5)
O2 ⁱⁱ —Cs1A—As1 ^{iv}	146.060 (19)	O1 ⁱ —As2—O1 ^{xiv}	87.59 (5)
As1—Cs1A—As1 ^{iv}	56.080 (13)	$O1^{xii}$ —As2— $O1^{x}$	87.59 (5)
As1 ^v —Cs1A—As1 ^{iv}	100.065 (7)	$O1^{xiii}$ —As2— $O1^{x}$	87.59 (5)
As1 ⁱ —Cs1A—As1 ^{iv}	120.371 (6)	$O1^{xi}$ —As2— $O1^{x}$	92.40 (5)
Cs1B ⁱ —Cs1A—As1 ⁱⁱⁱ	60.186 (15)	$O1^{i}$ —As2— $O1^{x}$	92.40 (5)
Cs1B ⁱⁱ —Cs1A—As1 ⁱⁱⁱ	151.96 (3)	$O1^{xiv}$ —As2— $O1^{x}$	180.00 (7)
O3 ⁱⁱⁱ —Cs1A—As1 ⁱⁱⁱ	24.02 (2)	O4 ⁱⁱⁱ —As1—O2	117.14 (6)
O3 ⁱⁱ —Cs1A—As1 ⁱⁱⁱ	133.70 (2)	O4 ⁱⁱⁱ —As1—O1 ^{xv}	101.04 (6)
O3 ^{iv} —Cs1A—As1 ⁱⁱⁱ	92.93 (3)	O2—As1—O1 ^{xv}	114.80 (6)
O3—Cs1A—As1 ⁱⁱⁱ	126.11 (2)	O4 ⁱⁱⁱ —As1—O3	110.50 (6)
O3 ^v —Cs1A—As1 ⁱⁱⁱ	78.79 (2)	O2—As1—O3	104.71 (7)
O3 ⁱ —Cs1A—As1 ⁱⁱⁱ	77.08 (3)	O1 ^{xv} —As1—O3	108.55 (7)
O2—Cs1A—As1 ⁱⁱⁱ	146.058 (19)	O4 ⁱⁱⁱ —As1—Cs1B ⁱⁱ	111.95 (18)
O2 ^v —Cs1A—As1 ⁱⁱⁱ	123.483 (19)	O2—As1—Cs1B ⁱⁱ	54.3 (3)
O2 ⁱ —Cs1A—As1 ⁱⁱⁱ	48.32 (2)	O1 ^{xv} —As1—Cs1B ⁱⁱ	146.59 (15)
O2 ^{iv} —Cs1A—As1 ⁱⁱⁱ	93.54 (2)	O3—As1—Cs1B ⁱⁱ	55.4 (2)
O2 ⁱⁱⁱ —Cs1A—As1 ⁱⁱⁱ	23.441 (19)	O4 ⁱⁱⁱ —As1—Cs1B	108.9 (3)
O2 ⁱⁱ —Cs1A—As1 ⁱⁱⁱ	98.011 (19)	O2—As1—Cs1B	57.4 (2)
As1—Cs1A—As1 ⁱⁱⁱ	134.660 (5)	O1 ^{xv} —As1—Cs1B	149.1 (2)
As1 ^v —Cs1A—As1 ⁱⁱⁱ	100.065 (7)	O3—As1—Cs1B	53.82 (8)
As1 ⁱ —Cs1A—As1 ⁱⁱⁱ	56.081 (12)	Cs1B ⁱⁱ —As1—Cs1B	3.7 (5)
As1 ^{iv} —Cs1A—As1 ⁱⁱⁱ	100.064 (7)	O4 ⁱⁱⁱ —As1—Cs1A	110.78 (4)

Cs1B ⁱ —Cs1A—As1 ⁱⁱ	60.186 (14)	O2—As1—Cs1A	56.07 (4)
Cs1B ⁱⁱ —Cs1A—As1 ⁱⁱ	67.33 (18)	O1 ^{xv} —As1—Cs1A	147.44 (4)
O3 ⁱⁱⁱ —Cs1A—As1 ⁱⁱ	133.70 (2)	O3—As1—Cs1A	54.16 (5)
O3 ⁱⁱ —Cs1A—As1 ⁱⁱ	24.02 (2)	Cs1B ⁱⁱ —As1—Cs1A	1.9 (3)
O3 ^{iv} —Cs1A—As1 ⁱⁱ	126.11 (2)	Cs1B—As1—Cs1A	2.0 (3)
O3—Cs1A—As1 ⁱⁱ	92.93 (3)	O4 ⁱⁱⁱ —As1—Cs1B ⁱ	111.44 (10)
O3 ^v —Cs1A—As1 ⁱⁱ	77.08 (3)	O2—As1—Cs1B ⁱ	56.52 (7)
O3 ⁱ —Cs1A—As1 ⁱⁱ	78.79 (2)	O1 ^{xv} —As1—Cs1B ⁱ	146.64 (11)
O2—Cs1A—As1 ⁱⁱ	93.55 (2)	O3—As1—Cs1B ⁱ	53.34 (12)
O2 ^v —Cs1A—As1 ⁱⁱ	48.32 (2)	Cs1B ⁱⁱ —As1—Cs1B ⁱ	2.2 (3)
O2 ⁱ —Cs1A—As1 ⁱⁱ	123.48 (2)	Cs1B—As1—Cs1B ⁱ	2.5 (4)
O2 ^{iv} —Cs1A—As1 ⁱⁱ	146.060 (19)	Cs1A—As1—Cs1B ⁱ	0.97 (13)
O2 ⁱⁱⁱ —Cs1A—As1 ⁱⁱ	98.011 (19)	O4 ⁱⁱⁱ —As1—Cs1B ^{xvi}	44.17 (5)
O2 ⁱⁱ —Cs1A—As1 ⁱⁱ	23.441 (19)	O2—As1—Cs1B ^{xvi}	93.27 (8)
As1—Cs1A—As1 ⁱⁱ	100.065 (9)	$O1^{xv}$ —As1—Cs1 B^{xvi}	78.98 (10)
As1 ^v —Cs1A—As1 ⁱⁱ	56.081 (13)	O3—As1—Cs1B ^{xvi}	154.47 (5)
$As1^{i}$ $Cs1A$ $As1^{ii}$	100.065 (9)	Cs1B ⁱⁱ —As1—Cs1B ^{xvi}	129.10 (15)
$As1^{iv}$ —Cs1A—As1 ⁱⁱ	134.660 (5)	Cs1B—As1—Cs1B ^{xvi}	128.6 (2)
$As1^{iii}$ —Cs1A—As1 ⁱⁱ	120.371 (6)	$Cs1A - As1 - Cs1B^{xvi}$	129.41(10)
$Cs1B^{i}$ — $Cs1B$ — $Cs1B^{ii}$	60.00 (4)	$Cs1B^{i}$ As1 $Cs1B^{xvi}$	130.38 (4)
$Cs1B^{i}$ — $Cs1B$ — $O3^{iii}$	94.4 (3)	$O4^{iii}$ —As1—Cs1A ^{xvii}	44.29 (4)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{iii}$	125.9 (2)	Ω^2 —As1—Cs1A ^{xvii}	93.71 (4)
$Cs1B^{i}$ — $Cs1B$ — $O3$	125.9 (3)	$O1^{xv}$ —As1—Cs1A ^{xvii}	78.36 (4)
$Cs1B^{ii}$ — $Cs1B$ — $O3$	94.4 (4)	O3—As1—Cs1A ^{xvii}	154.48 (5)
$O3^{iii}$ —Cs1B—O3	135.1 (7)	Cs1B ⁱⁱ —As1—Cs1A ^{xvii}	129.75 (5)
$Cs1B^{i}$ — $Cs1B$ — $O2^{i}$	111.1 (2)	Cs1B—As1—Cs1A ^{xvii}	129.29 (11)
$Cs1B^{ii}$ — $Cs1B$ — $O2^{i}$	164.59 (9)	Cs1A—As1—Cs1A ^{xvii}	130.055 (13)
O3 ⁱⁱⁱ —Cs1B—O2 ⁱ	64.7 (3)	Cs1B ⁱ —As1—Cs1A ^{xvii}	131.03 (14)
$O3$ — $Cs1B$ — $O2^i$	80.9 (4)	Cs1B ^{xvi} —As1—Cs1A ^{xvii}	0.65 (10)
$Cs1B^{i}$ — $Cs1B$ — $O2^{iv}$	164.6 (2)	O4 ⁱⁱⁱ —As1—Cs1B ^{xviii}	45.8 (2)
$Cs1B^{ii}$ — $Cs1B$ — $O2^{iv}$	111.1 (4)	O2—As1—Cs1B ^{xviii}	92.99 (12)
$O3^{iii}$ —Cs1B—O2 ^{iv}	80.9 (4)	O1 ^{xv} —As1—Cs1B ^{xviii}	77.45 (15)
$O3$ — $Cs1B$ — $O2^{iv}$	64.7 (3)	O3—As1—Cs1B ^{xviii}	155.9 (2)
$O2^{i}$ —Cs1B— $O2^{iv}$	80.3 (5)	Cs1B ⁱⁱ —As1—Cs1B ^{xviii}	130.167 (13)
Cs1B ⁱ —Cs1B—O3 ^{iv}	117.8 (3)	Cs1B—As1—Cs1B ^{xviii}	129.84 (3)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{iv}$	81.1 (4)	Cs1A—As1—Cs1B ^{xviii}	130.54 (7)
O3 ⁱⁱⁱ —Cs1B—O3 ^{iv}	70.08 (15)	Cs1B ⁱ —As1—Cs1B ^{xviii}	131.5 (2)
O3—Cs1B—O3 ^{iv}	101.7 (3)	Cs1B ^{xvi} —As1—Cs1B ^{xviii}	1.8 (3)
O2 ⁱ —Cs1B—O3 ^{iv}	114.1 (5)	Cs1A ^{xvii} —As1—Cs1B ^{xviii}	1.5 (2)
O2 ^{iv} —Cs1B—O3 ^{iv}	46.81 (15)	O4 ⁱⁱⁱ —As1—Cs1B ^{xvii}	42.9 (2)
$Cs1B^{i}$ — $Cs1B$ — $O3^{i}$	81.1 (3)	O2—As1—Cs1B ^{xvii}	94.85 (18)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{i}$	117.8 (2)	$O1^{xv}$ —As1—Cs1B ^{xvii}	78.69 (8)
$O3^{iii}$ —Cs1B—O3 ⁱ	101.7 (3)	O3—As1—Cs1B ^{xvii}	153.1 (2)
$O3-Cs1B-O3^{i}$	70.08 (15)	$Cs1B^{ii}$ —As1—Cs1B ^{xvii}	129.92 (2)
$O2^{i}$ —Cs1B—O3 ⁱ	46.81 (15)	Cs1B—As1—Cs1B ^{xvii}	129.35(12)
$O2^{iv}$ —Cs1B—O3 ⁱ	114.1 (5)	Cs1A—As1—Cs1B ^{xvii}	130.167 (19)
$O3^{iv}$ —Cs1B—O3 ⁱ	159.2 (7)	$Cs1B^{i}$ — $As1$ — $Cs1B^{xvii}$	131.14 (15)
$Cs1B^{i}$ — $Cs1B$ — $O2$	123.2 (4)	$Cs1B^{xvi}$ As1 $Cs1B^{xvii}$	1.6 (2)

Cs1B ⁱⁱ —Cs1B—O2	64.8 (5)	Cs1A ^{xvii} —As1—Cs1B ^{xvii}	1.4 (2)
O3 ⁱⁱⁱ —Cs1B—O2	129.6 (3)	Cs1B ^{xviii} —As1—Cs1B ^{xvii}	2.9 (4)
O3—Cs1B—O2	46.24 (7)	As1 ^{xix} —O1—As2 ^{xx}	130.17 (7)
O2 ⁱ —Cs1B—O2	119.0 (5)	As1 ^{xix} —O1—Cs1B ^{vi}	81.42 (16)
O2 ^{iv} —Cs1B—O2	53.68 (15)	As2 ^{xx} —O1—Cs1B ^{vi}	129.94 (11)
O3 ^{iv} —Cs1B—O2	63.29 (6)	As1 ^{xix} —O1—Cs1A ^{xx}	82.55 (4)
O3 ⁱ —Cs1B—O2	115.10 (14)	As2 ^{xx} —O1—Cs1A ^{xx}	129.26 (5)
Cs1B ⁱ —Cs1B—O2 ⁱⁱⁱ	64.8 (3)	Cs1B ^{vi} —O1—Cs1A ^{xx}	1.14 (17)
Cs1B ⁱⁱ —Cs1B—O2 ⁱⁱⁱ	123.2 (2)	As1 ^{xix} —O1—Cs1B ^{xxi}	83.66 (17)
O3 ⁱⁱⁱ —Cs1B—O2 ⁱⁱⁱ	46.23 (7)	As2 ^{xx} —O1—Cs1B ^{xxi}	127.6 (2)
O3—Cs1B—O2 ⁱⁱⁱ	129.7 (3)	Cs1B ^{vi} —O1—Cs1B ^{xxi}	2.5 (3)
O2 ⁱ —Cs1B—O2 ⁱⁱⁱ	53.68 (15)	Cs1A ^{xx} —O1—Cs1B ^{xxi}	1.7 (2)
O2 ^{iv} —Cs1B—O2 ⁱⁱⁱ	119.0 (5)	As1—O2—Al1 ^{xvii}	125.94 (7)
O3 ^{iv} —Cs1B—O2 ⁱⁱⁱ	115.10 (14)	As1—O2—Cs1B ⁱⁱ	101.9 (2)
O3 ⁱ —Cs1B—O2 ⁱⁱⁱ	63.29 (6)	Al1 ^{xvii} —O2—Cs1B ⁱⁱ	127.63 (17)
O2—Cs1B—O2 ⁱⁱⁱ	172.0 (7)	As1—O2—Cs1B	98.7 (3)
$Cs1B^{i}$ — $Cs1B$ — $O3^{ii}$	58.4 (2)	$A11^{xvii}$ $O2$ $Cs1B$	129.54 (14)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{ii}$	50.60 (16)	Cs1B ⁱⁱ —O2—Cs1B	4.1 (6)
$O3^{iii}$ —Cs1B—O3 ⁱⁱ	151.4 (4)	As1-O2-Cs1A	100.49 (5)
$O3-Cs1B-O3^{ii}$	68.50 (9)	$A11^{xvii}$ $O2$ $Cs1A$	128.67 (5)
$O2^{i}$ —Cs1B—O3 ⁱⁱ	114.37 (6)	Cs1B ⁱⁱ —O2—Cs1A	1.6 (2)
$O2^{iv}$ —Cs1B—O3 ⁱⁱ	127.63 (7)	Cs1B-O2-Cs1A	2.5 (4)
$O3^{iv}$ —Cs1B—O3 ⁱⁱ	127.8 (4)	$As1 - O2 - Cs1B^i$	100.86 (7)
$O3^{i}$ $Cs1B$ $O3^{ii}$	68 17 (13)	$A11^{xvii} - O2 - Cs1B^{i}$	128 74 (5)
02—Cs1B—O3 ⁱⁱ	77 24 (17)	$Cs1B^{ii}$ — $O2$ — $Cs1B^{i}$	112(16)
$O2^{iii}$ —Cs1B—O3 ⁱⁱ	108.3(3)	$Cs1B - O2 - Cs1B^{i}$	3.5 (5)
$Cs1B^{i}$ — $Cs1B$ — $O3^{v}$	50.6 (2)	$Cs1A = O2 = Cs1B^{i}$	1.08 (14)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{v}$	58.37 (14)	As1 - O3 - Cs1B	101.80 (6)
$O3^{iii}$ —Cs1B—O3 ^v	68.50 (9)	$As1 - O3 - Cs1B^{ii}$	99.9 (3)
O_3 — C_81B — O_3^v	151.4 (4)	$Cs1B-O3-Cs1B^{ii}$	4.5 (6)
Ω^{2i} —Cs1B—O3 ^v	127.63 (7)	As1 - O3 - Cs1A	101.82 (6)
$O2^{iv}$ —Cs1B—O3 ^v	114.37 (6)	Cs1B—O3—Cs1A	2.4 (3)
$O3^{iv}$ —Cs1B—O3 ^v	68.17 (13)	Cs1B ⁱⁱ —O3—Cs1A	2.5 (4)
$O3^{i}$ — $Cs1B$ — $O3^{v}$	127 8 (4)	$As1 - O3 - Cs1B^{i}$	103.6(2)
02 —Cs1B— 03^{v}	108.3 (3)	$Cs1B-O3-Cs1B^{i}$	3.5 (5)
02^{iii} Cs1B 03^{v}	77 24 (17)	$C_{s1}B^{ii}$ $O_{s1}B^{ii}$	3.8(5)
$O3^{ii}$ — $Cs1B$ — $O3^{v}$	96.0 (5)	$C_{s1A} = O_3 = C_{s1B}^i$	19(3)
$Cs1B^{i}$ — $Cs1B$ — $O2^{v}$	53 28 (17)	As1—O3—H	105(3)
$Cs1B^{ii}$ — $Cs1B$ — $O2^{v}$	14 29 (7)	Cs1B-O3-H	93 (3)
$O3^{iii}$ $Cs1B$ $O2^{v}$	1120(3)	Cs1B ⁱⁱ	98 (2)
$O_3 = C_8 IB = O_2^{v}$	1085(3)	$C_{s1}A = 03 = H$	96 (2) 96 (2)
Ω^{2i} Cs1B Ω^{2v}	1644(4)	$C_{s1}B^{i}$ O3 H	96 (3)
Ω^{2iv} Cs1B Ω^{2v}	114 85 (9)	A_{s1}^{iii} O_{s1}^{iii} O_{s1}^{iii}	127 34 (7)
$O_2^{iv} = C_s B = O_2^{v}$	76 9 (2)	$As1^{iii} - O4 - Cs1B^{xxii}$	127.54(7) 119.06(10)
$O3^{i}$ $Cs1B$ $O2^{v}$	123 6 (5)	$A11^{xx} - O4 - Cs1B^{xxii}$	100 69 (5)
$02 - C_{s1B} - 02^{v}$	75 4 (2)	$As1^{iii} - O4 - Cs1A^{xix}$	119 48 (5)
Ω^{2ii} Cs1B Ω^{2v}	112 3 (4)	$A11^{xx} - 04 - Cs1A^{xix}$	100 82 (4)
$O_2^{ii} = C_s IB = O_2^{v}$	60.5(3)	$C_{s1}B^{xxii} = 04 = C_{s1}A^{xix}$	0.02(7)
03 -C31D-02	00.5 (5)	C31D -0+-C31A	0.90 (13)

$O3^{v}$ — $Cs1B$ — $O2^{v}$	44.1 (2)	As1 ⁱⁱⁱ —O4—Cs1B ^{xix}	121.4 (3)
Cs1B ⁱ —Cs1B—O2 ⁱⁱ	14.29 (3)	Al1 ^{xx} —O4—Cs1B ^{xix}	99.51 (19)
Cs1B ⁱⁱ —Cs1B—O2 ⁱⁱ	53.28 (3)	Cs1B ^{xxii} —O4—Cs1B ^{xix}	2.7 (4)
O3 ⁱⁱⁱ —Cs1B—O2 ⁱⁱ	108.5 (3)	Cs1A ^{xix} —O4—Cs1B ^{xix}	2.0 (3)
O3—Cs1B—O2 ⁱⁱ	112.0 (3)	As1 ⁱⁱⁱ —O4—Cs1B ^{xxiii}	117.9 (2)
O2 ⁱ —Cs1B—O2 ⁱⁱ	114.85 (9)	Al1 ^{xx} —O4—Cs1B ^{xxiii}	102.2 (2)
O2 ^{iv} —Cs1B—O2 ⁱⁱ	164.4 (4)	Cs1B ^{xxii} —O4—Cs1B ^{xxiii}	1.5 (2)
O3 ^{iv} —Cs1B—O2 ⁱⁱ	123.6 (5)	Cs1A ^{xix} —O4—Cs1B ^{xxiii}	1.6 (2)
O3 ⁱ —Cs1B—O2 ⁱⁱ	76.9 (2)	Cs1B ^{xix} —O4—Cs1B ^{xxiii}	3.5 (5)
O2—Cs1B—O2 ⁱⁱ	112.3 (4)	As1 ⁱⁱⁱ —O4—Cs1B	52.18 (19)
O2 ⁱⁱⁱ —Cs1B—O2 ⁱⁱ	75.4 (2)	All ^{xx} —O4—Cs1B	75.5 (2)
O3 ⁱⁱ —Cs1B—O2 ⁱⁱ	44.1 (2)	Cs1B ^{xxii} —O4—Cs1B	135.11 (6)
O3 ^v —Cs1B—O2 ⁱⁱ	60.5 (3)	Cs1A ^{xix} —O4—Cs1B	136.01 (8)
O2 ^v —Cs1B—O2 ⁱⁱ	50.4 (3)	Cs1B ^{xix} —O4—Cs1B	137.3 (2)
Cs1B ⁱ —Cs1B—O4 ^{vi}	131.69 (8)	Cs1B ^{xxiii} —O4—Cs1B	135.55 (3)
Cs1B ⁱⁱ —Cs1B—O4 ^{vi}	154.46 (10)	As1 ⁱⁱⁱ —O4—Cs1B ⁱ	49.73 (17)
O3 ⁱⁱⁱ —Cs1B—O4 ^{vi}	42.3 (2)	All ^{xx} —O4—Cs1B ⁱ	78.1 (2)
O3—Cs1B—O4 ^{vi}	92.7 (5)	Cs1B ^{xxii} —O4—Cs1B ⁱ	133.5 (3)
$O2^{i}$ —Cs1B—O4 ^{vi}	40.9 (2)	$Cs1A^{xix}$ —O4— $Cs1B^{i}$	134.38 (18)
O2 ^{iv} —Cs1B—O4 ^{vi}	51.1 (3)	$Cs1B^{xix}$ —O4— $Cs1B^{i}$	135.76 (3)
O3 ^{iv} —Cs1B—O4 ^{vi}	73.4 (3)	Cs1B ^{xxiii} —O4—Cs1B ⁱ	133.8 (3)
$O3^{i}$ — $Cs1B$ — $O4^{vi}$	87.7 (4)	Cs1B—O4—Cs1B ⁱ	3.1 (4)
O2—Cs1B—O4 ^{vi}	104.2 (4)	As1 ⁱⁱⁱ —O4—Cs1A	50.92 (3)
O2 ⁱⁱⁱ —Cs1B—O4 ^{vi}	68.2 (2)	All ^{xx} —O4—Cs1A	76.77 (3)
O3 ⁱⁱ —Cs1B—O4 ^{vi}	153.1 (3)	Cs1B ^{xxii} —O4—Cs1A	134.61 (13)
O3 ^v —Cs1B—O4 ^{vi}	108.65 (13)	Cs1A ^{xix} —O4—Cs1A	135.51 (3)
$O2^{v}$ —Cs1B—O4 ^{vi}	146.38 (3)	Cs1B ^{xix} —O4—Cs1A	136.84 (18)
O2 ⁱⁱ —Cs1B—O4 ^{vi}	143.57 (3)	Cs1B ^{xxiii} —O4—Cs1A	135.01 (8)
Cs1B ⁱ —Cs1B—O4 ^{vii}	154.46 (3)	Cs1B—O4—Cs1A	1.4 (2)
Cs1B ⁱⁱ —Cs1B—O4 ^{vii}	131.7 (2)	Cs1B ⁱ —O4—Cs1A	1.7 (3)
O3 ⁱⁱⁱ —Cs1B—O4 ^{vii}	92.7 (5)	As1 ⁱⁱⁱ —O4—Cs1B ⁱⁱ	50.88 (4)
O3—Cs1B—O4 ^{vii}	42.3 (2)	All ^{xx} —O4—Cs1B ⁱⁱ	76.75 (4)
$O2^{i}$ —Cs1B—O4 ^{vii}	51.1 (3)	Cs1B ^{xxii} —O4—Cs1B ⁱⁱ	135.21 (5)
O2 ^{iv} —Cs1B—O4 ^{vii}	40.9 (2)	Cs1A ^{xix} —O4—Cs1B ⁱⁱ	136.11 (9)
O3 ^{iv} —Cs1B—O4 ^{vii}	87.7 (4)	Cs1B ^{xix} —O4—Cs1B ⁱⁱ	137.4 (3)
O3 ⁱ —Cs1B—O4 ^{vii}	73.4 (3)	Cs1B ^{xxiii} —O4—Cs1B ⁱⁱ	135.61 (3)
O2—Cs1B—O4 ^{vii}	68.2 (2)	Cs1B—O4—Cs1B ⁱⁱ	1.30 (19)
O2 ⁱⁱⁱ —Cs1B—O4 ^{vii}	104.2 (4)	Cs1B ⁱ —O4—Cs1B ⁱⁱ	2.1 (3)
O3 ⁱⁱ —Cs1B—O4 ^{vii}	108.65 (13)	Cs1A—O4—Cs1B ⁱⁱ	0.59 (8)

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z; (iii) -x, -x+y, -z+3/2; (iv) y, x, -z+3/2; (v) x-y, -y, -z+3/2; (vi) -y, x-y-1, z; (vii) y, x-1, -z+3/2; (viii) x+1, y+1, z; (ix) -y, x-y+1, z; (ii) y+2/3, -x+y+4/3, -z+4/3; (iv) -x+2/3, -y+1/3, -z+4/3; (iv) -x-1, z; (iv) -y-1/3, x+1/3, -z+4/3; (iv) y+2/3, -x+y+4/3, -z+4/3; (iv) -x+2/3, -y+1/3, -z+4/3; (iv) x-1, y, z; (ivi) -y-1, z; (ivi) x-1, y-1, z; (ivii) -x+y-1, -x-1, z; (ivi) x+1, y, z; (ivi) -x+y, -x-1, z; (ivii) -x+y-1, -x-1, z; (ivii) -x+y-1, -x-1, z; (ivi) -x+y-1, -x-1, z; (ivi) -x+y-1, -x-1, z; (ivi) -x+y, -x-1, z; (ivi) -x+y+1, -x-1, z; (ivi) -x+y-1, -x-1, -x-

Hydrogen-bond geometry (Å, °)

$$D$$
—H···A

D—H

 $H \cdots A$

D—H···A

 $D \cdots A$

	O3—H····O4 ^{vii}	0.88 (2)	1.94 (2)	2.7321 (18)	150 (3)	
--	---------------------------	----------	----------	-------------	---------	--

 $D_{\rm x} = 3.717 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.9 - 32.6^{\circ}$ $\mu = 15.18 \text{ mm}^{-1}$

T = 293 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Pseudo-octahedra, colourless

 $0.07\times0.07\times0.07~mm$

Cell parameters from 2582 reflections

Symmetry code: (vii) y, x-1, -z+3/2.

Caesium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (CsGa2AsHAsO46)

Crystal data

CsGa₂As(HAsO₄)₆ $M_r = 1186.84$ Trigonal, $R\overline{3}c$:H a = 8.5199 (10) Å c = 50.608 (11) Å $V = 3181.4 (10) Å^3$ Z = 6F(000) = 3276

Data collection

Nonius KappaCCD single-crystal four-circle	1293 independent reflections
diffractometer	1134 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.018$
φ and ω scans	$\theta_{\rm max} = 32.6^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(HKL SCALEPACK; Otwinowski et al., 2003)	$k = -10 \rightarrow 10$
$T_{\min} = 0.416, \ T_{\max} = 0.416$	$l = -76 \rightarrow 76$
4712 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.018$	$w = 1/[\sigma^2(F_0^2) + (0.0155P)^2 + 13.7864P]$
$wR(F^2) = 0.041$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} = 0.004$
1293 reflections	$\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$
65 parameters	$\Delta \rho_{\min} = -0.72 \text{ e} \text{ Å}^{-3}$
2 restraints	Extinction correction: SHELXL-2016/6
Primary atom site location: structure-invariant	(Sheldrick 2015),
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.000080 (16)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cs1A	0.000000	0.000000	0.750000	0.033 (3)	0.720 (3)
Cs1B	0.000000	-0.030 (5)	0.750000	0.0264 (19)	0.0932 (9)
Gal	0.333333	0.666667	0.75610 (2)	0.00886 (8)	
As2	0.333333	0.666667	0.666667	0.00779 (10)	
As1	-0.44795 (3)	-0.41187 (3)	0.71128 (2)	0.00894 (6)	

01	0.3969 (2)	-0.47002 (19)	0.68643 (3)	0.0119 (3)
O2	-0.4545 (2)	-0.27504 (19)	0.73418 (3)	0.0113 (3)
03	-0.2351 (2)	-0.2915 (2)	0.69800 (4)	0.0203 (3)
O4	0.4903 (2)	-0.1257 (2)	0.77880 (3)	0.0121 (3)
Н	-0.179 (5)	-0.350 (5)	0.7009 (7)	0.045 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1A	0.030 (4)	0.030 (4)	0.041 (2)	0.015 (2)	0.000	0.000
Cs1B	0.021 (6)	0.024 (4)	0.034 (5)	0.010 (3)	0.002 (2)	0.0011 (11)
Gal	0.00933 (11)	0.00933 (11)	0.00791 (16)	0.00466 (6)	0.000	0.000
As2	0.00862 (13)	0.00862 (13)	0.00615 (19)	0.00431 (7)	0.000	0.000
As1	0.00989 (10)	0.00944 (10)	0.00872 (9)	0.00576 (8)	0.00007 (7)	0.00054 (7)
01	0.0154 (7)	0.0121 (6)	0.0097 (6)	0.0081 (6)	-0.0034(5)	0.0000 (5)
O2	0.0114 (6)	0.0108 (6)	0.0114 (6)	0.0054 (5)	0.0004 (5)	-0.0020 (5)
03	0.0122 (7)	0.0210 (8)	0.0281 (9)	0.0086 (7)	0.0080 (6)	0.0067 (7)
O4	0.0143 (7)	0.0101 (6)	0.0143 (6)	0.0079 (6)	-0.0036 (5)	-0.0039(5)

Geometric parameters (Å, °)

Cs1A—Cs1B ⁱ	0.25 (5)	Cs1B—O2	3.451 (2)
Cs1A—Cs1B ⁱⁱ	0.25 (4)	Cs1B—O2 ⁱⁱⁱ	3.451 (2)
Cs1A—O2	3.4719 (16)	Cs1B—O3 ⁱⁱ	3.65 (3)
Cs1A—O2 ⁱⁱⁱ	3.4719 (15)	Cs1B—O3 ^v	3.65 (3)
Cs1A—O2 ^{iv}	3.4719 (16)	Cs1B—O2 ⁱⁱ	3.70 (4)
Cs1A—O2 ⁱⁱ	3.4719 (15)	Cs1B—O2 ^v	3.70 (4)
Cs1A—O2 ^v	3.4719 (15)	Cs1B—O4 ^{vi}	3.95 (4)
Cs1A—O2 ⁱ	3.4719 (15)	Cs1B—O4 ^{vii}	3.95 (4)
Cs1A—O3 ⁱⁱⁱ	3.4828 (19)	Cs1B—As1 ^{iv}	4.043 (19)
Cs1A—O3 ⁱⁱ	3.4828 (19)	Cs1B—As1 ⁱ	4.043 (19)
Cs1A—O3 ^{iv}	3.4829 (19)	Cs1B—As1 ⁱⁱⁱ	4.072 (14)
Cs1A—O3 ^v	3.4829 (19)	Cs1B—As1	4.072 (14)
Cs1A—O3 ⁱ	3.4829 (19)	Ga1—O2 ^{viii}	1.9612 (14)
Cs1A—O3	3.483 (2)	Ga1—O2 ⁱⁱ	1.9612 (15)
Cs1A—As1 ⁱⁱⁱ	4.1625 (5)	Ga1—O2 ^{ix}	1.9612 (15)
Cs1A—As1 ^v	4.1625 (5)	Ga1—O4 ^x	1.9679 (15)
Cs1A—As1 ^{iv}	4.1625 (5)	Ga1—O4 ⁱ	1.9679 (15)
Cs1A—As1 ⁱⁱ	4.1625 (5)	Ga1—O4 ^{xi}	1.9679 (15)
Cs1A—As1 ⁱ	4.1625 (5)	As2—O1 ^{xii}	1.8109 (14)
Cs1A—As1	4.1626 (5)	As2—O1 ^{xiii}	1.8109 (15)
Cs1B—Cs1B ⁱ	0.44 (8)	As2—O1 ^{xiv}	1.8109 (14)
Cs1B—Cs1B ⁱⁱ	0.44 (7)	As2—O1 ⁱ	1.8109 (15)
Cs1B—O2 ^{iv}	3.28 (3)	As2—O1 ^{xi}	1.8109 (14)
Cs1B-O2 ⁱ	3.28 (3)	As2—O1 ^x	1.8109 (14)
Cs1B—O3 ⁱⁱⁱ	3.383 (16)	As1—O2	1.6646 (14)
Cs1B—O3	3.383 (16)	As1—O4 ⁱⁱⁱ	1.6670 (15)
Cs1B—O3 ^{iv}	3.436 (7)	As1—O1 ^{xv}	1.7089 (14)

Cs1B—O3 ⁱ	3.436 (7)	As1—O3	1.7125 (17)
Cs1B ⁱ —Cs1A—Cs1B ⁱⁱ	120.0 (3)	Cs1B ⁱⁱ —Cs1B—O4 ^{vii}	153.66 (17)
Cs1B ⁱ —Cs1A—O2	153.53 (4)	O2 ^{iv} —Cs1B—O4 ^{vii}	52.0 (6)
Cs1B ⁱⁱ —Cs1A—O2	38.9 (2)	O2 ⁱ —Cs1B—O4 ^{vii}	43.4 (5)
Cs1B ⁱ —Cs1A—O2 ⁱⁱⁱ	38.93 (3)	O3 ⁱⁱⁱ —Cs1B—O4 ^{vii}	42.8 (4)
Cs1B ⁱⁱ —Cs1A—O2 ⁱⁱⁱ	153.5 (2)	O3—Cs1B—O4 ^{vii}	94.6 (9)
O2—Cs1A—O2 ⁱⁱⁱ	166.53 (5)	O3 ^{iv} —Cs1B—O4 ^{vii}	74.4 (6)
Cs1B ⁱ —Cs1A—O2 ^{iv}	153.53 (4)	O3 ⁱ —Cs1B—O4 ^{vii}	90.2 (7)
Cs1B ⁱⁱ —Cs1A—O2 ^{iv}	83.3 (3)	O2—Cs1B—O4 ^{vii}	105.9 (9)
O2—Cs1A—O2 ^{iv}	52.94 (5)	O2 ⁱⁱⁱ —Cs1B—O4 ^{vii}	69.3 (5)
O2 ⁱⁱⁱ —Cs1A—O2 ^{iv}	114.848 (17)	O3 ⁱⁱ —Cs1B—O4 ^{vii}	155.2 (6)
$Cs1B^{i}$ — $Cs1A$ — $O2^{ii}$	38.93 (3)	$O3^{v}$ — $Cs1B$ — $O4^{vii}$	108.8(2)
$Cs1B^{ii}$ — $Cs1A$ — $O2^{ii}$	83.3 (3)	$O2^{ii}$ —Cs1B—O4 ^{vii}	144.37(3)
Ω^2 —Cs1A— Ω^{2ii}	114.849 (17)	O^{2v} —Cs1B—O4 ^{vii}	145.20 (3)
$O2^{iii}$ —Cs1A—O2 ⁱⁱ	77.86 (5)	$O4^{vi}$ —Cs1B—O4 ^{vii}	51.9 (5)
$O2^{iv}$ —Cs1A— $O2^{ii}$	166.53 (5)	$Cs1B^{i}$ $Cs1B$ $As1^{iv}$	139.7 (5)
$Cs1B^{i}$ $Cs1A$ $O2^{v}$	83 27 (2)	$Cs1B^{ii}$ — $Cs1B$ — $As1^{iv}$	90.7 (7)
$Cs1B^{ii}$ — $Cs1A$ — $O2^{v}$	38.9 (2)	$O2^{iv}$ —Cs1B—As1 ^{iv}	23.43 (7)
$02-Cs1A-02^{v}$	77.86 (5)	$O2^{i}$ Cs1B As1 ^{iv}	104.5(10)
$O2^{iii}$ —Cs1A— $O2^{v}$	114.847 (17)	$O3^{iii}$ —Cs1B—As1 ^{iv}	81.1 (5)
$O2^{iv}$ —Cs1A—O2 ^v	114.848 (17)	$O3-Cs1B-As1^{iv}$	80.2 (5)
$O2^{ii}$ —Cs1A—O2 ^v	52.94 (5)	$O3^{iv}$ —Cs1B—As1 ^{iv}	24.81 (16)
$Cs1B^{i}$ — $Cs1A$ — $O2^{i}$	83.27 (2)	$O3^{i}$ — $Cs1B$ — $As1^{iv}$	140.9 (11)
$Cs1B^{ii}$ — $Cs1A$ — $O2^{i}$	153.5 (2)	$O2-Cs1B-As1^{iv}$	50.4 (2)
$O2$ —Cs1A— $O2^i$	114.848 (17)	$O2^{iii}$ —Cs1B—As1 ^{iv}	126.7 (7)
$O2^{iii}$ —Cs1A— $O2^{i}$	52.94 (5)	$O3^{ii}$ —Cs1B—As1 ^{iv}	124.7 (3)
$O2^{iv}$ —Cs1A—O2 ⁱ	77.86 (5)	$O3^{v}$ —Cs1B—As1 ^{iv}	92.41 (13)
O2 ⁱⁱ —Cs1A—O2 ⁱ	114.848 (17)	O2 ⁱⁱ —Cs1B—As1 ^{iv}	141.3 (8)
$O2^{v}$ —Cs1A—O2 ⁱ	166.53 (5)	$O2^{v}$ —Cs1B—As1 ^{iv}	91.9 (3)
Cs1B ⁱ —Cs1A—O3 ⁱⁱⁱ	77.37 (3)	O4 ^{vi} —Cs1B—As1 ^{iv}	66.4 (5)
Cs1B ⁱⁱ —Cs1A—O3 ⁱⁱⁱ	130.09 (5)	O4 ^{vii} —Cs1B—As1 ^{iv}	66.1 (5)
O2—Cs1A—O3 ⁱⁱⁱ	127.26 (4)	Cs1B ⁱ —Cs1B—As1 ⁱ	90.7 (5)
O2 ⁱⁱⁱ —Cs1A—O3 ⁱⁱⁱ	45.15 (4)	Cs1B ⁱⁱ —Cs1B—As1 ⁱ	139.7 (4)
O2 ^{iv} —Cs1A—O3 ⁱⁱⁱ	77.63 (4)	O2 ^{iv} —Cs1B—As1 ⁱ	104.5 (10)
O2 ⁱⁱ —Cs1A—O3 ⁱⁱⁱ	111.42 (4)	O2 ⁱ —Cs1B—As1 ⁱ	23.43 (7)
O2 ^v —Cs1A—O3 ⁱⁱⁱ	113.36 (4)	O3 ⁱⁱⁱ —Cs1B—As1 ⁱ	80.2 (5)
O2 ⁱ —Cs1A—O3 ⁱⁱⁱ	63.40 (4)	O3—Cs1B—As1 ⁱ	81.1 (5)
Cs1B ⁱ —Cs1A—O3 ⁱⁱ	77.37 (3)	O3 ^{iv} —Cs1B—As1 ⁱ	140.9 (11)
Cs1B ⁱⁱ —Cs1A—O3 ⁱⁱ	64.82 (14)	O3 ⁱ —Cs1B—As1 ⁱ	24.81 (16)
O2—Cs1A—O3 ⁱⁱ	77.64 (4)	O2—Cs1B—As1 ⁱ	126.7 (7)
O2 ⁱⁱⁱ —Cs1A—O3 ⁱⁱ	111.42 (4)	O2 ⁱⁱⁱ —Cs1B—As1 ⁱ	50.4 (2)
O2 ^{iv} —Cs1A—O3 ⁱⁱ	127.26 (4)	O3 ⁱⁱ —Cs1B—As1 ⁱ	92.41 (13)
O2 ⁱⁱ —Cs1A—O3 ⁱⁱ	45.15 (4)	O3 ^v —Cs1B—As1 ⁱ	124.7 (3)
O2 ^v —Cs1A—O3 ⁱⁱ	63.40 (4)	O2 ⁱⁱ —Cs1B—As1 ⁱ	91.9 (3)
O2 ⁱ —Cs1A—O3 ⁱⁱ	113.36 (4)	O2 ^v —Cs1B—As1 ⁱ	141.3 (8)
O3 ⁱⁱⁱ —Cs1A—O3 ⁱⁱ	154.75 (6)	O4 ^{vi} —Cs1B—As1 ⁱ	66.1 (5)
Cs1B ⁱ —Cs1A—O3 ^{iv}	130.09 (3)	O4 ^{vii} —Cs1B—As1 ⁱ	66.4 (5)

Cs1B ⁱⁱ —Cs1A—O3 ^{iv}	64.82 (15)	As1 ^{iv} —Cs1B—As1 ⁱ	126.9 (11)
O2—Cs1A—O3 ^{iv}	63.40 (4)	Cs1B ⁱ —Cs1B—As1 ⁱⁱⁱ	83.1 (5)
O2 ⁱⁱⁱ —Cs1A—O3 ^{iv}	113.36 (4)	Cs1B ⁱⁱ —Cs1B—As1 ⁱⁱⁱ	133.8 (4)
O2 ^{iv} —Cs1A—O3 ^{iv}	45.15 (4)	O2 ^{iv} —Cs1B—As1 ⁱⁱⁱ	97.9 (8)
O2 ⁱⁱ —Cs1A—O3 ^{iv}	127.26 (4)	O2 ⁱ —Cs1B—As1 ⁱⁱⁱ	50.8 (3)
O2 ^v —Cs1A—O3 ^{iv}	77.63 (4)	O3 ⁱⁱⁱ —Cs1B—As1 ⁱⁱⁱ	24.39 (9)
O2 ⁱ —Cs1A—O3 ^{iv}	111.42 (4)	O3—Cs1B—As1 ⁱⁱⁱ	132.1 (10)
O3 ⁱⁱⁱ —Cs1A—O3 ^{iv}	69.12 (4)	O3 ^{iv} —Cs1B—As1 ⁱⁱⁱ	95.2 (4)
O3 ⁱⁱ —Cs1A—O3 ^{iv}	129.64 (6)	O3 ⁱ —Cs1B—As1 ⁱⁱⁱ	79.1 (3)
Cs1B ⁱ —Cs1A—O3 ^v	64.82 (4)	O2—Cs1B—As1 ⁱⁱⁱ	152.4 (10)
Cs1B ⁱⁱ —Cs1A—O3 ^v	77.37 (17)	O2 ⁱⁱⁱ —Cs1B—As1 ⁱⁱⁱ	23.78 (13)
O2—Cs1A—O3 ^v	111.41 (4)	O3 ⁱⁱ —Cs1B—As1 ⁱⁱⁱ	131.7 (5)
$O2^{iii}$ —Cs1A—O3 ^v	77.64 (4)	$O3^{v}$ —Cs1B—As1 ⁱⁱⁱ	77.69 (14)
$O2^{iv}$ —Cs1A—O3 ^v	113.36 (4)	$O2^{ii}$ —Cs1B—As1 ⁱⁱⁱ	96.6 (4)
$O2^{ii}$ —Cs1A—O3 ^v	63.40 (4)	$O2^{v}$ —Cs1B—As1 ⁱⁱⁱ	119.1 (6)
$O2^{v}$ —Cs1A—O3 ^v	45.15 (4)	$O4^{vi}$ —Cs1B—As1 ⁱⁱⁱ	94.1 (8)
Ω^{2i} Cs1A Ω^{v}	127.26 (4)	$O4^{vii}$ —Cs1B—As1 ⁱⁱⁱ	48.3 (3)
$O3^{iii}$ —Cs1A—O3 ^v	69 12 (4)	$As1^{iv}$ —Cs1B—As1 ⁱⁱⁱ	103 2 (6)
$O3^{ii}$ —Cs1A—O3 ^v	99.81 (6)	$As1^{i}$ —Cs1B—As1 ⁱⁱⁱ	58 3 (3)
$O3^{iv}$ —Cs1A—O3 ^v	69 12 (4)	$C_{s1}B^{i}$ $C_{s1}B$ A_{s1}	133.8 (6)
$C_{s1}B^{i}$ $C_{s1}A$ $O_{3^{i}}$	64 82 (3)	C_{s1B}^{ii} C_{s1B}^{ii} A_{s1}^{ii}	83 1 (7)
$C_{S1}B^{ii}$ $C_{S1}A$ O_{S1}^{ii}	130.09(5)	O^{2iv} —Cs1B—As1	50.8 (3)
Ω^2 —Cs1A— Ω^3^i	113 36 (4)	$O2^{i}$ Cs1B As1	97.9 (8)
02^{iii} Cs1A 03^{i}	63 40 (4)	$O3^{iii}$ —Cs1B—As1	1321(10)
Ω^{2iv} —Cs1A— Ω^{3i}	111 42 (4)	$O_3 - C_{s1B} - A_{s1}$	24 39 (9)
02^{ii} Cs1A -03^{i}	77 64 (4)	$O3^{iv}$ —Cs1B—As1	79 2 (3)
02^{v} Cs1A 03^{i}	127.26(4)	$O3^{i}$ $Cs1B$ $As1$	95 2 (4)
$O2^{i}$ $Cs1A$ $O3^{i}$	45 15 (4)	$\Omega^2 - C_{s1B} - A_{s1}$	23.78(13)
O_2^{iii} C_{s1A} O_3^{ii}	99.81 (6)	$O2^{iii}$ —Cs1B—As1	1524(10)
O_{3i}^{ii} C_{s1}^{A} O_{3i}^{ii}	69 12 (5)	O_2^{3i} Cs1B As1	77 69 (14)
O_{3iv} Cs1A O_{3i}	154.75(5)	O_3^{v} Cs1B As1	131.7(5)
O_3^{v} C_{s1}^{A} O_3^{i}	129.64 (6)	O^{2i} Cs1B As1	1191(6)
$C_{s1}B^{i}$ $C_{s1}A$ O_{3}	129.04(0) 130.09(3)	O^{2v}_{2} Cs1B As1	96.6(4)
$C_{s1B} = C_{s1A} = O_{3}$	77 37 (17)	$O_2 = C_{31} = A_{31}$	20.0 (4) 48 3 (3)
$C_{s1D} = C_{s1A} = C_{s1A}$	77.37(17)	O4 - Cs1B - As1	40.3(3)
O^{2ii} Cs1A O^{3}	+5.15(+)	Δ_{s1}^{iv} Cs1B Δ_{s1}^{iv}	58 2 (2)
O_2^{iv} Cs1A O3	127.20(4)	As1 $-Cs1D$ As1	103.2(6)
$O2^{ii}$ Call $O3^{ii}$	113.36(4)	$A_{s1}^{iii} = C_{s1} B_{s1}^{iii} A_{s1}^{iii}$	103.2(0)
$O_2^{\text{v}} = C_{\text{s1A}} = O_3^{\text{v}}$	113.30(4) 111.42(4)	$\begin{array}{c} AS1 -CS1D -AS1 \\ O2^{\gamma i i i} G_2 1 O2^{\gamma i i} \end{array}$	01 15 (6)
$O_2^{i} = C_{s1A} = O_3^{i}$	77.63(4)	$O2^{\text{viii}}$ Gal $O2^{\text{ix}}$	91.15 (0)
$O_2 = C_3 I_A = O_3$	120.64 (6)	$O_2 = O_1 = O_2$	91.15 (0)
$O_{2ii}^{2ii} = C_{2i} A_{2i} O_{2i}^{2ii}$	129.04(0)	$O_2 = Oa1 = O_2$	91.13 (0)
$O_{2iv} = C_{s1A} = O_{2iv}$	09.12(3)	$O2^{ii}$ $Ca1 = O4^{ii}$	90.84 (0)
O_{2}^{r} C_{1}^{r} O_{2}^{r}	99.81 (0) 154.75 (6)	$O2^{ix}$ Col $O4^{x}$	1/8.00(0)
$O_2^{i} = C_2^{i} A = O_2^{i}$	134.73(0)	$O_2 - O_{a1} - O_4^{ii}$	00.00 (0)
$U_3 - U_{SIA} = U_3$	09.12 (3)	$O2^{iii}$ $Ca1$ $O4^{i}$	88.00 (b)
$C_{S1}B^{ii} = C_{S1}A = A_{S1}B^{iii}$	00.300(12)	$U2^{\prime\prime}$ —GaI— $U4^{\prime}$	90.84 (6)
$C_{S1}B^{\mu}$ — $C_{S1}A$ — A_{S1}^{μ}	151.64 (4)	$U2^{\mu}$ — $Ga1$ — $U4^{\mu}$	1/8.00 (6)
$O2$ — $Cs1A$ — $As1^m$	146.15 (2)	$O4^{x}$ —Ga1—O4 ¹	89.35 (6)

O2 ⁱⁱⁱ —Cs1A—As1 ⁱⁱⁱ	22.98 (2)	O2 ^{viii} —Ga1—O4 ^{xi}	178.00 (6)
O2 ^{iv} —Cs1A—As1 ⁱⁱⁱ	93.23 (2)	O2 ⁱⁱ —Ga1—O4 ^{xi}	88.66 (6)
O2 ⁱⁱ —Cs1A—As1 ⁱⁱⁱ	98.62 (2)	O2 ^{ix} —Ga1—O4 ^{xi}	90.84 (6)
O2 ^v —Cs1A—As1 ⁱⁱⁱ	122.59 (2)	O4 ^x —Ga1—O4 ^{xi}	89.35 (6)
O2 ⁱ —Cs1A—As1 ⁱⁱⁱ	49.10 (2)	O4 ⁱ —Ga1—O4 ^{xi}	89.35 (7)
O3 ⁱⁱⁱ —Cs1A—As1 ⁱⁱⁱ	23.83 (3)	O2 ^{viii} —Ga1—Cs1B ^x	34.15 (10)
O3 ⁱⁱ —Cs1A—As1 ⁱⁱⁱ	134.28 (3)	O2 ⁱⁱ —Ga1—Cs1B ^x	99.2 (3)
O3 ^{iv} —Cs1A—As1 ⁱⁱⁱ	92.90 (3)	O2 ^{ix} —Ga1—Cs1B ^x	123.8 (2)
O3 ^v —Cs1A—As1 ⁱⁱⁱ	78.30 (3)	O4 ^x —Ga1—Cs1B ^x	82.5 (2)
O3 ⁱ —Cs1A—As1 ⁱⁱⁱ	77.37 (3)	O4 ⁱ —Ga1—Cs1B ^x	55.68 (16)
O3—Cs1A—As1 ⁱⁱⁱ	125.98 (3)	O4 ^{xi} —Ga1—Cs1B ^x	143.97 (12)
Cs1B ⁱ —Cs1A—As1 ^v	67.383 (11)	O2 ^{viii} —Ga1—Cs1B ⁱ	123.79 (17)
$Cs1B^{ii}$ — $Cs1A$ — $As1^{v}$	60.3 (2)	O2 ⁱⁱ —Ga1—Cs1B ⁱ	34.15 (9)
$O2-Cs1A-As1^{\vee}$	98.62 (2)	$O2^{ix}$ —Ga1—Cs1B ⁱ	99.2 (2)
$O2^{iii}$ —Cs1A—As1 ^v	93.23 (2)	$O4^{x}$ —Ga1—Cs1B ⁱ	143.97 (10)
$O2^{iv}$ —Cs1A—As1 ^v	122.59 (2)	O4 ⁱ —Ga1—Cs1B ⁱ	82.5 (2)
$O2^{ii}$ —Cs1A—As1 ^v	49.10(2)	$O4^{xi}$ —Ga1—Cs1B ⁱ	55.68 (16)
$O2^{v}$ —Cs1A—As1 ^v	22.98 (2)	$Cs1B^{x}$ —Ga1—Cs1B ⁱ	119.57 (2)
$O2^{i}$ —Cs1A—As1 ^v	146.15 (2)	$O2^{\text{viii}}$ —Ga1—Cs1B ^{xi}	99.2 (3)
$O3^{iii}$ —Cs1A—As1 ^v	92.90 (3)	$O2^{ii}$ —Ga1—Cs1B ^{xi}	123.79 (19)
$O3^{ii}$ —Cs1A—As1 ^v	77.37 (3)	$O2^{ix}$ —Ga1—Cs1B ^{xi}	34.15 (12)
O3 ^{iv} —Cs1A—As1 ^v	78.29 (3)	O4 ^x —Ga1—Cs1B ^{xi}	55.68 (19)
O3 ^v —Cs1A—As1 ^v	23.82 (3)	O4 ⁱ —Ga1—Cs1B ^{xi}	143.97 (13)
O3 ⁱ —Cs1A—As1 ^v	125.98 (3)	O4 ^{xi} —Ga1—Cs1B ^{xi}	82.5 (3)
$O3-Cs1A-As1^{v}$	134.28 (3)	Cs1B ^x —Ga1—Cs1B ^{xi}	119.575 (14)
As1 ⁱⁱⁱ —Cs1A—As1 ^v	99.647 (7)	$Cs1B^{i}$ — $Ga1$ — $Cs1B^{xi}$	119.575 (5)
Cs1B ⁱ —Cs1A—As1 ^{iv}	151.635 (12)	O2 ^{viii} —Ga1—Cs1A ^x	33.70 (4)
Cs1B ⁱⁱ —Cs1A—As1 ^{iv}	67.4 (2)	O2 ⁱⁱ —Ga1—Cs1A ^x	100.57 (4)
O2—Cs1A—As1 ^{iv}	49.10 (2)	O2 ^{ix} —Ga1—Cs1A ^x	122.84 (4)
O2 ⁱⁱⁱ —Cs1A—As1 ^{iv}	122.59 (2)	O4 ^x —Ga1—Cs1A ^x	81.19 (4)
O2 ^{iv} —Cs1A—As1 ^{iv}	22.98 (2)	O4 ⁱ —Ga1—Cs1A ^x	56.58 (4)
O2 ⁱⁱ —Cs1A—As1 ^{iv}	146.15 (2)	O4 ^{xi} —Ga1—Cs1A ^x	144.45 (5)
O2 ^v —Cs1A—As1 ^{iv}	93.23 (2)	Cs1B ^x —Ga1—Cs1A ^x	1.6 (3)
$O2^{i}$ —Cs1A—As1 ^{iv}	98.62 (2)	Cs1B ⁱ —Ga1—Cs1A ^x	121.1 (3)
O3 ⁱⁱⁱ —Cs1A—As1 ^{iv}	78.30 (3)	Cs1B ^{xi} —Ga1—Cs1A ^x	118.1 (3)
O3 ⁱⁱ —Cs1A—As1 ^{iv}	125.98 (3)	O2 ^{viii} —Ga1—Cs1A	122.84 (4)
O3 ^{iv} —Cs1A—As1 ^{iv}	23.83 (3)	O2 ⁱⁱ —Ga1—Cs1A	33.70 (4)
O3 ^v —Cs1A—As1 ^{iv}	92.90 (3)	O2 ^{ix} —Ga1—Cs1A	100.57 (4)
O3 ⁱ —Cs1A—As1 ^{iv}	134.28 (3)	O4 ^x —Ga1—Cs1A	144.45 (5)
O3—Cs1A—As1 ^{iv}	77.37 (3)	O4 ⁱ —Ga1—Cs1A	81.19 (4)
As1 ⁱⁱⁱ —Cs1A—As1 ^{iv}	99.647 (7)	O4 ^{xi} —Ga1—Cs1A	56.58 (4)
As1 ^v —Cs1A—As1 ^{iv}	99.647 (8)	Cs1B ^x —Ga1—Cs1A	118.1 (3)
Cs1B ⁱ —Cs1A—As1 ⁱⁱ	60.306 (11)	Cs1B ⁱ —Ga1—Cs1A	1.6 (3)
Cs1B ⁱⁱ —Cs1A—As1 ⁱⁱ	67.4 (2)	Cs1B ^{xi} —Ga1—Cs1A	121.1 (3)
O2—Cs1A—As1 ⁱⁱ	93.23 (2)	Cs1A ^x —Ga1—Cs1A	119.612 (1)
O2 ⁱⁱⁱ —Cs1A—As1 ⁱⁱ	98.62 (2)	O2 ^{viii} —Ga1—Cs1A ^{ix}	100.57 (4)
O2 ^{iv} —Cs1A—As1 ⁱⁱ	146.15 (2)	O2 ⁱⁱ —Ga1—Cs1A ^{ix}	122.84 (4)
O2 ⁱⁱ —Cs1A—As1 ⁱⁱ	22.98 (2)	O2 ^{ix} —Ga1—Cs1A ^{ix}	33.70 (4)
	N /		× /

O2 ^v —Cs1A—As1 ⁱⁱ	49.10 (2)	O4 ^x —Ga1—Cs1A ^{ix}	56.58 (4)
O2 ⁱ —Cs1A—As1 ⁱⁱ	122.59 (2)	O4 ⁱ —Ga1—Cs1A ^{ix}	144.45 (5)
O3 ⁱⁱⁱ —Cs1A—As1 ⁱⁱ	134.28 (3)	O4 ^{xi} —Ga1—Cs1A ^{ix}	81.19 (4)
O3 ⁱⁱ —Cs1A—As1 ⁱⁱ	23.83 (3)	Cs1B ^x —Ga1—Cs1A ^{ix}	121.1 (3)
O3 ^{iv} —Cs1A—As1 ⁱⁱ	125.98 (3)	Cs1B ⁱ —Ga1—Cs1A ^{ix}	118.1 (3)
O3 ^v —Cs1A—As1 ⁱⁱ	77.37 (3)	Cs1B ^{xi} —Ga1—Cs1A ^{ix}	1.6 (3)
O3 ⁱ —Cs1A—As1 ⁱⁱ	78.30 (3)	Cs1A ^x —Ga1—Cs1A ^{ix}	119.612 (1)
O3—Cs1A—As1 ⁱⁱ	92.90 (3)	Cs1A—Ga1—Cs1A ^{ix}	119.612 (1)
As1 ⁱⁱⁱ —Cs1A—As1 ⁱⁱ	120.612 (7)	O1 ^{xii} —As2—O1 ^{xiii}	92.46 (6)
As1 ^v —Cs1A—As1 ⁱⁱ	56.729 (13)	O1 ^{xii} —As2—O1 ^{xiv}	92.45 (6)
As1 ^{iv} —Cs1A—As1 ⁱⁱ	134.766 (6)	O1 ^{xiii} —As2—O1 ^{xiv}	92.45 (6)
Cs1B ⁱ —Cs1A—As1 ⁱ	67.383 (6)	$O1^{xii}$ —As2— $O1^{i}$	87.55 (6)
Cs1B ⁱⁱ —Cs1A—As1 ⁱ	151.64 (4)	$O1^{xiii}$ —As2— $O1^{i}$	180.00 (12)
O2—Cs1A—As1 ⁱ	122.59 (2)	$O1^{xiv}$ —As2— $O1^{i}$	87.55 (6)
O2 ⁱⁱⁱ —Cs1A—As1 ⁱ	49.10 (2)	$O1^{xii}$ —As2— $O1^{xi}$	180.0
O2 ^{iv} —Cs1A—As1 ⁱ	98.62 (2)	$O1^{xiii}$ —As2— $O1^{xi}$	87.55 (6)
$O2^{ii}$ —Cs1A—As1 ⁱ	93.23 (2)	$O1^{xiv}$ As2 $O1^{xi}$	87.55 (6)
$O2^{v}$ —Cs1A—As1 ⁱ	146.15 (2)	$O1^{i}$ As2 $O1^{xi}$	92.45 (6)
$O2^{i}$ —Cs1A—As1 ⁱ	22.98 (2)	$O1^{xii}$ As2 $O1^x$	87.55 (6)
$O3^{iii}$ —Cs1A—As1 ⁱ	77.37 (3)	$O1^{xiii}$ As2 $O1^{x}$	87.55 (6)
O3 ⁱⁱ —Cs1A—As1 ⁱ	92.90 (3)	$O1^{xiv}$ As2 $O1^{x}$	180.00 (8)
O3 ^{iv} —Cs1A—As1 ⁱ	134.29 (3)	$O1^{i}$ —As2—O1 ^x	92.45 (6)
O3 ^v —Cs1A—As1 ⁱ	125.98 (3)	$O1^{xi}$ —As2— $O1^{x}$	92.45 (6)
O3 ⁱ —Cs1A—As1 ⁱ	23.82 (3)	O2—As1—O4 ⁱⁱⁱ	117.09 (7)
O3—Cs1A—As1 ⁱ	78.30 (3)	O2—As1—O1 ^{xv}	115.06 (7)
As1 ⁱⁱⁱ —Cs1A—As1 ⁱ	56.729 (13)	$O4^{iii}$ —As1—O1 ^{xv}	100.76 (7)
As1 ^v —Cs1A—As1 ⁱ	134.766 (7)	O2—As1—O3	104.49 (8)
As1 ^{iv} —Cs1A—As1 ⁱ	120.612 (7)	O4 ⁱⁱⁱ —As1—O3	110.80 (8)
As1 ⁱⁱ —Cs1A—As1 ⁱ	99.647 (9)	O1 ^{xv} —As1—O3	108.60 (8)
Cs1B ⁱ —Cs1A—As1	151.634 (13)	O2—As1—Cs1B ⁱⁱ	51.6 (5)
Cs1B ⁱⁱ —Cs1A—As1	60.3 (2)	O4 ⁱⁱⁱ —As1—Cs1B ⁱⁱ	113.4 (3)
O2—Cs1A—As1	22.98 (2)	O1 ^{xv} —As1—Cs1B ⁱⁱ	145.8 (3)
O2 ⁱⁱⁱ —Cs1A—As1	146.15 (2)	O3—As1—Cs1B ⁱⁱ	57.4 (4)
O2 ^{iv} —Cs1A—As1	49.10 (2)	O2—As1—Cs1B	56.7 (4)
O2 ⁱⁱ —Cs1A—As1	122.58 (2)	O4 ⁱⁱⁱ —As1—Cs1B	108.4 (6)
O2 ^v —Cs1A—As1	98.62 (2)	O1 ^{xv} —As1—Cs1B	150.0 (5)
O2 ⁱ —Cs1A—As1	93.23 (2)	O3—As1—Cs1B	54.65 (13)
O3 ⁱⁱⁱ —Cs1A—As1	125.98 (3)	Cs1B ⁱⁱ —As1—Cs1B	6.2 (11)
O3 ⁱⁱ —Cs1A—As1	78.29 (3)	O2—As1—Cs1A	54.52 (5)
O3 ^{iv} —Cs1A—As1	77.37 (3)	O4 ⁱⁱⁱ —As1—Cs1A	111.50 (5)
O3 ^v —Cs1A—As1	134.29 (3)	O1 ^{xv} —As1—Cs1A	147.27 (5)
O3 ⁱ —Cs1A—As1	92.89 (3)	O3—As1—Cs1A	55.24 (6)
O3—Cs1A—As1	23.82 (3)	Cs1B ⁱⁱ —As1—Cs1A	3.1 (5)
As1 ⁱⁱⁱ —Cs1A—As1	134.766 (6)	Cs1B—As1—Cs1A	3.3 (6)
As1 ^v —Cs1A—As1	120.613 (7)	O2—As1—Cs1B ⁱ	55.25 (13)
As1 ^{iv} —Cs1A—As1	56.731 (13)	O4 ⁱⁱⁱ —As1—Cs1B ⁱ	112.60 (18)
As1 ⁱⁱ —Cs1A—As1	99.647 (9)	O1 ^{xv} —As1—Cs1B ⁱ	146.0 (2)
As1 ⁱ —Cs1A—As1	99.646 (9)	O3—As1—Cs1B ⁱ	53.9 (2)

Cs1B ⁱ —Cs1B—Cs1B ⁱⁱ	60.00 (6)	Cs1B ⁱⁱ —As1—Cs1B ⁱ	3.7 (6)
Cs1B ⁱ —Cs1B—O2 ^{iv}	162.9 (4)	Cs1B—As1—Cs1B ⁱ	4.2 (7)
Cs1B ⁱⁱ —Cs1B—O2 ^{iv}	109.7 (7)	Cs1A—As1—Cs1B ⁱ	1.6 (3)
Cs1B ⁱ —Cs1B—O2 ⁱ	109.7 (5)	O2—As1—Cs1B ^{xvi}	93.88 (14)
Cs1B ⁱⁱ —Cs1B—O2 ⁱ	162.9 (3)	O4 ⁱⁱⁱ —As1—Cs1B ^{xvi}	42.74 (6)
$O2^{iv}$ —Cs1B—O2 ⁱ	83.4 (10)	O1 ^{xv} —As1—Cs1B ^{xvi}	79.72 (19)
Cs1B ⁱ —Cs1B—O3 ⁱⁱⁱ	93.3 (6)	O3—As1—Cs1B ^{xvi}	153.38 (6)
$Cs1B^{ii}$ — $Cs1B$ — $O3^{iii}$	124.8 (5)	Cs1B ⁱⁱ —As1—Cs1B ^{xvi}	127.8 (3)
$O2^{iv}$ —Cs1B—O3 ⁱⁱⁱ	81.8 (7)	Cs1B—As1—Cs1B ^{xvi}	127.1 (4)
Ω^{2i} —Cs1B—O3 ⁱⁱⁱ	66.5 (5)	Cs1A—As1—Cs1B ^{xvi}	1284(2)
$C_{s1}B^{i}$ $C_{s1}B$ O_{s1}	124 8 (6)	$C_{s1}B^{i}$ As1 $C_{s1}B^{xvi}$	129.96(7)
C_{S1B}^{ii} C_{S1B}^{ii} C_{S1B}^{ii} C_{S1B}^{ii}	93 3 (7)	Ω^2 —As1—Cs1A ^{xvii}	94 63 (5)
O^{2iv} Cs1B O^{3iv}	66 5 (5)	$O2^{iii}$ $As1 Cs1 A^{xvii}$	42.93 (5)
02^{i} Cs1B 03	81 8 (7)	$O1^{xv}$ $As1$ $Cs1A^{xvii}$	78 68 (5)
$O_2 = C_3 I B = O_3$	137 A (14)	$O_1 - A_{S1} - C_{S1} A_{SVii}$	76.08(3)
C_{s1} P_{i} C_{s1} P_{i} O_{s1}	137.4(14) 116.2(7)	C_{s1} P_{ii} A_{s1} C_{s1} A_{xyii}	133.41(0) 128.02(12)
$C_{s1D} = C_{s1D} = O_{s1}$	110.2(7)	$C_{SID} = A_{SI} = C_{SIA}$	128.92(12)
CSIB $CSIB$	/9.3 (8) 4(8 (2)	C_{S1B} As1 $C_{S1}A^{Na}$	128.2 (2)
O_2^{A} = C_3^{A} = O_3^{A}	40.8 (3)	C_{SIA} A_{SI} C_{SIA}^{NII}	129.479 (13)
$02^{}$ CSIB03 ^{iv}	11/./(11)	C 1 Dyri A 1 C 1 A yrii	131.1 (3)
O_3^{m} C_{s1B} O_3^{m}	70.8 (3)	$Cs1B^{xvn}$ —As1—Cs1A ^{xvn}	1.1 (2)
O_3 — C_{S1B} — O_3^{W}	102.8 (5)	O2—As1—Cs1B ^{xvm}	93.5 (2)
$Cs1B^{1}$ — $Cs1B$ — $O3^{1}$	79.3 (6)	$O4^{m}$ —As1—Cs1B ^{xvm}	45.4 (4)
$Cs1B^{n}$ — $Cs1B$ — $O3^{1}$	116.2 (5)	$O1^{xv}$ —As1—Cs1B ^{xvm}	77.2 (3)
$O2^{iv}$ —Cs1B—O3 ⁱ	117.7 (11)	O3—As1—Cs1B ^{xvm}	155.7 (4)
$O2^{i}$ —Cs1B—O3 ⁱ	46.8 (3)	Cs1B ⁱⁱ —As1—Cs1B ^{xviii}	129.53 (5)
O3 ⁱⁱⁱ —Cs1B—O3 ⁱ	102.8 (5)	Cs1B—As1—Cs1B ^{xviii}	129.12 (6)
O3—Cs1B—O3 ⁱ	70.8 (3)	Cs1A—As1—Cs1B ^{xviii}	130.25 (12)
O3 ^{iv} —Cs1B—O3 ⁱ	163.0 (14)	Cs1B ⁱ —As1—Cs1B ^{xviii}	131.8 (4)
Cs1B ⁱ —Cs1B—O2	121.6 (7)	Cs1B ^{xvi} —As1—Cs1B ^{xviii}	3.0 (5)
Cs1B ⁱⁱ —Cs1B—O2	63.4 (9)	Cs1A ^{xvii} —As1—Cs1B ^{xviii}	2.5 (4)
O2 ^{iv} —Cs1B—O2	54.7 (3)	O2—As1—Cs1B ^{xvii}	96.5 (3)
O2 ⁱ —Cs1B—O2	120.8 (10)	O4 ⁱⁱⁱ —As1—Cs1B ^{xvii}	40.7 (4)
O3 ⁱⁱⁱ —Cs1B—O2	131.5 (6)	O1 ^{xv} —As1—Cs1B ^{xvii}	79.23 (14)
O3—Cs1B—O2	45.98 (12)	O3—As1—Cs1B ^{xvii}	151.1 (4)
O3 ^{iv} —Cs1B—O2	64.09 (9)	Cs1B ⁱⁱ —As1—Cs1B ^{xvii}	129.27 (4)
O3 ⁱ —Cs1B—O2	115.1 (2)	Cs1B—As1—Cs1B ^{xvii}	128.2 (3)
Cs1B ⁱ —Cs1B—O2 ⁱⁱⁱ	63.4 (7)	Cs1A—As1—Cs1B ^{xvii}	129.66 (3)
Cs1B ⁱⁱ —Cs1B—O2 ⁱⁱⁱ	121.6 (5)	Cs1B ⁱ —As1—Cs1B ^{xvii}	131.2 (3)
O2 ^{iv} —Cs1B—O2 ⁱⁱⁱ	120.8 (10)	Cs1B ^{xvi} —As1—Cs1B ^{xvii}	2.7 (4)
Ω^{2i} —Cs1B— Ω^{2iii}	54.7 (3)	$Cs1A^{xvii}$ —As1—Cs1 B^{xvii}	2.3 (4)
$O3^{iii}$ —Cs1B— $O2^{iii}$	45.98 (12)	$Cs1B^{xviii}$ As1 $Cs1B^{xvii}$	47(8)
$O_3 - C_{s1B} - O_2^{iii}$	131.5 (6)	$As1^{xix} 01 - As2^{xx}$	131.05 (8)
$O_{3iv} = C_{s1B} = O_{2iii}^{iii}$	1151(2)	$A_{s1}^{xix} = 01 = C_{s1}B^{vii}$	80.6 (3)
O_{3}^{i} $C_{s1}B$ O_{2}^{iii}	64 09 (9)	A_{s}^{xx} 01 Cs1B ^{vii}	1300(2)
$02 - C_{\rm s1B} = 02$	174 9 (14)	A_{s1} O_{2} G_{a1}^{xvii}	124 47 (8)
$C_{s1}B^{i}$ $C_{s1}B$ O_{2}^{ii}	576(4)	$As1 = O2 = Cs1B^{ii}$	1050(5)
C_{s1B}^{ii} C_{s1B}^{ii} O_{s1B}^{ii}	49 5 (3)	$G_{2}^{\text{xvii}} = O_{2}^{\text{xvii}} = G_{2}^{\text{xvii}} = O_{2}^{\text{xvii}} = G_{2}^{\text{xvii}} = O_{2}^{\text{xvii}} = O_{2}^{x$	126.2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128 02 (8)	$A_{s1} = 02 = C_{s1B}$	120.2(7)
04 USID UJ	120.02 (0)	131-02-031D	JJ.J (J)

O2 ⁱ —Cs1B—O3 ⁱⁱ	113.88 (5)	Ga1 ^{xvii} —O2—Cs1B	129.4 (2)
O3 ⁱⁱⁱ —Cs1B—O3 ⁱⁱ	150.1 (9)	Cs1B ⁱⁱ —O2—Cs1B	6.9 (12)
O3—Cs1B—O3 ⁱⁱ	68.2 (2)	As1—O2—Cs1A	102.50 (6)
O3 ^{iv} —Cs1B—O3 ⁱⁱ	125.6 (7)	Ga1 ^{xvii} —O2—Cs1A	128.04 (6)
O3 ⁱ —Cs1B—O3 ⁱⁱ	67.7 (3)	Cs1B ⁱⁱ —O2—Cs1A	2.8 (5)
O2—Cs1B—O3 ⁱⁱ	75.7 (4)	Cs1B—O2—Cs1A	4.2 (7)
O2 ⁱⁱⁱ —Cs1B—O3 ⁱⁱ	108.0 (6)	As1—O2—Cs1B ⁱ	103.06 (11)
Cs1B ⁱ —Cs1B—O3 ^v	49.5 (4)	Ga1 ^{xvii} —O2—Cs1B ⁱ	128.20 (6)
Cs1B ⁱⁱ —Cs1B—O3 ^v	57.6 (3)	Cs1B ⁱⁱ —O2—Cs1B ⁱ	2.0 (4)
O2 ^{iv} —Cs1B—O3 ^v	113.88 (5)	Cs1B—O2—Cs1B ⁱ	5.8 (10)
$O2^{i}$ —Cs1B—O3 ^v	128.02 (8)	Cs1A—O2—Cs1B ⁱ	1.8 (3)
O3 ⁱⁱⁱ —Cs1B—O3 ^v	68.2 (2)	As1—O3—Cs1B	100.96 (8)
O3—Cs1B—O3 ^v	150.1 (8)	As1—O3—Cs1B ⁱⁱ	97.8 (5)
O3 ^{iv} —Cs1B—O3 ^v	67.7 (3)	Cs1B—O3—Cs1B ⁱⁱ	7.3 (13)
$O3^{i}$ — $Cs1B$ — $O3^{v}$	125.6 (7)	As1—O3—Cs1A	100.94 (7)
O2—Cs1B—O3 ^v	107.9 (6)	Cs1B—O3—Cs1A	3.9 (7)
$O2^{iii}$ —Cs1B—O3 ^v	75.7 (4)	Cs1B ⁱⁱ —O3—Cs1A	4.1 (7)
O3 ⁱⁱ —Cs1B—O3 ^v	93.7 (10)	As1—O3—Cs1B ⁱ	103.8 (5)
Cs1B ⁱ —Cs1B—O2 ⁱⁱ	15.07 (4)	Cs1B—O3—Cs1B ⁱ	5.7 (10)
Cs1B ⁱⁱ —Cs1B—O2 ⁱⁱ	52.57 (10)	Cs1B ⁱⁱ —O3—Cs1B ⁱ	6.2 (10)
O2 ^{iv} —Cs1B—O2 ⁱⁱ	162.2 (7)	Cs1A—O3—Cs1B ⁱ	3.1 (5)
O2 ⁱ —Cs1B—O2 ⁱⁱ	113.8 (2)	As1 ⁱⁱⁱ —O4—Ga1 ^{xx}	126.05 (8)
O3 ⁱⁱⁱ —Cs1B—O2 ⁱⁱ	108.3 (6)	As1 ⁱⁱⁱ —O4—Cs1B ^{xxi}	120.63 (19)
O3—Cs1B—O2 ⁱⁱ	110.2 (6)	Ga1 ^{xx} —O4—Cs1B ^{xxi}	100.03 (7)
O3 ^{iv} —Cs1B—O2 ⁱⁱ	121.6 (10)	As1 ⁱⁱⁱ —O4—Cs1A ^{xix}	121.31 (6)
O3 ⁱ —Cs1B—O2 ⁱⁱ	75.2 (4)	Ga1 ^{xx} —O4—Cs1A ^{xix}	100.29 (5)
O2—Cs1B—O2 ⁱⁱ	109.7 (9)	Cs1B ^{xxi} —O4—Cs1A ^{xix}	1.5 (3)
O2 ⁱⁱⁱ —Cs1B—O2 ⁱⁱ	75.1 (5)	As1 ⁱⁱⁱ —O4—Cs1B ^{xix}	124.5 (6)
O3 ⁱⁱ —Cs1B—O2 ⁱⁱ	42.6 (4)	Ga1 ^{xx} —O4—Cs1B ^{xix}	98.2 (4)
O3 ^v —Cs1B—O2 ⁱⁱ	59.6 (6)	Cs1B ^{xxi} —O4—Cs1B ^{xix}	4.5 (8)
$Cs1B^{i}$ — $Cs1B$ — $O2^{v}$	52.6 (3)	Cs1A ^{xix} —O4—Cs1B ^{xix}	3.3 (5)
$Cs1B^{ii}$ — $Cs1B$ — $O2^{v}$	15.07 (11)	As1 ⁱⁱⁱ —O4—Cs1B ^{xxii}	118.8 (4)
$O2^{iv}$ —Cs1B—O2 ^v	113.8 (2)	Ga1 ^{xx} —O4—Cs1B ^{xxii}	102.6 (4)
$O2^{i}$ —Cs1B—O2 ^v	162.2 (7)	Cs1B ^{xxi} —O4—Cs1B ^{xxii}	2.6 (4)
O3 ⁱⁱⁱ —Cs1B—O2 ^v	110.2 (6)	Cs1A ^{xix} —O4—Cs1B ^{xxii}	2.6 (4)
O3—Cs1B—O2 ^v	108.3 (6)	Cs1B ^{xix} —O4—Cs1B ^{xxii}	5.7 (10)
$O3^{iv}$ —Cs1B—O2 ^v	75.2 (4)	As1 ⁱⁱⁱ —O4—Cs1B	52.6 (4)
O3 ⁱ —Cs1B—O2 ^v	121.6 (10)	Ga1 ^{xx} —O4—Cs1B	73.8 (4)
$O2$ — $Cs1B$ — $O2^{v}$	75.1 (5)	Cs1B ^{xxi} —O4—Cs1B	134.69 (14)
O2 ⁱⁱⁱ —Cs1B—O2 ^v	109.7 (9)	Cs1A ^{xix} —O4—Cs1B	136.21 (14)
O3 ⁱⁱ —Cs1B—O2 ^v	59.6 (6)	Cs1B ^{xix} —O4—Cs1B	138.2 (4)
$O3^{v}$ — $Cs1B$ — $O2^{v}$	42.6 (4)	Cs1B ^{xxii} —O4—Cs1B	135.56 (6)
O2 ⁱⁱ —Cs1B—O2 ^v	49.4 (6)	As1 ⁱⁱⁱ —O4—Cs1B ⁱ	48.6 (3)
Cs1B ⁱ —Cs1B—O4 ^{vi}	153.66 (8)	Ga1 ^{xx} —O4—Cs1B ⁱ	78.2 (4)
Cs1B ⁱⁱ —Cs1B—O4 ^{vi}	131.4 (4)	$Cs1B^{xxi}$ —O4— $Cs1B^{i}$	132.1 (6)
$O2^{iv}$ —Cs1B—O4 ^{vi}	43.4 (5)	$Cs1A^{xix}$ —O4— $Cs1B^{i}$	133.6 (4)
O2 ⁱ —Cs1B—O4 ^{vi}	52.0 (6)	$Cs1B^{xix}$ —O4— $Cs1B^{i}$	135.86 (5)
O3 ⁱⁱⁱ —Cs1B—O4 ^{vi}	94.6 (9)	Cs1B ^{xxii} —O4—Cs1B ⁱ	132.7 (5)

O3—Cs1B—O4 ^{vi}	42.8 (4)	Cs1B—O4—Cs1B ⁱ	5.1 (9)
$O3^{iv}$ — $Cs1B$ — $O4^{vi}$	90.2 (7)	As1 ⁱⁱⁱ —O4—Cs1A	50.49 (4)
$O3^{i}$ — $Cs1B$ — $O4^{vi}$	74.4 (6)	Ga1 ^{xx} —O4—Cs1A	76.01 (4)
O2—Cs1B—O4 ^{vi}	69.3 (5)	Cs1B ^{xxi} —O4—Cs1A	133.9 (3)
$O2^{iii}$ —Cs1B—O4 ^{vi}	105.9 (9)	Cs1A ^{xix} —O4—Cs1A	135.46 (4)
O3 ⁱⁱ —Cs1B—O4 ^{vi}	108.8 (2)	Cs1B ^{xix} —O4—Cs1A	137.6 (3)
O3 ^v —Cs1B—O4 ^{vi}	155.2 (6)	Cs1B ^{xxii} —O4—Cs1A	134.68 (14)
O2 ⁱⁱ —Cs1B—O4 ^{vi}	145.19 (3)	Cs1B—O4—Cs1A	2.3 (4)
$O2^v$ —Cs1B—O4 ^{vi}	144.37 (3)	Cs1B ⁱ —O4—Cs1A	2.8 (5)
Cs1B ⁱ —Cs1B—O4 ^{vii}	131.4 (2)		

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z; (iii) -x, -x+y, -z+3/2; (iv) y, x, -z+3/2; (v) x-y, -y, -z+3/2; (vi) y, x-1, -z+3/2; (vii) -y, x-y-1, z; (viii) -y, x-y-1, z; (viii) -y, x-y-1, z; (viii) -y, x-y+1, z; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) -x+y+1, -x+1, z; (xii) x-y-1/3, x+1/3, -z+4/3; (xii) y+2/3, -x+y+4/3, -z+4/3; (xiv) -x+2/3, -y+1/3, -z+4/3; (xv) x-1, y, z; (xvi) -y-1, x-y-1, z; (xvii) x-1, y-1, z; (xviii) -x+y-1, -x-1, z; (xix) x+1, y, z; (xx) x, y-1, z; (xxi) -x+y+1, -x, z; (xxii) -y+1, x-y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O3—H…O4 ^{vi}	0.86 (2)	1.93 (2)	2.727 (2)	154 (3)

Symmetry code: (vi) y, x-1, -z+3/2.

Thallium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (TlGa2AsHAsO46)

Crystal data

TlGa₂As(HAsO₄)₆ $M_r = 1258.30$ Trigonal, $R\overline{3}c$:H a = 8.484 (1) Å c = 50.724 (11) Å V = 3161.9 (10) Å³ Z = 6F(000) = 3432

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan HKL SCALEPACK (Otwinowski *et al.*, 2003) $T_{\min} = 0.200, T_{\max} = 0.347$ 4682 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.041$ S = 1.101285 reflections 71 parameters 2 restraints $D_x = 3.965 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2570 reflections $\theta = 2.4-32.6^{\circ}$ $\mu = 21.18 \text{ mm}^{-1}$ T = 293 KLarge pseudo-octahedra, colourless $0.08 \times 0.07 \times 0.05 \text{ mm}$

1285 independent reflections 1129 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 32.6^\circ, \ \theta_{min} = 2.4^\circ$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -76 \rightarrow 76$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0174P)^2 + 10.0458P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.005$ $\Delta \rho_{\text{max}} = 0.74 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.73 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.000237 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)	

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
Tl1A	0.000000	0.000000	0.750000	0.074 (4)	0.329 (3)
T11B	0.000000	-0.0480 (7)	0.750000	0.0496 (15)	0.1294 (11)
Tl1C	0.000000	-0.0903 (10)	0.750000	0.0387 (10)	0.0941 (11)
Gal	0.333333	0.666667	0.75604 (2)	0.00849 (8)	
As2	0.333333	0.666667	0.666667	0.00754 (9)	
As1	-0.44448 (3)	-0.40820 (3)	0.71139 (2)	0.00861 (6)	
O1	0.40173 (19)	-0.46663 (18)	0.68629 (3)	0.0112 (3)	
O2	-0.45247 (19)	-0.27070 (18)	0.73408 (3)	0.0116 (3)	
O3	-0.2297 (2)	-0.2872 (2)	0.69852 (4)	0.0209 (3)	
O4	0.48864 (18)	-0.12491 (19)	0.77863 (3)	0.0117 (3)	
Н	-0.176 (5)	-0.351 (5)	0.7005 (8)	0.069 (14)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tl1A	0.056 (4)	0.056 (4)	0.109 (4)	0.028 (2)	0.000	0.000
T11B	0.061 (2)	0.029 (3)	0.069 (2)	0.0305 (10)	0.0008 (16)	0.0004 (8)
Tl1C	0.0285 (14)	0.030 (3)	0.0566 (17)	0.0142 (7)	0.0073 (11)	0.0037 (5)
Ga1	0.00891 (11)	0.00891 (11)	0.00765 (16)	0.00446 (5)	0.000	0.000
As2	0.00849 (13)	0.00849 (13)	0.00563 (19)	0.00425 (6)	0.000	0.000
As1	0.00960 (10)	0.00911 (10)	0.00843 (9)	0.00564 (7)	0.00016 (6)	0.00061 (6)
01	0.0147 (6)	0.0116 (6)	0.0096 (6)	0.0082 (5)	-0.0029(5)	-0.0001(5)
O2	0.0112 (6)	0.0109 (6)	0.0125 (6)	0.0055 (5)	0.0005 (5)	-0.0023 (5)
O3	0.0137 (7)	0.0206 (8)	0.0291 (9)	0.0092 (6)	0.0089 (6)	0.0085 (7)
O4	0.0133 (6)	0.0105 (6)	0.0136 (6)	0.0077 (5)	-0.0024 (5)	-0.0032 (5)

Geometric parameters (Å, °)

Tl1A—Tl1B ⁱ	0.408 (7)	Tl1B—O4 ^{vii}	3.810 (6)	
Tl1A—Tl1B ⁱⁱ	0.408 (6)	Tl1B—As1 ^{iv}	3.936 (3)	
Tl1A—Tl1C	0.766 (9)	Tl1B—As1 ⁱ	3.936 (3)	
Tl1A—Tl1C ⁱ	0.766 (9)	Tl1C—Tl1C ⁱ	1.327 (15)	
Tl1A—Tl1C ⁱⁱ	0.766 (9)	Tl1C—Tl1C ⁱⁱ	1.327 (15)	
Tl1A—O3	3.4357 (19)	Tl1C—O2 ^{iv}	2.883 (6)	
Tl1A—O3 ⁱⁱⁱ	3.4358 (19)	Tl1C—O2 ⁱ	2.883 (6)	

Tl1A—O3 ⁱ	3.4358 (19)	Tl1C—O3	3.186 (3)
Tl1A—O3 ^{iv}	3.4358 (19)	Tl1C—O3 ^v	3.186 (3)
Tl1A—O3 ^v	3.4358 (19)	Tl1C—O3 ^{iv}	3.3574 (19)
Tl1A—O3 ⁱⁱ	3.4358 (19)	Tl1C—O3 ⁱ	3.3574 (19)
$T11A - O2^{v}$	3.4419 (15)	T11C—O2 ^v	3.4432 (18)
$T11A - O2^{iv}$	3.4419 (15)	T11C02	3,4432 (18)
$T11A - O2^{ii}$	3.4419 (15)	Tl1C—O4 ^{vi}	3.494 (8)
T11A-02 ⁱⁱⁱ	3 4419 (14)	$T11C - O4^{vii}$	3 494 (8)
$T_{11}A_{-02^{i}}$	3 4419 (14)	TI1C—As1 ^{iv}	3802(3)
T11A-02	3 4419 (15)	$T_{11}C_{}As_{1}^{i}$	3802(3)
$T_{11}A_{3}A_{1}V$	4 1219 (5)	$T_{11}C_{}As_{1}^{v}$	3,802(3)
$T11A - As1^{iii}$	4 1219 (5)	TIIC—As1	3 8936 (19)
$T_{11} \Delta_{} \Delta_{s} 1^{iv}$	4.1219 (5)		3 969 (7)
TI1R TI1R ⁱ	-4.1219(3)	$G_{21} = 0.04^{\text{viii}}$	1,9609(14)
$T11D T11D^{ii}$	0.706 (11)	Ga1 = O4	1.9009 (14)
T11B T11Ci	1.032(12)	Ga1 = O4	1.9009(13) 1.9600(14)
	1.032(12) 1.022(11)	$Ca1 = O^{2x}$	1.9009(14)
	1.032(11)	$Ga1 = O2^{ii}$	1.9048 (14)
THD 02	5.134 (5) 2.124 (5)	$Ga1 = O2^{n}$	1.9048 (15)
THD 02	3.134 (5)	$Gal = 02^{\text{A}}$	1.9648 (14)
	3.283 (3)	$As2 = O1^{xii}$	1.8062 (14)
	3.283 (3)	$As2 = 01^{km}$	1.8062 (14)
	3.373 (2)	$As2 = O1^{ix}$	1.8062 (14)
	3.373 (2)		1.8062 (14)
T11B—02 ^v	3.4213 (15)	As2—01 ¹	1.8063 (14)
Tl1B—O2	3.4213 (15)	As2—O1 ^{vm}	1.8063 (14)
Tl1B—O3 ⁱⁿ	3.709 (5)	As1—O2	1.6641 (14)
Tl1B—O3 ⁱⁱ	3.709 (5)	As1—O4 ^v	1.6672 (14)
Tl1B—O2 ⁱⁱ	3.810 (6)	As1—O1 ^{xv}	1.7094 (14)
Tl1B—O2 ⁱⁱⁱ	3.810 (6)	As1—O3	1.7115 (16)
Tl1B—O4 ^{vi}	3.810 (6)		
Tl1B ⁱ —Tl1A—Tl1B ⁱⁱ	120.00 (2)	O2 ⁱ —Tl1C—O3 ⁱ	49.88 (5)
Tl1B ⁱ —Tl1A—Tl1C	120.000 (17)	O3—Tl1C—O3 ⁱ	72.40 (6)
Tl1B ⁱⁱ —Tl1A—Tl1C	120.00(7)	O3 ^v —T11C—O3 ⁱ	107.87 (7)
Tl1B ⁱ —Tl1A—Tl1C ⁱ	0 (2)	O3 ^{iv} —T11C—O3 ⁱ	178.8 (3)
Tl1B ⁱⁱ —Tl1A—Tl1C ⁱ	120.00 (2)	Tl1A—Tl1C—O2 ^v	83.51 (14)
Tl1C—Tl1A—Tl1C ⁱ	120.000 (19)	Tl1B ⁱ —Tl1C—O2 ^v	64.1 (2)
Tl1B ⁱ —Tl1A—Tl1C ⁱⁱ	120.000 (17)	Tl1B ⁱⁱ —Tl1C—O2 ^v	102.9 (3)
Tl1B ⁱⁱ —Tl1A—Tl1C ⁱⁱ	0.000 (19)	Tl1C ⁱ —Tl1C—O2 ^v	54.51 (14)
Tl1C—Tl1A—Tl1C ⁱⁱ	120.00 (5)	Tl1C ⁱⁱ —Tl1C—O2 ^v	112.64 (13)
T11C ⁱ —T11A—T11C ⁱⁱ	120.000 (17)	$O2^{iv}$ —T11C— $O2^{v}$	132.5 (2)
Tl1B ⁱ —Tl1A—O3	129.66 (3)	$O2^{i}$ —Tl1C— $O2^{v}$	58.33 (6)
$T11B^{ii}$ — $T11A$ — $O3$	77.72 (3)	O3—T11C—O2 ^v	136.75 (5)
T11C—T11A—O3	64.82 (3)	$O3^{v}$ —Tl1C— $O2^{v}$	47.23 (4)
$T_{11}C^{i}$ T_{11}A - 03	129.66 (3)	$O3^{iv}$ —TI1C— $O2^{v}$	115.03 (5)
T11C ⁱⁱ —T11A—O3	77.72 (3)	$O3^{i}$ —T11C— $O2^{v}$	64.82 (4)
T11B ⁱ —T11A—O3 ⁱⁱⁱ	64.82 (3)	$T_{11}A_{-}T_{11}C_{-}O_{2}$	83.51 (14)
T11B ⁱⁱ —T11A—O3 ⁱⁱⁱ	77.72 (3)	$T11B^{i}$ — $T11C$ — $O2$	102.9 (3)

Tl1C—Tl1A—O3 ⁱⁱⁱ	129.65 (3)	Tl1B ⁱⁱ —Tl1C—O2	64.1 (2)
Tl1C ⁱ —Tl1A—O3 ⁱⁱⁱ	64.82 (3)	Tl1C ⁱ —Tl1C—O2	112.64 (14)
Tl1C ⁱⁱ —Tl1A—O3 ⁱⁱⁱ	77.72 (3)	Tl1C ⁱⁱ —Tl1C—O2	54.51 (15)
O3—Tl1A—O3 ⁱⁱⁱ	155.44 (5)	O2 ^{iv} —Tl1C—O2	58.33 (6)
Tl1B ⁱ —Tl1A—O3 ⁱ	64.82 (3)	O2 ⁱ —Tl1C—O2	132.5 (2)
Tl1B ⁱⁱ —Tl1A—O3 ⁱ	129.65 (3)	O3—T11C—O2	47.23 (4)
Tl1C—Tl1A—O3 ⁱ	77.72 (3)	O3 ^v —Tl1C—O2	136.75 (5)
Tl1C ⁱ —Tl1A—O3 ⁱ	64.82 (3)	O3 ^{iv} —Tl1C—O2	64.82 (4)
Tl1C ⁱⁱ —Tl1A—O3 ⁱ	129.65 (3)	O3 ⁱ —Tl1C—O2	115.03 (5)
O3—Tl1A—O3 ⁱ	68.50 (4)	O2 ^v —Tl1C—O2	167.0 (3)
O3 ⁱⁱⁱ —Tl1A—O3 ⁱ	129.64 (6)	Tl1A—Tl1C—O4 ^{vi}	150.55 (7)
Tl1B ⁱ —Tl1A—O3 ^{iv}	129.65 (3)	Tl1B ⁱ —Tl1C—O4 ^{vi}	136.76 (15)
$T11B^{ii}$ — $T11A$ — $O3^{iv}$	64.82 (3)	Tl1B ⁱⁱ —Tl1C—O4 ^{vi}	155.25 (6)
Tl1C—Tl1A—O3 ^{iv}	77.72 (3)	Tl1C ⁱ —Tl1C—O4 ^{vi}	128.52 (6)
Tl1C ⁱ —Tl1A—O3 ^{iv}	129.65 (3)	Tl1C ⁱⁱ —Tl1C—O4 ^{vi}	152.31 (4)
Tl1C ⁱⁱ —Tl1A—O3 ^{iv}	64.82 (3)	O2 ^{iv} —Tl1C—O4 ^{vi}	58.91 (14)
O3—T11A—O3 ^{iv}	100.69 (6)	$O2^{i}$ —Tl1C—O4 ^{vi}	49.76 (12)
$O3^{iii}$ —Tl1A— $O3^{iv}$	68.50 (4)	$O3$ —T11C— $O4^{vi}$	106.8 (2)
$O3^{i}$ —Tl1A— $O3^{iv}$	155.44 (5)	03 ^v —Tl1C—O4 ^{vi}	47.94 (9)
$T_{11}B_{i}^{i}$ $T_{11}A_{03^{v}}$	77.72 (3)	$O3^{iv}$ —Tl1C—O4 ^{vi}	81.43 (12)
$T11B^{ii}$ — $T11A$ — $O3^{v}$	129.65 (3)	O3 ⁱ —Tl1C—O4 ^{vi}	99.64 (15)
$T_{11}C_{-}T_{11}A_{-}O_{3^{v}}$	64.82 (3)	$O2^{v}$ —T11C—O4 ^{vi}	75.36 (9)
$T_{11}C_{-}^{i}T_{11}A_{-}O_{3}^{v}$	77.72 (3)	$O2-T11C-O4^{vi}$	116.71 (18)
$T11C^{ii}$ $T11A$ $O3^{v}$	129.65 (3)	Tl1A—Tl1C—O4 ^{vii}	150.55 (7)
$O3$ —T11A— $O3^{v}$	129.64 (6)	$T11B^{i}$ $T11C$ $O4^{vii}$	155.24 (6)
$O3^{iii}$ —Tl1A— $O3^{v}$	68.50 (4)	$T_{11}B^{ii}$ — $T_{11}C$ — $O_{4^{vii}}$	136.76 (16)
$O3^{i}$ Tl1A $O3^{v}$	100.69 (5)	$T_{11}C_{-}T_{11}C_{-}O_{4^{vii}}$	152.31 (4)
$O3^{iv}$ —T11A—O3 ^v	68.50 (4)	$T_{11}C_{ii}$ $T_{11}C_{04}V_{ii}$	128.52(7)
$T11B^{i}$ $T11A$ $O3^{ii}$	77.72 (3)	Ω^{2iv} Tl1C Ω^{4vii}	49.76 (12)
$T11B^{ii}$ — $T11A$ — $O3^{ii}$	64.82 (3)	$O2^{i}$ T11C $O4^{vii}$	58.91 (15)
$T_{11}C_{-}T_{11}A_{-}O_{3}$	129.65 (3)	$O3-T11C-O4^{vii}$	47.94 (9)
$T_{11}C^{i}$ $T_{11}A$ $O_{3^{ii}}$	77.72 (3)	O_3^v —T11C— O_4^{vii}	106.8 (2)
$T_{11}C_{ii}$ $T_{11}A_{03}$	64.82 (3)	$O3^{iv}$ —Tl1C— $O4^{vii}$	99.64 (15)
Ω_3 —T11A— Ω_3^{ii}	68 50 (4)	$O3^{i}$ T11C-O4 ^{vii}	81 43 (12)
$O3^{iii}$ T11A $O3^{ii}$	100 69 (5)	Ω^{2v} T11C Ω^{4vii}	116 71 (18)
$O3^{i}$ TllA $O3^{ii}$	68 50 (4)	Ω_{2} T11C Ω_{4}^{vii}	75 36 (9)
$O3^{iv}$ Tl1A $O3^{ii}$	129 64 (6)	$O4^{vi}$ T11C $O4^{vii}$	58 90 (15)
$O_{3^{v}}$ T11A $O_{3^{ii}}$	155 44 (6)	$T_{11}A_{-T_{11}}T_{11}C_{-A_{s1}}$	10957(12)
$T_{11}B^{i}$ $T_{11}A$ $O_{2^{v}}$	38 59 (2)	$T11B^{i}$ $T11C$ $As1^{iv}$	105.57(12) 125.8(2)
$T11B^{ii} T11A O2^{v}$	153.03(3)	T11 B^{ii} —T11C—As1 ^{iv}	92 58 (19)
$T_{11}C_{-}T_{11}A_{-}O_{2}^{v}$	83 71 (3)	$T_{11}C^{i} T_{11}C - A_{s1}^{iv}$	$133\ 20\ (11)$
$T_{11}C^{i} - T_{11}A - O^{2^{v}}$	38 59 (2)	T11 C^{ii} —T11 C —As1 ^{iv}	84 00 (13)
$T_{11}C^{ii} T_{11} \Delta O^{2v}$	153.03(3)	Ω^{2iv} _T11C_A s1 ^{iv}	24.19(3)
O_3 —T11A— O_2^{v}	127 32 (4)	$O2^{i}$ T11C As1 ^{iv}	$\frac{2}{1177(2)}$
$O3^{iii}$ T11A $O2^{v}$	76 88 (4)	$O3-T11C-As1^{iv}$	86.06.(8)
$O3^{i}$ T11A $O2^{v}$	64 02 (4)	$O3^{v}$ T11C As1 ^{iv}	85 56 (8)
$O3^{iv}$ T11 A $O2^{v}$	113 04 (4)	$O3^{iv}$ T11C As1 ^{iv}	26 75 (4)
O_3^v T11 A O_2^v	45 62 (4)	$O3^{i}$ T11C $\Delta s1^{iv}$	20.75(7)
05 - 111A - 02	TJ.02 (T)	05 -1110-1101	157.2 (2)

$O3^{ii}$ —Tl1A— $O2^{v}$	111.53 (4)	O2 ^v —Tl1C—As1 ^{iv}	132.74 (7)
$T11B^{i}$ — $T11A$ — $O2^{iv}$	153.03 (2)	O2—Tl1C—As1 ^{iv}	52.91 (3)
Tl1B ⁱⁱ —Tl1A—O2 ^{iv}	83.71 (4)	O4 ^{vi} —Tl1C—As1 ^{iv}	72.63 (12)
Tl1C—Tl1A—O2 ^{iv}	38.59 (3)	O4 ^{vii} —Tl1C—As1 ^{iv}	73.46 (12)
Tl1C ⁱ —Tl1A—O2 ^{iv}	153.03 (2)	Tl1A—Tl1C—As1 ⁱ	109.57 (12)
$T11C^{ii}$ — $T11A$ — $O2^{iv}$	83.71 (3)	Tl1B ⁱ —Tl1C—As1 ⁱ	92.58 (18)
$O3$ —T11A— $O2^{iv}$	64.02 (4)	Tl1B ⁱⁱ —Tl1C—As1 ⁱ	125.8 (2)
O3 ⁱⁱⁱ —Tl1A—O2 ^{iv}	113.04 (4)	Tl1C ⁱ —Tl1C—As1 ⁱ	84.00 (12)
$O3^{i}$ Tl1A $O2^{iv}$	111.53 (4)	Tl1C ⁱⁱ —Tl1C—As1 ⁱ	133.20 (11)
$O3^{iv}$ —Tl1A— $O2^{iv}$	45.62 (3)	O2 ^{iv} —Tl1C—As1 ⁱ	117.7 (2)
$O3^{v}$ —Tl1A— $O2^{iv}$	76.88 (4)	$O2^{i}$ —T11C—As1 ⁱ	24.19 (3)
$O3^{ii}$ —Tl1A— $O2^{iv}$	127.32 (4)	$O3-T11C-As1^{i}$	85.56 (8)
$O2^{v}$ —Tl1A— $O2^{iv}$	114.671 (18)	$O3^{v}$ —Tl1C—As1 ⁱ	86.06 (8)
$T11B^{i}$ $T11A$ $O2^{ii}$	38.59 (2)	$O3^{iv}$ —T11C—As1 ⁱ	154.2 (2)
$T11B^{ii}$ — $T11A$ — $O2^{ii}$	83.71 (3)	$O3^{i}$ —TI1C—As1 ⁱ	26.75 (4)
$T_{11}C_{-}T_{11}A_{-}O_{2}$	153.03 (3)	$O2^{v}$ —Tl1C—As1 ⁱ	52.91 (3)
$T_{11}C^{i}$ $T_{11}A$ O_{2}^{ii}	38.59 (2)	Ω_{2} The half	132.74(7)
$T11C^{ii} T11A O2^{ii}$	83 71 (3)	$O4^{vi}$ T11C As1 ⁱ	73 46 (12)
$O3-T11A-O2^{ii}$	113.05 (4)	$O4^{\text{vii}}$ T11C—As1 ⁱ	72.63 (12)
$O3^{iii}$ —Tl1A— $O2^{ii}$	64.02 (4)	As1 ^{iv} —Tl1C—As1 ⁱ	140.9(2)
$O3^{i}$ Tl1A $O2^{ii}$	76.88 (4)	$T_{11}A_{T_{11}}T_{11}C_{A_{11}}A_{A_{11}}$	102.03(12)
$O3^{iv}$ —T11A— $O2^{ii}$	127.32 (4)	$T11B^{i}$ $T11C$ $As1^{v}$	84.78 (18)
$O3^{v}$ —Tl1A— $O2^{ii}$	111.53 (4)	$T11B^{ii}$ — $T11C$ — $As1^{v}$	118.9 (2)
$O3^{ii}$ —Tl1A— $O2^{ii}$	45.62 (4)	$T11C^{i}$ $T11C$ $As1^{v}$	76.18 (12)
$O2^{v}$ —Tl1A— $O2^{ii}$	77.17 (4)	$T_{11}C_{ii}$ $T_{11}C_{ii}$ As_{1}^{v}	126.86 (11)
$O2^{iv}$ —T11A— $O2^{ii}$	167.42 (5)	O2 ^{iv} —Tl1C—As1 ^v	107.38 (17)
Tl1B ⁱ —Tl1A—O2 ⁱⁱⁱ	83.71 (2)	O2 ⁱ —Tl1C—As1 ^v	54.77 (6)
$T11B^{ii}$ — $T11A$ — $O2^{iii}$	38.59 (4)	O3—Tl1C—As1 ^v	144.21 (19)
Tl1C—Tl1A—O2 ⁱⁱⁱ	153.03 (3)	O3 ^v —Tl1C—As1 ^v	25.57 (3)
Tl1C ⁱ —Tl1A—O2 ⁱⁱⁱ	83.71 (2)	O3 ^{iv} —Tl1C—As1 ^v	97.93 (5)
Tl1C ⁱⁱ —Tl1A—O2 ⁱⁱⁱ	38.59 (3)	O3 ⁱ —Tl1C—As1 ^v	82.32 (4)
O3—T11A—O2 ⁱⁱⁱ	111.53 (4)	$O2^{v}$ —Tl1C—As1 ^v	25.27 (3)
O3 ⁱⁱⁱ —Tl1A—O2 ⁱⁱⁱ	45.62 (3)	O2—Tl1C—As1 ^v	162.06 (9)
O3 ⁱ —Tl1A—O2 ⁱⁱⁱ	127.31 (4)	O4 ^{vi} —Tl1C—As1 ^v	52.35 (7)
O3 ^{iv} —Tl1A—O2 ⁱⁱⁱ	76.88 (4)	O4 ^{vii} —Tl1C—As1 ^v	104.36 (18)
O3 ^v —T11A—O2 ⁱⁱⁱ	113.04 (4)	As1 ^{iv} —Tl1C—As1 ^v	109.44 (10)
O3 ⁱⁱ —Tl1A—O2 ⁱⁱⁱ	64.02 (4)	As1 ⁱ —Tl1C—As1 ^v	61.81 (4)
O2 ^v —T11A—O2 ⁱⁱⁱ	114.671 (18)	Tl1A—Tl1C—As1	102.03 (12)
O2 ^{iv} —Tl1A—O2 ⁱⁱⁱ	114.671 (18)	Tl1B ⁱ —Tl1C—As1	118.9 (2)
O2 ⁱⁱ —Tl1A—O2 ⁱⁱⁱ	53.93 (5)	Tl1B ⁱⁱ —Tl1C—As1	84.78 (19)
$T11B^{i}$ — $T11A$ — $O2^{i}$	83.71 (2)	Tl1C ⁱ —Tl1C—As1	126.86 (12)
$T11B^{ii}$ — $T11A$ — $O2^{i}$	153.03 (4)	Tl1C ⁱⁱ —Tl1C—As1	76.18 (13)
Tl1C—Tl1A—O2 ⁱ	38.59 (3)	O2 ^{iv} —Tl1C—As1	54.77 (6)
Tl1C ⁱ —Tl1A—O2 ⁱ	83.71 (2)	O2 ⁱ —Tl1C—As1	107.38 (17)
Tl1C ⁱⁱ —Tl1A—O2 ⁱ	153.03 (3)	O3—T11C—As1	25.56 (3)
O3—Tl1A—O2 ⁱ	76.88 (4)	O3v—Tl1C—As1	144.21 (19)
O3 ⁱⁱⁱ —Tl1A—O2 ⁱ	127.31 (4)	O3 ^{iv} —Tl1C—As1	82.32 (4)
O3 ⁱ —Tl1A—O2 ⁱ	45.62 (3)	O3 ⁱ —Tl1C—As1	97.93 (5)
	× /		

O3 ^{iv} —Tl1A—O2 ⁱ	111.52 (4)	O2 ^v —Tl1C—As1	162.06 (9)
$O3^v$ —Tl1A— $O2^i$	64.02 (4)	O2—Tl1C—As1	25.27 (3)
O3 ⁱⁱ —Tl1A—O2 ⁱ	113.04 (4)	O4 ^{vi} —Tl1C—As1	104.36 (18)
$O2^{v}$ —Tl1A— $O2^{i}$	53.93 (5)	O4 ^{vii} —Tl1C—As1	52.35 (7)
$O2^{iv}$ —Tl1A— $O2^{i}$	77.17 (4)	As1 ^{iv} —Tl1C—As1	61.81 (4)
O2 ⁱⁱ —Tl1A—O2 ⁱ	114.671 (18)	As1 ⁱ —Tl1C—As1	109.44 (10)
O2 ⁱⁱⁱ —Tl1A—O2 ⁱ	167.42 (5)	As1 ^v —Tl1C—As1	155.9 (2)
Tl1B ⁱ —Tl1A—O2	153.03 (2)	Tl1A—Tl1C—O3 ⁱⁱⁱ	41.80 (9)
Tl1B ⁱⁱ —Tl1A—O2	38.59 (3)	Tl1B ⁱ —Tl1C—O3 ⁱⁱⁱ	42.53 (9)
TI1C—TI1A—O2	83.71 (3)	Tl1B ⁱⁱ —Tl1C—O3 ⁱⁱⁱ	48.38 (13)
Tl1C ⁱ —Tl1A—O2	153.03 (2)	Tl1C ⁱ —Tl1C—O3 ⁱⁱⁱ	45.67 (7)
Tl1C ⁱⁱ —Tl1A—O2	38.59 (3)	Tl1C ⁱⁱ —Tl1C—O3 ⁱⁱⁱ	53.67 (6)
O3—T11A—O2	45.61 (3)	O2 ^{iv} —Tl1C—O3 ⁱⁱⁱ	112.74 (5)
O3 ⁱⁱⁱ —Tl1A—O2	111.53 (4)	O2 ⁱ —Tl1C—O3 ⁱⁱⁱ	127.49 (5)
O3 ⁱ —Tl1A—O2	113.04 (4)	O3—Tl1C—O3 ⁱⁱⁱ	139.3 (2)
O3 ^{iv} —Tl1A—O2	64.02 (4)	O3 ^v —Tl1C—O3 ⁱⁱⁱ	64.35 (8)
O3 ^v —Tl1A—O2	127.32 (4)	O3 ^{iv} —Tl1C—O3 ⁱⁱⁱ	63.07 (9)
O3 ⁱⁱ —Tl1A—O2	76.88 (4)	O3 ⁱ —Tl1C—O3 ⁱⁱⁱ	115.92 (18)
O2 ^v —Tl1A—O2	167.42 (5)	O2 ^v —Tl1C—O3 ⁱⁱⁱ	70.05 (10)
O2 ^{iv} —Tl1A—O2	53.93 (5)	O2—Tl1C—O3 ⁱⁱⁱ	99.95 (14)
O2 ⁱⁱ —Tl1A—O2	114.671 (18)	O4 ^{vi} —Tl1C—O3 ⁱⁱⁱ	110.35 (4)
O2 ⁱⁱⁱ —Tl1A—O2	77.17 (5)	O4 ^{vii} —Tl1C—O3 ⁱⁱⁱ	161.91 (11)
O2 ⁱ —Tl1A—O2	114.671 (18)	As1 ^{iv} —Tl1C—O3 ⁱⁱⁱ	89.69 (6)
Tl1B ⁱ —Tl1A—As1 ^v	60.345 (3)	As1 ⁱ —Tl1C—O3 ⁱⁱⁱ	120.32 (10)
Tl1B ⁱⁱ —Tl1A—As1 ^v	151.344 (7)	As1 ^v —Tl1C—O3 ⁱⁱⁱ	74.64 (6)
Tl1C—Tl1A—As1 ^v	67.496 (15)	As1—Tl1C—O3 ⁱⁱⁱ	125.14 (13)
Tl1C ⁱ —Tl1A—As1 ^v	60.345 (3)	O4 ^{viii} —Ga1—O4 ^{ix}	89.32 (6)
Tl1C ⁱⁱ —Tl1A—As1 ^v	151.344 (7)	O4 ^{viii} —Ga1—O4 ⁱ	89.32 (6)
O3—Tl1A—As1 ^v	125.98 (3)	O4 ^{ix} —Ga1—O4 ⁱ	89.32 (6)
O3 ⁱⁱⁱ —Tl1A—As1 ^v	77.63 (3)	O4 ^{viii} —Ga1—O2 ^x	177.75 (6)
O3 ⁱ —Tl1A—As1 ^v	78.07 (3)	$O4^{ix}$ —Ga1—O2 ^x	91.19 (6)
O3 ^{iv} —Tl1A—As1 ^v	92.52 (3)	O4 ⁱ —Ga1—O2 ^x	88.50 (6)
O3 ^v —Tl1A—As1 ^v	24.05 (3)	O4 ^{viii} —Ga1—O2 ⁱⁱ	88.50 (6)
O3 ⁱⁱ —Tl1A—As1 ^v	134.64 (3)	O4 ^{ix} —Ga1—O2 ⁱⁱ	177.75 (6)
O2 ^v —Tl1A—As1 ^v	23.26 (2)	O4 ⁱ —Ga1—O2 ⁱⁱ	91.19 (6)
O2 ^{iv} —Tl1A—As1 ^v	92.70 (2)	O2 ^x —Ga1—O2 ⁱⁱ	91.01 (6)
O2 ⁱⁱ —Tl1A—As1 ^v	98.35 (2)	O4 ^{viii} —Ga1—O2 ^{xi}	91.19 (6)
O2 ⁱⁱⁱ —Tl1A—As1 ^v	122.48 (2)	O4 ^{ix} —Ga1—O2 ^{xi}	88.50 (6)
O2 ⁱ —Tl1A—As1 ^v	49.80 (3)	O4 ⁱ —Ga1—O2 ^{xi}	177.75 (6)
O2—Tl1A—As1 ^v	146.60 (2)	O2 ^x —Ga1—O2 ^{xi}	91.01 (6)
Tl1B ⁱ —Tl1A—As1 ⁱⁱⁱ	67.496 (3)	O2 ⁱⁱ —Ga1—O2 ^{xi}	91.01 (6)
T11B ⁱⁱ —T11A—As1 ⁱⁱⁱ	60.35 (2)	O4 ^{viii} —Ga1—Tl1C ^{ix}	142.93 (5)
Tl1C—Tl1A—As1 ⁱⁱⁱ	151.344 (7)	O4 ^{ix} —Ga1—Tl1C ^{ix}	85.12 (7)
Tl1C ⁱ —Tl1A—As1 ⁱⁱⁱ	67.496 (3)	O4 ⁱ —Ga1—Tl1C ^{ix}	54.06 (6)
Tl1C ⁱⁱ —Tl1A—As1 ⁱⁱⁱ	60.345 (15)	O2 ^x —Ga1—Tl1C ^{ix}	35.00 (5)
O3—Tl1A—As1 ⁱⁱⁱ	134.64 (3)	O2 ⁱⁱ —Ga1—Tl1C ^{ix}	96.95 (7)
O3 ⁱⁱⁱ —Tl1A—As1 ⁱⁱⁱ	24.05 (3)	O2 ^{xi} —Ga1—Tl1C ^{ix}	125.17 (6)
O3 ⁱ —Tl1A—As1 ⁱⁱⁱ	125.98 (3)	O4 ^{viii} —Ga1—Tl1C ^{viii}	85.12 (8)

O3 ^{iv} —Tl1A—As1 ⁱⁱⁱ	77.63 (3)	O4 ^{ix} —Ga1—Tl1C ^{viii}	54.06 (6)
O3 ^v —Tl1A—As1 ⁱⁱⁱ	92.52 (3)	O4 ⁱ —Ga1—Tl1C ^{viii}	142.93 (6)
O3 ⁱⁱ —Tl1A—As1 ⁱⁱⁱ	78.07 (3)	O2 ^x —Ga1—Tl1C ^{viii}	96.95 (8)
O2 ^v —Tl1A—As1 ⁱⁱⁱ	92.70 (2)	O2 ⁱⁱ —Ga1—Tl1C ^{viii}	125.17 (6)
O2 ^{iv} —Tl1A—As1 ⁱⁱⁱ	122.48 (2)	O2 ^{xi} —Ga1—Tl1C ^{viii}	35.00 (5)
O2 ⁱⁱ —Tl1A—As1 ⁱⁱⁱ	49.80 (2)	Tl1C ^{ix} —Ga1—Tl1C ^{viii}	119.488 (4)
O2 ⁱⁱⁱ —Tl1A—As1 ⁱⁱⁱ	23.26 (2)	O4 ^{viii} —Ga1—Tl1C ⁱ	54.06 (6)
O2 ⁱ —Tl1A—As1 ⁱⁱⁱ	146.60 (2)	O4 ^{ix} —Ga1—Tl1C ⁱ	142.93 (5)
O2—Tl1A—As1 ⁱⁱⁱ	98.35 (2)	O4 ⁱ —Ga1—Tl1C ⁱ	85.13 (7)
As1 ^v —Tl1A—As1 ⁱⁱⁱ	99.284 (8)	O2 ^x —Ga1—Tl1C ⁱ	125.17 (6)
Tl1B ⁱ —Tl1A—As1 ^{iv}	151.344 (7)	O2 ⁱⁱ —Ga1—Tl1C ⁱ	35.00 (5)
Tl1B ⁱⁱ —Tl1A—As1 ^{iv}	67.50 (2)	O2 ^{xi} —Ga1—Tl1C ⁱ	96.95 (7)
Tl1C—Tl1A—As1 ^{iv}	60.345 (15)	Tl1C ^{ix} —Ga1—Tl1C ⁱ	119.488 (6)
Tl1C ⁱ —Tl1A—As1 ^{iv}	151.344 (7)	Tl1C ^{viii} —Ga1—Tl1C ⁱ	119.488 (1)
Tl1C ⁱⁱ —Tl1A—As1 ^{iv}	67.496 (15)	O4 ^{viii} —Ga1—Tl1B ^{ix}	143.88 (5)
O3—Tl1A—As1 ^{iv}	78.07 (3)	O4 ^{ix} —Ga1—Tl1B ^{ix}	82.88 (5)
O3 ⁱⁱⁱ —Tl1A—As1 ^{iv}	92.52 (3)	O4 ⁱ —Ga1—Tl1B ^{ix}	55.53 (5)
O3 ⁱ —Tl1A—As1 ^{iv}	134.64 (3)	O2 ^x —Ga1—Tl1B ^{ix}	34.12 (4)
O3 ^{iv} —Tl1A—As1 ^{iv}	24.05 (3)	O2 ⁱⁱ —Ga1—Tl1B ^{ix}	99.21 (6)
O3 ^v —Tl1A—As1 ^{iv}	77.63 (3)	O2 ^{xi} —Ga1—Tl1B ^{ix}	123.61 (5)
O3 ⁱⁱ —Tl1A—As1 ^{iv}	125.98 (3)	Tl1C ^{ix} —Ga1—Tl1B ^{ix}	2.61 (6)
O2 ^v —Tl1A—As1 ^{iv}	122.48 (2)	Tl1C ^{viii} —Ga1—Tl1B ^{ix}	116.94 (6)
O2 ^{iv} —Tl1A—As1 ^{iv}	23.26 (2)	Tl1C ⁱ —Ga1—Tl1B ^{ix}	122.10 (5)
O2 ⁱⁱ —Tl1A—As1 ^{iv}	146.60 (2)	O4 ^{viii} —Ga1—Tl1B ⁱ	55.53 (5)
O2 ⁱⁱⁱ —Tl1A—As1 ^{iv}	92.70 (2)	O4 ^{ix} —Ga1—Tl1B ⁱ	143.88 (5)
O2 ⁱ —Tl1A—As1 ^{iv}	98.35 (2)	O4 ⁱ —Ga1—Tl1B ⁱ	82.88 (5)
O2—Tl1A—As1 ^{iv}	49.80 (2)	O2 ^x —Ga1—Tl1B ⁱ	123.61 (5)
As1 ^v —Tl1A—As1 ^{iv}	99.284 (8)	O2 ⁱⁱ —Ga1—Tl1B ⁱ	34.12 (4)
As1 ⁱⁱⁱ —Tl1A—As1 ^{iv}	99.284 (8)	O2 ^{xi} —Ga1—Tl1B ⁱ	99.21 (5)
Tl1B ⁱ —Tl1B—Tl1B ⁱⁱ	60.001 (6)	Tl1C ^{ix} —Ga1—Tl1B ⁱ	116.94 (6)
Tl1B ⁱ —Tl1B—Tl1C ⁱ	10.01 (19)	Tl1C ^{viii} —Ga1—Tl1B ⁱ	122.10 (6)
$T11B^{ii}$ — $T11B$ — $T11C^{i}$	70.01 (18)	Tl1C ⁱ —Ga1—Tl1B ⁱ	2.61 (6)
Tl1B ⁱ —Tl1B—Tl1C ⁱⁱ	70.01 (19)	Tl1B ^{ix} —Ga1—Tl1B ⁱ	119.553 (4)
Tl1B ⁱⁱ —Tl1B—Tl1C ⁱⁱ	10.0 (2)	O4 ^{viii} —Ga1—Tl1B ^{viii}	82.88 (6)
Tl1C ⁱ —Tl1B—Tl1C ⁱⁱ	80.0 (4)	O4 ^{ix} —Ga1—Tl1B ^{viii}	55.53 (5)
$T11B^{i}$ — $T11B$ — $O2^{iv}$	161.49 (7)	O4 ⁱ —Ga1—Tl1B ^{viii}	143.88 (5)
$T11B^{ii}$ — $T11B$ — $O2^{iv}$	108.27 (9)	O2 ^x —Ga1—Tl1B ^{viii}	99.21 (6)
Tl1C ⁱ —Tl1B—O2 ^{iv}	165.03 (5)	O2 ⁱⁱ —Ga1—Tl1B ^{viii}	123.61 (5)
Tl1C ⁱⁱ —Tl1B—O2 ^{iv}	98.63 (15)	O2 ^{xi} —Ga1—Tl1B ^{viii}	34.12 (5)
$T11B^{i}$ — $T11B$ — $O2^{i}$	108.27 (8)	Tl1C ^{ix} —Ga1—Tl1B ^{viii}	122.10 (6)
$T11B^{ii}$ — $T11B$ — $O2^{i}$	161.49 (6)	Tl1C ^{viii} —Ga1—Tl1B ^{viii}	2.61 (6)
Tl1C ⁱ —Tl1B—O2 ⁱ	98.63 (14)	Tl1C ⁱ —Ga1—Tl1B ^{viii}	116.94 (6)
Tl1C ⁱⁱ —Tl1B—O2 ⁱ	165.03 (5)	Tl1B ^{ix} —Ga1—Tl1B ^{viiii}	119.553 (2)
$O2^{iv}$ —Tl1B— $O2^{i}$	86.48 (16)	Tl1B ⁱ —Ga1—Tl1B ^{viii}	119.553 (1)
Tl1B ⁱ —Tl1B—O3	122.35 (9)	O1 ^{xii} —As2—O1 ^{xiii}	92.56 (6)
Tl1B ⁱⁱ —Tl1B—O3	91.20 (11)	O1 ^{xii} —As2—O1 ^{ix}	87.44 (6)
Tl1C ⁱ —Tl1B—O3	125.20 (11)	O1 ^{xiii} —As2—O1 ^{ix}	87.44 (6)
Tl1C ⁱⁱ —Tl1B—O3	85.15 (9)	O1 ^{xii} —As2—O1 ^{xiv}	92.56 (6)

O2 ^{iv} —Tl1B—O3	69.19 (9)	O1 ^{xiii} —As2—O1 ^{xiv}	92.56 (6)
O2 ⁱ —Tl1B—O3	83.53 (11)	O1 ^{ix} —As2—O1 ^{xiv}	179.99 (7)
$T11B^{i}$ — $T11B$ — $O3^{v}$	91.20 (10)	$O1^{xii}$ —As2— $O1^{i}$	87.44 (6)
Tl1B ⁱⁱ —Tl1B—O3 ^v	122.35 (9)	O1 ^{xiii} —As2—O1 ⁱ	180.0
Tl1C ⁱ —Tl1B—O3 ^v	85.15 (9)	$O1^{ix}$ —As2— $O1^{i}$	92.56 (6)
Tl1C ⁱⁱ —Tl1B—O3 ^v	125.20 (11)	$O1^{xiv}$ —As2— $O1^{i}$	87.44 (6)
$O2^{iv}$ —Tl1B—O3 ^v	83.53 (11)	O1 ^{xii} —As2—O1 ^{viii}	180.0
O2 ⁱ —Tl1B—O3 ^v	69.19 (9)	O1 ^{xiii} —As2—O1 ^{viii}	87.44 (6)
O3—T11B—O3 ^v	142.5 (2)	O1 ^{ix} —As2—O1 ^{viii}	92.56 (6)
$T11B^{i}$ — $T11B$ — $O3^{i}$	76.72 (10)	O1 ^{xiv} —As2—O1 ^{viii}	87.44 (6)
$T11B^{ii}$ — $T11B$ — $O3^{i}$	113.31 (9)	O1 ⁱ —As2—O1 ^{viii}	92.56 (6)
Tl1C ⁱ —Tl1B—O3 ⁱ	70.81 (8)	$O2$ —As1— $O4^{\vee}$	117.11 (7)
$T_{11}C_{ii}^{ii}$ $T_{11}B_{03}^{ii}$	118.40 (16)	02 —As1— 01^{xv}	115.20 (7)
$O2^{iv}$ —T 1B—O3 ⁱ	121.79 (16)	$O4^{v}$ —As1—O1 ^{xv}	100.55 (7)
Ω^{2i} TI1B Ω^{3i}	48.21 (5)	02-As1-03	104.32 (8)
$O3-T11B-O3^{i}$	71.03 (6)	$O4^{v}$ —As1—O3	111.00 (7)
$O3^{v}$ —Tl1B— $O3^{i}$	105.28 (8)	01^{xv} As 1 -03	108.62 (8)
T11B ⁱ —T11B—O3 ^{iv}	113.32 (10)	Ω^2 —As1—Tl1C ⁱⁱ	45.23 (13)
$T11B^{ii} T11B O3^{iv}$	76.72 (11)	$O4^{v}$ —As1—Tl1C ⁱⁱ	117.24 (9)
$T_{11}C^{i}$ $T_{11}B$ O_{3}^{iv}	118.40 (16)	$O1^{xv}$ As1 $T11C^{ii}$	142.08 (9)
$T11C^{ii} T11B O 3^{iv}$	70.81 (9)	O3—As1—T11C ⁱⁱ	62.00 (11)
$O2^{iv}$ —Tl1B—O3 ^{iv}	48.21 (5)	O2—As1—T11C	62.05 (11)
$O2^{i}$ TI1B $O3^{iv}$	121.79 (16)	$O4^{v}$ —As1—T11C	101.81 (13)
$O3-T11B-O3^{iv}$	105.28 (8)	$O1^{xv}$ —As1—T11C	155.50 (11)
$O3^{v}$ —Tl1B— $O3^{iv}$	71.03 (6)	O3—As1—T11C	53.44 (7)
$O3^{i}$ —T11B— $O3^{iv}$	169.0 (2)	$T_{11}C^{ii}$ —As1—T11C	19.8 (2)
$T_{11}B_{-}^{i}T_{11}B_{-}O_{2}^{v}$	60.43 (10)	O2—As1—T11B ⁱⁱ	49.87 (9)
$T11B^{ii}$ — $T11B$ — $O2^{v}$	118.57 (9)	$O4^{v}$ —As1—Tl1B ⁱⁱ	114.51 (7)
$T11C^{i}$ — $T11B$ — $O2^{v}$	50.84 (13)	$O1^{xv}$ —As1—T11B ⁱⁱ	144.91 (7)
$T11C^{ii}$ — $T11B$ — $O2^{v}$	128.2 (3)	O3—As1—Tl1B ⁱⁱ	58.46 (9)
$O2^{iv}$ —Tl1B— $O2^{v}$	124.22 (15)	Tl1C ⁱⁱ —As1—Tl1B ⁱⁱ	4.93 (10)
$O2^{i}$ Tl1B $O2^{v}$	56.67 (6)	Tl1C—As1—Tl1B ⁱⁱ	15.14 (18)
$O3-T11B-O2^{v}$	133.64 (8)	O2—As1—T11B	58.46 (8)
$O3^{v}$ —T11B— $O2^{v}$	46.81 (4)	$O4^{v}$ —As1—Tl1B	106.50 (9)
$O3^{i}$ —T11B— $O2^{v}$	64.90 (4)	$O1^{xv}$ —As1—T11B	151.78 (9)
$O3^{iv}$ —Tl1B— $O2^{v}$	115.21 (4)	O3—As1—Tl1B	53.97 (7)
$T_{11}B^{i}$ $T_{11}B$ O_{2}	118.57 (11)	$T_{11}C^{ii}$ —As1—T11B	15.00 (18)
$T_{11}B_{ii}^{ii}$ $T_{11}B_{ii}^{ii}$ O_{2}^{ii}	60.43 (12)	TI1C—As1—TI1B	5.05 (10)
$T_{11}C^{i}$ $T_{11}B$ O_{2}	128.2 (3)	$T11B^{ii}$ —As1—T11B	10.20 (16)
$T11C^{ii} T11B O2$	50.84 (14)	Ω^2 —As1—Tl1A	54.77 (5)
Ω^{2iv} T11B Ω^{2}	56 67 (6)	$O4^{v}$ As1 T11A	11151(5)
$O2^{i}$ TI1B $O2$	12422(15)	$O1^{xv}$ As1 T11A	147 41 (5)
O_3 —T11B— O_2	46 81 (4)	O_3 —As1—T11A	54 89 (6)
O_3^v —T11B— O_2^v	133 64 (9)	$T_{11}C^{ii}$ As1 T11A	10.09(12)
$O3^{i}$ —T11B—O2	115.21 (4)	TI1C—As1—TI1A	10.48 (13)
$O3^{iv}$ —T11B—O2	64.90 (4)	$T11B^{ii}$ As1 $T11A$	5.16 (8)
$O2^{v}$ —T11B—O2	179.0 (2)	TI1B—As1—TI1A	5.42 (9)
$T_{11}B_{1}^{i}T_{11}B_{1}O_{3}^{iii}$	48 40 (6)	Ω^2 —As1—T11B ⁱ	55.93 (5)
			22.72 (3)

Tl1B ⁱⁱ —Tl1B—O3 ⁱⁱⁱ	56.62 (5)	O4 ^v —As1—Tl1B ⁱ	113.25 (6)
Tl1C ⁱ —Tl1B—O3 ⁱⁱⁱ	52.40 (12)	O1 ^{xv} —As1—Tl1B ⁱ	145.33 (6)
Tl1C ⁱⁱ —Tl1B—O3 ⁱⁱⁱ	62.37 (15)	O3—As1—Tl1B ⁱ	52.81 (7)
O2 ^{iv} —Tl1B—O3 ⁱⁱⁱ	113.67 (4)	Tl1C ⁱⁱ —As1—Tl1B ⁱ	10.77 (13)
O2 ⁱ —Tl1B—O3 ⁱⁱⁱ	128.31 (4)	Tl1C—As1—Tl1B ⁱ	11.63 (13)
O3—Tl1B—O3 ⁱⁱⁱ	147.52 (14)	Tl1B ⁱⁱ —As1—Tl1B ⁱ	6.08 (9)
O3 ^v —Tl1B—O3 ⁱⁱⁱ	66.83 (6)	Tl1B—As1—Tl1B ⁱ	6.76 (10)
O3 ⁱ —Tl1B—O3 ⁱⁱⁱ	122.76 (13)	Tl1A—As1—Tl1B ⁱ	2.50 (3)
O3 ^{iv} —Tl1B—O3 ⁱⁱⁱ	66.00 (6)	O2—As1—Tl1C ^{xvi}	92.14 (6)
O2 ^v —T11B—O3 ⁱⁱⁱ	73.56 (7)	O4 ^v —As1—Tl1C ^{xvi}	41.91 (5)
O2—T11B—O3 ⁱⁱⁱ	105.70 (10)	O1 ^{xv} —As1—Tl1C ^{xvi}	82.53 (7)
Tl1B ⁱ —Tl1B—O3 ⁱⁱ	56.62 (6)	O3—As1—Tl1C ^{xvi}	152.91 (6)
T11B ⁱⁱ —T11B—O3 ⁱⁱ	48.40 (5)	Tl1C ⁱⁱ —As1—Tl1C ^{xvi}	123.42 (8)
Tl1C ⁱ —Tl1B—O3 ⁱⁱ	62.37 (15)	Tl1C—As1—Tl1C ^{xvi}	121.18 (11)
$T_{11}C_{11}^{ii} - T_{11}B - O_{3}^{ii}$	52.40 (12)	$T11B^{ii}$ —As1— $T11C^{xvi}$	124.63 (6)
$O2^{iv}$ —Tl1B—O3 ⁱⁱ	128.31 (4)	Tl1B—As1—Tl1C ^{xvi}	123.45 (8)
$O2^{i}$ —T11B—O3 ⁱⁱ	113.67 (4)	Tl1A—As1—Tl1C ^{xvi}	125.61 (5)
$O3-T11B-O3^{ii}$	66.84 (6)	$T11B^{i}$ As 1 $-T11C^{xvi}$	128.10 (4)
O3 ^v —T11B—O3 ⁱⁱ	147.52 (14)	O2—As1—Tl1C ⁱ	56.83 (5)
$O3^{i}$ —T11B—O3 ⁱⁱ	66.00 (6)	$O4^{v}$ —As1—Tl1C ⁱ	114.55 (6)
$O3^{iv}$ —Tl1B—O3 ⁱⁱ	122.76 (13)	$O1^{xv}$ —As1—Tl1C ⁱ	143.72 (6)
O2 ^v —T11B—O3 ⁱⁱ	105.70 (10)	O3—As1—Tl1C ⁱ	51.27 (7)
O2—T11B—O3 ⁱⁱ	73.56 (7)	Tl1C ⁱⁱ —As1—Tl1C ⁱ	11.61 (14)
O3 ⁱⁱⁱ —T11B—O3 ⁱⁱ	90.99 (15)	Tl1C—As1—Tl1C ⁱ	12.76 (15)
$T11B^{i}$ — $T11B$ — $O2^{ii}$	15.14 (2)	Tl1B ⁱⁱ —As1—Tl1C ⁱ	7.28 (9)
T11B ⁱⁱ —T11B—O2 ⁱⁱ	52.07 (3)	Tl1B—As1—Tl1C ⁱ	8.14 (10)
Tl1C ⁱ —Tl1B—O2 ⁱⁱ	22.47 (14)	Tl1A—As1—Tl1C ⁱ	4.38 (4)
Tl1C ⁱⁱ —Tl1B—O2 ⁱⁱ	61.7 (2)	Tl1B ⁱ —As1—Tl1C ⁱ	1.88 (4)
$O2^{iv}$ —Tl1B— $O2^{ii}$	160.34 (12)	Tl1C ^{xvi} —As1—Tl1C ⁱ	129.990 (14)
O2 ⁱ —Tl1B—O2 ⁱⁱ	112.79 (4)	As1 ^{xvii} —O1—As2 ^{xviii}	131.79 (8)
O3—T11B—O2 ⁱⁱ	107.73 (10)	As1 ^{xvii} —O1—Tl1C ^{vi}	76.09 (10)
O3 ^v —Tl1B—O2 ⁱⁱ	106.34 (9)	As2 ^{xviii} —O1—Tl1C ^{vi}	131.19 (7)
$O3^{i}$ —Tl1B— $O2^{ii}$	72.78 (8)	As1 ^{xvii} —O1—Tl1B ^{vi}	79.08 (7)
O3 ^{iv} —Tl1B—O2 ⁱⁱ	118.09 (14)	As2 ^{xviii} —O1—Tl1B ^{vi}	129.47 (6)
O2 ^v —T11B—O2 ⁱⁱ	72.62 (8)	Tl1C ^{vi} —O1—Tl1B ^{vi}	3.04 (7)
O2—Tl1B—O2 ⁱⁱ	106.41 (13)	As1—O2—Ga1 ^{xix}	123.98 (8)
O3 ⁱⁱⁱ —Tl1B—O2 ⁱⁱ	57.99 (9)	As1—O2—Tl1C ⁱⁱ	110.58 (14)
O3 ⁱⁱ —Tl1B—O2 ⁱⁱ	41.51 (7)	Ga1 ^{xix} —O2—Tl1C ⁱⁱ	121.99 (11)
Tl1B ⁱ —Tl1B—O2 ⁱⁱⁱ	52.07 (4)	As1—O2—Tl1B ⁱⁱ	106.18 (10)
Tl1B ⁱⁱ —Tl1B—O2 ⁱⁱⁱ	15.14 (3)	Ga1 ^{xix} —O2—T11B ⁱⁱ	125.29 (8)
Tl1C ⁱ —Tl1B—O2 ⁱⁱⁱ	61.7 (2)	Tl1C ⁱⁱ —O2—Tl1B ⁱⁱ	4.89 (11)
Tl1C ⁱⁱ —Tl1B—O2 ⁱⁱⁱ	22.47 (15)	As1—O2—Tl1B	97.04 (10)
O2 ^{iv} —Tl1B—O2 ⁱⁱⁱ	112.79 (4)	Ga1 ^{xix} —O2—T11B	130.25 (7)
O2 ⁱ —Tl1B—O2 ⁱⁱⁱ	160.34 (12)	Tl1C ⁱⁱ —O2—Tl1B	16.1 (2)
O3—Tl1B—O2 ⁱⁱⁱ	106.34 (9)	Tl1B ⁱⁱ —O2—Tl1B	11.30 (18)
O3 ^v —Tl1B—O2 ⁱⁱⁱ	107.73 (10)	As1—O2—Tl1A	101.96 (6)
O3 ⁱ —Tl1B—O2 ⁱⁱⁱ	118.09 (14)	Ga1 ^{xix} —O2—Tl1A	128.28 (6)
O3 ^{iv} —Tl1B—O2 ⁱⁱⁱ	72.78 (8)	Tl1C ⁱⁱ —O2—Tl1A	9.54 (13)
			-

O2 ^v —T11B—O2 ⁱⁱⁱ	106.41 (13)	Tl1B ⁱⁱ —O2—Tl1A	4.65 (8)
O2—Tl1B—O2 ⁱⁱⁱ	72.62 (8)	T11B—O2—T11A	6.80 (10)
O3 ⁱⁱⁱ —Tl1B—O2 ⁱⁱⁱ	41.51 (7)	As1—O2—Tl1C	92.68 (12)
O3 ⁱⁱ —Tl1B—O2 ⁱⁱⁱ	57.99 (9)	Ga1 ^{xix} —O2—Tl1C	131.46 (7)
O2 ⁱⁱ —Tl1B—O2 ⁱⁱⁱ	48.37 (9)	Tl1C ⁱⁱ —O2—Tl1C	22.0 (3)
Tl1B ⁱ —Tl1B—O4 ^{vi}	130.74 (4)	Tl1B ⁱⁱ —O2—Tl1C	17.2 (2)
$T11B^{ii}$ — $T11B$ — $O4^{vi}$	153.31 (3)	Tl1B—O2—Tl1C	5.98 (12)
Tl1C ⁱ —Tl1B—O4 ^{vi}	121.93 (15)	Tl1A—O2—Tl1C	12.78 (14)
Tl1C ⁱⁱ —Tl1B—O4 ^{vi}	146.99 (14)	As1—O2—Tl1B ⁱ	102.86 (6)
$O2^{iv}$ —Tl1B—O4 ^{vi}	53.44 (9)	Ga1 ^{xix} —O2—Tl1B ⁱ	128.59 (6)
O2 ⁱ —Tl1B—O4 ^{vi}	45.18 (8)	Tl1C ⁱⁱ —O2—Tl1B ⁱ	7.87 (11)
O3—Tl1B—O4 ^{vi}	98.07 (15)	$T11B^{ii}$ —O2— $T11B^{i}$	3.37 (6)
O3 ^v —Tl1B—O4 ^{vi}	44.48 (7)	$Tl1B-O2-Tl1B^{i}$	9.37 (14)
O3 ⁱ —Tl1B—O4 ^{vi}	93.37 (11)	$T11A - O2 - T11B^{i}$	2.78 (4)
$O3^{iv}$ —Tl1B—O4 ^{vi}	76.71 (9)	Tl1C—O2—Tl1B ⁱ	15.31 (17)
$O2^{v}$ —Tl1B—O4 ^{vi}	71.57 (8)	As1—O2—Tl1C ⁱ	103.50 (6)
O2—Tl1B—O4 ^{vi}	109.39 (13)	Ga1 ^{xix} —O2—Tl1C ⁱ	128.74 (6)
O3 ⁱⁱⁱ —Tl1B—O4 ^{vi}	109.27 (4)	$Tl1C^{ii}$ — $O2$ — $Tl1C^{i}$	7.09 (10)
O3 ⁱⁱ —Tl1B—O4 ^{vi}	157.13 (10)	$Tl1B^{ii}$ —O2— $Tl1C^{i}$	3.69 (4)
$O2^{ii}$ —Tl1B—O4 ^{vi}	144.16 (3)	Tl1B—O2—Tl1C ⁱ	11.31 (13)
$O2^{iii}$ —Tl1B—O4 ^{vi}	144.88 (3)	Tl1A—O2—Tl1C ⁱ	4.82 (5)
Tl1B ⁱ —Tl1B—O4 ^{vii}	153.31 (3)	Tl1C—O2—Tl1C ⁱ	17.21 (19)
Tl1B ⁱⁱ —Tl1B—O4 ^{vii}	130.74 (5)	$Tl1B^{i}$ —O2— $Tl1C^{i}$	2.03 (4)
Tl1C ⁱ —Tl1B—O4 ^{vii}	146.99 (13)	As1—O2—Tl1C ^{xvi}	68.04 (4)
Tl1C ⁱⁱ —Tl1B—O4 ^{vii}	121.93 (15)	Ga1 ^{xix} —O2—Tl1C ^{xvi}	59.62 (4)
O2 ^{iv} —Tl1B—O4 ^{vii}	45.18 (8)	Tl1C ⁱⁱ —O2—Tl1C ^{xvi}	140.65 (6)
O2 ⁱ —Tl1B—O4 ^{vii}	53.44 (9)	Tl1B ⁱⁱ —O2—Tl1C ^{xvi}	137.61 (6)
O3—Tl1B—O4 ^{vii}	44.48 (7)	Tl1B—O2—Tl1C ^{xvi}	128.34 (12)
O3 ^v —Tl1B—O4 ^{vii}	98.07 (15)	Tl1A—O2—Tl1C ^{xvi}	134.48 (5)
O3 ⁱ —Tl1B—O4 ^{vii}	76.70 (9)	Tl1C—O2—Tl1C ^{xvi}	122.85 (17)
O3 ^{iv} —Tl1B—O4 ^{vii}	93.37 (11)	Tl1B ⁱ —O2—Tl1C ^{xvi}	137.26 (5)
O2 ^v —T11B—O4 ^{vii}	109.39 (13)	Tl1C ⁱ —O2—Tl1C ^{xvi}	139.30 (4)
O2—Tl1B—O4 ^{vii}	71.57 (8)	As1—O3—T11C	100.99 (8)
O3 ⁱⁱⁱ —Tl1B—O4 ^{vii}	157.14 (10)	As1—O3—Tl1B	101.09 (7)
O3 ⁱⁱ —Tl1B—O4 ^{vii}	109.27 (4)	Tl1C—O3—Tl1B	6.12 (13)
O2 ⁱⁱ —Tl1B—O4 ^{vii}	144.87 (3)	As1—O3—Tl1C ⁱⁱ	91.25 (13)
O2 ⁱⁱⁱ —Tl1B—O4 ^{vii}	144.16 (3)	Tl1C—O3—Tl1C ⁱⁱ	23.2 (3)
O4 ^{vi} —Tl1B—O4 ^{vii}	53.60 (10)	Tl1B—O3—Tl1C ⁱⁱ	17.8 (2)
T11B ⁱ —T11B—As1 ^{iv}	137.73 (8)	As1—O3—T11B ⁱⁱ	95.92 (11)
T11B ⁱⁱ —T11B—As1 ^{iv}	88.74 (9)	Tl1C—O3—Tl1B ⁱⁱ	17.8 (2)
Tl1C ⁱ —Tl1B—As1 ^{iv}	143.84 (15)	Tl1B—O3—Tl1B ⁱⁱ	12.08 (19)
Tl1C ⁱⁱ —Tl1B—As1 ^{iv}	80.08 (13)	Tl1C ⁱⁱ —O3—Tl1B ⁱⁱ	6.11 (13)
O2 ^{iv} —Tl1B—As1 ^{iv}	23.96 (3)	As1—O3—Tl1A	101.07 (7)
O2 ⁱ —Tl1B—As1 ^{iv}	108.05 (16)	Tl1C—O3—Tl1A	12.57 (15)
O3—Tl1B—As1 ^{iv}	82.58 (7)	TI1B—O3—TI1A	6.45 (10)
O3 ^v —Tl1B—As1 ^{iv}	82.12 (7)	Tl1C ⁱⁱ —O3—Tl1A	12.89 (15)
O3 ⁱ —T11B—As1 ^{iv}	145.30 (16)	Tl1B ⁱⁱ —O3—Tl1A	6.78 (11)
O3 ^{iv} —Tl1B—As1 ^{iv}	25.63 (4)	As1—O3—Tl1B ⁱ	105.62 (10)
			· · ·

O2 ^v —Tl1B—As1 ^{iv}	128.80 (9)	Tl1C—O3—Tl1B ⁱ	14.88 (17)
O2—Tl1B—As1 ^{iv}	51.74 (4)	T11B-O3-T11B ⁱ	9.25 (14)
O3 ⁱⁱⁱ —Tl1B—As1 ^{iv}	91.55 (4)	Tl1C ⁱⁱ —O3—Tl1B ⁱ	15.81 (18)
O3 ⁱⁱ —Tl1B—As1 ^{iv}	123.66 (5)	$T11B^{ii}$ —O3— $T11B^{i}$	10.07 (15)
O2 ⁱⁱ —Tl1B—As1 ^{iv}	138.66 (12)	Tl1A—O3—Tl1B ⁱ	4.85 (7)
O2 ⁱⁱⁱ —Tl1B—As1 ^{iv}	90.32 (5)	As1—O3—Tl1C ⁱ	109.08 (11)
O4 ^{vi} —Tl1B—As1 ^{iv}	67.91 (8)	Tl1C—O3—Tl1C ⁱ	17.3 (2)
O4 ^{vii} —Tl1B—As1 ^{iv}	68.66 (8)	Tl1B—O3—Tl1C ⁱ	12.27 (13)
Tl1B ⁱ —Tl1B—As1 ⁱ	88.74 (8)	Tl1C ⁱⁱ —O3—Tl1C ⁱ	18.6 (2)
Tl1B ⁱⁱ —Tl1B—As1 ⁱ	137.73 (6)	Tl1B ⁱⁱ —O3—Tl1C ⁱ	13.23 (14)
Tl1C ⁱ —Tl1B—As1 ⁱ	80.08 (12)	Tl1A—O3—Tl1C ⁱ	8.55 (8)
Tl1C ⁱⁱ —Tl1B—As1 ⁱ	143.84 (15)	Tl1B ⁱ —O3—Tl1C ⁱ	3.70(7)
O2 ^{iv} —Tl1B—As1 ⁱ	108.05 (16)	As1 ^v —O4—Ga1 ^{xviii}	126.29 (8)
O2 ⁱ —Tl1B—As1 ⁱ	23.96 (3)	As1 ^v —O4—Tl1C ^{xx}	119.50 (8)
$O3-T11B-As1^{i}$	82.12 (7)	Ga1 ^{xviii} —O4—T11C ^{xx}	98.90 (5)
$O3^v$ —Tl1B—As1 ⁱ	82.59 (7)	As1 ^v —O4—Tl1B ^{xx}	120.75 (7)
$O3^i$ —T11B—As1 ⁱ	25.63 (3)	$Ga1^{xviii}$ $O4$ $T11B^{xx}$	99.36 (5)
$O3^{iv}$ —Tl1B—As1 ⁱ	145.30 (16)	$T_{11}C^{xx} - O_{4} - T_{11}B^{xx}$	2.65 (6)
$O2^{v}$ —T11B—As1 ⁱ	51.74 (4)	As1 ^v —O4—Tl1A ^{xvii}	121.89 (6)
O2—T11B—As1 ⁱ	128.80 (9)	Ga1 ^{xviii} —O4—T11A ^{xvii}	99.79 (5)
$O3^{iii}$ —T11B—As1 ⁱ	123.66 (5)	$T_{11}C^{xx} - O_{4} - T_{11}A^{xvii}$	5.17 (7)
$O3^{ii}$ —T11B—As1 ⁱ	91.55 (4)	$T_{11}B^{xx} - O_{4} - T_{11}A^{xvii}$	2.52 (4)
O2 ⁱⁱ —Tl1B—As1 ⁱ	90.32 (5)	As1v—O4—Tl1B ^{xvii}	126.95 (10)
O2 ⁱⁱⁱ —Tl1B—As1 ⁱ	138.66 (12)	Ga1 ^{xviii} —O4—T11B ^{xvii}	96.40 (7)
O4 ^{vi} —Tl1B—As1 ⁱ	68.66 (8)	Tl1C ^{xx} —O4—Tl1B ^{xvii}	9.46 (12)
O4 ^{vii} —Tl1B—As1 ⁱ	67.90 (8)	Tl1B ^{xx} —O4—Tl1B ^{xvii}	7.14 (11)
As1 ^{iv} —Tl1B—As1 ⁱ	131.02 (16)	Tl1A ^{xvii} —O4—Tl1B ^{xvii}	5.24 (8)
Tl1A—Tl1C—Tl1B ⁱ	19.99 (19)	As1 ^v —O4—Tl1C ^{xvii}	131.11 (13)
Tl1A—Tl1C—Tl1B ⁱⁱ	19.99 (19)	Ga1 ^{xviii} —O4—Tl1C ^{xvii}	93.57 (8)
Tl1B ⁱ —Tl1C—Tl1B ⁱⁱ	40.0 (4)	Tl1C ^{xx} —O4—Tl1C ^{xvii}	13.52 (16)
Tl1A—Tl1C—Tl1C ⁱ	30.0	Tl1B ^{xx} —O4—Tl1C ^{xvii}	11.37 (12)
Tl1B ⁱ —Tl1C—Tl1C ⁱ	10.01 (19)	Tl1A ^{xvii} —O4—Tl1C ^{xvii}	9.57 (10)
Tl1B ⁱⁱ —Tl1C—Tl1C ⁱ	50.00 (19)	Tl1B ^{xvii} —O4—Tl1C ^{xvii}	4.33 (9)
Tl1A—Tl1C—Tl1C ⁱⁱ	30.001 (5)	As1 ^v —O4—Tl1B ^{xxi}	117.93 (8)
Tl1B ⁱ —Tl1C—Tl1C ⁱⁱ	50.00 (19)	Ga1 ^{xviii} —O4—Tl1B ^{xxi}	103.39 (7)
Tl1B ⁱⁱ —Tl1C—Tl1C ⁱⁱ	10.01 (19)	Tl1C ^{xx} —O4—Tl1B ^{xxi}	5.57 (7)
Tl1C ⁱ —Tl1C—Tl1C ⁱⁱ	60.001 (5)	Tl1B ^{xx} —O4—Tl1B ^{xxi}	4.08 (6)
Tl1A—Tl1C—O2 ^{iv}	131.87 (13)	Tl1A ^{xvii} —O4—Tl1B ^{xxi}	4.01 (6)
Tl1B ⁱ —Tl1C—O2 ^{iv}	149.7 (2)	Tl1B ^{xvii} —O4—Tl1B ^{xxi}	9.04 (13)
Tl1B ⁱⁱ —Tl1C—O2 ^{iv}	113.0 (2)	Tl1C ^{xvii} —O4—Tl1B ^{xxi}	13.33 (14)
Tl1C ⁱ —Tl1C—O2 ^{iv}	157.37 (11)	As1 ^v —O4—Tl1C	57.11 (10)
Tl1C ⁱⁱ —Tl1C—O2 ^{iv}	103.48 (14)	Ga1 ^{xviii} —O4—Tl1C	69.38 (10)
Tl1A—Tl1C—O2 ⁱ	131.87 (13)	Tl1C ^{xx} —O4—Tl1C	132.52 (6)
Tl1B ⁱ —Tl1C—O2 ⁱ	113.0 (2)	Tl1B ^{xx} —O4—Tl1C	135.13 (5)
$Tl1B^{ii}$ — $Tl1C$ — $O2^{i}$	149.7 (2)	Tl1A ^{xvii} —O4—Tl1C	137.61 (4)
$Tl1C^{i}$ — $Tl1C$ — $O2^{i}$	103.48 (13)	Tl1B ^{xvii} —O4—Tl1C	140.03 (5)
Tl1C ⁱⁱ —Tl1C—O2 ⁱ	157.37 (11)	Tl1C ^{xvii} —O4—Tl1C	141.67 (5)
$O2^{iv}$ —Tl1C— $O2^{i}$	96.3 (3)	Tl1B ^{xxi} —O4—Tl1C	137.05 (4)

Tl1A—Tl1C—O3	102.61 (15)	As1 ^v —O4—Tl1C ^{xxi}	114.85 (9)
Tl1B ⁱ —Tl1C—O3	112.72 (18)	Ga1 ^{xviii} —O4—Tl1C ^{xxi}	106.19 (8)
Tl1B ⁱⁱ —Tl1C—O3	91.37 (17)	Tl1C ^{xx} —O4—Tl1C ^{xxi}	7.53 (9)
Tl1C ⁱ —Tl1C—O3	116.99 (14)	Tl1B ^{xx} —O4—Tl1C ^{xxi}	6.86 (7)
Tl1C ⁱⁱ —Tl1C—O3	85.65 (15)	Tl1A ^{xvii} —O4—Tl1C ^{xxi}	7.13 (7)
O2 ^{iv} —Tl1C—O3	73.65 (11)	Tl1B ^{xvii} —O4—Tl1C ^{xxi}	12.10 (13)
O2 ⁱ —Tl1C—O3	89.44 (14)	Tl1C ^{xvii} —O4—Tl1C ^{xxi}	16.34 (17)
Tl1A—Tl1C—O3 ^v	102.61 (15)	Tl1B ^{xxi} —O4—Tl1C ^{xxi}	3.13 (6)
Tl1B ⁱ —Tl1C—O3 ^v	91.37 (16)	Tl1C—O4—Tl1C ^{xxi}	136.41 (4)
Tl1B ⁱⁱ —Tl1C—O3 ^v	112.72 (18)	As1 ^v —O4—Tl1B	53.77 (7)
Tl1C ⁱ —Tl1C—O3 ^v	85.65 (14)	Ga1 ^{xviii} —O4—Tl1B	72.86 (7)
Tl1C ⁱⁱ —Tl1C—O3 ^v	116.99 (13)	Tl1C ^{xx} —O4—Tl1B	131.57 (7)
O2 ^{iv} —Tl1C—O3 ^v	89.44 (14)	Tl1B ^{xx} —O4—Tl1B	134.21 (4)
O2 ⁱ —Tl1C—O3 ^v	73.65 (11)	Tl1A ^{xvii} —O4—Tl1B	136.72 (4)
O3—Tl1C—O3 ^v	154.8 (3)	Tl1B ^{xvii} —O4—Tl1B	139.57 (6)
Tl1A—Tl1C—O3 ^{iv}	89.40 (15)	Tl1C ^{xvii} —O4—Tl1B	141.61 (6)
Tl1B ⁱ —Tl1C—O3 ^{iv}	101.8 (2)	Tl1B ^{xxi} —O4—Tl1B	135.80 (4)
Tl1B ⁱⁱ —Tl1C—O3 ^{iv}	77.01 (17)	Tl1C—O4—Tl1B	3.71 (8)
Tl1C ⁱ —Tl1C—O3 ^{iv}	107.76 (14)	Tl1C ^{xxi} —O4—Tl1B	134.90 (4)
Tl1C ⁱⁱ —Tl1C—O3 ^{iv}	71.13 (14)	As1 ^v —O4—Tl1C ⁱ	44.77 (8)
$O2^{iv}$ —Tl1C—O3 ^{iv}	49.88 (5)	Ga1 ^{xviii} —O4—Tl1C ⁱ	83.27 (9)
$O2^{i}$ —Tl1C— $O3^{iv}$	131.2 (2)	Tl1C ^{xx} —O4—Tl1C ⁱ	124.50 (15)
O3—Tl1C—O3 ^{iv}	107.87 (7)	$T11B^{xx}$ —O4— $T11C^{i}$	127.13 (11)
O3 ^v —Tl1C—O3 ^{iv}	72.40 (6)	Tl1A ^{xvii} —O4—Tl1C ⁱ	129.62 (9)
Tl1A—Tl1C—O3 ⁱ	89.39 (15)	Tl1B ^{xvii} —O4—Tl1C ⁱ	133.50 (7)
Tl1B ⁱ —Tl1C—O3 ⁱ	77.01 (16)	Tl1C ^{xvii} —O4—Tl1C ⁱ	136.55 (3)
$T11B^{ii}$ — $T11C$ — $O3^{i}$	101.8 (2)	$Tl1B^{xxi}$ —O4— $Tl1C^{i}$	127.83 (11)
Tl1C ⁱ —Tl1C—O3 ⁱ	71.13 (14)	Tl1C—O4—Tl1C ⁱ	16.03 (19)
Tl1C ⁱⁱ —Tl1C—O3 ⁱ	107.76 (13)	Tl1C ^{xxi} —O4—Tl1C ⁱ	126.30 (13)
$O2^{iv}$ —Tl1C—O3 ⁱ	131.2 (2)	Tl1B—O4—Tl1C ⁱ	12.41 (14)

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z; (iii) x-y, -y, -z+3/2; (iv) y, x, -z+3/2; (v) -x, -x+y, -z+3/2; (vi) -y, x-y-1, z; (vii) y, x-1, -z+3/2; (viii) -x+y+1, -x+1, z; (ix) x, y+1, z; (x) -y, x-y+1, z; (xi) x+1, y+1, z; (xi) x-y-1/3, x+1/3, -z+4/3; (xii) y+2/3, -x+y+4/3, -z+4/3; (xiv) -x+2/3, -y+1/3, -z+4/3; (xv) x-1, y, z; (xvi) -y-1, z; (xvii) x+1, y, z; (xviii) x, y-1, z; (xv) x-1, y-1, z; (xvi) -y+1, -x-y, z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H…A
O3—H···O4 ^{vii}	0.87 (2)	1.94 (3)	2.728 (2)	150 (4)

Symmetry code: (vii) y, x-1, -z+3/2.