

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 February 2018 Accepted 2 March 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; nickel complex; tridentate ligand; square-planar coordination.

CCDC reference: 1827007

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of (2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-*tert*-butylphenolato- $\kappa^3 N, N', O$)bromidonickel(II)

Patrick O'Brien,^a Matthias Zeller^b and Wei-Tsung Lee^{a*}

^aDepartment of Chemistry & Biochemistry, 1068 W. Sheridan Rd., Chicago, IL 60660, USA, and ^bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA. *Correspondence e-mail: wlee5@luc.edu

The title compound, $[NiBr(C_{25}H_{29}N_2O)]$, contains an Ni^{II} atom with a slightly distorted square-planar coordination environment defined by one O and two N atoms from the 2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-*tert*-butyl-phenolate ligand and a bromide anion. The Ni–O and Ni–N bond lengths are slightly longer than those observed in the phenyl backbone counterpart, which can be attributed to the larger steric hindrance of the naphthyl group in the structure of the title compound. The molecule as a whole is substantially distorted, with both the planar naphthalene-1,8-diamine and imino–methyl–phenolate substitutents rotated against the NiN₂OBr plane by 38.92 (7) and 37.22 (8)°, respectively, giving the molecule a twisted appearance. N–H···Br hydrogen bonds and N–H···C(π) contacts connect the molecules into dimers, and additional C–H···Br contacts, C–H··· π interactions, and an offset stacking interaction between naphthyl units interconnect these dimers into a three-dimensional network.

1. Chemical context

There has been an emergent interest in the design and synthesis of non-symmetrical iminoaryl bis(salen)-based ligands because of their facile synthesis and tunable properties. As a result, their nickel complexes have been used in a variety of applications and properties, including metal-organic frameworks (Crane & MacLachlan, 2012), catalysis for styrene polymerization (Ding et al., 2017), unique redox behavior (Rotthaus et al., 2006; Kochem et al., 2013), and non-linear optics (Cisterna et al., 2015; Trujillo et al., 2010). One of the synthetic methods utilizes the half-unit Schiff base as a precursor for the preparation of non-symmetrical iminoaryl bis(salen) ligands. Surprisingly, ligands are mostly limited to phenyl derivatives as the backbone. Some metal complexes bearing non-symmetrical iminonaphthyl bis(salen) ligands have been reported in the literature (Villaverde et al., 2011; Boghaei & Mohebi, 2002; Sundaravadivel et al., 2013, 2014), but their crystal structures were not determined. As part of our work on the synthesis of nickel complexes bearing nonsymmetrical iminoaryl bis(salen)-based ligands, we report here the crystal structure of (2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-*tert*-butylphenolato- $\kappa^3 N, N', O$)bromidonickel(II), (I).

2. Structural commentary

The molecular structure of the title compound, (I), is given in Fig. 1, with selected bond lengths and angles collated in

research communications

Table 1. The structure confirms the nickel cation to be fourcoordinate and bound by two N atoms (imine N1 and amine N2), the phenolic O atom (O1), and the Br atom (Br1). The amino nitrogen atom (N2H₂) is neutral, with both hydrogen atoms well-defined in difference electron density maps. The O1-C1 bond length of 1.312 (4) Å indicates a phenolate resonance form for the ligand. The Schiff base double N1=C7 bond is within the range expected for a metal-coordinating Schiff base-imine fragment.

The coordination environment around the Ni^{II} cation can be best described as slightly distorted square-planar, with an r.m.s deviation from planarity for the NiN2OBr fragment of 0.0943 Å. Interestingly, the Ni1-N1, Ni1-N2, and Ni1-O1 bond lengths are slightly longer than those observed in the phenyl backbone counterpart of (I), [Ni(NNO)OAc] (II) $(NNO = 2-\{[(2-aminophenyl)imino]methyl]-4,6-di-tert-butyl$ phenolate; Ding et al., 2017), which could be attributed to the increased steric bulk of the naphthyl backbone in (I). In line with this increased steric demand are the value for the angle N2-Ni1-O1 [170.15 $(11)^{\circ}$], and that of the torsion angle C6-C7-N1-C16 [163.1 (3)°], which are significantly larger than those observed for (II) (176 and 178°, respectively). The steric profile of the aryl backbone appears to play an important role in altering both bond lengths and angles around the coordination center.

Figure 1

The molecular structure of the title compound showing atom labels, with displacement ellipsoids at the 50% probability level.

e 1			
N1-Ni1	1.880 (3)	Ni1-Br1	2.3330 (5)
N2-Ni1	1.922 (3)	C1-O1	1.312 (4)
O1-Ni1	1.850 (2)	C7-N1	1.305 (4)
O1-Ni1-N1	92.82 (10)	O1-Ni1-Br1	90.32 (7)
O1-Ni1-N2	170.15 (11)	N1-Ni1-Br1	176.24 (8)
N1-Ni1-N2	87.66 (12)	N2-Ni1-Br1	89.61 (9)
C6-C7-N1-C16	163.1 (3)		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots Br1^{i}$	0.88 (2)	2.98 (2)	3.827 (3)	162 (4)
$N2-H2A\cdots C1^{i}$	0.88(2)	2.84 (4)	3.285 (4)	113 (3)
$N2-H2A\cdots C6^{i}$	0.88(2)	2.90 (3)	3.589 (4)	137 (3)
$C18-H18\cdots Br1^{ii}$	0.95	2.93	3.624 (4)	131
$C13-H13A\cdots Br1^{iii}$	0.98	2.96	3.804 (6)	145
$C11 - H11B \cdots C1^{iv}$	0.98	2.77	3.741 (5)	169
$C9-H9C\cdots C5^{iv}$	0.98	2.76	3.730 (5)	169
$C7-H7\cdots C19^{v}$	0.95	2.71	3.518 (5)	144

Symmetry codes: (i) -x, -y + 1, -z; (ii) x, y - 1, z; (iii) x - 1, y, z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x, -y, -z.

The increased steric demand in (I) does not substantially affect the bond lengths and angles of the individual ligand fragments. Both the naphtyl as well as the iminomethyl phenolate fragments are essentially planar, with r.m.s deviations from planarity of only 0.062 and 0.072 Å, respectively (the least-squares planes include the N and O atoms attached to the fragments). They do, however, yield to the steric strain by substantially rotating out of the plane of the NiN2OBr plane, and with respect to each other, giving the molecule as a whole a twisted appearance. The dihedral angle of the naphthalene-1,8-diamine unit with the central NiN2OBr plane is $38.92(7)^{\circ}$, the equivalent angle of the iminomethyl phenolate substitutent is 37.22 (8)°. The interplanar angle between the two organic fragments is $50.33 (5)^\circ$. This contrasts starkly with (II). The less sterically strained counterpart of (I) is essentially planar, with interplanar angles of the NiN₂O₂ fragment with the phenylene di-amine of only 5.91 and 7.39° [note that there are two independent molecules in the structure of (II)], and of only 7.08 and 3.58° towards the iminomethyl phenolate fragments.

3. Supramolecular features

The crystal-packing of (I) is steered by a number of medium strength and weak intermolecular interactions. Most prominent is an intermolecular $N-H\cdots Br$ hydrogen bond, Table 2, which connects individual molecules into dimers. The hydrogen bond involves H2B of the amine group. The other amine H atom, H2A, does not form a hydrogen bond. Instead, it interacts with the π electron cloud of the phenolate ring, with two close $N-H\cdots C(\pi)$ contacts (Table 2). These latter interactions appear to provide additional synergy for the

Figure 2

View of one of the dimers in (I), showing the $N-H\cdots Br$ hydrogen bonds and $N-H\cdots C(\pi)$ contacts. H atoms not involved in the interactions are omitted for clarity.

formation of the $N-H\cdots Br$ bridged dimers, Fig. 2. Other intermolecular interactions in (I) are less directional. They

involve a series of $C-H\cdots Br$ contacts, $C-H\cdots \pi$ interactions, and an offset stacking interaction between naphthyl units of neighboring molecules. Combined, these interactions connect the more tightly bound dimers into a three-dimensional network, Fig. 3.

4. Database survey

The most recent version of the Cambridge Structural Database (Version 5.39, updated November 2017; Groom *et al.*, 2016) has no entries related to iminonaphthyl mono(salen) supported metal complexes. However, a closely related compound, a nickel(II) complex bearing an iminophenyl mono(salen) ligand, has been reported as its acetate complex, and has been compared to the title compound in the *Structural commentary*. A broader exploration showed eight entries corresponding to iminophenyl mono(salen) ligands, including two aluminum (Muñoz-Hernández *et al.*, 2000), one copper (Ding *et al.*, 2014), two palladium (Vicente *et al.*, 1993, Liu *et al.*, 2010), one rhenium (Lane *et al.*, 2011), one ruthenium (Eltayeb *et al.*, 2007), and one tin (Yearwood *et al.*, 2002) complexes.

Figure 3

View of the intermolecular interactions for (I), showing $N-H\cdots Br$ hydrogen bonds and $N-H\cdots C(\pi)$ contacts as well as $C-H\cdots Br$ contacts, $C-H\cdots \pi$ interactions, and the offset stacking interaction between naphthyl units that interconnects dimers into a three-dimensional framework. For clarity, only one central dimer is shown in stick mode, the surrounding molecules in wireframe style.

5. Synthesis and crystallization

Starting materials were commercially available and were used without further purification.

Ligand synthesis: 3,5-di-tertbutyl-2-hydrobenzaldehyde (1.00 g, 4.27 mmol) dissolved in ethanol (20 ml) was added to 1,8-diaminonaphthalene (1.36 g, 8.53 mmol) in ethanol (20 ml) in a 100 ml round-bottom flask. The reaction mixture was refluxed for 24 h. Volatiles were removed under reduced pressure, and the residue was crystallized at 253 K to yield light-purple crystals (1.17 g, 73%). ¹H NMR (300 MHz, C₆D₆, *d*): δ , 8.76 (*s*, 1H, *CH*), 7.63 (*d*, 1H, *J* = 2.1 Hz, Ar*H*), 7.26 (*d*, 2H, *J* = 8.1 Hz, Ar*H*), 7.18–7.13 (*m*, 2H, Ar*H*), 6.81 (*d*, 1H, *J* = 1.8 Hz, Ar*H*), 6.05 (*d*, 2H, *J* = 7.2 Hz, Ar*H*), 4.66 (*s*, 1H, OH), 3.72 (*s*, 2H, NH₂), 1.71 [*s*, 9H, ArC(CH₃)], 1.41 [*s*, 9H, ArC(CH₃)].

Synthesis of the title compound: To a stirred solution of (E)-2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-*tert*butylphenol (80 mg, 0.21 mmol) in THF (3 mL) at ambient temperature under an N₂ atmosphere was added a suspension of potassium *tert*-butoxide (26 mg, 0.24 mmol) in THF (2 mL) for 2 h. Solid NiBr₂(DME) (69 mg, 0.22 mmol) was added, and the resulting slurry was stirred for 18 h at ambient temperature. Volatiles were removed under reduced pressure, and the residue was extracted with toluene and filtered through Celite. The filtrate was dried in *vacuo* to yield a dark-red solid (21 mg, 95%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in Et₂O at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H bond lengths of 0.95 Å for alkene and aromatic moieties, and 0.98 Å for aliphatic CH₃ moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Amine H atom positions were refined with N-H distances restrained to 0.88 (2) Å. U_{iso} (H) values were set to a multiple of U_{eq} (C/N) with 1.5 for CH₃, and 1.2 for C-H and N-H units, respectively. Reflections (0 0 2), ($\overline{1}$ 0 2) and (0 1 3) were obstructed by the beam stop and were omitted from the refinement.

Funding information

Funding from Loyola University Chicago is gratefully acknowledged.

References

- Boghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357-5366.
- Cisterna, J., Dorcet, V., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Carrillo, D. (2015). *Inorg. Chim. Acta*, **430**, 82–90.
- Crane, A. K. & MacLachlan, M. J. (2012). Eur. J. Inorg. Chem. 2012, 17–30.
- Ding, L., Liang, S., Zhang, J., Ding, C., Chen, Y. & Lü, X. (2014). Inorg. Chem. Commun. 44, 173–176.
- Ding, L., Zhang, Y., Chen, X. & Lü, X. (2017). Inorg. Chem. Commun. 76, 100–102.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[NiBr(C_{25}H_{29}N_2O)]$
M _r	512.12
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	9.7626 (3), 10.9008 (4), 22.0679 (7)
β (°)	98.0315 (14)
$V(Å^3)$	2325.43 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	2.57
Crystal size (mm)	$0.55 \times 0.44 \times 0.12$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (SCALEPACK; Otwinowski & Minor, 1997)
T_{\min}, T_{\max}	0.245, 0.735
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11680, 5755, 4738
R _{int}	0.045
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.705
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.128, 1.07
No. of reflections	5755
No. of parameters	283
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	1.07, -1.25

Computer programs: COLLECT (Nonius, 1998), HKL-3000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). *Acta Cryst.* E63, m2269–m2270.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Kochem, A., Gellon, G., Leconte, N., Baptiste, B., Philouze, C., Jarjayes, O., Orio, M. & Thomas, F. (2013). *Chem. Eur. J.* **19**, 16707– 16721.
- Lane, S. R., Sisay, N., Carney, B., Dannoon, S., Williams, S., Engelbrecht, H. P., Barnes, C. L. & Jurisson, S. S. (2011). *Dalton Trans.* 40, 269–276.

Liu, P., Feng, X.-J. & He, R. (2010). Tetrahedron, 66, 631-636.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Muñoz-Hernández, M.-A., Keizer, T. S., Parkin, S., Patrick, B. & Atwood, D. A. (2000). Organometallics, **19**, 4416–4421.
- Nonius (1998). COLLECT Users Manual. Nonius Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Perez Del Valle, C., Saint-Aman, E. & Pierre, J.-L. (2006). *Chem. Eur. J.* **12**, 2293– 2302.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sundaravadivel, E., Muthusamy, K. & Varghese, B. (2013). Polyhedron, 61, 33–44.
- Sundaravadivel, E., Vedavalli, S., Kandaswamy, M., Varghese, B. & Madankumar, P. (2014). *RSC Adv.* 4, 40763–40775.

- Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Saillard, J.-Y. (2010). *Inorg. Chem.* 49, 2750– 2764.
- Vicente, J., Abad, J. A., Gil-Rubio, J., Jones, P. G. & Bembenek, E. (1993). *Organometallics*, **12**, 4151–4160.
- Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F. & Snejko, N. (2011). *Dalton Trans.* **40**, 9589–9600.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yearwood, B., Parkin, S. & Atwood, D. A. (2002). *Inorg. Chim. Acta*, **333**, 124–131.

Acta Cryst. (2018). E74, 469-473 [https://doi.org/10.1107/S2056989018003651]

Crystal structure of $(2-\{[(8-aminonaphthalen-1-yl)imino]methyl\}-4,6-di-tert$ $butylphenolato-<math>\kappa^3 N, N', O$)bromidonickel(II)

Patrick O'Brien, Matthias Zeller and Wei-Tsung Lee

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *HKL-3000* (Otwinowski & Minor, 1997); data reduction: *HKL-3000* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015) and shelXle (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $\Delta \rho_{\text{max}} = 1.07 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -1.25 \ {\rm e} \ {\rm \AA}^{-3}$

 $(2-\{[(8-Aminonaphthalen-1-yl)imino]methyl\}-4, 6-di-tert-butylphenolato-\kappa^3N, N', O)$ bromidonickel(II)

Crystal data	
$[NiBr(C_{25}H_{29}N_2O)]$	F(000) = 1056
$M_r = 512.12$	$D_{\rm x} = 1.463 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 9.7626 (3) Å	Cell parameters from 11680 reflections
b = 10.9008 (4) Å	$\theta = 2.1 - 30.1^{\circ}$
c = 22.0679(7) Å	$\mu = 2.57 \text{ mm}^{-1}$
$\beta = 98.0315 \ (14)^{\circ}$	T = 100 K
V = 2325.43 (13) Å ³	Plate, black
Z = 4	$0.55 \times 0.44 \times 0.12 \text{ mm}$
Data collection	
Nonius KappaCCD	11680 measured reflections
diffractometer	5755 independent reflections
Radiation source: fine focus X-ray tube	4738 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
ω and φ scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 13$
(SCALEPACK; Otwinowski & Minor, 1997)	$k = 0 \rightarrow 15$
$T_{\min} = 0.245, \ T_{\max} = 0.735$	$l = -30 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.128$	H atoms treated by a mixture of independent
S = 1.07	and constrained refinement
5755 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 4.3983P]$
283 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$

direct methods

Primary atom site location: structure-invariant

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.0553 (3)	0.4478 (3)	0.14421 (13)	0.0207 (6)
C2	-0.1176 (3)	0.5200 (3)	0.18765 (13)	0.0215 (6)
C3	-0.2474 (3)	0.4849 (3)	0.19962 (14)	0.0231 (6)
H3	-0.288647	0.532890	0.228138	0.028*
C4	-0.3239 (3)	0.3836 (3)	0.17296 (14)	0.0230 (6)
C5	-0.2624 (3)	0.3152 (3)	0.13236 (14)	0.0228 (6)
H5	-0.310127	0.246173	0.113465	0.027*
C6	-0.1295 (3)	0.3445 (3)	0.11769 (13)	0.0202 (6)
C7	-0.0640(3)	0.2563 (3)	0.08365 (13)	0.0208 (6)
H7	-0.111370	0.180965	0.074598	0.025*
C8	-0.0394 (3)	0.6284 (3)	0.22098 (14)	0.0230 (6)
C9	0.0896 (3)	0.5782 (3)	0.26142 (16)	0.0295 (7)
H9A	0.150747	0.538983	0.235565	0.044*
H9B	0.061397	0.517857	0.290193	0.044*
H9C	0.138719	0.645847	0.284265	0.044*
C10	0.0052 (4)	0.7237 (3)	0.17568 (16)	0.0301 (7)
H10A	0.064332	0.683952	0.149067	0.045*
H10B	0.056620	0.790083	0.198582	0.045*
H10C	-0.077039	0.757407	0.150692	0.045*
C11	-0.1291 (4)	0.6966 (3)	0.26186 (15)	0.0281 (7)
H11A	-0.213815	0.725748	0.236934	0.042*
H11B	-0.077523	0.766708	0.281208	0.042*
H11C	-0.153307	0.640822	0.293557	0.042*
C12	-0.4634 (3)	0.3499 (4)	0.19290 (16)	0.0288 (7)
C13	-0.5585 (5)	0.4609 (5)	0.1875 (3)	0.0651 (16)
H13A	-0.573130	0.489421	0.144959	0.098*
H13B	-0.516131	0.526707	0.214029	0.098*
H13C	-0.647545	0.438227	0.199999	0.098*
C14	-0.5341 (5)	0.2460 (6)	0.1546 (3)	0.075 (2)
H14A	-0.550635	0.270893	0.111563	0.112*
H14B	-0.622540	0.227022	0.168740	0.112*
H14C	-0.474709	0.173182	0.158954	0.112*
C15	-0.4382 (5)	0.3110 (5)	0.2604 (2)	0.0546 (13)
H15A	-0.526967	0.293766	0.274528	0.082*
H15B	-0.390898	0.377284	0.284997	0.082*
H15C	-0.380507	0.237058	0.264654	0.082*
C16	0.1225 (3)	0.1628 (3)	0.04555 (14)	0.0218 (6)
C17	0.1062 (3)	0.0524 (3)	0.07443 (15)	0.0247 (6)
H17	0.048093	0.048630	0.105510	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C18	0.1736 (4)	-0.0540 (3)	0.05882 (16)	0.0283 (7)
H18	0.158249	-0.129379	0.078375	0.034*
C19	0.2612 (3)	-0.0504 (3)	0.01577 (15)	0.0277 (7)
H19	0.306526	-0.123154	0.005685	0.033*
C20	0.2850 (3)	0.0613 (3)	-0.01401 (14)	0.0246 (6)
C21	0.2139 (3)	0.1693 (3)	0.00004 (13)	0.0220 (6)
C22	0.3818 (4)	0.0675 (4)	-0.05633 (15)	0.0307 (8)
H22	0.426691	-0.005268	-0.066781	0.037*
C23	0.4111 (4)	0.1759 (4)	-0.08210 (16)	0.0322 (8)
H23	0.479367	0.179134	-0.108810	0.039*
C24	0.3404 (4)	0.2833 (4)	-0.06927 (15)	0.0310 (7)
H24	0.360980	0.358951	-0.087370	0.037*
C25	0.2425 (3)	0.2789 (3)	-0.03089 (14)	0.0238 (6)
N1	0.0550 (3)	0.2692 (3)	0.06375 (11)	0.0217 (5)
N2	0.1631 (3)	0.3879 (3)	-0.02205 (12)	0.0259 (6)
H2A	0.205 (4)	0.450 (3)	-0.0365 (18)	0.031*
H2B	0.076 (2)	0.376 (4)	-0.0368 (18)	0.031*
01	0.0677 (2)	0.4768 (2)	0.13117 (10)	0.0229 (4)
Ni1	0.12898 (4)	0.42762 (4)	0.05935 (2)	0.02024 (11)
Br1	0.23263 (4)	0.61856 (3)	0.05095 (2)	0.02840 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0199 (13)	0.0223 (16)	0.0202 (13)	0.0005 (11)	0.0044 (10)	0.0015 (11)
C2	0.0218 (14)	0.0229 (17)	0.0196 (13)	0.0028 (11)	0.0026 (10)	-0.0005 (11)
C3	0.0237 (14)	0.0261 (17)	0.0200 (13)	0.0030 (12)	0.0047 (11)	-0.0005 (12)
C4	0.0185 (13)	0.0284 (18)	0.0221 (14)	0.0012 (12)	0.0032 (11)	0.0018 (12)
C5	0.0244 (15)	0.0221 (17)	0.0220 (13)	-0.0017 (12)	0.0035 (11)	0.0000 (11)
C6	0.0222 (14)	0.0196 (16)	0.0189 (13)	0.0023 (11)	0.0037 (10)	0.0006 (11)
C7	0.0228 (14)	0.0192 (16)	0.0208 (13)	-0.0014 (11)	0.0042 (10)	-0.0018 (11)
C8	0.0238 (14)	0.0224 (17)	0.0234 (14)	0.0001 (12)	0.0056 (11)	-0.0047 (11)
C9	0.0249 (16)	0.034 (2)	0.0285 (16)	0.0002 (13)	0.0018 (12)	-0.0083 (14)
C10	0.0367 (19)	0.0199 (18)	0.0345 (17)	-0.0037 (13)	0.0081 (14)	-0.0065 (13)
C11	0.0293 (16)	0.0271 (19)	0.0284 (15)	0.0013 (13)	0.0062 (12)	-0.0089 (13)
C12	0.0220 (15)	0.035 (2)	0.0311 (16)	-0.0027 (13)	0.0090 (12)	-0.0011 (14)
C13	0.026 (2)	0.060 (3)	0.112 (5)	0.010 (2)	0.021 (2)	0.019 (3)
C14	0.049 (3)	0.107 (5)	0.078 (4)	-0.048 (3)	0.040 (3)	-0.055 (3)
C15	0.038 (2)	0.081 (4)	0.047 (2)	-0.013 (2)	0.0134 (19)	0.019 (2)
C16	0.0240 (14)	0.0201 (16)	0.0216 (13)	0.0020 (11)	0.0040 (11)	-0.0047 (11)
C17	0.0294 (16)	0.0200 (17)	0.0257 (14)	-0.0015 (12)	0.0078 (12)	-0.0027 (12)
C18	0.0323 (17)	0.0193 (18)	0.0332 (17)	-0.0002 (13)	0.0038 (13)	-0.0007 (13)
C19	0.0280 (16)	0.0242 (18)	0.0303 (16)	0.0030 (13)	0.0027 (12)	-0.0071 (13)
C20	0.0230 (14)	0.0266 (18)	0.0236 (14)	0.0031 (12)	0.0017 (11)	-0.0053 (12)
C21	0.0221 (14)	0.0228 (17)	0.0209 (13)	0.0022 (12)	0.0019 (11)	-0.0023 (11)
C22	0.0285 (17)	0.038 (2)	0.0263 (15)	0.0092 (14)	0.0057 (13)	-0.0048 (14)
C23	0.0296 (17)	0.043 (2)	0.0264 (15)	0.0091 (15)	0.0109 (13)	0.0027 (14)
C24	0.0334 (18)	0.036 (2)	0.0242 (15)	0.0051 (14)	0.0075 (13)	0.0040 (14)

C25	0.0254 (15)	0.0248 (18)	0.0209 (13)	0.0040 (12)	0.0023 (11)	-0.0026 (12)
N1	0.0243 (13)	0.0207 (14)	0.0206 (11)	0.0014 (10)	0.0051 (9)	-0.0025 (10)
N2	0.0311 (15)	0.0260 (16)	0.0218 (12)	0.0034 (11)	0.0081 (11)	0.0010 (11)
01	0.0234 (11)	0.0219 (12)	0.0251 (10)	-0.0017 (9)	0.0086 (8)	-0.0029 (9)
Ni1	0.0229 (2)	0.0184 (2)	0.02046 (19)	0.00083 (14)	0.00663 (14)	-0.00010 (14)
Br1	0.03690 (19)	0.0209 (2)	0.02905 (17)	-0.00314 (13)	0.01042 (13)	0.00202 (12)

Geometric parameters (Å, °)

N1—Ni1	1.880 (3)	C12—C13	1.520 (6)
N2—Ni1	1.922 (3)	C12—C14	1.520 (6)
N2—H2A	0.878 (19)	C12—C15	1.535 (5)
N2—H2B	0.878 (19)	C13—H13A	0.9800
O1—Ni1	1.850 (2)	C13—H13B	0.9800
Ni1—Br1	2.3330 (5)	C13—H13C	0.9800
C101	1.312 (4)	C14—H14A	0.9800
C1—C6	1.420 (4)	C14—H14B	0.9800
C1—C2	1.439 (4)	C14—H14C	0.9800
C2—C3	1.384 (4)	C15—H15A	0.9800
C2—C8	1.537 (4)	C15—H15B	0.9800
C3—C4	1.414 (5)	C15—H15C	0.9800
С3—Н3	0.9500	C16—C17	1.381 (5)
C4—C5	1.367 (4)	C16—N1	1.420 (4)
C4—C12	1.533 (4)	C16—C21	1.435 (4)
C5—C6	1.418 (4)	C17—C18	1.400 (5)
С5—Н5	0.9500	С17—Н17	0.9500
C6—C7	1.426 (4)	C18—C19	1.365 (5)
C7—N1	1.305 (4)	C18—H18	0.9500
С7—Н7	0.9500	C19—C20	1.418 (5)
C8—C11	1.534 (4)	С19—Н19	0.9500
C8—C9	1.538 (5)	C20—C22	1.420 (5)
C8—C10	1.546 (5)	C20—C21	1.423 (5)
С9—Н9А	0.9800	C21—C25	1.422 (5)
С9—Н9В	0.9800	C22—C23	1.359 (6)
С9—Н9С	0.9800	С22—Н22	0.9500
C10—H10A	0.9800	C23—C24	1.408 (5)
C10—H10B	0.9800	С23—Н23	0.9500
C10—H10C	0.9800	C24—C25	1.364 (5)
C11—H11A	0.9800	C24—H24	0.9500
C11—H11B	0.9800	C25—N2	1.447 (4)
C11—H11C	0.9800		
O1—C1—C6	122.0 (3)	C12—C14—H14B	109.5
O1—C1—C2	120.0 (3)	H14A—C14—H14B	109.5
C6—C1—C2	118.0 (3)	C12—C14—H14C	109.5
C3—C2—C1	117.4 (3)	H14A—C14—H14C	109.5
C3—C2—C8	121.8 (3)	H14B—C14—H14C	109.5
C1—C2—C8	120.8 (3)	C12—C15—H15A	109.5

C2—C3—C4	125.5 (3)	C12—C15—H15B	109.5
С2—С3—Н3	117.3	H15A—C15—H15B	109.5
С4—С3—Н3	117.3	C12—C15—H15C	109.5
C5—C4—C3	116.4 (3)	H15A—C15—H15C	109.5
C5—C4—C12	123.1 (3)	H15B—C15—H15C	109.5
C3—C4—C12	120.4 (3)	C17—C16—N1	119.5 (3)
C4—C5—C6	121.8 (3)	C17—C16—C21	119.3 (3)
C4—C5—H5	119.1	N1—C16—C21	121.1 (3)
C6—C5—H5	119.1	C16—C17—C18	121.3(3)
C5-C6-C1	121.0 (3)	C16—C17—H17	119.4
$C_{5} - C_{6} - C_{7}$	1174(3)	C18—C17—H17	119.4
C1 - C6 - C7	120.8(3)	C19 - C18 - C17	120.6(3)
N1 - C7 - C6	126.2(3)	C19 - C18 - H18	119.7
N1-C7-H7	116.9	C17 - C18 - H18	119.7
C6-C7-H7	116.9	C18 - C19 - C20	119.7 120.4(3)
$C_{11} - C_{8} - C_{2}$	111.6 (3)	C18 - C19 - C20	119.8
$C_{11} = C_{0} = C_{2}$	108.6(3)	$\begin{array}{cccc} C10 & C10 & H10 \\ C20 & C10 & H10 \\ \end{array}$	110.8
$C_1 = C_2 = C_3$	108.0(3) 108.4(3)	$C_{20} = C_{19} = 1119$	119.0
$C_2 = C_0 = C_9$	106.4(3)	C19 - C20 - C22	120.9(3)
$C1 - C_0 - C_{10}$	100.9(3)	C19 - C20 - C21	119.0(3)
$C_2 = C_8 = C_{10}$	111.9(3)	$C_{22} = C_{20} = C_{21}$	119.0(3)
$C_{2} = C_{3} = C_{10}$	109.4 (5)	$C_{23} = C_{21} = C_{20}$	117.1(3)
C_{8} C_{9} H_{9} H_{9}	109.5	$C_{25} = C_{21} = C_{16}$	124.1(3)
C8—C9—H9B	109.5	$C_{20} = C_{21} = C_{16}$	118.7 (3)
H9A—C9—H9B	109.5	C23—C22—C20	121.0 (3)
C8—C9—H9C	109.5	C23—C22—H22	119.5
Н9А—С9—Н9С	109.5	С20—С22—Н22	119.5
H9B—C9—H9C	109.5	C22—C23—C24	120.1 (3)
C8—C10—H10A	109.5	C22—C23—H23	120.0
C8—C10—H10B	109.5	C24—C23—H23	120.0
H10A—C10—H10B	109.5	C25—C24—C23	120.1 (3)
C8—C10—H10C	109.5	C25—C24—H24	120.0
H10A—C10—H10C	109.5	C23—C24—H24	120.0
H10B—C10—H10C	109.5	C24—C25—C21	122.0 (3)
C8—C11—H11A	109.5	C24—C25—N2	119.3 (3)
C8—C11—H11B	109.5	C21—C25—N2	118.7 (3)
H11A—C11—H11B	109.5	C7—N1—C16	118.5 (3)
C8—C11—H11C	109.5	C7—N1—Ni1	118.9 (2)
H11A—C11—H11C	109.5	C16—N1—Ni1	122.6 (2)
H11B—C11—H11C	109.5	C25—N2—Ni1	118.5 (2)
C13—C12—C14	108.9 (4)	C25—N2—H2A	108 (3)
C13—C12—C4	110.2 (3)	Ni1—N2—H2A	108 (3)
C14—C12—C4	111.8 (3)	C25—N2—H2B	110 (3)
C13—C12—C15	108.1 (4)	Ni1—N2—H2B	95 (3)
C14—C12—C15	109.4 (4)	H2A—N2—H2B	117 (4)
C4—C12—C15	108.4 (3)	C1—O1—Ni1	122.3 (2)
С12—С13—Н13А	109.5	O1—Ni1—N1	92.82 (10)
C12-C13-H13B	109.5	01—Ni1—N2	170.15 (11)
H13A—C13—H13B	109.5	N1—Ni1—N2	87.66 (12)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C3-C2-C8-C10 -125.7 (3) C21-C16-N1-C7 151.9 (3) C1-C2-C8-C10 56.7 (4) C17-C16-N1-Ni1 149.0 (2) C5-C4-C12-C13 -130.8 (4) C21-C16-N1-Ni1 -27.3 (4) C3-C4-C12-C13 53.5 (5) C24-C25-N2-Ni1 -137.7 (3)	
C1C2C8C1056.7 (4)C17C16N1Ni1149.0 (2)C5C4C12C13-130.8 (4)C21C16N1Ni1-27.3 (4)C3C4C12C1353.5 (5)C24C25N2Ni1-137.7 (3)	
C5—C4—C12—C13 -130.8 (4) C21—C16—N1—Ni1 -27.3 (4) C3—C4—C12—C13 53.5 (5) C24—C25—N2—Ni1 -137.7 (3)	
C3—C4—C12—C13 53.5 (5) C24—C25—N2—Ni1 -137.7 (3)	
C5—C4—C12—C14 –9.5 (5) C21—C25—N2—Ni1 43.4 (4)	
C3—C4—C12—C14 174.8 (4) C6—C1—O1—Ni1 23.3 (4)	
C5—C4—C12—C15 111.1 (4) C2—C1—O1—Ni1 -158.1 (2)	
C3—C4—C12—C15 -64.6 (4) C1—O1—Ni1—N1 -41.9 (2)	
N1—C16—C17—C18 –178.5 (3) C1—O1—Ni1—Br1 140.2 (2)	
C21—C16—C17—C18 –2.1 (5) C7—N1—Ni1—O1 37.9 (2)	
C16—C17—C18—C19 2.1 (5) C16—N1—Ni1—O1 -142.9 (2)	
C17-C18-C19-C20 -0.2 (5) $C7-N1-Ni1-N2$ -132.3 (2)	
C18—C19—C20—C22 176.4 (3) C16—N1—Ni1—N2 46.9 (2)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.88 (2)	2.98 (2)	3.827 (3)	162 (4)
0.88 (2)	2.84 (4)	3.285 (4)	113 (3)
0.88 (2)	2.90 (3)	3.589 (4)	137 (3)
0.95	2.93	3.624 (4)	131
	<i>D</i> —H 0.88 (2) 0.88 (2) 0.88 (2) 0.95	D—H H···A 0.88 (2) 2.98 (2) 0.88 (2) 2.84 (4) 0.88 (2) 2.90 (3) 0.95 2.93	D—HH···A D ···A0.88 (2)2.98 (2)3.827 (3)0.88 (2)2.84 (4)3.285 (4)0.88 (2)2.90 (3)3.589 (4)0.952.933.624 (4)

C13—H13A····Br1 ⁱⁱⁱ	0.98	2.96	3.804 (6)	145	
C11—H11 <i>B</i> …C1 ^{iv}	0.98	2.77	3.741 (5)	169	
C9—H9 <i>C</i> ···C5 ^{iv}	0.98	2.76	3.730 (5)	169	
C7—H7···C19 ^v	0.95	2.71	3.518 (5)	144	

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*, *z*; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) -*x*, -*y*, -*z*.