

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 7 May 2018 Accepted 4 June 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; phtalimide derivatives; phosphorylated compounds.

CCDC reference: 1847170

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of diethyl {2,2,2-trichloro-1-[2-(1,3-dioxo-2,3-dihydro-1*H*-isoindol-2-yl)-4-methylpentanamido]ethyl}phosphonate

V. S. Brovarets,^a O. V. Golovchenko,^a E. B. Rusanov^b and J. A. Rusanova^{c*}

^aInstitute of Bioorganic Chemistry and Petrochemistry, National Academy of, Sciences of Ukraine, 1 Murmanska St., Kyiv 02660, Ukraine, ^bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, 5, Murmanska St., Kyiv 02660, Ukraine, and ^cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 01601, Ukraine. *Correspondence e-mail: rusanova.j@gmail.com

In the title phosphorylated compound, $C_{20}H_{26}Cl_3N_2O_6P$, the phthalimide unit is essentially planar (r.m.s. deviation = 0.0129 Å) and the O atoms of this unit deviate from the mean plane by 0.080 (3) and 0.041 (3) Å. In the crystal, pairs of molecules are linked by N-H···O and weak C-H···O hydrogen bonds involving the same acceptor atom, forming inversion dimers. In addition, π - π stacking interactions between the phthalimide groups, with a centroid–centroid distance of 3.7736 (13) Å, and further weak C-H···O hydrogen bonds connect the inversion dimers into columns along [011].

1. Chemical context

In early 1950, J. W. Cornforth noted that oxazole derivatives rarely occur in nature and were therefore not promising as new biologically active substances. Studies performed mostly during recent decades have shown that the oxazole ring occurs in a multitude of natural products and it has been widely employed as a component of biologically active compounds in medicinal chemistry (Jin et al., 2006). Various bacteria and marine organisms produce numerous antibiotics belonging to the oxazole series (Chamberlin et al., 1977; Bertram et al., 2001; Jansen et al., 1992; Moody & Bagley, 1998). Today, numerous oxazole-based synthetic bioregulators with strong antimicrobial, cytostatic, immune stimulating, neuroleptic, analgesic, and other kinds of biological activity are known (Turchi et al., 1986; Palmer et al., 2003). In particular, 5-amino-1,3-oxazole and its derivatives are well recognized for their potent and diverse bioregulation activity. Here we present the crystal structure of the title compound, which is an intermediate product of synthesis of phosphorylated 5-amino-1,3oxazol-4-ylphosphonic acid derivatives.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The phthalimide unit (N1/C1–C8) is essentially planar

research communications

Figure 1

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

with an r.m.s. deviation of 0.0129 Å. The oxygen atoms O4 and O5 deviate from the mean plane by 0.080 (3) and 0.041 (3) Å, respectively. In the five-membered 3-pyrroline ring, the C–C bond lengths are equivalent [C1–C8 = 1.487 (3) and C2–C3 = 1.486 (3) Å] and the C–N bond lengths differ slightly [N1–C1 = 1.417 (3) and N1–C2 = 1.398 (3) Å], while the corresponding bond angles are not equal [C1–N1–C9 = 127.97 (18) and C2–N1–C9 = 120.53 (17)°] possibly due to the steric influence of the isobutyl group. The mean C–C bond length in the C3–C8 phenyl ring is 1.387 Å. All bond lengths and angles are within normal ranges (Ng, 1992; Feeder & Jones, 1996).

In the acetamide moiety, the lone pair of atom N2 is conjugated with the π -system of the C=O group. Thus, the sum of nitrogen valency angles is 359.3° and the C14-N2 bond length of 1.356 (3) Å is intermediate between that for a double and a single bond (1.28 and 1.45 Å, respectively; Allen *et al.*, 1987). The C15-N2 bond has a typical value for a single bond at 1.442 (3) Å.

Table 1	
Hydrogen-bond g	eometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
N2-H1O3i0.76 (2)2.09 (2)2.846 (3)170 (2)C9-H9O3i1.002.473.265 (3)136C7-H7O6 ⁱⁱ 0.952.463.393 (3)169	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	$\begin{array}{c} N2 - H1 \cdots O3^{i} \\ C9 - H9 \cdots O3^{i} \\ C7 - H7 \cdots O6^{ii} \end{array}$	0.76 (2) 1.00 0.95	2.09 (2) 2.47 2.46	2.846 (3) 3.265 (3) 3.393 (3)	170 (2) 136 169

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 2.

The P–O distances in the phosphonate group show typical values for double [P1=O3 1.4616 (15) Å] and single (with bridging O1 and O2) bonds. The P1–O1 and P1–O2 bonds are equivalent within experimental error with values of 1.5670 (15) and 1.5664 (16) Å, respectively. The C15–P1–O1 and C15–P1–O2 bond angles are equivalent [103.45 (9) and 102.73 (9)°, respectively], while angles O1–P1–O3 and O2–P1–O3 are not [109.82 (9) and 116.77 (9)°], which is probably due to molecular packing effects.

The CCl₃ group has typical values for the C–Cl distances (the mean C–Cl bond lengths is 1.773 Å). In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Bhatti *et al.*, 2010).

3. Supramolecular features

In the crystal, pairs of molecules are linked by N2-H1···O3ⁱ and C9-H9··O3ⁱ hydrogen bonds (Table 1, Fig. 2) involving the same acceptor atom, forming inversion dimers. In addition, π - π stacking interactions between the C3-C8 benzene rings of the phthalimide units connect the dimers into columns along [011] with a centroid-centroid distance of 3.7736 (13) Å for $Cg \cdots Cg(2 - x, -y, 2 - z)$. Further weak C-H···O hydrogen bonds occur within these columns (Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom *et al.*, 2016) for related

Figure 2

An inversion pair of the title compound, showing the intermolecular N– H···O and C–H···O hydrogen bonds [symmetry code: (A) 1 - x, 1 - y, 1 - z].

The crystal packing of the title compound viewed along the *a* axis. Intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are shown as dashed lines. Only selected H atoms are shown.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{20}H_{26}Cl_3N_2O_6P$
M _r	527.75
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	8.4601 (2), 10.9425 (3), 13.5321 (4)
α, β, γ (°)	78.188 (2), 88.644 (2), 75.442 (2)
$V(Å^3)$	1186.32 (6)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.49
Crystal size (mm)	$0.24 \times 0.19 \times 0.08$
•	
Data collection	
Diffractometer	Bruker SMART APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.87, 0.96
No. of measured, independent and	16619, 4423, 3306
observed $[I > 2\sigma(I)]$ reflections	
Rint	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.090, 1.08
No. of reflections	4423
No. of parameters	293
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.370.44

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016* (Sheldrick, 2015*b*), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

compounds with a phthalimide fragment gave 77 hits including the closely related structures of the 2-[2-(1,3-dioxoisoindolin-2-yl)-acetamido]acetic acid, (S)-4-fluoro-N-methyl-2-(1,3dioxoisoindolin-2-yl)pent-4-enamide dichloromethane solvate and (S)-4-carbamoyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid (Bhatti *et al.*, 2010; Shendage *et al.*, 2004; Otogawa *et al.*, 2015). All bond lengths and angles in these related compounds are similar to those in the title compound. Differences in the values of the O-P-O bond angles in the phosphonate group and C-N-C angles around the pthalimide nitrogen appear to be due to molecular packing and steric effects.

5. Synthesis and crystallization

The general procedure for the preparation of the title compound was previously described by Lukashuk *et al.* (2015). A mixture of 2-(1,3-dioxo-2,3-dihydro-1*H*-isoindol-2-yl)-3-methyl-*N*-(1,2,2,2-tetrachloroethyl)butanamide (0.14 mol), triethyl phosphite (30 mL, 0.17 mol), and dry dioxane (150 mL) was refluxed for 3 h. Colourless crystals suitable for single-crystal X-ray analysis were formed after slowly cooling to room temperature. The analytically pure title compound was obtained by solvent evaporation under reduced pressure to dryness (yield 58.84 g, 80% as a yellow oil). Analysis calculated for $C_{19}H_{26}Cl_3N_2O_6P$: C, 44.42; H, 4.71; Cl, 20.70; N, 5.45; P, 6.03%; found: C, 44.55; H, 4.86; Cl, 20.82; N, 5.53; P, 6.19%.

The NMR spectra $[{}^{1}H$ (500 MHz), ${}^{31}P$ (202 MHz), ${}^{13}C$ (125 MHz): s. singlet: br. broad: d. doublet: m. multiplet] were obtained on a Bruker Avance DRX-500 instrument in a solution of DMSO-d₆, relative to internal TMS or external 85% phosphoric acid. ¹H NMR: 9.32 ($\frac{1}{2}$ H, d, J = 9.3 Hz, NH), 9.22 ($\frac{1}{2}$ H, d, J = 9.3 Hz, NH), 7.92–7.88 (4H, m, aromatic), 5.29– 5.21 (1H, m, CHP), 4.68-4.61 (1H, m, CH), 4.10-4.00 (4H, m, 2OCH₂CH₂), 2.97-2.90 (1H, m, CH), 1.22-1.15 (6H, m, 2OCH₂CH₃), 1.11–1.05 (3H, m, CH₃), 0.88–0.79 (3H, m, CH₃). ¹³C NMR: 168.61 (d, J = 4.5 Hz, C=O), 167.41 (d, J = 4.5 Hz, C=O), 134.41, 134.36, 130.55, 130.53, 122.85, 122.80 (aromatic), 96.21 (d, J = 14.5 Hz, CCl₃), 96.06 (d, J = 14.5 Hz, CCl_3), 62.30 (*d*, J = 6.5 Hz, OCH_2CH_3), 62.07 (*d*, J = 6.5 Hz, OCH₂CH₃), 60.31 (*d*, *J* = 158.8 Hz, CP), 60.26 (*d*, *J* = 158.6 Hz, CP), 59.31, 59.22 (CH), 25.92, 25.84 (CH), 18.55, 18.50 (CH₃), 18.49, 18.36 (CH₃), 14.97 (d, J = 6.0 Hz, OCH₂CH₃), 14.86 (d, J = 6.0 Hz, OCH₂CH₃). ³¹P NMR: 14.4. 14.2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C—H hydrogen atoms were placed in calculated positions (C—H = 0.98-1.00Å) and refined in the riding-model approximation with $U_{iso}(H) = 1.2 1.5U_{eq}(H)$. The H atom bonded to atom N2 was located in a difference-Fourier map and refined isotropically.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bertram, A. & Pattenden, G. (2001). Synlett, pp. 1873-1874.
- Bhatti, M. H., Yunus, U., Imtiaz-ud-Din, Shams-ul-Islam, S. & Wong, W.-Y. (2010). Acta Cryst. E66, 02969.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chamberlin, J. W. & Chen, S. J. (1977). J. Antibiot. 30, 197–201.
- Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 1516-1520.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jansen, R., Kunze, B., Reichenbach, H., Jurkiewicz, E., Hunsmann, G. & Höfle, G. (1992). *Liebigs Ann. Chem.* pp. 357–359.
- Jin, Z. (2006). Nat. Prod. Rep. 23, 464-496.
- Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S. & Kukhar, V. P. (2015). RSC Adv. 5, 11198–11206.
- Moody, C. J. & Bagley, M. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 601–608.
- Ng, S. W. (1992). Acta Cryst. C48, 1694-1695.
- Otogawa, K., Ishikawa, K., Shiro, M. & Asahi, T. (2015). Acta Cryst. E71, 107–109.
- Palmer, D. C. (2003). Oxazoles: Synthesis, Reactions, and Spectroscopy, Ed., Hoboken: Wiley, part A, p. 255.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shendage, D. M., Fröhlich, R. & Haufe, G. (2004). Org. Lett. 6, 3675–3678.
- Turchi, I. J. (1986). Editor. Oxazoles. New York: Wiley.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 915-917 [https://doi.org/10.1107/S2056989018008277]

Crystal structure of diethyl {2,2,2-trichloro-1-[2-(1,3-dioxo-2,3-dihydro-1*H*-isoindol-2-yl)-4-methylpentanamido]ethyl}phosphonate

V. S. Brovarets, O. V. Golovchenko, E. B. Rusanov and J. A. Rusanova

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Diethyl {2,2,2-trichloro-1-[2-(1,3-dioxo-2,3-dihydro-1*H*-isoindol-2-yl)-4-methylpentanamido]ethyl}phosphonate

Crystal data

 $C_{20}H_{26}Cl_3N_2O_6P$ $M_r = 527.75$ Triclinic, *P*1 *a* = 8.4601 (2) Å *b* = 10.9425 (3) Å *c* = 13.5321 (4) Å *a* = 78.188 (2)° *β* = 88.644 (2)° *γ* = 75.442 (2)° *V* = 1186.32 (6) Å³

Data collection

Bruker SMART APEXII diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.87, T_{\max} = 0.96$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.090$ S = 1.084423 reflections 293 parameters 0 restraints Z = 2 F(000) = 548 $D_x = 1.477 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2780 reflections $\theta = 3.4-45.8^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.24 \times 0.19 \times 0.08 \text{ mm}$

16619 measured reflections 4423 independent reflections 3306 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0373P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.38432 (7)	0.33488 (6)	0.45621 (4)	0.01836 (15)	
CL1	0.79937 (8)	0.30683 (7)	0.43532 (5)	0.0447 (2)	
CL2	0.85600 (7)	0.07099 (6)	0.58507 (4)	0.03428 (18)	
CL3	0.69011 (8)	0.09144 (7)	0.39715 (5)	0.0491 (2)	
01	0.24551 (17)	0.37482 (14)	0.53081 (11)	0.0219 (4)	
02	0.33202 (19)	0.24320 (15)	0.39667 (11)	0.0267 (4)	
O3	0.42397 (18)	0.45000 (14)	0.39643 (11)	0.0247 (4)	
O4	0.44032 (19)	0.15069 (15)	0.97521 (11)	0.0257 (4)	
O5	0.86366 (19)	0.32359 (16)	0.85338 (12)	0.0310 (4)	
O6	0.54932 (19)	0.11923 (15)	0.74528 (11)	0.0262 (4)	
N1	0.6311 (2)	0.25003 (17)	0.88866 (13)	0.0187 (4)	
N2	0.5722 (2)	0.2870 (2)	0.62148 (13)	0.0182 (4)	
C1	0.5759 (3)	0.1669 (2)	0.96882 (16)	0.0203 (5)	
C2	0.7905 (3)	0.2556 (2)	0.90771 (16)	0.0215 (5)	
C3	0.8451 (3)	0.1656 (2)	1.00570 (15)	0.0194 (5)	
C4	0.9935 (3)	0.1328 (2)	1.05637 (16)	0.0232 (5)	
H4	1.080114	0.170025	1.030700	0.028*	
C5	1.0114 (3)	0.0426 (2)	1.14710 (17)	0.0275 (6)	
Н5	1.112112	0.017187	1.184424	0.033*	
C6	0.8833 (3)	-0.0105 (2)	1.18346 (17)	0.0275 (6)	
H6	0.898632	-0.071669	1.245561	0.033*	
C7	0.7331 (3)	0.0230 (2)	1.13198 (16)	0.0248 (6)	
H7	0.645930	-0.013498	1.157508	0.030*	
C8	0.7172 (3)	0.1123 (2)	1.04154 (15)	0.0184 (5)	
C9	0.5453 (3)	0.3201 (2)	0.79368 (15)	0.0188 (5)	
H9	0.599930	0.389770	0.763816	0.023*	
C10	0.3643 (3)	0.3834 (2)	0.80426 (16)	0.0219 (5)	
H10A	0.320062	0.436484	0.737746	0.026*	
H10B	0.305581	0.314522	0.821981	0.026*	
C11	0.3267 (3)	0.4684 (2)	0.88262 (17)	0.0252 (6)	
H11	0.361031	0.412380	0.950673	0.030*	
C12	0.4201 (3)	0.5725 (2)	0.86449 (19)	0.0360 (7)	
H12A	0.537536	0.532229	0.864970	0.054*	
H12B	0.386046	0.630024	0.798851	0.054*	
H12C	0.396886	0.622302	0.917967	0.054*	
C13	0.1436 (3)	0.5270 (3)	0.8824 (2)	0.0418 (7)	
H13A	0.086390	0.458013	0.894246	0.063*	
H13B	0.118619	0.576531	0.936024	0.063*	
H13C	0.107779	0.584253	0.816908	0.063*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C14	0.5585 (3)	0.2307 (2)	0.71927 (15)	0.0180 (5)
C15	0.5510 (3)	0.2253 (2)	0.54002 (15)	0.0178 (5)
H15	0.512342	0.147068	0.570548	0.021*
C16	0.7154 (3)	0.1776 (2)	0.49071 (16)	0.0269 (6)
C17	0.1635 (3)	0.2852 (2)	0.59219 (18)	0.0275 (6)
H17A	0.238670	0.226629	0.646535	0.033*
H17B	0.127708	0.232492	0.550083	0.033*
C18	0.0190 (3)	0.3634 (2)	0.63664 (18)	0.0342 (6)
H18A	-0.039138	0.305605	0.678612	0.051*
H18B	0.055967	0.414975	0.678234	0.051*
H18C	-0.054538	0.420814	0.582181	0.051*
C19	0.2312 (3)	0.2932 (3)	0.30282 (19)	0.0380 (7)
H19A	0.227578	0.385415	0.277641	0.046*
H19B	0.118185	0.285406	0.315925	0.046*
C20	0.3037 (3)	0.2176 (3)	0.22655 (19)	0.0418 (7)
H20A	0.237677	0.249970	0.163708	0.063*
H20B	0.415264	0.226244	0.213626	0.063*
H20C	0.306207	0.126542	0.251793	0.063*
H1	0.577 (3)	0.357 (2)	0.6099 (17)	0.017 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
P1	0.0179 (3)	0.0187 (3)	0.0166 (3)	-0.0024 (3)	-0.0006 (2)	-0.0022 (2)
CL1	0.0242 (4)	0.0651 (5)	0.0359 (4)	-0.0130 (3)	0.0039 (3)	0.0116 (3)
CL2	0.0240 (3)	0.0416 (4)	0.0269 (3)	0.0092 (3)	-0.0043 (2)	-0.0045 (3)
CL3	0.0398 (4)	0.0655 (5)	0.0372 (4)	0.0148 (4)	-0.0066 (3)	-0.0338 (4)
O1	0.0190 (8)	0.0186 (9)	0.0250 (8)	-0.0024 (7)	0.0047 (7)	-0.0012 (7)
O2	0.0290 (9)	0.0254 (9)	0.0255 (9)	-0.0042 (8)	-0.0092 (7)	-0.0071 (7)
O3	0.0270 (9)	0.0225 (9)	0.0217 (8)	-0.0073 (8)	0.0016 (7)	0.0035 (7)
O4	0.0248 (10)	0.0273 (10)	0.0250 (9)	-0.0107 (8)	-0.0007 (7)	-0.0001 (7)
O5	0.0290 (10)	0.0377 (11)	0.0250 (9)	-0.0150 (9)	0.0010 (7)	0.0046 (8)
O6	0.0407 (11)	0.0176 (9)	0.0199 (8)	-0.0081 (8)	0.0048 (7)	-0.0024 (7)
N1	0.0197 (10)	0.0210 (11)	0.0146 (9)	-0.0060 (9)	-0.0013 (7)	-0.0007 (8)
N2	0.0240 (11)	0.0159 (12)	0.0146 (10)	-0.0062 (10)	-0.0001 (8)	-0.0015 (8)
C1	0.0270 (14)	0.0144 (12)	0.0200 (12)	-0.0052 (11)	0.0004 (10)	-0.0044 (10)
C2	0.0240 (13)	0.0225 (13)	0.0191 (12)	-0.0061 (11)	0.0027 (10)	-0.0061 (10)
C3	0.0249 (13)	0.0168 (12)	0.0172 (11)	-0.0051 (11)	0.0020 (9)	-0.0057 (9)
C4	0.0241 (13)	0.0225 (13)	0.0246 (13)	-0.0064 (11)	-0.0021 (10)	-0.0072 (10)
C5	0.0293 (14)	0.0254 (14)	0.0262 (13)	-0.0015 (12)	-0.0088 (11)	-0.0070 (11)
C6	0.0384 (15)	0.0223 (14)	0.0179 (12)	-0.0038 (12)	-0.0045 (11)	0.0003 (10)
C7	0.0318 (14)	0.0239 (14)	0.0199 (12)	-0.0100 (11)	0.0031 (10)	-0.0041 (10)
C8	0.0237 (13)	0.0161 (12)	0.0154 (11)	-0.0045 (10)	0.0007 (9)	-0.0036 (9)
C9	0.0248 (13)	0.0175 (12)	0.0128 (11)	-0.0055 (10)	-0.0022 (9)	0.0008 (9)
C10	0.0226 (13)	0.0207 (13)	0.0210 (12)	-0.0023 (10)	-0.0027 (9)	-0.0042 (10)
C11	0.0324 (14)	0.0224 (14)	0.0197 (12)	-0.0042 (12)	0.0003 (10)	-0.0054 (10)
C12	0.0431 (17)	0.0289 (15)	0.0406 (16)	-0.0090 (13)	0.0021 (13)	-0.0177 (12)
C13	0.0337 (16)	0.0431 (17)	0.0513 (18)	-0.0047 (14)	0.0105 (13)	-0.0228 (14)

supporting information

C14	0.0166 (12)	0.0189 (13)	0.0170 (11)	-0.0032 (10)	0.0007 (9)	-0.0016 (10)
C15	0.0194 (12)	0.0176 (12)	0.0158 (11)	-0.0036 (10)	0.0005 (9)	-0.0037 (9)
C16	0.0218 (13)	0.0369 (15)	0.0180 (12)	-0.0002 (11)	0.0011 (10)	-0.0056 (11)
C17	0.0210 (13)	0.0277 (14)	0.0289 (13)	-0.0060 (11)	0.0038 (10)	0.0046 (11)
C18	0.0225 (14)	0.0422 (17)	0.0309 (14)	-0.0018 (12)	0.0076 (11)	-0.0004 (12)
C19	0.0327 (15)	0.0481 (18)	0.0337 (15)	-0.0071 (13)	-0.0117 (12)	-0.0123 (13)
C20	0.0566 (19)	0.0424 (18)	0.0311 (15)	-0.0186 (15)	-0.0055 (13)	-0.0096 (13)

Geometric parameters (Å, °)

P1—O3	1.4616 (15)	C9—C14	1.526 (3)
P1—O2	1.5564 (16)	C9—C10	1.531 (3)
P1—O1	1.5670 (15)	С9—Н9	1.0000
P1—C15	1.839 (2)	C10-C11	1.526 (3)
CL1—C16	1.764 (3)	C10—H10A	0.9900
CL2—C16	1.780 (2)	C10—H10B	0.9900
CL3—C16	1.772 (2)	C11—C12	1.520 (3)
O1—C17	1.454 (3)	C11—C13	1.520 (3)
O2—C19	1.474 (3)	C11—H11	1.0000
O4—C1	1.202 (3)	C12—H12A	0.9800
O5—C2	1.209 (3)	C12—H12B	0.9800
O6—C14	1.220 (2)	C12—H12C	0.9800
N1—C2	1.398 (3)	C13—H13A	0.9800
N1—C1	1.417 (3)	C13—H13B	0.9800
N1—C9	1.459 (2)	C13—H13C	0.9800
N2	1.356 (3)	C15—C16	1.545 (3)
N2—C15	1.442 (3)	C15—H15	1.0000
N2—H1	0.76 (2)	C17—C18	1.496 (3)
C1—C8	1.487 (3)	C17—H17A	0.9900
C2—C3	1.486 (3)	C17—H17B	0.9900
C3—C4	1.374 (3)	C18—H18A	0.9800
C3—C8	1.387 (3)	C18—H18B	0.9800
C4—C5	1.394 (3)	C18—H18C	0.9800
C4—H4	0.9500	C19—C20	1.480 (4)
C5—C6	1.389 (3)	C19—H19A	0.9900
С5—Н5	0.9500	C19—H19B	0.9900
C6—C7	1.392 (3)	С20—Н20А	0.9800
С6—Н6	0.9500	C20—H20B	0.9800
C7—C8	1.387 (3)	С20—Н20С	0.9800
С7—Н7	0.9500		
			100.1
03—P1—02	116.77 (9)		108.1
03—P1—01	109.82 (9)		108.1
02—P1—01	107.96 (9)	CII—CI2—HI2A	109.5
U_3 — P_1 — U_1_5	115.02 (10)	C11—C12—H12B	109.5
O2-P1-C15	102.73 (9)	H12A—C12—H12B	109.5
UI - PI - CIS	103.45 (9)	U11—U12—H12C	109.5
C17—O1—P1	123.88 (14)	H12A—C12—H12C	109.5

C19—O2—P1	121.74 (15)	H12B—C12—H12C	109.5
C2—N1—C1	111.45 (18)	C11—C13—H13A	109.5
C2—N1—C9	120.53 (17)	C11—C13—H13B	109.5
C1—N1—C9	127.97 (18)	H13A—C13—H13B	109.5
C14—N2—C15	121.5 (2)	C11—C13—H13C	109.5
C14—N2—H1	118.0 (17)	H13A—C13—H13C	109.5
C15—N2—H1	119.8 (17)	H13B—C13—H13C	109.5
O4—C1—N1	125.4 (2)	O6—C14—N2	122.8 (2)
O4—C1—C8	129.3 (2)	O6—C14—C9	122.46 (19)
N1—C1—C8	105.22 (18)	N2—C14—C9	114.63 (19)
O5—C2—N1	124.7 (2)	N2—C15—C16	111.14 (18)
O5—C2—C3	128.9 (2)	N2—C15—P1	107.70 (14)
N1—C2—C3	106.43 (19)	C16—C15—P1	116.87 (14)
C4—C3—C8	122.5 (2)	N2—C15—H15	106.9
C4—C3—C2	129.6 (2)	C16—C15—H15	106.9
C8—C3—C2	107.91 (19)	P1—C15—H15	106.9
C3—C4—C5	117.0 (2)	C15—C16—CL1	111.57 (16)
C3—C4—H4	121.5	C15—C16—CL3	110.61 (16)
C5—C4—H4	121.5	CL1-C16-CL3	109.04 (12)
C6—C5—C4	120.6 (2)	C15—C16—CL2	108.95 (14)
С6—С5—Н5	119.7	CL1-C16-CL2	108.53 (13)
С4—С5—Н5	119.7	CL3—C16—CL2	108.04 (13)
C5—C6—C7	122.2 (2)	O1—C17—C18	107.44 (19)
С5—С6—Н6	118.9	01—C17—H17A	110.2
C7—C6—H6	118.9	C18—C17—H17A	110.2
C8—C7—C6	116.6 (2)	01—C17—H17B	110.2
C8—C7—H7	121.7	C18—C17—H17B	110.2
C6—C7—H7	121.7	H17A—C17—H17B	108.5
C7—C8—C3	121.0 (2)	C17—C18—H18A	109.5
C7—C8—C1	130.0 (2)	C17—C18—H18B	109.5
C3—C8—C1	108.93 (18)	H18A—C18—H18B	109.5
N1-C9-C14	110.41 (17)	C17—C18—H18C	109.5
N1-C9-C10	114.38 (17)	H18A—C18—H18C	109.5
C14-C9-C10	108.24(17)	H18B— $C18$ — $H18C$	109.5
N1-C9-H9	107.9	Ω_{2} C_{19} C_{20}	108.7(2)
C14—C9—H9	107.9	02—C19—H19A	109.9
C10—C9—H9	107.9	C20—C19—H19A	109.9
$C_{11} - C_{10} - C_{9}$	115 53 (18)	Ω^2 — $C19$ —H19B	109.9
C11—C10—H10A	108.4	C20-C19-H19B	109.9
C9-C10-H10A	108.4	H19A—C19—H19B	108.3
C_{11} C_{10} H_{10B}	108.4	C19-C20-H20A	109.5
C9-C10-H10B	108.4	C19 - C20 - H20B	109.5
H10A—C10—H10B	107 5	H_{20A} C_{20} H_{20B}	109.5
C12-C11-C13	111 1 (2)	C19 - C20 - H20C	109.5
C_{12} C_{11} C_{10}	111 88 (19)	$H_{20A} - C_{20} - H_{20C}$	109.5
C_{13} C_{11} C_{10}	109 45 (19)	$H_{20B} C_{20} H_{20C}$	109.5
C12—C11—H11	108.1	112019 020 11200	107.0
	100.1		

O2 D1 O1 C17	172 12 (16)	N1 C1 C9 C2	10(2)
03-PI-01-CI7	172.13 (10)	NI - CI - Co - CS	1.9 (2)
02—P1—01—C1/	43.80 (18)	C2-N1-C9-C14	97.2 (2)
C15—P1—O1—C17	-64.61 (18)	C1—N1—C9—C14	-79.8 (3)
O3—P1—O2—C19	-37.1 (2)	C2—N1—C9—C10	-140.4 (2)
O1—P1—O2—C19	87.18 (18)	C1—N1—C9—C10	42.6 (3)
C15—P1—O2—C19	-163.92 (17)	N1-C9-C10-C11	51.7 (3)
C2—N1—C1—O4	174.9 (2)	C14—C9—C10—C11	175.29 (19)
C9—N1—C1—O4	-7.8 (4)	C9—C10—C11—C12	54.9 (3)
C2—N1—C1—C8	-2.6 (2)	C9—C10—C11—C13	178.5 (2)
C9—N1—C1—C8	174.64 (19)	C15—N2—C14—O6	9.9 (3)
C1—N1—C2—O5	-176.7 (2)	C15—N2—C14—C9	-166.63 (18)
C9—N1—C2—O5	5.8 (3)	N1-C9-C14-O6	39.6 (3)
C1—N1—C2—C3	2.2 (2)	C10—C9—C14—O6	-86.3 (2)
C9—N1—C2—C3	-175.22 (17)	N1-C9-C14-N2	-143.88 (19)
O5—C2—C3—C4	-3.4 (4)	C10—C9—C14—N2	90.2 (2)
N1-C2-C3-C4	177.7 (2)	C14—N2—C15—C16	-108.9 (2)
O5—C2—C3—C8	178.0 (2)	C14—N2—C15—P1	121.90 (19)
N1—C2—C3—C8	-0.9 (2)	O3—P1—C15—N2	71.35 (17)
C8—C3—C4—C5	-0.2 (3)	O2—P1—C15—N2	-160.69 (14)
C2—C3—C4—C5	-178.7 (2)	O1—P1—C15—N2	-48.41 (16)
C3—C4—C5—C6	-0.1 (3)	O3—P1—C15—C16	-54.52 (19)
C4—C5—C6—C7	0.1 (4)	O2—P1—C15—C16	73.43 (18)
C5—C6—C7—C8	0.3 (3)	O1—P1—C15—C16	-174.29 (16)
C6—C7—C8—C3	-0.6 (3)	N2-C15-C16-CL1	-62.8 (2)
C6—C7—C8—C1	179.4 (2)	P1-C15-C16-CL1	61.4 (2)
C4—C3—C8—C7	0.6 (3)	N2-C15-C16-CL3	175.64 (15)
C2—C3—C8—C7	179.4 (2)	P1-C15-C16-CL3	-60.2 (2)
C4—C3—C8—C1	-179.39 (19)	N2-C15-C16-CL2	57.0 (2)
C2—C3—C8—C1	-0.6 (2)	P1-C15-C16-CL2	-178.83 (11)
O4—C1—C8—C7	4.5 (4)	P1	-169.00 (15)
N1—C1—C8—C7	-178.1 (2)	P1	133.89 (19)
O4—C1—C8—C3	-175.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H1···O3 ⁱ	0.76 (2)	2.09 (2)	2.846 (3)	170 (2)
C9—H9…O3 ⁱ	1.00	2.47	3.265 (3)	136
C7—H7···O6 ⁱⁱ	0.95	2.46	3.393 (3)	169

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2.