CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 28 February 2018
Accepted 2 July 2018

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; L-proline; amino acid.

CCDC reference: 1852963

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Redetermination of the solvent-free crystal structure of l-proline

Jonas J. Koenig, Jörg-M. Neudörfl, Anne Hansen and Martin Breugst*

Department für Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany. *Correspondence e-mail: mbreugst@uni-koeln.de

The title compound, (S)-pyrrolidine-2-carboxylic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right)$, commonly known as l-proline, crystallized without the inclusion of any solvent or water molecules through the slow diffusion of diethyl ether into a saturated solution of l-proline in ethanol. l-Proline crystallized in its zwitterionic form and the molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in a twodimensional network. In comparison to the only other publication of a singlecrystal structure of L-proline without inclusions [Kayushina \& Vainshtein (1965). Kristallografiya, 10, 833-844], the R_{1} value is significantly improved (0.039 versus 0.169) and thus, our data provides higher precision structural information.

1. Chemical context

There are 20 proteinogenic amino acids that form the basis of life. Like most amino acids, L-proline predominantely exists in the zwitterionic form (Boldyreva, 2008; Görbitz, 2015). Among those proteinogenic amino acids, L-proline is the only compound featuring a secondary amine that can have a significant influence on the structure of proteins and peptides. For example, L-proline is responsible for the secondary structure of collagen (Hutton et al., 1966) and often acts as a structural disruptor, which leads to structural changes from helical to coil (Tompa, 2002). Another remarkable influence of the secondary amine can be derived from the hydrogenbonding pattern in the solid state. Amino acids with primary amino groups commonly form bilayers incorporating two antiparallel hydrogen-bonded sheets. In contrast, the secondary amino groups in l-proline and its derivatives usually form single-sheet layers, where the amino groups point in the same direction (Görbitz, 2015). Similar conclusions were also drawn relying on powder diffraction data (Seijas et al., 2010). Based on the comparison of 40 different amino acids featuring an endocyclic nitrogen atom, Görbitz concluded that small changes in the molecular composition can cause a significant change in the hydrogen-bonding pattern (Görbitz, 2015).

Within the last decade, L-proline has also attracted significant attention in the field of organic chemistry as an organocatalyst. Following earlier reports on the application of $\mathrm{L}-$ proline in the Hajos-Parrish-Eder-Sauer-Wiechert reaction (Eder et al., 1971; Hajos \& Parrish, 1974), L-proline was rediscovered as an excellent catalyst for asymmetric aldol reactions (List et al. 2000; Feng et al., 2015). Today, proline and various derivatives are frequently used catalysts that are routinely employed for many different transformations including aldol, Mannich, Diels-Alder or epoxidation reactions (Mukherjee et al., 2007).

So far, crystal structures with R_{1} values of less than 0.10 have been published for 19 of the 20 proteinogenic amino acids (Görbitz, 2015). However, for L-proline, the only available crystal structure without inclusions dates from 1965 and features a significantly worse R_{1} value of 0.169 (Kayushina \& Vainshtein, 1965). To overcome this limitation for the last proteinogenic amio acid, we recently succeeded in determining the crystal structure of L-proline without any inclusions with significantly improved R_{1} values.

2. Structural commentary

L-Proline crystallized in its zwitterionic form: the oxygen atoms of the carboxylic acid (O 1 and O 2) are deprotonated and accordingly, the amine nitrogen atom N 1 is protonated. The pyrrolidine ring within the title compound adopts a slightly bent envelope conformation with the C 2 atom out of the plane (Fig. 1). Comparing the obtained values with previously reported crystal structures of enantiomerically pure L- and D-proline, the racemic compound, as well as the cocrystalized structures, only marginal differences can be observed for the distances $\mathrm{N} 1-\mathrm{C} 1, \mathrm{~N} 1-\mathrm{C} 4$, and $\mathrm{C} 1-\mathrm{C} 5$ as well as for the binding angles $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$. This indicates that the inclusion of solvents and formation of co-crystals does not influence the structural properties of proline significantly.

Figure 1
The molecular structure of the title compound l-proline. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(4)$	$2.01(4)$	$2.759(3)$	$144(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.91(4)$	$1.82(4)$	$2.703(3)$	$165(3)$

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$.

3. Supramolecular features

As a secondary amine, L-proline carries two hydrogen atoms at the nitrogen atom N 1 in its zwitterionic form. These two hydrogen atoms each interact with one of the oxygen atoms of the carboxylic groups (O 1 and O 2). The different hydrogenbond parameters between the proline molecules are shown in Table 1. As shown in Fig. 2, these hydrogen bonds result in the formation of a single-sheet architecture within the $a b$ plane (also termed sheet $L 1$ in Görbitz, 2015). This structure is addionaly stabilized by hydrophobic interactions between the $\mathrm{C}-\mathrm{H}$ bonds of the pyrrolidine substructure (see Fig. 2). In comparison, the hydrogen-bonding pattern of isoleucin (DAILEU01: Varughese \& Srinivasan, 1975) as a typical example of an amino acid with a primary amino group features a double-sheet structure where the hydrophobic and hydrophilic parts interact with each other (Fig. 3). Therefore, the hydrogen-bonding pattern observed for L-proline once again illustrates why proline is considered to be a structural disruptor in proteins. However, as already pointed out above, small structural changes can have a signifcant influence, as the addition of a hydroxy group in 3-hydroxyproline results in the formation of bands in the supramolecular structure (HOPROL12: Koetzle et al., 1973). This again highlights how even small changes such as the addition of a hydroxy group can change the packing in the crystal structure.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update Nov. 2017; Groom et al., 2016) for the L-proline structure resulted in 16 hits. Only one very early

Figure 2
View along the c axis (left) and the a axis (right) showing that L-proline forms layers through hydrogen bonding between the carboxylic group O1 respectively O 2 and amine N 1 .

Figure 3
Hydrophilic and hydrophobic layers in the crystal structure of isoleucin (DAILEU01: Varughese \& Srinivasan, 1975).
entry refers to the single crystal of the pure l-isomer without any inclusions (PROLIN: Kayushina \& Vainshtein, 1965). However, the determination of this crystal structure was performed in 1965. Nevertheless, Kayushina and Vainshtein could identify the space group as $P 2_{1} 2_{1} 2_{1}$ and determine the cell parameters with $a=5.20 \AA, b=9.02 \AA, c=11.55 \AA$, which are good, but could be determined with higher precision in this study. Furthermore, the R_{1} value has now improved substantially to 0.039 . Seijas et al. (2010) investigated the powder diffraction data of enantiopure L-proline and obtained an R_{1} value of 0.089 with similar structural features. They further compared the four pseudopolymorphs of l-proline, L-proline monohydrate, DL-proline and dL-proline monohydrate and concluded that all show a layered packing, which is stabilized by van der Waals interactions (PROLIN01: Seijas et al., 2010).

Besides the single entry for enantiopure l-proline, one entry refers to enantiopure l-proline with the inclusion of water (RUWGEV: Janczak \& Luger, 1997), two entries refer to the racemic compound (QANRUT: Myung et al., 2005; QANRUT01: Hayashi et al., 2006) and the racemic product with water (DLPROM01: Padmanabhan et al., 1995; DLPROM02: Flaig et al., 2002) or chloroform (WERMIQ: Klussmann et al., 2006). The enantiopure L-proline was also crystallized with inclusions of p-aminobenzoic acid (CIDBOH: Athimoolam \& Natarajan, 2007), 1,1-dicyano-2-(4-hydroxyphenyl)ethene (IHUMAZ: Timofeeva et al., 2003), S-binaphthol (NISVOA: Periasamy et al., 1997; NISVOA01: Hu et al., 2012), p-nitrophenol (QIRNUC: Sowmya et al., 2013), and thiourea monohydrate (UFOQEN: Umamaheswari et al., 2012).

5. Synthesis and crystallization

The crystals were grown from commercially available L-proline (purchased from Carbolution). Crystals suitable for X-ray crystallography were obtained by the slow diffusion of diethyl ether into a saturated solution of e-proline in ethanol. After one night, colourless crystals were obtained and directly investigated via single crystal X-ray analysis. ${ }^{1} \mathrm{H}$ NMR

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

```
0.036, 0.086, 1.11
1062
C
115.13
Orthorhombic, P2 2 2, 2,
100
5.2794 (4), 8.8686 (6), 11.5321 (9)
539.94 (7)
4
Cu K\alpha
0.92
0.40\times0.10 }\times0.0
Bruker D8 Venture
Multi-scan (SADABS; Bruker,
    2012)
0.553, 0.754
4791, 1062, }99
0.053
0.618
1062
H}\mathrm{ atoms treated by a mixture of
    independent and constrained
    refinement
0.22, -0.19
Flack x determined using 361
    quotients [(I+)-(I')]/[(I')+(I-})
    (Parsons et al., 2013)
0.10(17)
```

Computer programs: APEX3 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and SHELXLE (Hübschle et al., 2011), SCHAKAL99 (Keller \& Pierrard, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=1.67-1.83(2 \mathrm{H}, m, 3-\mathrm{H}), 1.90-2.08$ $(2 \mathrm{H}, m, 2-\mathrm{H}), 3.02\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J=11.2 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 4-\mathrm{H}\right)$, $3.22\left(1 \mathrm{H}, d d d,{ }^{2} J=11.2 \mathrm{~Hz},{ }^{3} J=7.5 \mathrm{~Hz}\right.$, and $\left.5.9 \mathrm{~Hz}, \mathrm{H}-4\right), 3.65$ $\left(1 \mathrm{H}, d d,{ }^{3} J=8.7 \mathrm{~Hz}\right.$ and $\left.6.5 \mathrm{~Hz}, 1-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta=24.3$ (C-3), 29.4 (C-2), 45.7 (C-4), 61.2 (C-1), 169.8 (C-5). [α]D: -85.9° (c 1.0, $\mathrm{H}_{2} \mathrm{O}$) (Lit. Monteiro, 1974): $-85^{\circ} \pm 2^{\circ}\left(c\right.$ 1.1, $\left.\mathrm{H}_{2} \mathrm{O}\right)$, m.p. 486.7-487.2 K (decomposition).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms bonded to carbon were placed with idealized geometry and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}, \mathrm{C}-$ $\mathrm{H}=0.99 \AA U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2}, \mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3}. N -bound H atoms were located in a difference electron map and refined isotropically.

Acknowledgements

We thank Professor Dr Albrecht Berkessel and his group for support.

Funding information

Financial support from the Fonds der Chemischen Industrie (Liebig-Scholarship to MB) and the University of Cologne within the excellence initiative is gratefully acknowledged.

References

Athimoolam, S. \& Natarajan, S. (2007). Acta Cryst. C63, o283o286.
Boldyreva, E. (2008). Models, Mysteries, and Magic of Molecules edited by J. C. A. Boeyens \& J. F. Ogilvie, pp. 167-192, Dordrecht: Springer.
Bruker (2012). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Eder, U., Sauer, G. \& Wiechert, R. (1971). Angew. Chem. Int. Ed. Engl. 10, 496-497.
Feng, Y., Holte, D., Zoller, J., Umemiya, S., Simke, L. R. \& Baran, P. S. (2015). J. Am. Chem. Soc. 137, 10160-10163.

Flaig, R., Koritsanszky, T., Dittrich, B., Wagner, A. \& Luger, P. (2002). J. Am. Chem. Soc. 124, 3407-3417.

Görbitz, C. H. (2015). Crystallogr. Rev. 21, 160-212.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hajos, Z. G. \& Parrish, D. R. (1974). J. Org. Chem. 39, 1615-1621.
Hayashi, Y., Matsuzawa, M., Yamaguchi, J., Yonehara, S., Matsumoto, Y., Shoji, M., Hashizume, D. \& Koshino, H. (2006). Angew. Chem. 118, 4709-4713.
Hu, X., Shan, Z. \& Chang, Q. (2012). Tetrahedron Asymmetry, 23, 1327-1331.
Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.
Hutton, J. J. Jr, Tappel, A. L. \& Udenfriend, S. (1966). Anal. Biochem. 16, 384-394.
Janczak, J. \& Luger, P. (1997). Acta Cryst. C53, 1954-1956.

Kayushina, R. L. \& Vainshtein, B. K. (1965). Kristallografiya, 10, 833844.

Keller, E. \& Pierrard, J.-S. (1999). SCHAKAL99. University of Freiburg, Germany.
Klussmann, M., White, A. J. P., Armstrong, A. \& Blackmond, D. G. (2006). Angew. Chem. Int. Ed. 45, 7985-7989.

Koetzle, T. F., Lehmann, M. S. \& Hamilton, W. C. (1973). Acta Cryst. B29, 231-236.
List, B., Lerner, R. A. \& Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2395-2396.
Monteiro, H. J. (1974). Synthesis, p. 137.
Mukherjee, S., Yang, J. W., Hoffmann, S. \& List, B. (2007). Chem. Rev. 107, 5471-5569.
Myung, S., Pink, M., Baik, M.-H. \& Clemmer, D. E. (2005). Acta Cryst. C61, o506-o508.
Padmanabhan, S., Suresh, S. \& Vijayan, M. (1995). Acta Cryst. C51, 2098-2100.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Periasamy, M., Venkatraman, L. \& Thomas, K. R. J. (1997). J. Org. Chem. 62, 4302-4306.
Seijas, L. E., Delgado, G. E., Mora, A. J., Fitch, A. N. \& Brunelli, M. (2010). Powder Diffr. 25, 235-240.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sowmya, N. S., Vidyalakshmi, Y., Sampathkrishnan, S., Srinivasan, T. \& Velmurugan, D. (2013). Acta Cryst. E69, o1723.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Timofeeva, T. V., Kuhn, G. H., Nesterov, V. V., Nesterov, V. N., Frazier, D. O., Penn, B. G. \& Antipin, M. Y. (2003). Cryst. Growth Des. 3, 383-391.
Tompa, P. (2002). Trends Biochem. Sci. 27, 527-533.
Umamaheswari, R., Nirmala, S., Sagayaraj, P. \& Joseph Arul Pragasam, A. (2012). J. Therm. Anal. Calorim. 110, 891-895.
Varughese, K. I. \& Srinivasan, R. (1975). J. Cryst. Mol. Struct. 5, 317328.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 1067-1070 [https://doi.org/10.1107/S2056989018009490]

Redetermination of the solvent-free crystal structure of t-proline

Jonas J. Koenig, Jörg-M. Neudörfl, Anne Hansen and Martin Breugst

Computing details

Data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and SHELXLE (Hübschle et al., 2011); molecular graphics: SCHAKAL99 (Keller \& Pierrard, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(S)-Pyrrolidine-2-carboxylic acid

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$
$M_{r}=115.13$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.2794$ (4) \AA
$b=8.8686$ (6) \AA
$c=11.5321(9) \AA$
$V=539.94$ (7) \AA^{3}
$Z=4$
$F(000)=248$

Data collection

Bruker D8 Venture

diffractometer
Radiation source: micro focus
phi / ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.553, T_{\text {max }}=0.754$
4791 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.086$
$S=1.11$
1062 reflections
81 parameters
0 restraints
Hydrogen site location: mixed
$D_{\mathrm{x}}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 486.9 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 4791 reflections
$\theta=6.3-72.3^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.10 \times 0.08 \mathrm{~mm}$

1062 independent reflections
993 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=72.3^{\circ}, \theta_{\text {min }}=6.3^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.036 P)^{2}+0.1571 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$
Absolute structure: Flack x determined using 361 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.10 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O1	$0.2943(3)$	$0.61385(18)$	$0.31235(15)$	$0.0182(4)$
O2	$0.2573(3)$	$0.38601(19)$	$0.23111(17)$	$0.0261(5)$
N1	$0.7901(4)$	$0.5949(2)$	$0.35050(17)$	$0.0150(4)$
H1A	$0.708(7)$	$0.673(4)$	$0.326(3)$	$0.040(9)^{*}$
H1B	$0.952(7)$	$0.596(4)$	$0.325(3)$	$0.034(9)^{*}$
C1	$0.6604(4)$	$0.4557(2)$	$0.3057(2)$	$0.0134(5)$
H1	0.7482	0.4165	0.2350	0.016^{*}
C2	$0.6869(4)$	$0.3449(2)$	$0.4064(2)$	$0.0171(5)$
H2A	0.8567	0.2977	0.4071	0.020^{*}
H2B	0.5563	0.2650	0.4024	0.020^{*}
C3	$0.6479(5)$	$0.4456(3)$	$0.5127(2)$	$0.0186(5)$
H3A	0.4663	0.4685	0.5246	0.022^{*}
H3B	0.7164	0.3975	0.5836	0.022^{*}
C4	$0.7967(5)$	$0.5875(3)$	$0.4816(2)$	$0.0191(5)$
H4A	0.7165	0.6780	0.5160	0.023^{*}
H4B	0.9733	0.5803	0.5100	0.023^{*}
C5	$0.3804(4)$	$0.4883(3)$	$0.27998(19)$	$0.0150(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0086(7)$	$0.0153(8)$	$0.0307(9)$	$0.0011(7)$	$0.0002(7)$	$-0.0015(7)$
O2	$0.0135(8)$	$0.0212(8)$	$0.0435(11)$	$0.0007(8)$	$-0.0075(8)$	$-0.0108(8)$
N1	$0.0083(9)$	$0.0136(9)$	$0.0230(10)$	$0.0000(8)$	$-0.0014(8)$	$0.0008(8)$
C1	$0.0100(11)$	$0.0126(10)$	$0.0177(10)$	$-0.0006(9)$	$0.0005(8)$	$-0.0019(9)$
C2	$0.0167(12)$	$0.0143(10)$	$0.0202(12)$	$-0.0003(9)$	$-0.0018(10)$	$0.0012(9)$
C3	$0.0178(12)$	$0.0195(11)$	$0.0186(11)$	$-0.0004(10)$	$0.0011(9)$	$0.0015(9)$
C4	$0.0175(11)$	$0.0196(11)$	$0.0201(12)$	$-0.0014(10)$	$-0.0013(10)$	$-0.0036(9)$
C5	$0.0115(10)$	$0.0167(11)$	$0.0168(10)$	$-0.0006(9)$	$-0.0004(9)$	$0.0015(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 5$	$1.260(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.531(3)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.250(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 1$	$1.504(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 4$	$1.514(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.526(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.87(4)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	$0.91(4)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	$1.527(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900

$\mathrm{C} 1-\mathrm{C} 5$	$1.535(3)$
$\mathrm{C} 1-\mathrm{H} 1$	1.0000
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$108.53(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$108(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$112(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$109(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$108(2)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$111(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$103.03(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$110.50(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$110.87(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	110.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	110.7
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{H} 1$	110.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$102.82(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.2
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-21.2(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$97.3(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$38.5(2)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-79.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-41.5(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-4.4(2)$

C4—H4B
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B} \quad 109.1$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2 \quad 102.92$ (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \quad 111.2$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \quad 111.2$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \quad 111.2$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \quad 111.2$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \quad 109.1$
N1-C4-C3 105.00 (18)
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \quad 110.7$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \quad 110.7$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \quad 110.7$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \quad 110.7$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~B} \quad 108.8$
O2-C5-O1 126.0 (2)
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 1 \quad 116.8$ (2)
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 1 \quad 117.18$ (19)

C2—C3-C4-N1 28.2 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 2 \quad 172.9$ (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 2 \quad-73.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 1 \quad-8.7(3)$
104.9 (2)

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.87(4)$	$2.01(4)$	$2.759(3)$	$144(3)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots 1^{\mathrm{ii}}$	$0.91(4)$	$1.82(4)$	$2.703(3)$	$165(3)$

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x+1, y, z$.

