

Received 13 April 2018 Accepted 7 May 2018

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; arylmethyl dimedone; arylmethyl 1,3-cyclohexanedione; arylmethyl 3-hydroxycyclohex-2-enone.

CCDC reference: 1841730

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 3-hydroxy-2-(4-hydroxy-3methoxyphenylmethyl)-5,5-dimethylcyclohex-2enone

Agnese Stikute,^a Karina Skestere,^a Inese Mierina,^a Anatoly Mishnev^{b*} and Mara Jure^{a*}

^aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, Riga, LV-1048, Latvia, and ^bLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia. *Correspondence e-mail: mishnevs@osi.lv, Mara.Jure@rtu.lv

In the title compound, $C_{16}H_{20}O_4$, a new starting compound for the synthesis of various heterocycles, the partially saturated six-membered ring adopts a sofa conformation. An intramolecular $O-H \cdots O$ hydrogen bond is observed in the guaiacol residue. In the crystal, molecules are assembled into a sheet structure parallel to the *ab* plane *via* $O-H \cdots O$ hydrogen bonds. The hydrogen-bond pattern is described by an $R_4^4(28)$ graph-set motif. The sheets are further linked by $C-H \cdots O$ hydrogen bonds into a three-dimensional network.

1. Chemical context

Cyclic 2-arylmethyl-1,3-diketones attract interest as valuable intermediates for organic chemistry. A few of the latest examples of these cyclohexanedione derivatives have been used as starting compounds for the synthesis of various heterocycles [*e.g.* tetrahydrobenzofuranones (Yoshida *et al.*, 2010) or tetrahydro-1*H*-xanthen-1-ones (Sudheendran *et al.*, 2012)], as well as carbocycles, *e.g.* analogues of Wieland– Miesher and Hajos–Parrish ketones (Xu *et al.*, 2013).

OPEN 3 ACCESS

2. Structural commentary

Fig. 1 shows the molecular structure of the title compound, which exhibits an intramolecular $O-H\cdots O$ hydrogen bond (Table 1). In crystalline state, the molecules assume the enol tautomeric form, **1a**. In the dimedone fragment, the bond distances reflect the effect of conjugation in the flat fragment O1=C3-C4=C5-O2. The double bonds, O1=C3 and C4=C5, are elongated [1.246 (2) and 1.357 (3) Å, respectively], while the single bond C3-C4 is shortened

[1.447 (3) Å] as compared with standard double and single bonds (Allen *et al.*, 1987). The general shape of the molecule is characterized by the torsion angles C3-C4-C7-C8 =-62.8 (2)° and C4-C7-C8-C9 = 152.2 (2)°, thus exhibiting an extended conformation. The partially saturated C1-C6 ring adopts a sofa conformation. The distance of atom C1 from the mean plane formed by atoms C2-C6 is 0.612 (3) Å. The dihedral angle between the mean plane of the C1-C6 ring and the C8-C13 benzene ring is 75.69 (6)°.

3. Supramolecular features

In the crystal, the molecules are assembled into a sheet structure parallel to the *ab* plane *via* $O-H\cdots O$ hydrogen bonds (Table 1). The hydrogen-bonding pattern in the sheet is described by an $R_4^4(28)$ graph-set motif (Fig. 2). Furthermore, weak $C-H\cdots O$ hydrogen bonds join the sheets into a three-dimensional network (Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom *et al.*, 2016) gave 76 structures of 3-hydroxy-5,5-dimethylcyclohex-2-enone derivatives. The closest structures are 2-(naphthalen-1-ylmethyl)- and 2-(3-chlorophenyl)methyl-substituted dimedones

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a double-dashed line.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C^2 = H^2 A \dots O^{4^i}$	0.97	2 49	3 417 (3)	161
$C14 - H14C \cdots O1^{ii}$	0.96	2.49	3.247 (3)	136
$O2-H2\cdots O1^{iii}$	0.88 (3)	1.74 (3)	2.586 (2)	161 (3)
O4−H4···O3	0.94 (4)	2.10 (4)	2.638 (2)	115 (3)
$O4-H4\cdots O2^{iv}$	0.94 (4)	2.11 (4)	2.919 (2)	142 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

(NIHTEE and NIHTII, respectively; Ramachary & Kishor, 2007).

5. Antiradical activity against free radicals

Compound **1** demonstrates notable antiradical activity against free radicals. Free radical tests were realized according to the procedures described previously (Mierina *et al.*, 2017). 1,1-Diphenyl-2-picrylhydrazyl test: inhibition, when molar ratio of the compound and free radical is 1:1, was 93.3 \pm 2.5%; IC₅₀ was 23.0 \pm 0.6 μ M (starting concentration of free radical was 100 μ M). Galvinoxyl test: inhibition was 82.3 \pm 1.0% and IC₅₀ – 20.3 \pm 2.0 μ M.

6. Synthesis and crystallization

3-Hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone (**1a**) was synthesized according to the reaction scheme in Fig. 3. Formic acid (3.6 ml) was added to a solution of dimedone **2** (500 mg, 3.6 mmol) and vanillin **3** (543 mg, 3.6 mmol) in triethylamine (5.5 ml) while cooling in an ice-bath. The reaction mixture was then heated at 413 K for 5 h, followed by cooling to room temperature, pouring into ice (700–800 ml) and filtering the formed solid. The solid material

Figure 2

A packing diagram of the title compound, viewed along the *c* axis. O– $H \cdots O$ hydrogen bonds are shown as dashed lines. For clarity weak C– $H \cdots O$ bonds are not depicted.

was purified by crystallization from chloroform leading to the target compound **1a** (615 mg, 62%) with m.p. 466–468 K. Single crystals were obtained from a methanol solution. IR (KBr) ν , cm⁻¹: 3470, 2935, 2645, 1580, 1515, 1375, 1250, 1230, 1200, 1040.

The enol form. 1a. was observed exclusively in a DMSO solution. ¹H NMR for compound **1a** (300 MHz, DMSO- d_6) δ , ppm: 10.71-10.08 (1H, brs, OH), 8.68-8.37 (1H, brs, OH), 6.68 (1H, s, H^{Ar}), 6.59 (1H, d, J = 7.7 Hz, H^{Ar}), 6.50 (1H, d, J = 7.7 Hz, H^{Ar}), 3.68 (3H, s, OMe), 3.41 (2H, brs, CH₂Ar, overlapping with H₂O signal), 2.34–2.13 (4H, brs, 2CH₂), 0.98 (6H, s, 2Me). ¹³C NMR for compound **1a** (75 MHz, DMSO- d_6) δ , ppm: 147.1, 144.1, 132.7, 120.2, 115.0, 113.3, 112.5, 55.5, 31.7, 28.0, 26.5. Mixture of keto-enol tautomers (1a and 1b) was observed in a chloroform solution. The ratio of enol 1a and ketone **1b** was 1.35:1 (at room temperature). ¹H NMR for compound **1a** (300 MHz, CDCl₃) δ , ppm: 6.84–6.63 (3H, m, H^{Ar}), (2H, brs, 2OH), 3.82 (3H, s, OMe), 3.61 (2H, s, CH₂Ar), 2.33–2.29 (4H, brs, 2CH₂), 1.07 (6H, s, 2Me). ¹H NMR for compound **1b** (300 MHz, CDCl₃) δ, ppm: 6.84–6.63 (3H, m, H^{Ar}), 5.62–5.68 (1H, brs, OH), 3.86 (3H, s, OMe), 3.56 (1H, t, J = 5.4 Hz, CHCH₂), 3.11 (2H, *d*, *J* = 5.4 Hz, CHCH₂), 2.65 (2H, $d, J = 13.4 \text{ Hz}, \text{H}^{a} \text{ from CH}_{2}, 2.44 (2\text{H}, d, J = 13.4 \text{ Hz}, \text{H}^{b} \text{ from}$ CH₂), 1.16 (3H, s, Me), 0.82 (3H, s, Me).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bonded to O atoms were refined freely. Other H atoms were included in the refinement at geometrically calculated positions with C-H =0.93–0.97 Å and treated as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C-methyl)$.

Figure 3 Reaction scheme for the title compound (1a) and its tautomer (1 b).

Table	2	
Experi	mental	details.

$C_{16}H_{20}O_4$
$C_{16}H_{20}O_4$
276.32
Orthorhombic, Pbca
190
9.3504 (3), 13.6265 (4), 22.8790 (9)
2915.09 (17)
8
Μο Κα
0.09
$0.32\times0.17\times0.12$
Bruker KappaCCD
6082, 3295, 2149
0.057
0.649
0.059, 0.131, 1.04
3295
192
H atoms treated by a mixture of independent and constrained refinement
0.21, -0.19

Computer programs: COLLECT (Bruker, 2001), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: European Regional Development Fund, Operational Programme 'Growth and Employment' within the Activity 'Post-doctoral Research Aid' (grant No. 1.1.1.2/VIAA/1/16/039).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Mierina, I., Jure, M., Zeberga, S., Makareviciene, V., Zicane, D., Tetere, Z. & Ravina, I. (2017). *Eur. J. Lipid Sci. Technol.* **119**, 1700172.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Ramachary, D. B. & Kishor, M. (2007). *J. Org. Chem.* **72**, 5056–5068. Sheldrick, G. M. (2015). *Acta Cryst.* C**71**, 3–8.

- Sudheendran, K., Malakar, C. C., Conrad, J. & Beifuss, U. (2012). J. Org. Chem. 77, 10194–10210.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, C., Zhang, L., Zhou, P., Luo, S. & Cheng, J.-P. (2013). Synthesis, 45, 1939–1945.
- Yoshida, M., Higuchi, M. & Shishido, K. (2010). Tetrahedron, 66, 2675–2682.

supporting information

Acta Cryst. (2018). E74, 796-798 [https://doi.org/10.1107/S2056989018006941]

Crystal structure of 3-hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone

Agnese Stikute, Karina Skestere, Inese Mierina, Anatoly Mishnev and Mara Jure

Computing details

Data collection: *COLLECT* (Bruker, 2001); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

3-Hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone

Crystal data	
$C_{16}H_{20}O_4$ $M_r = 276.32$ Orthorhombic, <i>Pbca</i> a = 9.3504 (3) Å b = 13.6265 (4) Å c = 22.8790 (9) Å V = 2915.09 (17) Å ³ Z = 8 F(000) = 1184	$D_x = 1.259 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32401 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 190 K Block, colourless $0.32 \times 0.17 \times 0.12 \text{ mm}$
Data collectionBruker KappaCCD diffractometerCCD scans6082 measured reflections3295 independent reflections2149 reflections with $I > 2\sigma(I)$	$R_{int} = 0.057$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -29 \rightarrow 29$
Refinement Refinement on F^2	Hydrogen site location: mixed

Least-squares matrix: fullH atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.059$ and constrained refinement $wR(F^2) = 0.131$ $w = 1/[\sigma^2(F_o^2) + (0.0489P)^2 + 1.0327P]$ S = 1.04where $P = (F_o^2 + 2F_c^2)/3$ 3295 reflections $(\Delta/\sigma)_{max} = 0.006$ 192 parameters $\Delta\rho_{max} = 0.21$ e Å⁻³0 restraints $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.75371 (16)	0.50507 (9)	0.63597 (7)	0.0331 (4)
02	0.62541 (15)	0.83466 (10)	0.63025 (7)	0.0287 (4)
O3	0.16966 (16)	0.39470 (10)	0.68561 (7)	0.0367 (4)
O4	0.13650 (15)	0.39579 (10)	0.57111 (7)	0.0319 (4)
C1	0.9683 (2)	0.71070 (12)	0.58699 (9)	0.0224 (4)
C2	0.8992 (2)	0.60988 (13)	0.57748 (9)	0.0256 (5)
H2A	0.864618	0.605845	0.537577	0.031*
H2B	0.971321	0.559458	0.582589	0.031*
C3	0.7777 (2)	0.58996 (13)	0.61829 (9)	0.0230 (5)
C4	0.6838 (2)	0.66925 (13)	0.63552 (9)	0.0213 (4)
C5	0.7173 (2)	0.76168 (13)	0.61827 (9)	0.0216 (4)
C6	0.8495 (2)	0.78837 (13)	0.58489 (9)	0.0243 (5)
H6A	0.886941	0.849470	0.600375	0.029*
H6B	0.823687	0.799694	0.544389	0.029*
C7	0.5558 (2)	0.64569 (13)	0.67303 (10)	0.0277 (5)
H7A	0.508367	0.706600	0.683286	0.033*
H7B	0.589063	0.615710	0.709003	0.033*
C8	0.4470 (2)	0.57763 (13)	0.64472 (9)	0.0232 (5)
C9	0.3616 (2)	0.51732 (13)	0.68030 (9)	0.0258 (5)
Н9	0.374309	0.517992	0.720617	0.031*
C10	0.2589 (2)	0.45705 (13)	0.65589 (9)	0.0252 (5)
C11	0.2391 (2)	0.45584 (13)	0.59560 (9)	0.0244 (5)
C12	0.3230 (2)	0.51344 (15)	0.56037 (10)	0.0300 (5)
H12	0.310764	0.512153	0.520037	0.036*
C13	0.4265 (2)	0.57391 (14)	0.58529 (10)	0.0287 (5)
H13	0.483160	0.612663	0.561127	0.034*
C14	0.1966 (3)	0.37943 (17)	0.74571 (11)	0.0469 (7)
H14A	0.293311	0.357396	0.750859	0.070*
H14B	0.131964	0.330679	0.760536	0.070*
H14C	0.182851	0.439830	0.766563	0.070*
C15	1.0448 (2)	0.71292 (14)	0.64588 (10)	0.0317 (5)
H15A	0.977325	0.700158	0.676564	0.048*
H15B	1.087200	0.776352	0.651680	0.048*
H15C	1.118201	0.663631	0.646450	0.048*
C16	1.0760 (2)	0.73067 (15)	0.53816 (10)	0.0345 (5)
H16A	1.115861	0.795077	0.543051	0.052*
H16B	1.028672	0.726735	0.500998	0.052*
H16C	1.151155	0.682745	0.539763	0.052*
H2	0.664 (3)	0.892 (2)	0.6238 (13)	0.079 (10)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H4	0.085 (4) 0.	.368 (3)	0.6024 (16)	0.114 (14);	k	
Atomic	<i>Itomic displacement parameters (Å²)</i>						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0372 (8)	0.0110 (6)	0.0510 (10)	-0.0009 (6)	0.0078 (8)	0.0033 (6)	
02	0.0240 (8)	0.0128 (7)	0.0493 (10)	0.0022 (6)	-0.0014 (7)	0.0001 (6)	
03	0.0393 (9)	0.0406 (9)	0.0304 (9)	-0.0196 (7)	0.0011 (7)	0.0042 (7)	
O4	0.0283 (8)	0.0362 (8)	0.0312 (9)	-0.0096 (7)	-0.0035 (7)	-0.0033 (7)	
C1	0.0241 (10)	0.0168 (9)	0.0262 (11)	-0.0004 (8)	0.0006 (9)	0.0004 (8)	
C2	0.0287 (11)	0.0172 (9)	0.0308 (12)	0.0006 (8)	0.0033 (9)	-0.0035 (8)	
C3	0.0253 (11)	0.0149 (9)	0.0288 (12)	-0.0019 (8)	-0.0012 (9)	-0.0016 (8)	
C4	0.0199 (10)	0.0145 (9)	0.0297 (12)	-0.0023 (8)	-0.0019 (9)	-0.0035 (8)	
C5	0.0207 (11)	0.0163 (9)	0.0278 (12)	0.0010 (8)	-0.0047 (8)	-0.0014 (8)	
C6	0.0241 (10)	0.0151 (9)	0.0336 (12)	-0.0028 (8)	-0.0038 (9)	0.0029 (8)	
C7	0.0306 (12)	0.0160 (9)	0.0366 (14)	-0.0026 (9)	0.0042 (10)	-0.0034 (8)	
C8	0.0222 (10)	0.0164 (9)	0.0310 (12)	0.0031 (8)	0.0031 (9)	0.0003 (8)	
С9	0.0283 (11)	0.0233 (10)	0.0260 (12)	0.0005 (9)	0.0014 (9)	0.0000 (8)	
C10	0.0236 (10)	0.0198 (9)	0.0322 (12)	-0.0023 (9)	0.0060 (9)	0.0024 (8)	
C11	0.0207 (10)	0.0197 (9)	0.0328 (12)	0.0011 (8)	-0.0013 (9)	-0.0003 (9)	
C12	0.0330 (12)	0.0300 (11)	0.0271 (13)	-0.0028 (10)	-0.0005 (10)	0.0037 (9)	
C13	0.0279 (11)	0.0222 (10)	0.0359 (13)	-0.0035 (9)	0.0038 (10)	0.0061 (9)	
C14	0.0604 (17)	0.0503 (14)	0.0300 (14)	-0.0262 (13)	0.0077 (12)	0.0032 (11)	
C15	0.0263 (11)	0.0273 (11)	0.0414 (14)	0.0024 (9)	-0.0045 (10)	-0.0003 (10)	
C16	0.0333 (12)	0.0270 (11)	0.0432 (15)	-0.0024 (10)	0.0077 (10)	0.0000 (10)	

Geometric parameters (Å, °)

O1—C3	1.246 (2)	C7—H7A	0.9700
O2—C5	1.342 (2)	C7—H7B	0.9700
O2—H2	0.88 (3)	C8—C13	1.374 (3)
O3—C10	1.371 (2)	C8—C9	1.406 (3)
O3—C14	1.413 (3)	C9—C10	1.381 (3)
O4—C11	1.380 (2)	С9—Н9	0.9300
O4—H4	0.94 (4)	C10-C11	1.392 (3)
C1-C15	1.526 (3)	C11—C12	1.371 (3)
C1-C16	1.529 (3)	C12—C13	1.394 (3)
C1—C2	1.534 (3)	C12—H12	0.9300
C1—C6	1.534 (3)	C13—H13	0.9300
C2—C3	1.495 (3)	C14—H14A	0.9600
C2—H2A	0.9700	C14—H14B	0.9600
C2—H2B	0.9700	C14—H14C	0.9600
C3—C4	1.447 (3)	C15—H15A	0.9600
C4—C5	1.357 (3)	C15—H15B	0.9600
C4—C7	1.507 (3)	C15—H15C	0.9600
C5—C6	1.498 (3)	C16—H16A	0.9600
С6—Н6А	0.9700	C16—H16B	0.9600
С6—Н6В	0.9700	C16—H16C	0.9600

C7—C8	1.521 (3)		
С5—О2—Н2	111 (2)	C13—C8—C9	118.18 (18)
C10—O3—C14	117.73 (17)	C13—C8—C7	122.47 (18)
C11—O4—H4	107 (2)	C9—C8—C7	119.33 (19)
C15—C1—C16	109.41 (17)	С10—С9—С8	120.5 (2)
C15—C1—C2	109.91 (16)	С10—С9—Н9	119.7
C16—C1—C2	109.48 (16)	С8—С9—Н9	119.7
C15—C1—C6	110.69 (16)	O3—C10—C9	126.20 (19)
C16—C1—C6	109.34 (16)	O3—C10—C11	113.78 (17)
C2—C1—C6	107.99 (16)	C9—C10—C11	120.02 (18)
C3—C2—C1	113.20 (15)	C12—C11—O4	119.9 (2)
C3—C2—H2A	108.9	C12—C11—C10	119.98 (19)
C1—C2—H2A	108.9	O4—C11—C10	120.14 (18)
C3—C2—H2B	108.9	C11—C12—C13	119.7 (2)
C1—C2—H2B	108.9	C11—C12—H12	120.2
H2A—C2—H2B	107.8	C13—C12—H12	120.2
O1—C3—C4	119.70 (18)	C8—C13—C12	121.57 (19)
O1—C3—C2	120.54 (17)	C8—C13—H13	119.2
C4—C3—C2	119.71 (16)	C12—C13—H13	119.2
C5—C4—C3	118.27 (18)	O3—C14—H14A	109.5
C5—C4—C7	123.16 (17)	O3—C14—H14B	109.5
C3—C4—C7	118.55 (16)	H14A—C14—H14B	109.5
O2—C5—C4	118.71 (17)	O3—C14—H14C	109.5
O2—C5—C6	116.90 (15)	H14A—C14—H14C	109.5
C4—C5—C6	124.37 (17)	H14B—C14—H14C	109.5
C5—C6—C1	114.44 (15)	C1—C15—H15A	109.5
С5—С6—Н6А	108.7	C1—C15—H15B	109.5
C1—C6—H6A	108.7	H15A—C15—H15B	109.5
С5—С6—Н6В	108.7	C1—C15—H15C	109.5
C1—C6—H6B	108.7	H15A—C15—H15C	109.5
H6A—C6—H6B	107.6	H15B—C15—H15C	109.5
C4—C7—C8	114.73 (17)	C1—C16—H16A	109.5
С4—С7—Н7А	108.6	C1—C16—H16B	109.5
С8—С7—Н7А	108.6	H16A—C16—H16B	109.5
C4—C7—H7B	108.6	C1—C16—H16C	109.5
C8—C7—H7B	108.6	H16A—C16—H16C	109.5
H7A—C7—H7B	107.6	H16B—C16—H16C	109.5
C15—C1—C2—C3	67.9 (2)	C3—C4—C7—C8	-62.8 (2)
C16—C1—C2—C3	-171.93 (17)	C4—C7—C8—C13	-29.1 (3)
C6—C1—C2—C3	-53.0 (2)	C4—C7—C8—C9	152.22 (17)
C1—C2—C3—O1	-146.67 (19)	C13—C8—C9—C10	-0.8 (3)
C1—C2—C3—C4	35.9 (3)	C7—C8—C9—C10	177.99 (17)
O1—C3—C4—C5	176.34 (19)	C14—O3—C10—C9	-9.4 (3)
C2—C3—C4—C5	-6.2 (3)	C14—O3—C10—C11	170.34 (19)
O1—C3—C4—C7	-2.0 (3)	C8—C9—C10—O3	179.63 (18)
C2—C3—C4—C7	175.47 (18)	C8—C9—C10—C11	-0.1 (3)

supporting information

C3—C4—C5—O2	175.08 (17)	O3—C10—C11—C12	-178.86 (17)
C7—C4—C5—O2	-6.6 (3)	C9-C10-C11-C12	0.9 (3)
C3—C4—C5—C6	-3.2 (3)	O3—C10—C11—O4	0.3 (3)
C7—C4—C5—C6	175.11 (19)	C9—C10—C11—O4	-179.93 (16)
O2-C5-C6-C1	163.97 (17)	O4-C11-C12-C13	-179.95 (17)
C4—C5—C6—C1	-17.7 (3)	C10-C11-C12-C13	-0.8 (3)
C15—C1—C6—C5	-76.1 (2)	C9—C8—C13—C12	0.9 (3)
C16—C1—C6—C5	163.26 (17)	C7—C8—C13—C12	-177.81 (18)
C2-C1-C6-C5	44.2 (2)	C11—C12—C13—C8	-0.1 (3)
C5—C4—C7—C8	118.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2A···O4 ⁱ	0.97	2.49	3.417 (3)	161
C14—H14 <i>C</i> ···O1 ⁱⁱ	0.96	2.49	3.247 (3)	136
O2—H2···O1 ⁱⁱⁱ	0.88 (3)	1.74 (3)	2.586 (2)	161 (3)
O4—H4…O3	0.94 (4)	2.10 (4)	2.638 (2)	115 (3)
$O4$ — $H4$ ··· $O2^{iv}$	0.94 (4)	2.11 (4)	2.919 (2)	142 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1/2, *y*, -*z*+3/2; (iii) -*x*+3/2, *y*+1/2, *z*; (iv) -*x*+1/2, *y*-1/2, *z*.