

Received 2 April 2018 Accepted 22 April 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; isoleucine; polymorph; amino acid.

CCDC reference: 1838774

Supporting information: this article has supporting information at journals.iucr.org/e

Sofia Curland,^a Elena Meirzadeh^a and Yael Diskin-Posner^{b*}

^aDepartment of Materials and Interfaces, Weizmann Institute of Science, Israel, and ^bChemical Research Support Unit, Weizmann Institute of Science, Israel. *Correspondence e-mail: yael.diskin-posner@weizmann.ac.il

A new polymorph of (2S,3S)-2-amino-3-methylpentanoic acid, L-isoleucine $C_6H_{13}NO_2$, crystallizes in the monoclinic space group $P2_1$ with four independent molecules in the asymmetric unit. The molecules are *zwitterions*. In the crystal, $N-H\cdots O$ hydrogen bonds link two pairs of independent molecules and their symmetry-related counterparts to form two types of layers stacked in an *anti-parallel* manner parallel to (001). The hydrophobic aliphatic isopropyl groups protrude from these layers.

1. Chemical context

(2S,3S)-2-Amino-3-methylpentanoic acid, known as L-isoleucine (L-Ile), is one of the 20 amino acids common in animal proteins and required for normal functioning in humans. L-Ile is classified as a hydrophobic amino acid and is one of the two common amino acids that has a chiral side chain. L-Ile is essential for human muscle tissue recovery after exercise, along with Valine and Leucine.

The structure of L-Ile was first determined by Torii & Iitaka (1971). The crystal was found to belong to the monoclinic space group $P2_1$, with four molecules in the unit cell, Z = 4. The asymmetric unit contains two independent molecules, with the side chain of the L-Ile molecules exhibiting two different conformations (Görbitz & Dalhus, 1996; Torii & Iitaka, 1971). Another polymorph in the orthorhombic space group $P222_1$ with the unit cell containing eight molecules was reported by Khawas (1970). The presence of an additional L-Ile polymorph is supported by X-ray powder diffraction measurements by Anuar *et al.* (2009), who suggested that L-Ile is prone to polymorphism as a result of the structural thermal motion of the aliphatic side chain.

2. Structural commentary

In the structure of the title compound there are four L-Ile molecules in the asymmetric unit (Fig. 1). The molecules are

OPEN d ACCESS

Figure 1

The asymmetric unit of the title compound with atomic numbering. Displacement ellipsoids are shown at the 50% probability level.

zwitterions and organized in pairs. The hydrophilic parts of the molecules are facing each other and generate intermolecular $N-H\cdots O$ hydrogen bonds (Table 1), within the pair and with symmetry-related pairs. The aliphatic parts of the molecules are exposed, pointing away from the hydrogen-bonded network, creating a hydrophobic layer (Fig. 2). A similar network pattern was described previously (Görbitz & Dalhus, 1996; Torii & Iitaka, 1971).

The existence of another chiral center in the side chain allows for conformational differences. Each L-IIe pair consists of two types of conformers. This is presented in the values of the following torsion angles. The two molecules of conformer type I have torsion angles N1-C2-C3-C6 = 80.1 (4)°, N1-

Figure 2

Part of the crystal structure viewed perpendicular to the *ac* plane showing adjacent *anti-parallel* layers formed by hydrogen-bonded pairs and symmetry-related molecules. The hydrophobic side chains protrude away and stack together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 A \cdots O2^{i}$	0.91	1 96	2 853 (5)	165
$N3-H3A\cdots O5^{ii}$	0.91	1.93	2.820 (5)	165
$N3-H3B\cdots O3^{iii}$	0.91	2.01	2.818 (5)	147
N3 $-H3C \cdots O3^{iv}$	0.91	1.87	2.773 (4)	172
$N4-H4D\cdots O8^{i}$	0.91	1.97	2.843 (5)	162
$N2-H2A\cdots O5$	0.91	2.19	3.055 (5)	159
$N2-H2A\cdots O6$	0.91	2.20	2.953 (5)	139
$N2-H2C\cdots O6^{v}$	0.91	1.85	2.762 (5)	174
$N2-H2B\cdots O4^{ii}$	0.91	1.94	2.826 (5)	163

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iv) x - 1, y + 1, z; (v) $-x + 1, y - \frac{1}{2}, -z + 1$.

 $C2-C3-C4 = -155.4 (3)^{\circ}$ and $N3-C14-C15-C18 = 78.1 (4)^{\circ}$, $N3-C14-C15-C16 = -155.8 (3)^{\circ}$. The other two molecules are of conformer type II with the torsion angles $N2-C8-C9-C12 = 178.6 (4)^{\circ}$, $N2-C8-C9-C10 = -56.9 (5)^{\circ}$ and $N4-C20-C21-C24 = 179.1 (4)^{\circ}$, $N4-C20-C21-C22 = -56.8 (5)^{\circ}$. Furthermore, there is a minor conformational variance between all the four independent molecules, as illustrated by the torsion angles of the *iso*-propyl side chains: $C6-C3-C4-C5 = -56.6 (5)^{\circ}$, $C12-C9-C10-C11 = -51.6 (6)^{\circ}$, $C18-C15-C16-C17 = -58.9 (5)^{\circ}$ and $C24-C21-C22-C23 = -53.2 (6)^{\circ}$.

3. Supramolecular features

In the crystal, $N-H \cdots O$ hydrogen bonds (Table 1) connect the molecules, forming layers parallel to (001). The polar side of L-Ile is embedded inside the layers while the side chains are oriented away, creating a hydrophobic surface. However, this hydrogen-bonding network has directionality along the polar *b* axis and specifically parallel to (001) (see Figs. 2 and 3). The adjacent layer is slightly rotated and grows in the opposite direction to the first one, an *anti-parallel* layer. The structure is composed of alternating layers with the hydrophilic side generating a hydrogen-bonding network growing in the opposite direction and the hydrophobic side chains are

Part of the crystal structure viewed perpendicular to the *bc* plane showing adjacent *anti-parallel* layers formed by the hydrogen-bonded molecule pairs and symmetry-related molecules. The hydrophobic side chains protrude away and are stacked together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

Figure 4

Overlay of two structures with molecules presented as capped sticks along the *b* axis. The previous monoclinic $P2_1$ polymorph with two molecules in the asymmetric unit is the small unit cell with all molecules colored in gray and ordered in a *parallel* layer arrangement. The new monoclinic $P2_1$ polymorph has four molecules in the asymmetric unit (colored red, blue, yellow and green). The colors are according to symmetry equivalence. While the blue and red pairs form exactly the same network layer as the polymorph reported by Görbitz & Dalhus (1996), it is evident that the green and yellow pairs have a different orientation, with an *anti-parallel* layer arrangement.

directed outside. There is a slight offset between the layers to allow the hydrophobic side chains to fit the gaps in the adjacent layer surface.

4. Database survey

A comparison between the polymorph presented in this paper and the one reported by Görbitz & Dalhus (1996) is presented in Fig. 4. Both structures have the same monoclinic crystallographic $P2_1$ symmetry; however, one has four molecules in the unit cell and the other has only two. As described above, the layers show growth directionality and a pair of L-Ile molecules manage the layer organization. The new polymorph has alternating layers in opposite direction, *anti-parallel*, unlike the polymorph reported by Görbitz & Dalhus (1996), that has only *parallel* layers.

5. Synthesis and crystallization

Single crystals of L-Ile were grown from supersaturated aqueous solutions, *via* slow evaporation at 323 K in a cleanroom environment. The L-Ile powder (Holand–Moran 99%) was dissolved in water (Ultra-pure Millipore water, 18.2 M Ω cm at 298 K, Millipore Synergy UV, Type 1 water) by heating to 353 K, with constant stirring until total dissolution. The hot solution was then filtered through cotton wool into glass crystallization dishes, which were covered with filter paper in order to allow slow evaporation, placed in a heating bath. Colorless crystal chunks, suitable for X-ray crystallographic

Table 2	
Experimental	details

Experimental actans.	
Crystal data	
Chemical formula	$C_6H_{13}NO_2$
$M_{ m r}$	131.17
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	100
a, b, c (Å)	9.6757 (5), 5.2885 (3), 28.0136 (15)
β (°)	98.300 (3)
$V(\text{\AA}^3)$	1418.44 (13)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.50 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Bruker APEXII KappaCCD
Absorption correction	Multi-scan (SADABS; Bruker, 2015)
T_{\min}, T_{\max}	0.956, 0.987
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44938, 7935, 7188
R _{int}	0.060
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.694
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.077, 0.211, 1.15
No. of reflections	7935
No. of parameters	338
No. of restraints	7
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.58, -0.42
Absolute structure	Flack x determined using 2758 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.2 (4)
*	

Computer programs: *APEX2* and *SAINT* (Bruker, 2015), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009), *CrystalMaker* (*CrystalMaker*, 2013) and *Mercury* (Macrae *et al.*, 2008).

analysis were obtained. The absolute configuration of the title compound is already known.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions with C-H = 0.98–1.00 Å, N-H = 0.91 Å and included in the refinement in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N, C_{methyl})$.

Acknowledgements

The authors thank Professor Leslie Leiserowitz, Dr Isabelle Weissbuch and Dr David Ehre (Weizmann Institute) for helpful discussions.

Funding information

This work was supported by the Israeli Science Foundation (546/17), the Minerva Foundation with funding from the

Federal German Ministry for Education and Research, and a Pearlman fellowship to EM. This research is made possible in part by the historic generosity of the Harold Perlman family.

References

- Anuar, N., Daud, W. R. W., Roberts, K. J., Kamarudin, S. K. & Tasirin, S. M. (2009). *Cryst. Growth Des.* 9, 2853–2862.
- Bruker (2015). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- CrystalMaker (2013). *CrystalMaker*. CrystalMaker Software Limited, Oxfordshire, England.
- Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.
- Khawas, B. (1970). Acta Cryst. B26, 1385-1387.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Torii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237-2246.

supporting information

Acta Cryst. (2018). E74, 776-779 [https://doi.org/10.1107/S2056989018006126]

Crystal structure of a new polymorph of (2*S*,3*S*)-2-amino-3-methylpentanoic acid

Sofia Curland, Elena Meirzadeh and Yael Diskin-Posner

Computing details

Data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2009), *CrystalMaker* (*CrystalMaker*, 2013) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b).

(2S,3S)-2-Amino-3-methylpentanoic acid

Crystal data	
$C_6H_{13}NO_2$	F(000) = 576
$M_r = 131.17$	$D_{\rm x} = 1.228 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6757 (5) Å	Cell parameters from 47498 reflections
b = 5.2885 (3) Å	$\theta = 0.7 - 30.6^{\circ}$
c = 28.0136 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 98.300 \ (3)^{\circ}$	T = 100 K
$V = 1418.44 (13) Å^3$	Prism, colorless
Z = 8	$0.50 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII KappaCCD	7935 independent reflections
diffractometer	7188 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.060$
Absorption correction: multi-scan	$\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
(SADABS; Bruker, 2015)	$h = -13 \rightarrow 13$
$T_{\min} = 0.956, \ T_{\max} = 0.987$	$k = -7 \rightarrow 7$
44938 measured reflections	$l = -38 \rightarrow 38$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0831P)^2 + 2.4061P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.077$	$(\Delta/\sigma)_{\rm max} = 0.005$
$wR(F^2) = 0.211$	$\Delta ho_{ m max} = 0.58 \ { m e} \ { m \AA}^{-3}$
S = 1.15	$\Delta \rho_{\rm min} = -0.42 \mathrm{e} \mathrm{\AA}^{-3}$
7935 reflections	Extinction correction: SHELXL2014
338 parameters	(Sheldrick, 2015b),
7 restraints	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Hydrogen site location: inferred from neighbouring sites	Extinction coefficient: 0.043 (6)
H-atom parameters constrained	

Absolute structure: Flack *x* determined using 2758 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.2 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8884 (3)	0.5064 (6)	0.04413 (11)	0.0166 (6)	
02	0.8218 (3)	0.8831 (6)	0.06814 (11)	0.0162 (6)	
C1	0.8005 (4)	0.6525 (8)	0.05824 (14)	0.0125 (7)	
C2	0.6598 (4)	0.5418 (8)	0.06684 (14)	0.0126 (7)	
H2	0.5843	0.6615	0.0531	0.015*	
N1	0.6375 (3)	0.2952 (7)	0.04012 (12)	0.0128 (6)	
H1A	0.7063	0.1847	0.0518	0.019*	
H1B	0.6396	0.3219	0.0081	0.019*	
H1C	0.5531	0.2297	0.0443	0.019*	
C3	0.6498 (4)	0.5036 (8)	0.12085 (15)	0.0155 (8)	
H3	0.5734	0.3791	0.1234	0.019*	
C4	0.6086 (5)	0.7558 (10)	0.14216 (16)	0.0223 (9)	
H4A	0.6805	0.8837	0.1379	0.027*	
H4B	0.5192	0.8135	0.1237	0.027*	
C5	0.5922 (6)	0.7431 (12)	0.19564 (18)	0.0311 (11)	
H5A	0.6832	0.7080	0.2148	0.047*	
H5B	0.5265	0.6080	0.2007	0.047*	
H5C	0.5566	0.9051	0.2057	0.047*	
C6	0.7850 (4)	0.3964 (9)	0.14852 (15)	0.0194 (8)	
H6A	0.7685	0.3426	0.1807	0.029*	
H6B	0.8576	0.5269	0.1516	0.029*	
H6C	0.8153	0.2510	0.1310	0.029*	
03	0.8415 (3)	0.0087 (6)	0.45421 (11)	0.0164 (6)	
04	0.7533 (3)	-0.3784 (6)	0.44210 (13)	0.0219 (7)	
C7	0.7422 (4)	-0.1469 (8)	0.44123 (14)	0.0142 (7)	
C8	0.6019 (4)	-0.0244 (8)	0.42024 (15)	0.0146 (8)	
H8	0.5250	-0.1492	0.4218	0.018*	
N2	0.5777 (4)	0.2014 (8)	0.44997 (13)	0.0172 (7)	
H2A	0.4852	0.2410	0.4452	0.026*	
H2B	0.6278	0.3345	0.4411	0.026*	
H2C	0.6053	0.1661	0.4817	0.026*	
C9	0.6022 (4)	0.0536 (9)	0.36746 (15)	0.0178 (8)	
H9	0.6802	0.1769	0.3666	0.021*	
C10	0.4661 (5)	0.1855 (10)	0.34710 (17)	0.0229 (9)	
H10A	0.4579	0.3436	0.3654	0.027*	

H10B	0.3868	0.0751	0.3521	0.027*
C11	0.4548 (6)	0.2498 (11)	0.29339 (17)	0.0286 (11)
H11A	0.4369	0.0949	0.2743	0.043*
H11B	0.5424	0.3263	0.2869	0.043*
H11C	0.3779	0.3692	0.2846	0.043*
C12	0.6304 (8)	-0.1739 (12)	0.3372 (2)	0.0400 (15)
H12A	0.6393	-0.1183	0.3044	0.060*
H12B	0.5527	-0.2938	0.3360	0.060*
H12C	0.7172	-0.2562	0.3516	0.060*
05	0.2587 (3)	0.1881 (6)	0.43174 (12)	0.0184 (6)
O6	0.3479 (3)	0.5641 (6)	0.45466 (11)	0.0165 (6)
C13	0.2467 (4)	0.4193 (8)	0.44065 (14)	0.0144 (8)
C14	0.0998 (4)	0.5344 (8)	0.43171 (15)	0.0138 (7)
H14	0.0340	0.4158	0.4448	0.017*
N3	0.1002 (3)	0.7776 (7)	0.45836 (12)	0.0145 (7)
H3A	0.1555	0.8911	0.4457	0.022*
H3B	0.1338	0.7515	0.4900	0.022*
H3C	0.0116	0.8390	0.4557	0.022*
C15	0.0477 (4)	0.5754 (9)	0.37737 (15)	0.0162 (8)
H15	-0.0310	0.6995	0.3749	0.019*
C16	-0.0116 (5)	0.3277 (10)	0.35459 (17)	0.0241 (10)
H16A	-0.0829	0.2629	0.3736	0.029*
H16B	0.0645	0.2014	0.3567	0.029*
C17	-0.0782 (6)	0.3523 (12)	0.30162 (19)	0.0325 (12)
H17A	-0.0061	0.3961	0.2818	0.049*
H17B	-0.1495	0.4853	0.2987	0.049*
H17C	-0.1216	0.1912	0.2905	0.049*
C18	0.1600 (5)	0.6889 (9)	0.35062 (16)	0.0192 (8)
H18A	0.1184	0.7351	0.3178	0.029*
H18B	0.2343	0.5644	0.3492	0.029*
H18C	0.1993	0.8401	0.3677	0.029*
07	0.3780 (3)	0.0868 (6)	0.04550 (11)	0.0161 (6)
08	0.3022 (3)	0.4780 (6)	0.05701 (12)	0.0201 (7)
C19	0.2915 (4)	0.2440 (8)	0.05879 (14)	0.0141 (7)
C20	0.1698 (4)	0.1267 (8)	0.08112 (14)	0.0134 (7)
H20	0.0926	0.2535	0.0795	0.016*
N4	0.1169 (4)	-0.1027(7)	0.05243 (13)	0.0156 (7)
H4C	0.0295	-0.1410	0.0585	0.023*
H4D	0.1749	-0.2357	0.0610	0.023*
H4E	0.1143	-0.0702	0.0204	0.023*
C21	0.2165 (4)	0.0562 (9)	0.13404 (15)	0.0169 (8)
H21	0.2944	-0.0688	0.1352	0.020*
C22	0.0973 (5)	-0.0696(12)	0.15609 (18)	0.0301 (12)
H22A	0.0153	0.0445	0.1517	0.036*
H22B	0.0702	-0.2275	0.1382	0.036*
C23	0.1336 (6)	-0.1325 (13)	0.20962 (18)	0.0325 (12)
H23A	0.1303	0.0220	0.2287	0.049*
H23B	0.2278	-0.2048	0.2157	0.049*

supporting information

H23C	0.0662	-0.2552	0.2188	0.049*
C24	0.2721 (7)	0.2875 (13)	0.1629 (2)	0.0404 (14)
H24A	0.1940	0.3971	0.1681	0.061*
H24B	0.3357	0.3806	0.1450	0.061*
H24C	0.3225	0.2338	0.1941	0.061*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0092 (12)	0.0188 (16)	0.0221 (15)	-0.0007 (11)	0.0029 (10)	-0.0017 (12)
O2	0.0148 (13)	0.0118 (14)	0.0225 (15)	-0.0048 (11)	0.0043 (11)	-0.0015 (12)
C1	0.0086 (16)	0.0147 (18)	0.0139 (16)	-0.0025 (13)	0.0001 (12)	0.0019 (14)
C2	0.0090 (15)	0.0120 (18)	0.0170 (17)	-0.0032 (14)	0.0020 (13)	-0.0007 (14)
N1	0.0104 (14)	0.0107 (15)	0.0165 (15)	-0.0019 (11)	-0.0011 (12)	0.0008 (12)
C3	0.0121 (16)	0.018 (2)	0.0159 (17)	-0.0024 (14)	0.0017 (13)	-0.0004 (15)
C4	0.024 (2)	0.024 (2)	0.021 (2)	0.0029 (18)	0.0066 (16)	-0.0020 (17)
C5	0.035 (3)	0.036 (3)	0.025 (2)	0.001 (2)	0.012 (2)	-0.006 (2)
C6	0.0179 (19)	0.023 (2)	0.0168 (18)	0.0006 (16)	0.0000 (15)	0.0030 (16)
O3	0.0109 (12)	0.0159 (15)	0.0218 (14)	0.0014 (11)	-0.0001 (10)	-0.0033 (11)
O4	0.0164 (15)	0.0124 (15)	0.0365 (19)	0.0049 (11)	0.0030 (13)	-0.0001 (13)
C7	0.0112 (17)	0.0148 (19)	0.0160 (18)	0.0024 (14)	-0.0001 (13)	-0.0005 (14)
C8	0.0094 (16)	0.0138 (18)	0.0205 (19)	-0.0011 (13)	0.0019 (14)	-0.0010 (15)
N2	0.0128 (15)	0.0223 (19)	0.0172 (16)	0.0095 (14)	0.0045 (12)	0.0038 (14)
C9	0.0129 (17)	0.021 (2)	0.0187 (19)	0.0011 (15)	-0.0004 (14)	0.0004 (16)
C10	0.0144 (19)	0.033 (3)	0.021 (2)	0.0019 (18)	0.0013 (15)	0.0027 (18)
C11	0.031 (2)	0.034 (3)	0.019 (2)	0.009 (2)	-0.0027 (17)	0.0027 (19)
C12	0.060 (4)	0.036 (3)	0.021 (2)	0.017 (3)	-0.003 (2)	-0.011 (2)
05	0.0156 (14)	0.0139 (15)	0.0257 (15)	0.0046 (11)	0.0028 (11)	-0.0002 (12)
06	0.0122 (13)	0.0194 (16)	0.0177 (14)	0.0013 (11)	0.0015 (10)	-0.0007 (12)
C13	0.0107 (16)	0.018 (2)	0.0139 (17)	0.0063 (14)	0.0017 (13)	0.0034 (14)
C14	0.0080 (15)	0.0159 (19)	0.0176 (18)	0.0008 (14)	0.0016 (13)	0.0012 (15)
N3	0.0118 (15)	0.0158 (17)	0.0166 (16)	0.0020 (13)	0.0043 (12)	0.0028 (13)
C15	0.0119 (17)	0.020 (2)	0.0162 (18)	0.0027 (15)	-0.0004 (14)	-0.0009 (15)
C16	0.020 (2)	0.027 (2)	0.023 (2)	-0.0042 (18)	-0.0031 (16)	-0.0015 (18)
C17	0.028 (2)	0.040 (3)	0.027 (2)	-0.003 (2)	-0.0058 (19)	-0.007(2)
C18	0.0201 (19)	0.017 (2)	0.0203 (19)	0.0000 (16)	0.0041 (15)	0.0056 (16)
07	0.0101 (12)	0.0177 (15)	0.0214 (14)	-0.0005 (11)	0.0048 (10)	-0.0034 (11)
08	0.0194 (15)	0.0144 (15)	0.0273 (16)	-0.0022 (12)	0.0060 (12)	0.0006 (12)
C19	0.0097 (16)	0.0160 (19)	0.0161 (17)	-0.0004 (14)	0.0007 (13)	0.0008 (14)
C20	0.0122 (17)	0.0145 (18)	0.0135 (17)	0.0011 (13)	0.0023 (13)	0.0024 (14)
N4	0.0114 (15)	0.0192 (18)	0.0155 (15)	-0.0044 (13)	0.0001 (12)	0.0018 (13)
C21	0.0134 (17)	0.020 (2)	0.0171 (18)	-0.0005 (15)	0.0022 (14)	0.0010 (15)
C22	0.016 (2)	0.051 (3)	0.024 (2)	0.000 (2)	0.0035 (17)	0.010 (2)
C23	0.034 (3)	0.045 (3)	0.020 (2)	-0.005 (2)	0.0069 (19)	0.006 (2)
C24	0.051 (2)	0.037 (2)	0.032 (2)	-0.010 (2)	0.0032 (19)	-0.0004 (18)

Geometric parameters (Å, °)

01—C1	1.255 (5)	O5—C13	1.256 (5)	
O2—C1	1.261 (5)	O6—C13	1.260 (5)	
C1—C2	1.532 (5)	C13—C14	1.534 (5)	
C2—N1	1.504 (5)	C14—N3	1.487 (5)	
С2—С3	1.543 (6)	C14—C15	1.548 (6)	
С2—Н2	1.0000	C14—H14	1.0000	
N1—H1A	0.9100	N3—H3A	0.9100	
N1—H1B	0.9100	N3—H3B	0.9100	
N1—H1C	0.9100	N3—H3C	0.9100	
С3—С6	1.530 (6)	C15—C18	1.529 (6)	
C3—C4	1.537 (6)	C15—C16	1.532 (6)	
С3—Н3	1.0000	C15—H15	1.0000	
C4—C5	1.530(7)	C16—C17	1.535 (7)	
C4—H4A	0.9900	C16—H16A	0.9900	
C4—H4B	0.9900	C16—H16B	0.9900	
С5—Н5А	0.9800	C17—H17A	0.9800	
С5—Н5В	0.9800	C17—H17B	0.9800	
С5—Н5С	0.9800	C17—H17C	0.9800	
С6—Н6А	0.9800	C18—H18A	0.9800	
C6—H6B	0.9800	C18—H18B	0.9800	
С6—Н6С	0.9800	C18—H18C	0.9800	
O3—C7	1.277 (5)	O7—C19	1.273 (5)	
O4—C7	1.229 (5)	O8—C19	1.243 (5)	
С7—С8	1.542 (5)	C19—C20	1.541 (5)	
C8—N2	1.493 (6)	C20—N4	1.504 (5)	
С8—С9	1.536 (6)	C20—C21	1.532 (6)	
C8—H8	1.0000	C20—H20	1.0000	
N2—H2A	0.9100	N4—H4C	0.9100	
N2—H2B	0.9100	N4—H4D	0.9100	
N2—H2C	0.9100	N4—H4E	0.9100	
C9—C12	1.519 (7)	C21—C24	1.521 (8)	
C9—C10	1.526 (6)	C21—C22	1.536 (6)	
С9—Н9	1.0000	C21—H21	1.0000	
C10-C11	1.531 (6)	C22—C23	1.526 (7)	
C10—H10A	0.9900	C22—H22A	0.9900	
C10—H10B	0.9900	C22—H22B	0.9900	
C11—H11A	0.9800	C23—H23A	0.9800	
C11—H11B	0.9800	C23—H23B	0.9800	
C11—H11C	0.9800	C23—H23C	0.9800	
C12—H12A	0.9800	C24—H24A	0.9800	
C12—H12B	0.9800	C24—H24B	0.9800	
C12—H12C	0.9800	C24—H24C	0.9800	
01—C1—O2	124.6 (4)	O5—C13—O6	124.2 (4)	
01—C1—C2	118.2 (4)	O5—C13—C14	117.7 (4)	
O2—C1—C2	117.1 (4)	O6—C13—C14	118.0 (4)	

N1-C2-C1	108.7 (3)	N3—C14—C13	109.0 (3)
N1—C2—C3	110.5 (3)	N3—C14—C15	110.5 (3)
C1—C2—C3	112.8 (3)	C13—C14—C15	112.2 (3)
N1—C2—H2	108.3	N3—C14—H14	108.3
C1—C2—H2	108.3	C13—C14—H14	108.3
C3—C2—H2	108.3	C15—C14—H14	108.3
C2-N1-H1A	109.5	C14 - N3 - H3A	109.5
C2—N1—H1B	109.5	C14—N3—H3B	109.5
HIA—NI—HIB	109.5	H3A—N3—H3B	109.5
$C_2 = N_1 = H_1C$	109.5	C14 = N3 = H3C	109.5
$H1A_N1_H1C$	109.5	$H_3A_N_3_H_3C$	109.5
HIB-N1-HIC	109.5	H3B_N3_H3C	109.5
C6 C3 C4	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 A (A)
$C_{0} = C_{3} = C_{4}$	112.1(4) 112.0(3)	$C_{18} = C_{15} = C_{16}$	112.4(4) 112.6(3)
$C_{0} = C_{3} = C_{2}$	112.0(3) 108.0(3)	$C_{16} = C_{15} = C_{14}$	112.0(3) 100.8(4)
$C_{4} = C_{3} = C_{2}$	108.9 (3)	$C_{10} = C_{15} = C_{14}$	107.0 (4)
$C_0 = C_3 = H_3$	107.9	C16 C15 H15	107.2
$C_4 = C_3 = H_3$	107.9	С14 С15 Н15	107.2
C2-C3-H3	107.9	C14—C15—H15	107.2
C_{5}	114.3 (4)		114.2 (4)
C_{3} C_{4} H_{4}	108.7	C15 - C16 - H16A	108.7
$C_3 - C_4 - H_4 A$	108.7	C17 - C16 - H16A	108.7
C5—C4—H4B	108.7	C15—C16—H16B	108.7
C3—C4—H4B	108.7	C17—C16—H16B	108.7
H4A—C4—H4B	107.6	H16A—C16—H16B	107.6
C4—C5—H5A	109.5	С16—С17—Н17А	109.5
C4—C5—H5B	109.5	С16—С17—Н17В	109.5
H5A—C5—H5B	109.5	H17A—C17—H17B	109.5
C4—C5—H5C	109.5	C16—C17—H17C	109.5
H5A—C5—H5C	109.5	H17A—C17—H17C	109.5
H5B—C5—H5C	109.5	H17B—C17—H17C	109.5
С3—С6—Н6А	109.5	C15—C18—H18A	109.5
С3—С6—Н6В	109.5	C15—C18—H18B	109.5
H6A—C6—H6B	109.5	H18A—C18—H18B	109.5
С3—С6—Н6С	109.5	C15—C18—H18C	109.5
Н6А—С6—Н6С	109.5	H18A—C18—H18C	109.5
H6B—C6—H6C	109.5	H18B—C18—H18C	109.5
O4—C7—O3	125.2 (4)	O8—C19—O7	125.2 (4)
O4—C7—C8	119.7 (4)	O8—C19—C20	119.3 (4)
O3—C7—C8	115.0 (4)	O7—C19—C20	115.4 (4)
N2—C8—C9	110.2 (3)	N4—C20—C21	110.5 (3)
N2—C8—C7	108.9 (3)	N4—C20—C19	109.2 (3)
C9—C8—C7	110.9 (3)	C21—C20—C19	110.8 (3)
N2—C8—H8	109.0	N4—C20—H20	108.8
С9—С8—Н8	109.0	C21—C20—H20	108.8
С7—С8—Н8	109.0	С19—С20—Н20	108.8
C8—N2—H2A	109.5	C20—N4—H4C	109.5
C8—N2—H2B	109.5	C20—N4—H4D	109.5
H2A—N2—H2B	109.5	H4C—N4—H4D	109.5

C8—N2—H2C	109.5	C20—N4—H4E	109.5
H2A—N2—H2C	109.5	H4C—N4—H4E	109.5
H2B—N2—H2C	109.5	H4D—N4—H4E	109.5
C12—C9—C10	111.6 (4)	C24—C21—C20	110.5 (4)
C12—C9—C8	110.5 (4)	C24—C21—C22	111.3 (4)
C10—C9—C8	111.2 (3)	C20—C21—C22	111.2 (3)
С12—С9—Н9	107.8	C24—C21—H21	107.9
С10—С9—Н9	107.8	C20—C21—H21	107.9
С8—С9—Н9	107.8	C22—C21—H21	107.9
C9—C10—C11	113.8 (4)	C23—C22—C21	114.2 (4)
C9—C10—H10A	108.8	C23—C22—H22A	108.7
C11—C10—H10A	108.8	C21—C22—H22A	108.7
C9—C10—H10B	108.8	C23—C22—H22B	108.7
C11—C10—H10B	108.8	C21—C22—H22B	108.7
H10A—C10—H10B	107.7	H22A—C22—H22B	107.6
C10—C11—H11A	109.5	С22—С23—Н23А	109.5
C10—C11—H11B	109.5	С22—С23—Н23В	109.5
H11A—C11—H11B	109.5	H23A—C23—H23B	109.5
C10—C11—H11C	109.5	С22—С23—Н23С	109.5
H11A—C11—H11C	109.5	H23A—C23—H23C	109.5
H11B—C11—H11C	109.5	H23B—C23—H23C	109.5
C9—C12—H12A	109.5	C21—C24—H24A	109.5
C9—C12—H12B	109.5	C21—C24—H24B	109.5
H12A—C12—H12B	109.5	H24A—C24—H24B	109.5
C9—C12—H12C	109.5	C21—C24—H24C	109.5
H12A—C12—H12C	109.5	H24A—C24—H24C	109.5
H12B—C12—H12C	109.5	H24B—C24—H24C	109.5
O1—C1—C2—N1	-19.5 (5)	O5-C13-C14-N3	162.0 (4)
O2—C1—C2—N1	163.7 (3)	O6—C13—C14—N3	-20.6(5)
O1—C1—C2—C3	103.3 (4)	O5—C13—C14—C15	-75.3 (5)
O2—C1—C2—C3	-73.5 (5)	O6—C13—C14—C15	102.1 (4)
N1—C2—C3—C6	80.1 (4)	N3—C14—C15—C18	78.1 (4)
C1—C2—C3—C6	-41.7 (5)	C13—C14—C15—C18	-43.8(5)
N1—C2—C3—C4	-155.4 (3)	N3—C14—C15—C16	-155.8(3)
C1—C2—C3—C4	82.8 (4)	C13—C14—C15—C16	82.3 (4)
C6—C3—C4—C5	-56.6 (5)	C18—C15—C16—C17	-58.9 (5)
C2—C3—C4—C5	178.9 (4)	C14—C15—C16—C17	174.9 (4)
O4—C7—C8—N2	141.7 (4)	O8—C19—C20—N4	141.5 (4)
O3—C7—C8—N2	-41.9 (5)	O7—C19—C20—N4	-41.7 (5)
O4—C7—C8—C9	-96.9 (5)	O8—C19—C20—C21	-96.5 (5)
O3—C7—C8—C9	79.4 (5)	O7—C19—C20—C21	80.3 (4)
N2-C8-C9-C12	178.6 (4)	N4—C20—C21—C24	179.1 (4)
C7—C8—C9—C12	58.0 (5)	C19—C20—C21—C24	57.9 (5)
N2-C8-C9-C10	-56.9 (5)	N4—C20—C21—C22	-56.8(5)
C7—C8—C9—C10	-177.5 (4)	C19—C20—C21—C22	-178.0(4)
C12-C9-C10-C11	-51.6 (6)	C_{24} C_{21} C_{22} C_{23}	-53.2 (6)
C8—C9—C10—C11	-175.4 (4)	C20—C21—C22—C23	-176.9 (5)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····O2 ⁱ	0.91	1.96	2.853 (5)	165
N3—H3A····O5 ⁱⁱ	0.91	1.93	2.820 (5)	165
N3—H3 <i>B</i> ····O3 ⁱⁱⁱ	0.91	2.01	2.818 (5)	147
N3—H3 <i>C</i> ···O3 ^{iv}	0.91	1.87	2.773 (4)	172
N4—H4D···O8 ⁱ	0.91	1.97	2.843 (5)	162
N2—H2A····O5	0.91	2.19	3.055 (5)	159
N2—H2A···O6	0.91	2.20	2.953 (5)	139
N2—H2 <i>C</i> ···O6 ^v	0.91	1.85	2.762 (5)	174
N2—H2B····O4 ⁱⁱ	0.91	1.94	2.826 (5)	163

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, y+1/2, -z+1; (iv) x-1, y+1, z; (v) -x+1, y-1/2, -z+1.