

Received 11 June 2018 Accepted 4 July 2018

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: tartric acid; 1,3-dioxolane; ketals; NMR; hydrogen bonding; crystal structure.

CCDC references: 1853435; 1853434

Supporting information: this article has supporting information at journals.iucr.org/e

(2*R*,3*R*)-1,4-Dioxaspiro[4.4]nonane-2,3-dicarboxylic and (2*R*,3*R*)-1,4-dioxaspiro[4.5]decane-2,3-dicarboxylic acids

Mikhail E. Minyaev,^{a*} Dmitrii M. Roitershtein,^{a,b} Alexey A. Vinogradov,^a Ivan V. Ananyev^c and Ilya E. Nifant'ev^{a,d}

 ^aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, ^bN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, ^cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russian Federation, and ^dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow, 119991, Russian Federation.
 *Correspondence e-mail: mminyaev@mail.ru

The title compounds, $C_9H_{12}O_6$ and $C_{10}H_{14}O_6$, were formed by careful hydrolysis of the corresponding diethyl esters. Their single crystals were grown from an ethyl acetate/hexane mixture. Crystals of both compounds have monoclinic (*P*2₁) symmetry with a single molecule in the asymmetric unit. Both crystal structures are very similar and display four $-CO-OH \cdots O=C(OH)$ - hydrogen bonds, forming a two-dimensional double-layered framework.

1. Chemical context

Transition-metal catalysis has developed as a powerful tool to create a variety of carbon-carbon and carbon-heteroatom bonds. Enantioselective versions of these reactions are especially interesting in the light of the possible pharmaceutical applications. The general route to such processes supposes the use of transition metal complexes with chiral ligands (Yang et al., 2017). Therefore, easily accessible ligands of this type are of great importance for homogenous catalysis. Chiral phosphine ligands and amino acids are the most popular in this respect (Crassous, 2009). Examples of chiral carboxylate ligands are also known (Saget et al., 2012), which can be useful in the synthesis of chiral coordination compounds and materials derived from them (Lam et al., 2011). Various tartaric acid derivatives, which are also used in organic synthesis as chiral auxiliary agents to create chiral building blocks (Kassai et al., 2000; Seebach et al., 2001), might be particularly useful in solving the stated problem. Herein we report the synthesis and structures of two tartaric acid derivatives that may potentially be used as synthetic precursors of chiral transition-metal catalysts.

OPEN 3 ACCESS

The synthesis of the title compounds (I) and (II).

Condensation of cyclopentanone or cyclohexanone with (2R,3R) diethyl tartrate led to the formation of the corresponding ketals, careful hydrolysis of which allowed us to prepare the title acids (Fig. 1).

2. Structural commentary

The structures of tartaric acid derivatives (I) and (II) were found as anticipated (Figs. 2 and 3, respectively), having a single molecule in the asymmetric unit. The 1,3-dioxolane, cyclopentane [in (I)] and cyclohexane [in (II)] fragments have the usual conformations. The C–C, C–O and C=O bond lengths are within regular distances (Tables 1 and 2). A detailed structural and conformational analysis for the crystal structures of some related acetals $R'C_3H_3O_2(COR)_2$ ($R = NH_2$, OAlkyl, OH; substituent R' is at the 2-position of the 1,3dioxolane ring) was given by Eissmann et al. (2012). Although the absolute structures of (I) and (II) cannot be unambiguously determined using the Flack parameter (Flack, 1983; Parsons, et al., 2013) with the SHELXL program (Sheldrick, 2015), the chirality at carbon atoms C2, C3 (2R,3R) is initially known from their synthetic precursor (diethyl L-tartrate), and has been also confirmed for (2R,3R)-diethyl 1,4-dioxaspiro[4.5]decane-2,3-dicarboxylate, and for (II) by optical rotation measurements (see the experimental section). The molecules of (I) and (II) have very similar positions in the unit cells, making the structures nearly isomorphous, but the c axis in (II) is elongated by almost 1.5 Å compared with that in (I)

Figure 2 The structure of (2R,3R)-1,4-dioxaspiro[4.4]nonane-2,3-dicarboxylic acid, (I). Displacement ellipsoids are drawn at the 50% probability level.

 Table 1

 Selected bond lengths (Å) for (I).

O1-C1	1.325 (3)	C1-C2	1.521 (4)
O2-C1	1.208 (3)	C2-C3	1.541 (4)
O3-C4	1.222 (3)	C3-C4	1.519 (4)
O4-C4	1.314 (3)	C5-C9	1.529 (4)
O5-C2	1.409 (3)	C5 - C6	1.539 (4)
O5-C5	1.443 (3)	C6-C7	1.533 (4)
O6-C3	1.409 (3)	C7-C8	1.529 (4)
O6-C5	1.439 (3)	C8-C9	1.522 (4)

Table 2

Selected bond lengths (Å) for (II).

	• • • • • •		
O1-C1	1.322 (2)	C2-C3	1.541 (2)
O2-C1	1.208 (2)	C3-C4	1.532 (2)
O3-C4	1.2229 (19)	C5-C6	1.519 (2)
O4-C4	1.3135 (18)	C5-C10	1.525 (2)
O5-C2	1.4107 (18)	C6-C7	1.533 (2)
O5-C5	1.4398 (18)	C7-C8	1.526 (3)
O6-C3	1.4135 (17)	C8-C9	1.532 (2)
O6-C5	1.441 (2)	C9-C10	1.538 (2)
C1-C2	1.529 (2)		

(see Table 5 below) because of the presence of an additional – (CH_2) – unit in the cycloalkane fragment in (II) (see Fig. 4 for the alignment of the cycloalkane fragments in the unit cell).

3. Supramolecular features

The molecules of both structures are packed in two-dimensional frameworks by four $-CO-OH\cdots O=C(OH)$ -hydrogen bonds between neighboring carboxyl groups (Tables 3 and 4). The packing diagrams for (I) (Figs. 4, 5*a*) are nearly identical to those of (II) (not shown). The molecules form double layers parallel to the *ab* plane and sterically shielded from other layers by the cycloalkane fragments (Fig. 4). Hydrogen-bonded chains within the same layer are formed *via*

Figure 3 The structure of (2R,3R)-1,4-dioxaspiro[4.5]decane-2,3-dicarboxylic acid, (II). Displacement ellipsoids are drawn at the 50% probability level.

research communications

Figure 4

The packing of (I) parallel to (010). Two interacting molecular layers are shown. Only the H atoms involved in hydrogen bonding (blue dashed lines) have been included. Displacement ellipsoids are drawn at the 50% probability level.

two interactions involving the O1-H1 and O3 atoms of each molecule. These chains are interconnected into a two-dimensional hydrogen-bonded double-layered framework parallel to (001) by the O4-H4 and O2 atoms. The complicated structure of the two-dimensional double-layered framework is shown in Fig. 5*a*, but it can best be visualized in the simplified scheme in Fig. 5*b*. It might be noted that some weak C-H···O intermolecular interactions are also present (see the supporting information).

4. Database survey

Twenty crystal structures of tartaric acid ester derivatives possessing the 1,3-dioxolane cycle, $R'R''C_3H_2O_2(COOR)_2$, are

Ta Hy	ble 3 drog	3 en-bon	d geome	try (Å	, °) for ((I).		
_			_				_	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 {-} H1 {\cdots} O3^i \\ O4 {-} H4 {\cdots} O2^{ii} \end{array}$	0.78 (4)	1.87 (4)	2.620 (3)	159 (4)
	0.84 (4)	1.92 (4)	2.723 (3)	159 (3)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x + 1, y - 1, z.

Table 4

Hydrogen-bond geometry (Å, $^{\circ}$) for (II).							
$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
$\begin{array}{c} O1 - H1 \cdots O3^{i} \\ O4 - H4 \cdots O2^{ii} \end{array}$	0.84 (3) 0.85 (3)	1.80(3) 1.88(3)	2.6230 (16) 2.7116 (16)	164 (3) 164 (2)			

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x + 1, y - 1, z.

known to date [Cambridge Structural Database (CSD) Version 5.39, latest update Feb 2018; Groom et al., 2016]. There are 10 crystal structures of esters bearing one substituent R' (R'' = H) at the 2-position of the 1,3-dioxolane fragment (acetals): CSD refcodes DAZJET (Lee et al., 1999), LACREM, LACRUC (Roush et al., 1992), LEPHAR, LEPHEV (Eissmann et al., 2012), OLEGAN (Karisalmi et al., 2003), WEGXOW (Belokon' et al., 2005), XEYSEA (Jiang et al., 2007), YAXHIQ (Lv et al., 2012) and YIVGUF (Barrett et al., 1995). The crystal structures of esters with two substituents R' and R'' (ketals) are represented by GAGHAY, GUHGUL (Pelphrey et al., 2004), KEMRID (Wink & Dewan, 1990), MIWDIF (Ates & Curran, 2001), NAFWEW (Mikołajczyk et al., 1996), QOTVUQ (Maezaki et al., 2000), VICXOU/ VICXOU10 (Giordano et al., 1990; Ianelli et al., 1992), VIHVAL (Linker et al., 2013) and VUCHAC, VUCHEG

Figure 5

(a) The packing of (I) parallel to (001). Two interacting molecular layers are shown. Only the H atoms involved in hydrogen bonding (blue dashed lines) have been included. Displacement ellipsoids are drawn at the 50% probability level. (b) The simplified structure of the two-dimensional double-layered framework. Molecules (circles) and hydrogen bonds (solid lines) within the same layers are shown in the same colour (blue or red). Hydrogen bonds between two layers are shown as solid black lines.

(Ianelli *et al.*, 1992). The crystal structures of 14 related amide derivatives $R'R''C_3H_2O_2(CONR_2)_2$ are also known (see the CSD and also Eissmann *et al.*, 2012 and references therein). However, established crystal structures of related acids, $R'R''C_3H_2O_2(COOH)_2$, are limited to only one structure with $R' = -C_6H_4$ -4-COOH and R'' = H (LEPHIZ; Eissmann *et al.*, 2012). This fact can be explained by some subtle problems with the individual isolation of pure acid samples because of the facile hydrolysis of the 1,3-dioxolane fragment during their preparation. Therefore, the synthesis and especially the crystallization of $R'R''C_3H_2O_2(COOH)_2$ acids is a challenging task.

5. Synthesis and crystallization

5.1. General experimental remarks

(+)-Diethyl L-tartrate [Sigma–Aldrich, >99%, found $[\alpha]_D^{297K} = +12^{\circ}$ (acetone, 20.5mg ml⁻¹); lit. data $[\alpha]_D^{293K} = +10^{\circ}$ (ethanol, 53 mg ml⁻¹), see Černý, 1977] was used as purchased. ¹H and ¹³C{¹H} NMR spectra were recorded with Bruker AM-300 and Bruker DRX-500 spectrometers in CDCl₃ (Cambridge Isotope Laboratories, Inc., 99.8% ²H) and in acetone- d_6 (Sigma–Aldrich, 99.9 atom % ²H).

5.2. Synthesis of (2*R*,3*R*)-diethyl 1,4-dioxaspiro[4.5]decane-2,3-dicarboxylate

A 1000 ml round-bottomed flask equipped with a reflux condenser and a Dean–Stark trap was charged with diethyl L-tartrate (85.56 ml, 500 mmol), cyclohexanone (51.82 ml, 500 mmol), toluene (600 ml) and *p*-toluenesulfonic acid monohydrate (2.80 g, 147 mmol). The mixture was refluxed for 62 h. The resulting dark-brown mixture was washed with a saturated aqueous solution of NaHCO₃ (2 × 100ml) and with water (2 × 100ml). The organic layer was dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator. The obtained dark-brown oil was distilled under reduced pressure (388–391 K, 250 Pa). The yield of the colourless liquid was 84% (120.25 g, 420 mmol). $\eta_D^{293K} = 1.4625$, $[\alpha]_D^{297K} = -28.7$ (acetone, 20.5 mg ml⁻¹) [Lit. data $\eta_D^{293K} = 1.4605$, $[\alpha]_D^{293K} = -35.57$ (Tsuzuki, 1937)]. ¹H NMR (CDCl₃) & 1.12 (*t*, 6H, CH₃-CH₂-O), 1.30–1.45 (*m*, 10H, -C₅H₁₀-), 4.10 (*quartet*, 4H, CH₃-CH₂-O), 4.55 (*s*, 2H, CH).

5.3. Synthesis of (2*R*,3*R*)-diethyl 1,4-dioxaspiro[4.4]nonane-2,3-dicarboxylate

The synthesis of (2R,3R)-diethyl 1,4-dioxaspiro[4.4]nonane-2,3-dicarboxylate was carried out analogously to that of (2R,3R)-diethyl 1,4-dioxaspiro[4.5]decane-2,3-dicarboxylate, starting from 85.47 ml (500 mmol) of diethyl L-tartrate, 44.23 ml (500 mmol) of cyclopentanone, 600 ml of toluene and 2.80 g (14.7 mmol) of *p*-toluenesulfonic acid monohydrate. The yield of the colourless liquid after vacuum distillation (383–385 K, 265 Pa) was 78% (106.08 g, 390 mmol). ¹H NMR (CDCl₃) δ : 1.17 (*t*, 6H, CH₃–CH₂–O), 1.51–1.63 (*m*, 4H, –C₄H₈–), 1.64–1.77 (*m*, 2H, –C₄H₈–), 1.77–1.91 (*m*, 2H, –C₄H₈–), 4.12 (*quartet*, 4H, CH₃–CH₂–O), 4.57 (*s*, 2H, CH). 5.4. Synthesis and crystallization of (2R,3R)-1,4-dioxaspiro-[4.5]decane-2,3-dicarboxylic acid, (II)

A 100 ml round-bottomed flask was charged with 2.130 g (7.52 mmol) of (2R,3R)-diethyl 1,4-dioxaspiro[4.5]decane-2,3dicarboxylate, 22.5 ml of THF, 22.5 ml of methanol and 22.5 ml of 2 M aqueous solution of LiOH. The reaction mixture was stirred for 6 h. It was then washed with diethyl ether $(3 \times 20 \text{ ml})$. The aqueous solution was acidified with a 2 M solution of HCl to pH \simeq 1 at 273 K. The formed acid was extracted with ethyl acetate $(3 \times 20 \text{ ml})$. The organic layer was dried over Na₂SO₄. The solution was removed on a rotary evaporator. The yield of the resulting white powder was 72% (1.250 g, 5.43 mmol). M.p. = 413K, $[\alpha]_D^{297K} = -27.3$ (acetone, 20.5 mg ml^{-1} [Lit. data $[\alpha]_D^{20} = -24.0$, ethanol, 304 mg ml⁻¹ (Innis & Lamaty, 1977)]. ¹Η NMR (acetone-d₆) δ: 1.36-1.44 $(m, 2H, -C_5H_{10}-), 1.53-1.74 (m, 8H, -C_5H_{10}-), 4.82 (s, 2H, -C_5H_$ CH), 7.0 (br.s, 2H, -COOH). $^{13}C{1H}$ NMR (acetone- d_6) δ : 24.6, 25.6, 36.8, 77.7, 114.7, 171.7. Crystals of (II) were grown from an ethyl acetate/hexane (1:1 v/v) mixture.

5.5. Synthesis and crystallization of (2*R*,3*R*)-1,4-dioxaspiro-[4.4]nonane-2,3-dicarboxylic acid, (I)

The synthesis of (I) was carried out analogously to that of (II), starting from 2.723 g (10 mmol) of (2R,3R)-diethyl 1,4dioxaspiro[4.4]nonane-2,3-dicarboxylate, 22.5 ml of THF, 22.5 ml of methanol and 22.5 ml of 2 *M* aqueous solution of LiOH. The yield of the resulting white powder was 50% (1.081 g, 5 mmol). ¹H NMR (acetone- d_6) δ : 1.59–1.72 (*m*, 4H, -C₄ H_8 –), 1.74–1.87 (*m*, 2H, -C₄ H_8 –), 1.90–2.02 (*m*, 2H, -C₄ H_8 –), 4.78 (*s*, 2H, CH), 7.5 (*br.s*, 2H, -COOH). ¹³C{1H} NMR (acetone- d_6) δ : 24.0, 37.4, 77.9, 123.6, 171.4. Crystals of (I) were grown from an ethyl acetate/hexane (1:1 *v/v*) mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The positions of all non-H and the hydroxy H atoms were found from the electron difference density maps. These atoms were refined with individual anisotropic (non-H) or isotropic (hydroxy H) displacement parameters. The positions of the other H atoms were also found from the difference map but they were positioned geometrically (C-H distance = 0.99 Å for methylene, 1.00 Å for tertiary hydrogen atoms) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. Reflection (001) in (II) was affected by the beam stop, and was therefore omitted from the refinement.

Acknowledgements

Equipment from the collective exploitation center 'New petrochemical processes, polymer composites and adhesives' of TIPS RAS was used.

Funding information

Funding for this research was provided by: the TIPS RAS State Plan.

research communications

 Table 5

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	CoHioOc	CuaHuOc
M	216.19	230.21
Crystal system, space group	Monoclinic. $P2_1$	Monoclinic. P2 ₁
Temperature (K)	100	100
a b c (Å)	6 2930 (8) 5 3712 (7) 14 0916 (17)	6 4272 (8) 5 2976 (6) 15 5678 (19)
$\beta(\circ)$	92.885 (2)	94 469 (2)
$V(A^3)$	475 71 (10)	528 45 (11)
Z	2	2
Radiation type	- Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.13	0.12
Crystal size (mm)	$0.21 \times 0.07 \times 0.03$	$0.39 \times 0.15 \times 0.05$
Data collection		
Diffractometer	Bruker SMART APEXII	Bruker SMART APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.827, 0.996	0.917, 0.995
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4142, 2455, 1914	4329, 2612, 2503
R _{int}	0.030	0.015
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.682	0.682
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.083, 1.06	0.028, 0.072, 1.05
No. of reflections	2455	2612
No. of parameters	144	153
No. of restraints	1	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.29, -0.24	0.30, -0.20

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

References

- Ates, A. & Curran, D. P. (2001). J. Am. Chem. Soc. 123, 5130-5131.
- Barrett, A. G. M., Doubleday, W. W., Kasdorf, K., Tustin, G. J., White, A. J. P. & Williams, D. J. (1995). J. Chem. Soc. Chem. Commun. pp. 407–408.
- Belokon', Yu. N., Gagieva, S. Ch., Sukhova, T. A., Dmitriev, A. V., Lyssenko, K. A., Bravaya, N. M., Bulychev, B. M. & Seebach, D. (2005). *Russ. Chem. Bull.* 54, 2348–2353.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Černý, M. (1977). Collect. Czech. Chem. Commun. 42, 3069-3078.
- Crassous, J. (2009). Chem. Soc. Rev. 38, 830-845.
- Eissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131– 1142.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Giordano, C., Coppi, L. & Restelli, A. (1990). J. Org. Chem. 55, 5400– 5402.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ianelli, S., Nardelli, M., Giordano, C., Coppi, L. & Restelli, A. (1992). Acta Cryst. C48, 1722–1727.
- Innis, C. & Lamaty, G. (1977). Nouv. J. Chim. 1, 503-509.
- Jiang, J., Pan, Y., Wang, D.-C. & Ou-yang, P.-K. (2007). Acta Cryst. E63, 01093–01094.
- Karisalmi, K., Rissanen, K. & Koskinen, A. M. P. (2003). Org. Biomol. Chem. 1, 3193–3196.
- Kassai, C., Juvancz, Z., Bálint, J., Fogassy, E. & Kozma, D. (2000). *Tetrahedron*, **56**, 8355–8359.
- Lam, F. L., Kwong, F. Y. & Chan, A. S. C. (2011). Top. Organomet. Chem. 36, 29–66.

- Lee, D., Sello, J. K. & Schreiber, S. L. (1999). J. Am. Chem. Soc. 121, 10648–10649.
- Linker, T., Fudickar, W., Kelling, A. & Schilde, U. (2013). Z. Kristallogr. New Cryst. Struct. 228, 241–242.
- Lv, C.-L., Chen, J.-H., Zhang, Y.-Z., Lu, D.-Q. & OuYang, P.-K. (2012). Acta Cryst. E68, 01128.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Maezaki, N., Sakamoto, A., Nagahashi, N., Soejima, M., Li, Y.-X., Imamura, T., Kojima, N., Ohishi, H., Sakaguchi, K., Iwata, C. & Tanaka, T. (2000). J. Org. Chem. 65, 3284–3291.
- Mikołajczyk, M., Mikina, M., Wieczorek, M. W. & Błaszczyk, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1560–1562.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Pelphrey, P. M., Abboud, K. A. & Wright, D. L. (2004). J. Org. Chem. 69, 6931–6933.
- Roush, W. R., Ratz, A. M. & Jablonowski, J. A. (1992). J. Org. Chem. **57**, 2047–2052.
- Saget, T., Lemouzy, S. J. & Cramer, N. (2012). *Angew. Chem. Int. Ed.* **51**, 2238–2242.
- Seebach, D., Beck, A. K. & Heckel, A. (2001). Angew. Chem. Int. Ed. 40, 92–138.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tsuzuki, Y. (1937). Bull. Chem. Soc. Jpn, 12, 487–492.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wink, D. J. & Dewan, J. C. (1990). Acta Cryst. C46, 1058-1061.
- Yang, L., Melot, R., Neuburger, M. & Baudoin, O. (2017). *Chem. Sci.* **8**, 1344–1349.

Acta Cryst. (2018). E74, 1058-1062 [https://doi.org/10.1107/S2056989018009593]

(2*R*,3*R*)-1,4-Dioxaspiro[4.4]nonane-2,3-dicarboxylic and (2*R*,3*R*)-1,4-dioxaspiro[4.5]decane-2,3-dicarboxylic acids

Mikhail E. Minyaev, Dmitrii M. Roitershtein, Alexey A. Vinogradov, Ivan V. Ananyev and Ilya E. Nifant'ev

Computing details

For both structures, data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2017* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

(2R,3R)-1,4-Dioxaspiro[4.4]nonane-2,3-dicarboxylic acid (I)

Crystal data

 $C_{9}H_{12}O_{6}$ $M_{r} = 216.19$ Monoclinic, $P2_{1}$ a = 6.2930 (8) Å b = 5.3712 (7) Å c = 14.0916 (17) Å $\beta = 92.885$ (2)° V = 475.71 (10) Å³ Z = 2

Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.827, T_{\max} = 0.996$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.083$ S = 1.062455 reflections 144 parameters 1 restraint F(000) = 228 $D_x = 1.509 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 621 reflections $\theta = 3-29^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.21 \times 0.07 \times 0.03 \text{ mm}$

4142 measured reflections 2455 independent reflections 1914 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 29.0^\circ, \theta_{min} = 2.9^\circ$ $h = -8 \rightarrow 8$ $k = -7 \rightarrow 7$ $l = -14 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.031P)^2]$	$\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic of	or equivalent isotropic	displacement para	ameters (Ų)
--	-------------------------	-------------------	-------------

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.3838 (4)	0.5521 (4)	0.45124 (15)	0.0153 (5)
H1	0.271 (6)	0.587 (8)	0.468 (3)	0.039 (13)*
O2	0.3808 (3)	0.8867 (4)	0.35486 (14)	0.0156 (5)
O3	0.9421 (3)	0.1722 (4)	0.44956 (14)	0.0133 (5)
O4	1.0688 (3)	0.2205 (4)	0.30548 (14)	0.0141 (5)
H4	1.173 (6)	0.144 (7)	0.332 (2)	0.026 (10)*
05	0.7890 (3)	0.7805 (3)	0.30380 (14)	0.0123 (5)
O6	0.6993 (3)	0.4106 (4)	0.23156 (13)	0.0127 (4)
C1	0.4679 (4)	0.7060 (5)	0.38994 (19)	0.0108 (6)
C2	0.6954 (4)	0.6301 (5)	0.3722 (2)	0.0113 (6)
H2	0.782988	0.639980	0.433289	0.014*
C3	0.7155 (4)	0.3667 (5)	0.33022 (19)	0.0103 (6)
H3	0.591522	0.263933	0.348493	0.012*
C4	0.9202 (4)	0.2424 (5)	0.3672 (2)	0.0105 (6)
C5	0.7661 (4)	0.6609 (5)	0.2121 (2)	0.0124 (6)
C6	0.6025 (5)	0.7952 (6)	0.1454 (2)	0.0174 (7)
H6A	0.481549	0.683619	0.127887	0.021*
H6B	0.547171	0.945453	0.176471	0.021*
C7	0.7213 (5)	0.8670 (7)	0.0571 (2)	0.0276 (8)
H7A	0.704227	0.737514	0.007304	0.033*
H7B	0.669165	1.027909	0.030732	0.033*
C8	0.9535 (5)	0.8873 (7)	0.0939 (2)	0.0220 (7)
H8A	1.051505	0.869535	0.041494	0.026*
H8B	0.981059	1.048463	0.126290	0.026*
C9	0.9776 (4)	0.6711 (6)	0.1634 (2)	0.0161 (6)
H9A	1.097196	0.700938	0.210352	0.019*
H9B	1.003536	0.513540	0.129416	0.019*

Atomic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0145 (11)	0.0154 (11)	0.0167 (13)	0.0014 (9)	0.0066 (9)	0.0018 (10)

O2	0.0148 (10)	0.0150 (10)	0.0172 (12)	0.0050 (9)	0.0011 (8)	0.0010 (10)
O3	0.0147 (10)	0.0140 (10)	0.0112 (11)	0.0015 (8)	0.0007 (8)	0.0017 (9)
O4	0.0120 (10)	0.0154 (11)	0.0153 (11)	0.0031 (8)	0.0034 (8)	0.0025 (9)
O5	0.0164 (10)	0.0109 (10)	0.0100 (11)	-0.0014 (8)	0.0030 (8)	-0.0012 (8)
O6	0.0178 (10)	0.0102 (9)	0.0099 (11)	-0.0003 (8)	-0.0003 (8)	-0.0005 (9)
C1	0.0146 (13)	0.0093 (12)	0.0085 (14)	-0.0004 (11)	-0.0002 (11)	-0.0040 (12)
C2	0.0136 (14)	0.0087 (13)	0.0117 (16)	0.0012 (10)	0.0015 (11)	-0.0005 (11)
C3	0.0127 (13)	0.0083 (12)	0.0103 (15)	-0.0005 (10)	0.0021 (11)	0.0001 (12)
C4	0.0100 (13)	0.0063 (13)	0.0151 (16)	-0.0005 (10)	0.0001 (11)	-0.0031 (12)
C5	0.0171 (14)	0.0110 (13)	0.0091 (15)	0.0011 (11)	0.0019 (11)	-0.0020 (12)
C6	0.0183 (15)	0.0182 (14)	0.0155 (17)	0.0050 (12)	-0.0003 (13)	-0.0006 (13)
C7	0.0310 (18)	0.035 (2)	0.0167 (18)	0.0068 (16)	0.0021 (14)	0.0092 (16)
C8	0.0258 (16)	0.0225 (16)	0.0185 (18)	0.0003 (14)	0.0089 (13)	0.0071 (15)
C9	0.0164 (14)	0.0163 (15)	0.0160 (17)	0.0014 (12)	0.0047 (12)	0.0012 (14)

Geometric parameters (Å, °)

01—C1	1.325 (3)	С3—Н3	1.0000
01—H1	0.78 (4)	C5—C9	1.529 (4)
O2—C1	1.208 (3)	C5—C6	1.539 (4)
O3—C4	1.222 (3)	C6—C7	1.533 (4)
O4—C4	1.314 (3)	C6—H6A	0.9900
O4—H4	0.84 (4)	C6—H6B	0.9900
O5—C2	1.409 (3)	C7—C8	1.529 (4)
O5—C5	1.443 (3)	C7—H7A	0.9900
O6—C3	1.409 (3)	C7—H7B	0.9900
O6—C5	1.439 (3)	C8—C9	1.522 (4)
C1—C2	1.521 (4)	C8—H8A	0.9900
C2—C3	1.541 (4)	C8—H8B	0.9900
С2—Н2	1.0000	С9—Н9А	0.9900
C3—C4	1.519 (4)	C9—H9B	0.9900
C1	117 (3)	O5—C5—C6	111.9 (2)
C4—O4—H4	108 (2)	C9—C5—C6	106.2 (2)
C2—O5—C5	109.3 (2)	C7—C6—C5	106.0 (2)
C3—O6—C5	109.7 (2)	С7—С6—Н6А	110.5
02—C1—O1	125.4 (2)	С5—С6—Н6А	110.5
O2—C1—C2	124.0 (2)	C7—C6—H6B	110.5
O1—C1—C2	110.5 (2)	C5—C6—H6B	110.5
O5—C2—C1	112.8 (2)	H6A—C6—H6B	108.7
O5—C2—C3	102.6 (2)	C8—C7—C6	103.9 (3)
C1—C2—C3	113.9 (2)	С8—С7—Н7А	111.0
O5—C2—H2	109.1	С6—С7—Н7А	111.0
C1—C2—H2	109.1	C8—C7—H7B	111.0
С3—С2—Н2	109.1	С6—С7—Н7В	111.0
O6—C3—C4	115.5 (2)	H7A—C7—H7B	109.0
O6—C3—C2	102.8 (2)	C9—C8—C7	103.1 (3)
C4—C3—C2	110.9 (2)	C9—C8—H8A	111.1

O6—C3—H3	109.1	С7—С8—Н8А	111.1
С4—С3—Н3	109.1	C9—C8—H8B	111.1
С2—С3—Н3	109.1	C7—C8—H8B	111.1
O3—C4—O4	123.4 (2)	H8A—C8—H8B	109.1
O3—C4—C3	121.0 (2)	C8—C9—C5	104.8 (2)
O4—C4—C3	115.6 (2)	С8—С9—Н9А	110.8
O6—C5—O5	105.2 (2)	С5—С9—Н9А	110.8
O6—C5—C9	112.9 (2)	С8—С9—Н9В	110.8
O5—C5—C9	109.6 (2)	С5—С9—Н9В	110.8
O6—C5—C6	111.2 (2)	H9A—C9—H9B	108.9
C5	-95.7 (2)	C3—O6—C5—O5	-9.5 (3)
C5	27.4 (3)	C3—O6—C5—C9	110.0 (2)
O2—C1—C2—O5	-5.2 (4)	C3—O6—C5—C6	-130.8 (2)
01-C1-C2-05	177.0 (2)	C2—O5—C5—O6	-12.6 (3)
O2—C1—C2—C3	-121.7 (3)	C2—O5—C5—C9	-134.3 (2)
O1—C1—C2—C3	60.5 (3)	C2—O5—C5—C6	108.2 (2)
C5—O6—C3—C4	-95.4 (3)	O6—C5—C6—C7	-120.1 (3)
C5—O6—C3—C2	25.5 (3)	O5—C5—C6—C7	122.6 (3)
O5—C2—C3—O6	-32.0 (2)	C9—C5—C6—C7	3.0 (3)
C1—C2—C3—O6	90.3 (3)	C5—C6—C7—C8	-26.1 (3)
O5—C2—C3—C4	92.0 (3)	C6—C7—C8—C9	39.3 (3)
C1—C2—C3—C4	-145.7 (2)	C7—C8—C9—C5	-37.6 (3)
O6—C3—C4—O3	-172.3 (2)	O6—C5—C9—C8	143.4 (3)
C2—C3—C4—O3	71.3 (3)	O5—C5—C9—C8	-99.7 (3)
O6—C3—C4—O4	8.6 (3)	C6—C5—C9—C8	21.4 (3)
C2—C3—C4—O4	-107.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01—H1…O3 ⁱ	0.78 (4)	1.87 (4)	2.620 (3)	159 (4)
O4—H4···O2 ⁱⁱ	0.84 (4)	1.92 (4)	2.723 (3)	159 (3)
С2—Н2…О3 ^{ііі}	1.00	2.34	3.315 (4)	166
C3—H3…O2 ^{iv}	1.00	2.43	3.358 (3)	155

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) *x*+1, *y*-1, *z*; (iii) -*x*+2, *y*+1/2, -*z*+1; (iv) *x*, *y*-1, *z*.

(2R,3R)-1,4-Dioxaspiro[4.5]decane-2,3-dicarboxylic acid (II)

Crystal data

 $C_{10}H_{14}O_6$ $M_r = 230.21$ Monoclinic, P2₁ a = 6.4272 (8) Å b = 5.2976 (6) Å c = 15.5678 (19) Å $\beta = 94.469 (2)^{\circ}$ $V = 528.45 (11) \text{ Å}^3$ Z = 2 F(000) = 244

 $D_x = 1.447 \text{ Mg m}^{-3}$ Melting point: 413(1) K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 361 reflections $\theta = 3-29^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.39 \times 0.15 \times 0.05 \text{ mm}$ Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.917, T_{max} = 0.995$ Refinement	4329 measured reflections 2612 independent reflections 2503 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -7 \rightarrow 5$ $l = -21 \rightarrow 20$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: mixed
$wR(F^2) = 0.072$	H atoms treated by a mixture of independent
S = 1.05	and constrained refinement
2612 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.0783P]$
153 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.38484 (18)	0.5840 (2)	0.45476 (7)	0.0142 (2)	
H1	0.275 (4)	0.638 (6)	0.4745 (17)	0.046 (8)*	
O2	0.37180 (17)	0.9308 (2)	0.37124 (7)	0.0150 (2)	
O3	0.92950 (17)	0.2135 (2)	0.45684 (7)	0.0124 (2)	
04	1.05961 (17)	0.2630 (2)	0.32878 (7)	0.0134 (2)	
H4	1.158 (4)	0.171 (5)	0.3519 (15)	0.027 (6)*	
05	0.76550 (18)	0.8366 (2)	0.32166 (7)	0.0118 (2)	
06	0.70176 (17)	0.4547 (2)	0.25475 (7)	0.0116 (2)	
C1	0.4607 (2)	0.7451 (3)	0.40041 (9)	0.0104 (3)	
C2	0.6846 (2)	0.6758 (3)	0.38313 (9)	0.0099 (3)	
H2	0.774689	0.688258	0.438295	0.012*	
C3	0.7100 (2)	0.4108 (3)	0.34451 (9)	0.0099 (3)	
H3	0.588324	0.303877	0.357764	0.012*	
C4	0.9117 (2)	0.2852 (3)	0.38196 (10)	0.0103 (3)	
C5	0.7505 (2)	0.7152 (3)	0.23867 (9)	0.0109 (3)	
C6	0.9603 (2)	0.7413 (3)	0.20088 (9)	0.0145 (3)	

H6A	1.069512	0.658928	0.239569	0.017*	
H6B	0.996255	0.922393	0.196647	0.017*	
C7	0.9553 (3)	0.6204 (4)	0.11126 (11)	0.0208 (4)	
H7A	1.090749	0.648573	0.086579	0.025*	
H7B	0.934204	0.435992	0.116324	0.025*	
C8	0.7800 (3)	0.7324 (4)	0.05127 (10)	0.0233 (4)	
H8A	0.775479	0.646187	-0.005267	0.028*	
H8B	0.807902	0.913725	0.041928	0.028*	
С9	0.5691 (3)	0.7025 (4)	0.08968 (10)	0.0191 (3)	
H9A	0.535628	0.520808	0.094378	0.023*	
H9B	0.458492	0.782178	0.050960	0.023*	
C10	0.5734 (2)	0.8254 (3)	0.17929 (10)	0.0151 (3)	
H10A	0.593000	1.009889	0.173941	0.018*	
H10B	0.438602	0.795642	0.204323	0.018*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0135 (5)	0.0139 (6)	0.0160 (5)	0.0025 (5)	0.0065 (4)	0.0026 (5)
O2	0.0139 (5)	0.0142 (6)	0.0172 (5)	0.0044 (4)	0.0029 (4)	0.0027 (5)
O3	0.0127 (5)	0.0125 (6)	0.0122 (5)	0.0009 (4)	0.0014 (4)	0.0004 (4)
O4	0.0115 (5)	0.0133 (6)	0.0157 (5)	0.0032 (4)	0.0036 (4)	0.0017 (5)
O5	0.0156 (5)	0.0092 (5)	0.0111 (5)	-0.0026 (4)	0.0036 (4)	-0.0012 (4)
O6	0.0156 (5)	0.0087 (5)	0.0104 (5)	-0.0011 (4)	0.0005 (4)	0.0002 (4)
C1	0.0114 (6)	0.0102 (7)	0.0097 (6)	-0.0006 (5)	0.0010 (5)	-0.0031 (6)
C2	0.0101 (6)	0.0087 (7)	0.0110 (6)	0.0007 (5)	0.0020 (5)	0.0006 (5)
C3	0.0097 (6)	0.0090 (7)	0.0111 (6)	0.0015 (5)	0.0011 (5)	-0.0007 (5)
C4	0.0099 (6)	0.0066 (7)	0.0145 (7)	-0.0003 (5)	0.0008 (5)	-0.0011 (5)
C5	0.0125 (6)	0.0095 (7)	0.0108 (6)	0.0003 (5)	0.0020 (5)	-0.0007 (6)
C6	0.0141 (7)	0.0158 (8)	0.0142 (6)	-0.0018 (6)	0.0048 (5)	-0.0016 (6)
C7	0.0203 (8)	0.0265 (10)	0.0165 (7)	-0.0028 (7)	0.0079 (6)	-0.0053 (7)
C8	0.0288 (9)	0.0291 (10)	0.0126 (7)	-0.0068 (8)	0.0054 (6)	-0.0003 (7)
C9	0.0208 (8)	0.0239 (10)	0.0122 (7)	-0.0016 (7)	-0.0008 (6)	0.0028 (7)
C10	0.0149 (7)	0.0158 (8)	0.0145 (7)	0.0015 (6)	0.0000 (5)	0.0029 (6)

Geometric parameters (Å, °)

01—C1	1.322 (2)	C5—C10	1.525 (2)	
01—H1	0.84 (3)	C6—C7	1.533 (2)	
O2—C1	1.208 (2)	C6—H6A	0.9900	
O3—C4	1.2229 (19)	C6—H6B	0.9900	
O4—C4	1.3135 (18)	C7—C8	1.526 (3)	
O4—H4	0.85 (3)	C7—H7A	0.9900	
O5—C2	1.4107 (18)	С7—Н7В	0.9900	
O5—C5	1.4398 (18)	C8—C9	1.532 (2)	
O6—C3	1.4135 (17)	C8—H8A	0.9900	
O6—C5	1.441 (2)	C8—H8B	0.9900	
C1—C2	1.529 (2)	C9—C10	1.538 (2)	

C2—C3	1.541 (2)	С9—Н9А	0.9900
С2—Н2	1.0000	С9—Н9В	0.9900
C3—C4	1.532 (2)	C10—H10A	0.9900
С3—Н3	1.0000	C10—H10B	0.9900
C5—C6	1.519 (2)		
C1—O1—H1	112 (2)	С5—С6—Н6А	109.4
C4—O4—H4	109.4 (15)	С7—С6—Н6А	109.4
C2—O5—C5	109.65 (12)	С5—С6—Н6В	109.4
C3—O6—C5	109.70 (12)	С7—С6—Н6В	109.4
O2—C1—O1	125.41 (14)	H6A—C6—H6B	108.0
O2—C1—C2	123.59 (14)	C8—C7—C6	110.88 (15)
O1—C1—C2	110.89 (13)	С8—С7—Н7А	109.5
O5—C2—C1	112.10 (12)	С6—С7—Н7А	109.5
O5—C2—C3	103.28 (11)	С8—С7—Н7В	109.5
C1—C2—C3	114.66 (12)	С6—С7—Н7В	109.5
O5—C2—H2	108.9	H7A—C7—H7B	108.1
C1—C2—H2	108.9	C7—C8—C9	110.75 (14)
С3—С2—Н2	108.9	C7—C8—H8A	109.5
O6—C3—C4	114.38 (12)	С9—С8—Н8А	109.5
O6—C3—C2	103.84 (12)	C7—C8—H8B	109.5
C4—C3—C2	111.08 (12)	С9—С8—Н8В	109.5
Об—С3—Н3	109.1	H8A—C8—H8B	108.1
С4—С3—Н3	109.1	C8—C9—C10	110.87 (14)
С2—С3—Н3	109.1	С8—С9—Н9А	109.5
O3—C4—O4	123.68 (14)	С10—С9—Н9А	109.5
O3—C4—C3	120.74 (14)	С8—С9—Н9В	109.5
O4—C4—C3	115.58 (13)	С10—С9—Н9В	109.5
O5—C5—O6	105.80 (12)	H9A—C9—H9B	108.1
O5—C5—C6	107.89 (12)	C5—C10—C9	110.35 (14)
O6—C5—C6	111.46 (13)	C5—C10—H10A	109.6
O5—C5—C10	111.57 (13)	C9—C10—H10A	109.6
O6—C5—C10	108.05 (13)	C5-C10-H10B	109.6
C6—C5—C10	111.92 (13)	C9—C10—H10B	109.6
C5—C6—C7	110.97 (13)	H10A—C10—H10B	108.1
C5—O5—C2—C1	-99.25 (14)	C2—O5—C5—O6	-12.62 (15)
C5	24.70 (14)	C2—O5—C5—C6	-132.02 (13)
O2—C1—C2—O5	-6.9 (2)	C2	104.65 (14)
O1—C1—C2—O5	176.76 (12)	C3—O6—C5—O5	-6.39 (15)
O2—C1—C2—C3	-124.22 (16)	C3—O6—C5—C6	110.62 (13)
O1—C1—C2—C3	59.43 (16)	C3—O6—C5—C10	-126.00 (13)
C5	-100.36 (14)	O5—C5—C6—C7	-178.91 (14)
C5—O6—C3—C2	20.87 (14)	O6—C5—C6—C7	65.34 (17)
O5—C2—C3—O6	-27.60 (14)	C10—C5—C6—C7	-55.80 (19)
C1—C2—C3—O6	94.65 (14)	C5—C6—C7—C8	55.80 (19)
O5—C2—C3—C4	95.81 (13)	C6—C7—C8—C9	-56.5 (2)
C1—C2—C3—C4	-141.94 (13)	C7—C8—C9—C10	56.9 (2)

O6—C3—C4—O3	-172.39 (14)	O5—C5—C10—C9	176.83 (13)
C2—C3—C4—O3	70.47 (18)	O6—C5—C10—C9	-67.27 (16)
O6—C3—C4—O4	7.99 (19)	C6—C5—C10—C9	55.82 (18)
C2—C3—C4—O4	-109.15 (15)	C8—C9—C10—C5	-56.08 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O1—H1···O3 ⁱ	0.84 (3)	1.80 (3)	2.6230 (16)	164 (3)
O4—H4···O2 ⁱⁱ	0.85 (3)	1.88 (3)	2.7116 (16)	164 (2)
C2—H2···O3 ⁱⁱⁱ	1.00	2.41	3.3818 (19)	164
C3—H3…O2 ^{iv}	1.00	2.44	3.392 (2)	160
С6—Н6А…О4	0.99	2.52	3.255 (2)	131

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) *x*+1, *y*-1, *z*; (iii) -*x*+2, *y*+1/2, -*z*+1; (iv) *x*, *y*-1, *z*.