

Received 6 March 2018 Accepted 11 March 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; lanthanide(III); 2,6diacetylpyridine bis(benzoylhydrazone) ligand; terbium(II); dysprosium (III); hydrogen bonding; π – π stacking; supramolecular framework.

CCDC references: 1828810; 1828809

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Chihiro Kachi-Terajima* and Norihisa Kimura

Department of Chemistry, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan. *Correspondence e-mail: chihiro.kachi@chem.sci.toho-u.ac.jp

The title lanthanide complexes, $[Ln(DAPBH_2)(CH_3OH)(H_2O)_3]Cl_3\cdot 2CH_3OH$ $[Ln^{III} = Tb$ and Dy; DAPBH₂ = 2,6-diacetylpyridine bis(benzoylhydrazone), $C_{23}H_{21}N_5O_2$], are isotypic. The central lanthanide ions are nine-coordinate, being ligated by three N and two O atoms from the pentadentate DAPBH₂ ligand, and four O atoms from the coordinated methanol molecule and three coordinated water molecules. The coordination geometry of the lanthanide ion is a distorted capped square antiprism. In the crystals, the various components are linked by $O-H\cdots Cl$, $N-H\cdots Cl$ and $O-H\cdots O$ hydrogen bonds, forming three-dimensional supramolecular frameworks. Within the frameworks, there are $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds and offset $\pi-\pi$ interactions (intercentroid distance *ca* 3.81 Å).

1. Chemical context

Molecule-based magnets based on lanthanide ions have attracted much attention because of their large magnetic moments and magnetic anisotropy. The design of building units, such as the coordination-acceptor or coordinationdonor magnetic units, is a key process in the construction of multi-dimensional magnetic materials. Some lanthanide complexes with 2,6-diacetylpyridine bis(benzoylhydrazone as ligand (DAPBH₂) have been reported, *viz*. for La^{III} (Thomas *et al.*, 1979), Yb^{III} (Pan *et al.*, 1989), Eu^{III} (Gao & Wang, 2012), Dy^{III} (Batchelor *et al.*, 2014) and for La^{III} and Dy^{III} (Gao *et al.*, 2016). The Dy complexes having two DAPBH₂ ligands (Batchelor et al., 2014) have demonstrated attractive singlemolecule magnet behaviour, indicating that DAPBH₂ ligands are useful for constructing magnetic units. For the use of DAPBH₂ complexes as building blocks, coordination active sites are needed. The DAPBH₂ ligand is pentadentate, thus it can make coordination sites in the axial positions of the lanthanide ion. These complexes have coordinated or noncoordinated nitrate ions, which can disturb the coordination of coordination-donor units. We report herein on the Tb^{III} and Dy^{III} complexes with the DAPBH₂ ligand containing noncoordinating chloride ions as the coordination-acceptor building units.

2. Structural commentary

The title Tb^{III} and Dy^{III} complexes are isotypic, crystallizing in the same space group (*P* $\overline{1}$) with almost identical unit-cell

research communications

parameters. The representative molecular structure of the Tb^{III} complex is shown in Fig. 1.

The lanthanide ion is surrounded by six oxygen atoms and three nitrogen atoms, and the coordination polyhedron is a distorted capped square antiprism. The equatorial coordination site of the Ln^{III} ion is occupied by an N_3O_2 atom set of a pentadentate DAPBH₂ ligand. Selected bond lengths and bond angles for both complexes are compared in Table 1. The Ln-donor bond distances are in the range of 2.321 (2)-2.596 (2) Å for the Tb^{III} complex and 2.313 (2)-2.584 (2) Å for the Dy^{III} complex. The bond distances for the Dy^{III} complex are slightly shorter than those of the Tb^{III} complex as a result of the lanthanide contraction effect. The DAPBH₂ ligand is approximately planar, and the Ln^{III} ion lies out of the mean plane (O1/N2/N3/N4/O2) by a distance of 0.5754 (3) Å for the Tb^{III} complex and 0.5702 (3) Å for the Dy^{III} complex. The coordination of the DAPBH₂ ligand to the lanthanide ion shows a bent arrangement [bond angles O1-Ln-N4 and O2-Ln-N2 are 149.40 (6) and 152.08 (7)°, respectively, for the Tb^{III} complex, and 149.36 (7) and 151.76 (8)°, respectively, for the Dy^{III} complex]. These coordination features are similar

Figure 1

Molecular structure of the Tb^{III} complex, showing the selected atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1	
Selected geometric parameters (Å	^o) for the Th ^{III} and Dv ^{III} complexes

Tb1-N2	2.5845 (19)	Dy1-N2	2.577 (2)
Tb1-N3	2.596 (2)	Dy1-N3	2.584 (2)
Tb1-N4	2.5685 (19)	Dy1-N4	2.555 (2)
Tb1-O1	2.3660 (16)	Dy1-O1	2.358 (2)
Tb1-O2	2.4074 (17)	Dy1-O2	2.3961 (19)
Tb1-O3	2.4867 (18)	Dy1-O3	2.472 (2)
Tb1-O5	2.3642 (19)	Dy1-O4	2.420 (2)
Tb1-O4	2.428 (2)	Dy1-O5	2.354 (2)
Tb1-O6	2.321 (2)	Dy1-06	2.313 (2)
O1-Tb1-N4	149.40 (6)	O1-Dy1-N4	149.36 (7)
O2-Tb1-N2	152.08 (7)	O2-Dy1-N2	151.76 (8)
O6-Tb1-N4	74.40(7)	O6-Dy1-N4	74.67 (8)
O6-Tb1-O2	76.48 (7)	O6-Dy1-O2	76.31 (8)
O6-Tb1-N2	76.97 (7)	O6-Dy1-N2	76.91 (8)
O6-Tb1-N3	79.68 (7)	O6-Dy1-N3	80.29 (8)
O6-Tb1-O1	76.15 (7)	O6-Dy1-O1	75.91 (8)
-			

to those reported for the dysprosium DAPBH₂ nitrate complex (Gao *et al.*, 2016). Three water molecules and one methanol molecule are involved in the coordination sphere of the Ln^{III} ion. The asymmetric unit consists of the Ln^{III} complex, three chlorides as counter-ions, and two methanol solvent molecules.

3. Supramolecular features

In the crystals, the lanthanide complexes are connected by $O-H\cdots Cl$, $N-H\cdots Cl$, $O-H\cdots O$, $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds (Tables 2 and 3). The representative crystal structure of the Tb^{III} complex is discussed here and the crystal packing is shown in Figs. 2 and 3. The various components are linked by $O-H\cdots Cl$ and $N-H\cdots Cl$

Figure 2

A view along the *b* axis of the hydrogen-bonded (dashed lines) layer structure of the Tb^{III} complex. The Cl^- ions are shown as green balls and the C-bound H atoms have been omitted for clarity.

Table 2 Hydrogen-bond geometry $(\text{\AA}, ^{\circ})$ for the Tb^{III} complex.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H4SA\cdots Cl3$	0.64 (4)	2.61 (4)	3.213 (2)	159 (5)
$N1 - H1A \cdots Cl2^{i}$	0.88	2.52	3.299 (2)	148
$O6-H6SA\cdots Cl1^{i}$	0.73 (4)	2.32 (4)	3.040 (2)	172 (4)
O3−H3S···Cl3 ⁱⁱ	0.68 (5)	2.68 (5)	3.2998 (19)	153 (5)
$O4-H4SB\cdots Cl3^{iii}$	0.81 (4)	2.34 (4)	3.1323 (19)	169 (4)
$O6-H6SB\cdots Cl1^{iv}$	0.74 (4)	2.32 (4)	3.058 (2)	176 (3)
$O7 - H7S \cdot \cdot \cdot Cl2^{v}$	0.72 (3)	2.34 (3)	3.050(2)	174 (4)
O8−H8S···Cl3 ^{vi}	0.91 (4)	2.23 (4)	3.110(2)	163 (4)
$O5-H5SA\cdots O8^{vi}$	0.77 (4)	1.96 (4)	2.710 (3)	166 (4)
$O5-H5SB\cdots O7^{v}$	0.79 (4)	1.88 (4)	2.664 (3)	168 (4)
$C7 - H7 \cdot \cdot \cdot Cl2^{i}$	0.95	2.74	3.491 (3)	137
$C11-H11\cdots Cl1^{vii}$	0.95	2.80	3.731 (3)	167
$C12-H12\cdots Cl1^{viii}$	0.95	2.80	3.741 (3)	172
$C16-H16B\cdots Cl2$	0.98	2.66	3.628 (3)	170
$C16-H16C\cdots Cl2^{viii}$	0.98	2.79	3.621 (3)	143
$C19-H19\cdots Cl2$	0.95	2.73	3.515 (3)	140
$C26-H26A\cdots Cl3^{ix}$	0.98	2.80	3.774 (3)	174
$C4-H4\cdots O8^{x}$	0.95	2.59	3.397 (3)	143

hydrogen bonds, forming layers parallel to (101), as illustrated in Fig. 2 (see also Table 2). Within the layers there are offset π - π interactions involving the benzoyl rings of neighbouring molecules [$Cg2\cdots Cg3^{a,b} = 3.813$ (2) Å, $\alpha = 3.8$ (1)°, interplanar distance = 3.483 (1) Å, slippages = 1.77 and 1.55 Å; Cg2

Figure 3

A view along the *a* axis of the hydrogen-bonded (dashed lines) supramolecular framework of the Tb^{III} complex. The Cl^- ions are shown as green balls and the C-bound H atoms have been omitted for clarity.

Table 3 Hydrogen-bond geometry (Å, $^\circ)$ for the Dy^III complex.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4SA\cdots Cl3$	0.77 (4)	2.45 (4)	3.211 (3)	170 (4)
$N1 - H1A \cdots Cl2^{i}$	0.88	2.53	3.298 (2)	147
$O6-H6SA\cdots Cl1^{i}$	0.77 (4)	2.27 (4)	3.030 (3)	168 (4)
$O3-H3S\cdots Cl3^{ii}$	0.79 (3)	2.60 (3)	3.329 (2)	156 (3)
$O4-H4SB\cdots Cl3^{iii}$	0.73 (5)	2.42 (4)	3.133 (3)	165 (4)
$O6-H6SB\cdots Cl1^{iv}$	0.67 (3)	2.39 (3)	3.058 (3)	179 (5)
$O7 - H7S \cdot \cdot \cdot Cl2^{v}$	0.78 (4)	2.29 (4)	3.049 (3)	165 (4)
$O8-H8S\cdots Cl3^{vi}$	0.77 (5)	2.34 (5)	3.104 (3)	174 (6)
$O5-H5SA\cdots O8^{vi}$	0.81 (4)	1.96 (4)	2.702 (4)	154 (4)
$O5-H5SB\cdots O7^{v}$	0.72 (5)	1.95 (5)	2.659 (3)	167 (6)
$C7-H7\cdots Cl2^{i}$	0.95	2.75	3.494 (3)	136
$C11 - H11 \cdot \cdot \cdot Cl1^{vii}$	0.95	2.80	3.730 (3)	167
$C12-H12\cdots Cl1^{viii}$	0.95	2.79	3.734 (3)	172
$C16-H16B\cdots Cl2$	0.98	2.66	3.620 (3)	166
$C16-H16C\cdots Cl2^{viii}$	0.98	2.77	3.618 (3)	145
$C19-H19\cdots Cl2$	0.95	2.74	3.522 (3)	140
$C26-H26A\cdots Cl3^{ix}$	0.98	2.79	3.761 (4)	171
$C4-H4\cdots O8^{x}$	0.95	2.60	3.406 (4)	143

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z + 1; (iii) -x, -y, -z + 1; (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1; (vii) x - 1, y - 1, z; (viii) -x, -y + 1, -z; (ix) x, y + 1, z; (x) x + 1, y - 1, z.

and Cg3 are the centroids of C2–C7 and C18–C23 rings, respectively, symmetry codes: (a) x, y - 1, z; (b) x, y + 1, z]. The layers are linked by O–H···O, O–H···Cl and N– H···Cl hydrogen bonds, forming a three-dimensional supramolecular framework, which is reinforced by a series of C– H···Cl and C–H···O hydrogen bonds (Fig. 3 and Table 2).

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom *et al.*, 2016) for the DAPBH₂ ligand gave 59 hits. There are 12 lanthanide nitrate DAPBH₂ complexes but no complexes with halogen ions as counterions. A number of halides of transition metal DAPBH₂ complexes have been reported, *viz*. Mn (Lorenzini *et al.*, 1983), Fe (Bar *et al.*, 2015), Co (Batchelor *et al.*, 2011), Cu (Neto *et al.*, 2013), and Re (Al-Shihri *et al.*, 1993).

5. Synthesis and crystallization

A methanol solution (15 ml) of TbCl₃· $6H_2O$ (0.178 g, 0.48 mmol), 2,6-diacetylpyridine (0.075 g, 0.45 mmol), and benzoylhydrazine (0.127 g, 0.93 mmol) was refluxed for 2 h. The resulting mixture was filtered. Vapour diffusion of diethyl ether into the filtrate afforded colourless plate-like crystals of the Tb^{III} complex (0.116 g, yield 30%). The synthetic procedure for the Dy^{III} complex is similar, starting from dysprosium chloride (yield 43%).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4. The O-H hydrogen atoms of the water and methanol molecules were located in difference-Fourier maps and were refined isotropically. The O-H

research communications

Table 4	
Experimental	details.

	Tb ^{III} complex	Dy ^{III} complex
Crystal data		
Chemical formula	$[Tb(C_{23}H_{21}N_5O_2)(CH_4O)(H_2O)_3)]Cl_3 \cdot 2CH_4O$	$[Dy(C_{23}H_{21}N_5O_2)(CH_4O)(H_2O)_3)]Cl_3 \cdot 2CH_4O$
$M_{\rm r}$	814.89	818.47
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	100	100
a, b, c (Å)	8.9703 (7), 12.6433 (9), 14.4233 (11)	8.9852 (7), 12.6242 (10), 14.3887 (12)
α, β, γ (°)	87.004 (1), 88.752 (1), 81.980 (1)	87.062 (1), 88.810 (1), 82.068 (1)
$V(\dot{A}^3)$	1617.4 (2)	1614.2 (2)
Z	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.49	2.62
Crystal size (mm)	$0.20 \times 0.15 \times 0.05$	$0.25 \times 0.15 \times 0.10$
Data collection		
Diffractometer	Bruker SMART APEX CCD	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2014)	Multi-scan (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.636, 0.886	0.561, 0.780
No. of measured, independent and	13292, 8926, 8227	13359, 8915, 8062
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.021	0.021
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.720	0.720
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.069, 1.03	0.030, 0.073, 1.04
No. of reflections	8926	8915
No. of parameters	429	429
No. of restraints	0	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.48, -0.73	1.73, -0.79

Computer programs: SMART and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

distance of the coordinated methanol molecule in the Dy^{III} complex was restrained to 0.82 Å. Other hydrogen atoms were generated geometrically and refined with a riding model: N-H = 0.88 Å, C-H = 0.95–0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl, O-hydroxyl)$ and 1.2 $U_{eq}(C, N)$ for other H atoms.

Funding information

This work was supported by MEXT KAKENHI (grant No. JP 20750051) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

- Al-Shihri, A. S. M., Dilworth, J. R., Howe, S. D., Silver, J., Thompson, R. M., Davies, J. & Povey, D. C. (1993). *Polyhedron*, **12**, 2297–2305.
- Bar, A. K., Pichon, C., Gogoi, N., Duhayon, C., Ramasesha, S. & Sutter, J.-P. (2015). *Chem. Commun.* 51, 3616–3619.
- Batchelor, L. J., Cimatti, I., Guillot, R., Tuna, F., Wernsdorfer, W., Ungur, L., Chibotaru, L. F., Campbell, V. E. & Mallah, T. (2014). *Dalton Trans.* 43, 12146–12149.

- Batchelor, L. J., Sangalli, M., Guillot, R., Guihéry, N., Maurice, R., Tuna, F. & Mallah, T. (2011). *Inorg. Chem.* 50, 12045–12052.
- Bruker (2014). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gao, X.-S., Jiang, X. & Yao, C. (2016). J. Mol. Struct. 1126, 275-279.
- Gao, X.-S. & Wang, J.-T. (2012). Inorg. Chim. Acta, 386, 1-7.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lorenzini, C., Pelizzi, C., Pelizzi, G. & Predieri, G. (1983). J. Chem. Soc. Dalton Trans. pp. 721-727.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Neto, B. A. D., Viana, B. F. L., Rodrigues, T. S., Lalli, P. M., Eberlin, M. N., da Silva, W. A., de Oliveira, H. C. B. & Gatto, C. C. (2013). *Dalton Trans.* 42, 11497–11506.
- Pan, X. Y., Yan, S. P., Wang, G. L., Wang, H. G., Wang, R. J. & Yao, X. K. (1989). Acta Chim. Sinica, 47, 795–799.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). *Inorg. Chim.* Acta, **37**, L459–L460.

Acta Cryst. (2018). E74, 535-538 [https://doi.org/10.1107/S2056989018004103]

Crystal structures of two isotypic lanthanide(III) complexes: triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)]methanollanthanide(III) trichloride methanol disolvates (Ln^{III} = Tb and Dy)

Chihiro Kachi-Terajima and Norihisa Kimura

Computing details

For both structures, data collection: *SMART* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)]methanolterbium(III) trichloride methanol disolvate (TbDAPBH2)

Crystal data

 $[\text{Tb}(\text{C}_{23}\text{H}_{21}\text{N}_{5}\text{O}_{2})(\text{CH}_{4}\text{O})(\text{H}_{2}\text{O})_{3})]\text{Cl}_{3}\cdot2\text{CH}_{4}\text{O}$ $M_{r} = 814.89$ Triclinic, $P\overline{1}$ a = 8.9703 (7) Å b = 12.6433 (9) Å c = 14.4233 (11) Å $a = 87.004 (1)^{\circ}$ $\beta = 88.752 (1)^{\circ}$ $\gamma = 81.980 (1)^{\circ}$ $V = 1617.4 (2) \text{ Å}^{3}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: sealed tube Detector resolution: 8.366 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.636$, $T_{\max} = 0.886$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.069$ S = 1.03 Z = 2 F(000) = 820 $D_x = 1.673 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7626 reflections $\theta = 2.3-30.4^{\circ}$ $\mu = 2.49 \text{ mm}^{-1}$ T = 100 K Plate, colorless $0.20 \times 0.15 \times 0.05 \text{ mm}$

13292 measured reflections 8926 independent reflections 8227 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 30.8^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 17$ $l = -16 \rightarrow 20$

8926 reflections429 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0355P)^2 + 0.3922P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 1.48 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3931 (3)	-0.18034 (19)	0.27986 (17)	0.0141 (4)
C2	0.4840 (3)	-0.27866 (19)	0.31946 (17)	0.0145 (5)
C3	0.6288 (3)	-0.2707 (2)	0.34747 (19)	0.0185 (5)
H3	0.6690	-0.2055	0.3365	0.022*
C4	0.7149 (3)	-0.3579 (2)	0.3915 (2)	0.0238 (6)
H4	0.8137	-0.3523	0.4113	0.029*
C5	0.6563 (3)	-0.4533 (2)	0.4066 (2)	0.0232 (6)
Н5	0.7154	-0.5130	0.4367	0.028*
C6	0.5125 (3)	-0.4623 (2)	0.3781 (2)	0.0212 (5)
H6	0.4733	-0.5280	0.3883	0.025*
C7	0.4255 (3)	-0.3752 (2)	0.33454 (19)	0.0186 (5)
H7	0.3266	-0.3810	0.3151	0.022*
C8	0.0392 (3)	-0.08870 (19)	0.18845 (17)	0.0133 (4)
C9	-0.0525 (3)	-0.1790 (2)	0.2001 (2)	0.0187 (5)
H9A	-0.0136	-0.2273	0.2521	0.028*
H9B	-0.0461	-0.2183	0.1431	0.028*
H9C	-0.1578	-0.1504	0.2129	0.028*
C10	-0.0267 (3)	0.01568 (19)	0.14391 (17)	0.0136 (4)
C11	-0.1615 (3)	0.0250 (2)	0.09601 (19)	0.0183 (5)
H11	-0.2197	-0.0323	0.0976	0.022*
C12	-0.2087 (3)	0.1203 (2)	0.0458 (2)	0.0202 (5)
H12	-0.3010	0.1296	0.0134	0.024*
C13	-0.1197 (3)	0.2013 (2)	0.04380 (18)	0.0171 (5)
H13	-0.1484	0.2661	0.0084	0.021*
C14	0.0129 (3)	0.18641 (18)	0.09447 (17)	0.0127 (4)
C15	0.1148 (3)	0.26892 (18)	0.09226 (17)	0.0127 (4)
C16	0.0854 (3)	0.36814 (19)	0.03070 (19)	0.0187 (5)
H16A	0.1554	0.3628	-0.0225	0.028*
H16B	0.0998	0.4302	0.0657	0.028*
H16C	-0.0183	0.3765	0.0086	0.028*
C17	0.4647 (3)	0.28258 (18)	0.18861 (17)	0.0136 (4)
C18	0.5814 (3)	0.35476 (19)	0.18763 (18)	0.0162 (5)
C19	0.5606 (3)	0.4577 (2)	0.1460 (2)	0.0205 (5)
H19	0.4690	0.4836	0.1154	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0.6730(3)	0.5226 (2)	0.1491 (2)	0.0233 (6)
H20	0.6579	0.5932	0.1218	0.028*
C21	0.8076 (3)	0.4835 (2)	0.1924 (2)	0.0237 (6)
H21	0.8854	0.5273	0.1938	0.028*
C22	0.8297 (3)	0.3809 (2)	0.2338 (2)	0.0225 (5)
H22	0.9222	0.3548	0.2632	0.027*
C23	0.7164 (3)	0.3164 (2)	0.23211 (19)	0.0185 (5)
H23	0.7308	0.2466	0.2611	0.022*
C24	0.4784(3)	0.1550(2)	0.4460(2)	0.022 (6)
H24A	0 3820	0.1904	0.4698	0.0252 (0)
H24R	0.5282	0.2067	0.4080	0.035*
H24C	0.5202	0.1268	0.4981	0.035*
C25	0.9427	0.1200 0.5147(2)	0.4701	0.035
U25 H25A	0.9003 (3)	0.5643	0.0139(2) 0.5637	0.0274(0) 0.041*
H25R	0.9243	0.3043	0.5030	0.041*
H25C	0.8024	0.4344	0.5930	0.041*
H23C	1.0018	0.4681	0.0403	0.041
C26	0.1290 (3)	0.7633(2)	0.5060 (2)	0.0292 (6)
H26A	0.1504	0.8287	0.5337	0.044*
H26B	0.1/36	0.7594	0.4435	0.044*
H26C	0.1722	0.7009	0.5446	0.044*
CII	0.58645 (7)	0.81886 (5)	0.06470 (4)	0.01793 (12)
Cl2	0.18932 (7)	0.59026 (5)	0.15256 (5)	0.02071 (13)
Cl3	0.18676 (7)	0.02722 (5)	0.60038 (5)	0.02070 (13)
H3S	0.517 (5)	0.035 (4)	0.383 (3)	0.059 (15)*
H7S	0.804 (4)	0.535 (3)	0.722 (2)	0.020 (9)*
H8S	-0.061 (5)	0.822 (3)	0.462 (3)	0.055 (13)*
H4SA	0.179 (5)	0.011 (3)	0.421 (3)	0.044 (14)*
H5SA	0.127 (4)	0.217 (3)	0.377 (3)	0.036 (11)*
H6SA	0.445 (4)	-0.021 (3)	0.103 (3)	0.035 (11)*
H4SB	0.063 (4)	0.003 (3)	0.378 (3)	0.034 (10)*
H5SB	0.188 (4)	0.283 (3)	0.323 (3)	0.045 (12)*
H6SB	0.404 (4)	0.070 (3)	0.068 (3)	0.021 (9)*
N1	0.2562 (2)	-0.18805 (16)	0.24489 (15)	0.0153 (4)
H1A	0.2202	-0.2492	0.2433	0.018*
N2	0.1773 (2)	-0.09152 (15)	0.21167 (14)	0.0126 (4)
N3	0.0574 (2)	0.09586 (15)	0.14648 (14)	0.0124 (4)
N4	0.2332 (2)	0.24464 (15)	0.14258 (14)	0.0117 (4)
N5	0.3365 (2)	0.31596 (16)	0.14172 (15)	0.0152 (4)
H5A	0.3200	0.3792	0.1125	0.018*
01	0.43783 (19)	-0.09181(13)	0.28311 (13)	0.0153 (3)
02	0.48215(19)	0 19393 (14)	0.23100(13)	0.0174(4)
03	0.4522(2)	0.06898 (15)	0.39042(13)	0.0171(1) 0.0160(4)
04	0.1509(2)	0.00969 (16)	0.38079(15)	0.0180(4)
05	0.1709(2)	0.22339(15)	0.33114(14)	0.0178(4)
06	0.4055(2)	0.03235(16)	0.10887(15)	0.0207(4)
07	0.3055(2)	0.56858 (16)	0.68054 (16)	0.0267(-7)
08	-0.0300(2)	0.76403 (16)	0.00034(10) 0.50082(15)	0.0200(3)
Th1	0.0300(2)	0.70793(10) 0.07670(2)	0.30002(13)	0.0230(4)
101	0.29292 (2)	0.07070(2)	0.23002 (2)	0.01020(4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0155 (11)	0.0136 (11)	0.0133 (11)	-0.0022 (8)	0.0007 (9)	-0.0008 (8)
C2	0.0168 (11)	0.0127 (10)	0.0137 (12)	-0.0008 (8)	-0.0007 (9)	-0.0004 (8)
C3	0.0171 (12)	0.0157 (11)	0.0225 (14)	-0.0015 (9)	-0.0025 (10)	0.0005 (9)
C4	0.0174 (12)	0.0234 (13)	0.0302 (16)	0.0006 (10)	-0.0073 (11)	-0.0029 (11)
C5	0.0251 (14)	0.0204 (13)	0.0223 (14)	0.0033 (10)	-0.0060 (11)	0.0020 (10)
C6	0.0262 (14)	0.0153 (12)	0.0218 (14)	-0.0034 (10)	-0.0033 (11)	0.0032 (10)
C7	0.0199 (12)	0.0163 (11)	0.0197 (13)	-0.0038 (9)	-0.0028 (10)	0.0025 (9)
C8	0.0143 (11)	0.0136 (10)	0.0124 (11)	-0.0031 (8)	-0.0017 (9)	-0.0010 (8)
C9	0.0161 (11)	0.0159 (11)	0.0251 (14)	-0.0061 (9)	-0.0023 (10)	0.0006 (10)
C10	0.0119 (10)	0.0148 (11)	0.0138 (12)	-0.0010 (8)	-0.0010 (9)	-0.0001 (8)
C11	0.0160 (12)	0.0158 (11)	0.0242 (14)	-0.0056 (9)	-0.0049 (10)	0.0001 (10)
C12	0.0145 (11)	0.0215 (12)	0.0254 (14)	-0.0049 (9)	-0.0075 (10)	0.0011 (10)
C13	0.0154 (11)	0.0167 (11)	0.0189 (13)	-0.0016 (9)	-0.0047 (9)	0.0025 (9)
C14	0.0125 (10)	0.0135 (10)	0.0124 (11)	-0.0022 (8)	-0.0014 (9)	-0.0003 (8)
C15	0.0152 (11)	0.0115 (10)	0.0112 (11)	-0.0008(8)	-0.0004 (9)	-0.0005 (8)
C16	0.0209 (12)	0.0148 (11)	0.0205 (13)	-0.0038 (9)	-0.0066 (10)	0.0050 (9)
C17	0.0111 (10)	0.0140 (11)	0.0155 (12)	-0.0014 (8)	0.0023 (9)	0.0006 (8)
C18	0.0130 (11)	0.0165 (11)	0.0192 (13)	-0.0032(9)	0.0009 (9)	-0.0004 (9)
C19	0.0154 (12)	0.0198 (12)	0.0262 (15)	-0.0042 (9)	0.0001 (10)	0.0044 (10)
C20	0.0219 (13)	0.0185 (12)	0.0303 (16)	-0.0082 (10)	0.0037 (11)	0.0042 (11)
C21	0.0206 (13)	0.0243 (13)	0.0289 (15)	-0.0119 (10)	0.0050 (11)	-0.0040 (11)
C22	0.0157 (12)	0.0260 (13)	0.0267 (15)	-0.0047 (10)	-0.0031 (10)	-0.0035 (11)
C23	0.0181 (12)	0.0190 (12)	0.0189 (13)	-0.0039(9)	-0.0005 (10)	-0.0004(9)
C24	0.0266 (14)	0.0210(13)	0.0230 (14)	-0.0045 (10)	-0.0070 (11)	-0.0047 (10)
C25	0.0277 (15)	0.0273 (14)	0.0280 (16)	-0.0054 (11)	0.0015 (12)	-0.0058 (12)
C26	0.0270 (15)	0.0222 (14)	0.0377 (18)	-0.0024 (11)	0.0050 (13)	-0.0004(12)
Cl1	0.0197 (3)	0.0156 (3)	0.0175 (3)	-0.0001(2)	0.0012 (2)	0.0021 (2)
C12	0.0225 (3)	0.0190 (3)	0.0211 (3)	-0.0038(2)	-0.0071 (2)	0.0001 (2)
C13	0.0164 (3)	0.0262 (3)	0.0203 (3)	-0.0051(2)	-0.0007(2)	-0.0022(2)
N1	0.0158 (10)	0.0113 (9)	0.0185 (11)	-0.0019 (7)	-0.0043 (8)	0.0029 (8)
N2	0.0155 (9)	0.0094 (9)	0.0130 (10)	-0.0019 (7)	-0.0054 (8)	0.0010(7)
N3	0.0130 (9)	0.0118 (9)	0.0119 (10)	-0.0014 (7)	-0.0011 (7)	0.0015 (7)
N4	0.0109 (9)	0.0123 (9)	0.0127 (10)	-0.0044 (7)	-0.0011 (7)	0.0001 (7)
N5	0.0143 (10)	0.0131 (9)	0.0186 (11)	-0.0053 (7)	-0.0033 (8)	0.0044 (8)
01	0.0165 (8)	0.0101 (8)	0.0199 (9)	-0.0033 (6)	-0.0035 (7)	-0.0004 (6)
02	0.0148 (8)	0.0149 (8)	0.0222 (10)	-0.0037 (6)	-0.0032(7)	0.0061 (7)
03	0.0161 (9)	0.0166 (9)	0.0154 (9)	-0.0018 (7)	-0.0042 (7)	-0.0019 (7)
04	0.0172 (10)	0.0227 (10)	0.0155 (10)	-0.0082(7)	-0.0003 (8)	-0.0003 (7)
05	0.0225 (9)	0.0137 (9)	0.0164 (10)	-0.0010(7)	0.0055 (8)	0.0001 (7)
06	0.0290 (11)	0.0130 (9)	0.0180 (10)	0.0023 (8)	0.0052 (8)	0.0030 (8)
07	0.0355 (12)	0.0171 (9)	0.0272 (12)	-0.0061 (8)	0.0056 (9)	0.0039 (8)
08	0.0275 (10)	0.0252 (10)	0.0230 (11)	-0.0079 (8)	0.0033 (8)	0.0012 (8)
		0.00000(()	0.01004(()		0.00114 (4)	0.0000 0 (4)

Geometric parameters (Å, °)

<u></u> <u>C101</u>	1.244 (3)	C20—C21	1.388 (4)
C1—N1	1.355 (3)	C20—H20	0.9500
C1—C2	1.483 (3)	C21—C22	1.390 (4)
C2—C3	1.387 (4)	C21—H21	0.9500
C2—C7	1.399 (3)	C22—C23	1.390 (4)
C3—C4	1.388 (4)	С22—Н22	0.9500
С3—Н3	0.9500	С23—Н23	0.9500
C4—C5	1.387 (4)	C24—O3	1.432 (3)
C4—H4	0.9500	C24—H24A	0.9800
C5—C6	1.384 (4)	C24—H24B	0.9800
С5—Н5	0.9500	C24—H24C	0.9800
С6—С7	1.388 (3)	C25—O7	1.417 (4)
С6—Н6	0.9500	С25—Н25А	0.9800
С7—Н7	0.9500	С25—Н25В	0.9800
C8—N2	1.286 (3)	С25—Н25С	0.9800
C8—C10	1.488 (3)	C26—O8	1.427 (4)
C8—C9	1.498 (3)	C26—H26A	0.9800
С9—Н9А	0.9800	С26—Н26В	0.9800
С9—Н9В	0.9800	С26—Н26С	0.9800
С9—Н9С	0.9800	N1—N2	1.390 (3)
C10—N3	1.348 (3)	N1—H1A	0.8800
C10—C11	1.393 (3)	N2—Tb1	2.5845 (19)
C11—C12	1.390 (4)	N3—Tb1	2.596 (2)
C11—H11	0.9500	N4—N5	1.380 (3)
C12—C13	1.383 (4)	N4—Tb1	2.5685 (19)
C12—H12	0.9500	N5—H5A	0.8800
C13—C14	1.394 (3)	O1—Tb1	2.3660 (16)
С13—Н13	0.9500	O2—Tb1	2.4074 (17)
C14—N3	1.352 (3)	O3—Tb1	2.4867 (18)
C14—C15	1.479 (3)	O3—H3S	0.68 (4)
C15—N4	1.291 (3)	O4—Tb1	2.428 (2)
C15—C16	1.494 (3)	O4—H4SA	0.64 (5)
C16—H16A	0.9800	O4—H4SB	0.80 (4)
C16—H16B	0.9800	O5—Tb1	2.3642 (19)
C16—H16C	0.9800	O5—H5SA	0.78 (4)
C17—O2	1.240 (3)	O5—H5SB	0.80 (4)
C17—N5	1.351 (3)	O6—Tb1	2.321 (2)
C17—C18	1.481 (3)	O6—H6SA	0.73 (4)
C18—C19	1.395 (3)	O6—H6SB	0.74 (4)
C18—C23	1.397 (4)	O7—H7S	0.72 (3)
C19—C20	1.389 (4)	O8—H8S	0.91 (4)
C19—H19	0.9500		
01—C1—N1	120.6 (2)	H24B—C24—H24C	109.5
O1—C1—C2	120.8 (2)	O7—C25—H25A	109.5
N1—C1—C2	118.6 (2)	O7—C25—H25B	109.5

C3—C2—C7	119.9 (2)	H25A—C25—H25B	109.5
C3—C2—C1	117.5 (2)	O7—C25—H25C	109.5
C7—C2—C1	122.4 (2)	H25A—C25—H25C	109.5
C2—C3—C4	120.1 (2)	H25B—C25—H25C	109.5
С2—С3—Н3	120.0	O8—C26—H26A	109.5
С4—С3—Н3	120.0	O8—C26—H26B	109.5
C5—C4—C3	119.8 (3)	H26A—C26—H26B	109.5
C5—C4—H4	120.1	O8—C26—H26C	109.5
C3—C4—H4	120.1	H26A—C26—H26C	109.5
C6—C5—C4	120.5 (2)	H26B—C26—H26C	109.5
С6—С5—Н5	119.7	C1—N1—N2	114.57 (19)
С4—С5—Н5	119.7	C1—N1—H1A	122.7
C5—C6—C7	119.9 (2)	N2—N1—H1A	122.7
С5—С6—Н6	120.0	C8—N2—N1	118.8 (2)
С7—С6—Н6	120.0	C8—N2—Tb1	123.18 (15)
C6—C7—C2	119.7 (2)	N1—N2—Tb1	115.06 (14)
С6—С7—Н7	120.1	C10—N3—C14	117.6 (2)
С2—С7—Н7	120.1	C10—N3—Tb1	120.64 (15)
N2—C8—C10	113.4 (2)	C14—N3—Tb1	121.71 (15)
N2—C8—C9	126.2 (2)	C15—N4—N5	118.17 (19)
C10—C8—C9	120.4 (2)	C15—N4—Tb1	126.08 (15)
С8—С9—Н9А	109.5	N5—N4—Tb1	115.71 (14)
С8—С9—Н9В	109.5	C17—N5—N4	115.84 (19)
Н9А—С9—Н9В	109.5	C17—N5—H5A	122.1
С8—С9—Н9С	109.5	N4—N5—H5A	122.1
Н9А—С9—Н9С	109.5	C1—O1—Tb1	126.00 (15)
Н9В—С9—Н9С	109.5	C17—O2—Tb1	125.09 (15)
N3—C10—C11	123.1 (2)	C24—O3—Tb1	128.24 (16)
N3—C10—C8	116.1 (2)	C24—O3—H3S	112 (4)
C11—C10—C8	120.6 (2)	Tb1—O3—H3S	108 (4)
C12—C11—C10	118.4 (2)	Tb1—O4—H4SA	116 (4)
C12—C11—H11	120.8	Tb1—O4—H4SB	123 (3)
C10—C11—H11	120.8	H4SA—O4—H4SB	118 (5)
C13—C12—C11	119.2 (2)	Tb1—O5—H5SA	123 (3)
C13—C12—H12	120.4	Tb1—O5—H5SB	125 (3)
C11—C12—H12	120.4	H5SA—O5—H5SB	110 (4)
C12—C13—C14	119.0 (2)	Tb1—O6—H6SA	120 (3)
C12—C13—H13	120.5	Tb1—O6—H6SB	124 (3)
C14—C13—H13	120.5	H6SA—O6—H6SB	116 (4)
N3—C14—C13	122.5 (2)	C25—O7—H7S	109 (3)
N3—C14—C15	116.2 (2)	C26—O8—H8S	105 (3)
C13—C14—C15	121.3 (2)	O6—Tb1—O5	142.11 (7)
N4—C15—C14	114.7 (2)	O6—Tb1—O1	76.15 (7)
N4—C15—C16	123.8 (2)	O5—Tb1—O1	139.14 (7)
C14—C15—C16	121.4 (2)	O6—Tb1—O2	76.48 (7)
C15—C16—H16A	109.5	O5—Tb1—O2	81.03 (7)
C15—C16—H16B	109.5	O1—Tb1—O2	102.60 (6)
H16A—C16—H16B	109.5	O6—Tb1—O4	143.61 (7)

C15—C16—H16C	109.5	O5—Tb1—O4	71.13 (7)
H16A—C16—H16C	109.5	O1—Tb1—O4	79.33 (7)
H16B—C16—H16C	109.5	O2—Tb1—O4	135.63 (7)
O2—C17—N5	120.2 (2)	O6—Tb1—O3	119.22 (7)
O2—C17—C18	121.8 (2)	O5—Tb1—O3	78.63 (7)
N5—C17—C18	118.1 (2)	O1—Tb1—O3	65.79 (6)
C19—C18—C23	119.8 (2)	O2—Tb1—O3	68.37 (6)
C19—C18—C17	123.0 (2)	O4—Tb1—O3	72.66 (7)
C23—C18—C17	117.2 (2)	O6—Tb1—N4	74.40 (7)
C20—C19—C18	120.3 (2)	O5—Tb1—N4	68.22 (7)
С20—С19—Н19	119.8	O1—Tb1—N4	149.40 (6)
C18—C19—H19	119.8	O2—Tb1—N4	62.41 (6)
C21—C20—C19	119.5 (2)	O4—Tb1—N4	130.58 (7)
C21—C20—H20	120.2	O3—Tb1—N4	123.50 (6)
С19—С20—Н20	120.2	O6—Tb1—N2	76.97 (7)
C20—C21—C22	120.6 (2)	O5—Tb1—N2	126.12 (7)
C20—C21—H21	119.7	O1—Tb1—N2	62.47 (6)
C22—C21—H21	119.7	O2—Tb1—N2	152.08 (7)
C23—C22—C21	120.0 (3)	O4—Tb1—N2	67.93 (7)
C23—C22—H22	120.0	O3—Tb1—N2	118.85 (6)
C21—C22—H22	120.0	N4—Tb1—N2	117.64 (6)
C22—C23—C18	119.7 (2)	O6—Tb1—N3	79.68 (7)
С22—С23—Н23	120.1	O5—Tb1—N3	87.34 (7)
C18—C23—H23	120.1	O1—Tb1—N3	121.25 (6)
O3—C24—H24A	109.5	O2—Tb1—N3	122.36 (6)
O3—C24—H24B	109.5	O4—Tb1—N3	90.74 (7)
H24A—C24—H24B	109.5	O3—Tb1—N3	160.96 (6)
O3—C24—H24C	109.5	N4—Tb1—N3	60.86 (6)
H24A—C24—H24C	109.5	N2—Tb1—N3	60.23 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
O4—H4 <i>SA</i> ···Cl3	0.64 (4)	2.61 (4)	3.213 (2)	159 (5)
N1—H1A····Cl2 ⁱ	0.88	2.52	3.299 (2)	148
O6—H6SA···Cl1 ⁱ	0.73 (4)	2.32 (4)	3.040 (2)	172 (4)
O3—H3S····Cl3 ⁱⁱ	0.68 (5)	2.68 (5)	3.2998 (19)	153 (5)
O4—H4 <i>SB</i> ···Cl3 ⁱⁱⁱ	0.81 (4)	2.34 (4)	3.1323 (19)	169 (4)
O6—H6SB···Cl1 ^{iv}	0.74 (4)	2.32 (4)	3.058 (2)	176 (3)
O7— $H7S$ ···Cl2 ^v	0.72 (3)	2.34 (3)	3.050 (2)	174 (4)
O8—H8S····Cl3 ^{vi}	0.91 (4)	2.23 (4)	3.110 (2)	163 (4)
O5—H5 <i>SA</i> ···O8 ^{vi}	0.77 (4)	1.96 (4)	2.710 (3)	166 (4)
$O5-H5SB\cdots O7^{v}$	0.79 (4)	1.88 (4)	2.664 (3)	168 (4)
C7—H7···Cl2 ⁱ	0.95	2.74	3.491 (3)	137
C11—H11···Cl1 ^{vii}	0.95	2.80	3.731 (3)	167
C12—H12···Cl1 ^{viii}	0.95	2.80	3.741 (3)	172
C16—H16B…Cl2	0.98	2.66	3.628 (3)	170
C16—H16C····Cl2 ^{viii}	0.98	2.79	3.621 (3)	143

C19—H19…Cl2	0.95	2.73	3.515 (3)	140	
C26—H26A····Cl3 ^{ix}	0.98	2.80	3.774 (3)	174	
C4—H4···O8 ^x	0.95	2.59	3.397 (3)	143	

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1, *y*-1, *z*; (viii) -*x*, -*y*+1, -*z*; (ix) *x*, *y*+1, *z*; (x) *x*+1, *y*-1, *z*.

Triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)]methanoldysprosium(III) trichloride methanol disolvate (DyDAPBH2)

Crystal data

$[Dy(C_{23}H_{21}N_5O_2)(CH_4O)(H_2O)_3)]Cl_3 \cdot 2CH_4O$	Z = 2
$M_r = 818.47$	F(000) = 822
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.684 {\rm Mg} {\rm m}^{-3}$
a = 8.9852 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.6242 (10) Å	Cell parameters from 7204 reflections
c = 14.3887 (12) Å	$\theta = 2.2 - 30.5^{\circ}$
$\alpha = 87.062 (1)^{\circ}$	$\mu = 2.62 \text{ mm}^{-1}$
$\beta = 88.810(1)^{\circ}$	T = 100 K
$y = 82.068 (1)^{\circ}$	Plate, colorless
V = 1614.2 (2) Å ³	$0.25 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEX CCD	13359 measured reflections
diffractometer	8915 independent reflections
Radiation source: sealed tube	8062 reflections with $I > 2\sigma(I)$
Detector resolution: 8.366 pixels mm ⁻¹	$R_{\rm int} = 0.021$
phi and ω scans	$\theta_{\rm max} = 30.8^\circ, \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 9$
(SADABS; Bruker, 2014)	$k = -17 \rightarrow 18$

 $T_{\rm min} = 0.561, \ T_{\rm max} = 0.780$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.073$ S = 1.04 8915 reflections	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/(\sigma^2(F^2) + (0.0355P)^2 + 0.3922P)$
 429 parameters 1 restraint Primary atom site location: structure-invariant direct methods 	$w = 1/[\sigma^{2}(F_{o}^{-}) + (0.0535P)^{2} + 0.3922P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.73 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.79 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $l = -20 \rightarrow 17$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3923 (3)	-0.1799 (2)	0.27938 (19)	0.0130 (5)

C2	0.4831 (3)	-0.2781 (2)	0.3189 (2)	0.0138 (5)
C3	0.6283 (3)	-0.2700(2)	0.3466 (2)	0.0184 (6)
Н3	0.6686	-0.2047	0.3354	0.022*
C4	0.7142 (4)	-0.3572(2)	0.3906 (2)	0.0242 (7)
H4	0.8129	-0.3516	0.4102	0.029*
C5	0.6554 (4)	-0.4525 (2)	0.4057 (2)	0.0237 (7)
H5	0.7141	-0.5122	0.4361	0.028*
C6	0.5134 (4)	-0.4617(2)	0.3774(2)	0.0213 (6)
H6	0.4748	-0.5278	0.3869	0.026*
C7	0.4259 (3)	-0.3743(2)	0.3347(2)	0.0183 (6)
H7	0 3266	-0.3802	0 3163	0.022*
C8	0.0387(3)	-0.0891(2)	0.1879(2)	0.022 0.0128(5)
C9	-0.0519(3)	-0.1800(2)	0.1079(2) 0.1998(2)	0.0120 (5)
НОА	-0.0096	-0.2300	0.2499	0.0192 (0)
HOR	-0.0494	-0.2174	0.1417	0.029
HOC	-0.1561	-0.1521	0.2157	0.029
C10	-0.0273(3)	0.1521 0.0146(2)	0.2137 0.1440(2)	0.02°
C10	-0.1621(3)	0.0140(2)	0.1440(2) 0.0062(2)	0.0137(3)
	-0.2207	-0.0230(2)	0.0902 (2)	0.0191(0)
	-0.2207	-0.0322	0.0979	0.025
U12	-0.2094 (3)	0.1199 (2)	0.0403(2)	0.0202 (0)
П12 С12	-0.3020	0.1295	0.0142	0.024
U13	-0.1196 (3)	0.2009 (2)	0.0437 (2)	0.01/8 (0)
HI3	-0.14/4	0.2034	0.00/5	0.021^{*}
C14	0.0122(3)	0.1862(2)	0.0949 (2)	0.0131 (5)
CIS	0.1153 (3)	0.2686 (2)	0.09186 (19)	0.0125 (5)
C16	0.0853 (3)	0.3676 (2)	0.0306 (2)	0.0185 (6)
HI6A	0.1581	0.3641	-0.0212	0.028*
H16B	0.0947	0.4301	0.0666	0.028*
H16C	-0.0167	0.3737	0.0061	0.028*
C17	0.4641 (3)	0.2816 (2)	0.1881 (2)	0.0137 (5)
C18	0.5818 (3)	0.3531 (2)	0.1874 (2)	0.0156 (5)
C19	0.5607 (3)	0.4565 (2)	0.1457 (2)	0.0208 (6)
H19	0.4693	0.4824	0.1150	0.025*
C20	0.6734 (4)	0.5213 (3)	0.1491 (2)	0.0241 (7)
H20	0.6586	0.5921	0.1220	0.029*
C21	0.8072 (4)	0.4819 (3)	0.1924 (2)	0.0231 (7)
H21	0.8852	0.5255	0.1938	0.028*
C22	0.8286 (3)	0.3798 (3)	0.2334 (2)	0.0225 (6)
H22	0.9212	0.3538	0.2627	0.027*
C23	0.7156 (3)	0.3146 (2)	0.2322 (2)	0.0179 (6)
H23	0.7297	0.2450	0.2616	0.022*
C24	0.4765 (4)	0.1551 (3)	0.4457 (2)	0.0251 (7)
H24A	0.3806	0.1913	0.4692	0.038*
H24B	0.5274	0.2064	0.4078	0.038*
H24C	0.5401	0.1266	0.4982	0.038*
C25	0.9067 (4)	0.5157 (3)	0.6162 (3)	0.0275 (7)
H25A	0.9237	0.5649	0.5634	0.041*
H25B	0.8635	0.4546	0.5940	0.041*

H25C	1.0026	0.4901	0.6465	0.041*
C26	0.1282 (4)	0.7637 (3)	0.5053 (3)	0.0318 (8)
H26A	0.1511	0.8275	0.5350	0.048*
H26B	0.1705	0.7626	0.4419	0.048*
H26C	0.1721	0.6994	0.5413	0.048*
Cl1	0.58557 (8)	0.81884 (5)	0.06449 (5)	0.01935 (14)
C12	0.18964 (8)	0.58963 (6)	0.15245 (5)	0.02133 (15)
C13	0.18672 (8)	0.02676 (6)	0.60011 (6)	0.02261 (15)
Dy1	0.29156 (2)	0.07637 (2)	0.24991 (2)	0.01098 (4)
H3S	0.525 (3)	0.029 (3)	0.387 (3)	0.038 (12)*
H7S	0.804 (4)	0.539 (3)	0.729 (3)	0.024 (11)*
H8S	-0.063 (6)	0.819 (4)	0.476 (4)	0.058 (17)*
H4SA	0.167 (5)	0.019 (3)	0.431 (3)	0.028 (11)*
H5SA	0.126 (5)	0.206 (3)	0.377 (3)	0.034 (12)*
H6SA	0.452 (4)	-0.024 (3)	0.106 (3)	0.025 (11)*
H4SB	0.069 (5)	0.011 (3)	0.379 (3)	0.026 (11)*
H5SB	0.190 (6)	0.276 (4)	0.327 (4)	0.061 (17)*
H6SB	0.406 (4)	0.064 (3)	0.071 (2)	0.006 (9)*
N1	0.2557 (3)	-0.18801 (18)	0.24483 (17)	0.0147 (5)
H1A	0.2196	-0.2493	0.2440	0.018*
N2	0.1772 (3)	-0.09208 (18)	0.21085 (17)	0.0142 (5)
N3	0.0566 (3)	0.09572 (18)	0.14657 (17)	0.0126 (4)
N4	0.2328 (3)	0.24374 (18)	0.14232 (17)	0.0132 (4)
N5	0.3360 (3)	0.31481 (19)	0.14179 (18)	0.0152 (5)
H5A	0.3192	0.3784	0.1129	0.018*
01	0.4364 (2)	-0.09136 (15)	0.28269 (15)	0.0154 (4)
O2	0.4808 (2)	0.19244 (16)	0.23072 (15)	0.0182 (4)
O3	0.4493 (2)	0.06843 (16)	0.38954 (15)	0.0168 (4)
O4	0.1507 (3)	0.00937 (18)	0.38004 (17)	0.0188 (4)
05	0.1698 (3)	0.22245 (18)	0.33018 (16)	0.0188 (4)
O6	0.4048 (3)	0.0315 (2)	0.10881 (18)	0.0217 (5)
O7	0.8064 (3)	0.56962 (18)	0.6807 (2)	0.0279 (5)
08	-0.0309 (3)	0.7659 (2)	0.50160 (19)	0.0277 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0137 (13)	0.0129 (12)	0.0126 (13)	-0.0026 (10)	0.0019 (10)	-0.0017 (10)
C2	0.0163 (13)	0.0100 (12)	0.0150 (13)	-0.0015 (10)	-0.0015 (10)	0.0002 (10)
C3	0.0185 (14)	0.0142 (13)	0.0232 (16)	-0.0042 (11)	-0.0026 (11)	-0.0003 (11)
C4	0.0193 (15)	0.0196 (15)	0.0332 (19)	0.0011 (12)	-0.0074 (13)	-0.0029 (13)
C5	0.0287 (17)	0.0162 (14)	0.0240 (17)	0.0048 (12)	-0.0069 (13)	0.0028 (12)
C6	0.0265 (16)	0.0132 (13)	0.0242 (17)	-0.0038 (11)	0.0000 (12)	0.0030 (12)
C7	0.0190 (14)	0.0170 (14)	0.0201 (15)	-0.0067 (11)	-0.0032 (11)	0.0007 (11)
C8	0.0128 (13)	0.0104 (12)	0.0152 (13)	-0.0015 (9)	0.0006 (10)	-0.0021 (10)
C9	0.0160 (14)	0.0136 (13)	0.0289 (17)	-0.0064 (11)	0.0007 (12)	-0.0001 (12)
C10	0.0126 (13)	0.0128 (12)	0.0161 (14)	-0.0031 (10)	-0.0013 (10)	-0.0014 (10)
C11	0.0167 (14)	0.0154 (13)	0.0261 (16)	-0.0050 (11)	-0.0046 (11)	-0.0012 (12)

C12	0.0146 (14)	0.0200 (14)	0.0265 (17)	-0.0038 (11)	-0.0063 (11)	0.0009 (12)
C13	0.0171 (14)	0.0155 (13)	0.0198 (15)	0.0007 (11)	-0.0061 (11)	0.0024 (11)
C14	0.0142 (13)	0.0105 (12)	0.0146 (13)	-0.0019 (10)	-0.0005 (10)	-0.0007 (10)
C15	0.0137 (13)	0.0110 (12)	0.0127 (13)	-0.0007 (9)	0.0004 (10)	-0.0019 (10)
C16	0.0203 (15)	0.0120 (13)	0.0236 (16)	-0.0054 (11)	-0.0061 (12)	0.0051 (11)
C17	0.0133 (13)	0.0130 (12)	0.0152 (14)	-0.0033 (10)	0.0011 (10)	-0.0006 (10)
C18	0.0128 (13)	0.0163 (13)	0.0185 (14)	-0.0041 (10)	0.0019 (10)	-0.0028 (11)
C19	0.0153 (14)	0.0182 (14)	0.0290 (17)	-0.0044 (11)	0.0005 (12)	0.0027 (12)
C20	0.0238 (16)	0.0179 (14)	0.0315 (18)	-0.0091 (12)	0.0042 (13)	0.0042 (13)
C21	0.0179 (15)	0.0249 (16)	0.0291 (18)	-0.0110 (12)	0.0078 (12)	-0.0063 (13)
C22	0.0117 (14)	0.0304 (17)	0.0261 (17)	-0.0046 (12)	-0.0009 (11)	-0.0051 (13)
C23	0.0151 (14)	0.0179 (14)	0.0214 (15)	-0.0042 (11)	-0.0001 (11)	-0.0016 (11)
C24	0.0273 (17)	0.0250 (16)	0.0246 (17)	-0.0059 (13)	-0.0059 (13)	-0.0078 (13)
C25	0.0276 (18)	0.0260 (17)	0.0298 (19)	-0.0058 (13)	0.0024 (14)	-0.0051 (14)
C26	0.0294 (19)	0.0232 (16)	0.042 (2)	-0.0022 (14)	0.0068 (16)	-0.0011 (15)
Cl1	0.0215 (3)	0.0153 (3)	0.0201 (4)	0.0007 (3)	0.0019 (3)	0.0010 (3)
Cl2	0.0219 (4)	0.0179 (3)	0.0246 (4)	-0.0033 (3)	-0.0068 (3)	-0.0004 (3)
C13	0.0184 (3)	0.0265 (4)	0.0237 (4)	-0.0050 (3)	0.0007 (3)	-0.0035 (3)
Dy1	0.01102 (6)	0.00864 (6)	0.01337 (7)	-0.00194 (4)	-0.00055 (4)	0.00032 (4)
N1	0.0149 (11)	0.0099 (10)	0.0194 (13)	-0.0026 (8)	-0.0030 (9)	0.0014 (9)
N2	0.0167 (12)	0.0105 (10)	0.0154 (12)	-0.0017 (9)	-0.0031 (9)	-0.0002 (9)
N3	0.0127 (11)	0.0108 (10)	0.0146 (12)	-0.0020 (8)	-0.0019 (9)	-0.0013 (9)
N4	0.0127 (11)	0.0105 (10)	0.0167 (12)	-0.0028 (8)	-0.0008 (9)	0.0009 (9)
N5	0.0152 (12)	0.0108 (10)	0.0200 (13)	-0.0039 (9)	-0.0041 (9)	0.0027 (9)
01	0.0145 (10)	0.0109 (9)	0.0213 (11)	-0.0031 (7)	-0.0029 (8)	-0.0019 (8)
O2	0.0146 (10)	0.0142 (9)	0.0259 (12)	-0.0034 (8)	-0.0037 (8)	0.0040 (8)
O3	0.0172 (11)	0.0143 (10)	0.0192 (11)	-0.0022 (8)	-0.0036 (8)	-0.0035 (8)
O4	0.0186 (12)	0.0211 (11)	0.0181 (12)	-0.0082 (9)	0.0020 (9)	0.0000 (9)
O5	0.0241 (12)	0.0130 (10)	0.0181 (11)	-0.0004 (8)	0.0071 (9)	0.0016 (9)
O6	0.0306 (13)	0.0151 (11)	0.0179 (12)	-0.0001 (10)	0.0056 (9)	0.0031 (10)
O7	0.0355 (14)	0.0161 (11)	0.0316 (15)	-0.0042 (10)	0.0083 (11)	0.0005 (10)
O8	0.0306 (13)	0.0260 (13)	0.0272 (14)	-0.0070 (10)	0.0048 (10)	0.0000 (11)

Geometric parameters (Å, °)

C1-01	1.239 (3)	C20—C21	1.384 (5)
C1—N1	1.352 (4)	C20—H20	0.9500
C1—C2	1.481 (4)	C21—C22	1.380 (5)
C2—C7	1.388 (4)	C21—H21	0.9500
С2—С3	1.391 (4)	C22—C23	1.393 (4)
C3—C4	1.386 (4)	C22—H22	0.9500
С3—Н3	0.9500	C23—H23	0.9500
C4—C5	1.386 (4)	C24—O3	1.444 (4)
C4—H4	0.9500	C24—H24A	0.9800
С5—С6	1.369 (5)	C24—H24B	0.9800
С5—Н5	0.9500	C24—H24C	0.9800
C6—C7	1.387 (4)	C25—O7	1.414 (4)
С6—Н6	0.9500	C25—H25A	0.9800

С7—Н7	0.9500	С25—Н25В	0.9800
C8—N2	1.289 (4)	С25—Н25С	0.9800
C8—C10	1.478 (4)	C26—O8	1.427 (4)
C8—C9	1.497 (4)	С26—Н26А	0.9800
С9—Н9А	0.9800	C26—H26B	0.9800
С9—Н9В	0.9800	C26—H26C	0.9800
С9—Н9С	0.9800	Dv106	2.313 (2)
C10—N3	1.355 (3)	Dv1—O5	2.354 (2)
C10—C11	1.392 (4)	Dv1-01	2.358 (2)
C11—C12	1.384 (4)	Dv1-02	2.3961 (19)
С11—Н11	0.9500	Dv1-04	2.420 (2)
C12—C13	1.386 (4)	Dv103	2.472 (2)
С12—Н12	0.9500	Dv1—N4	2.555 (2)
C13—C14	1,393 (4)	Dv1-N2	2.577(2)
С13—Н13	0.9500	Dv1-N3	2.584(2)
C14—N3	1 348 (4)	N1—N2	1.386(3)
C14-C15	1 484 (4)	N1—H1A	0.8800
C15—N4	1 287 (4)	N4—N5	1.376(3)
C15 - C16	1 488 (4)	N5—H5A	0.8800
C16—H16A	0.9800	03—H3S	0.792(19)
C16—H16B	0.9800	O4—H4SA	0.752(15)
C16—H16C	0.9800	O4—H4SB	0.77(1) 0.73(4)
C17 - 02	1 246 (3)	O5—H5SA	0.73(1)
C17 - N5	1.247(4)	O5—H5SB	0.01(5) 0.73(5)
C17 - C18	1 481 (4)	O6—H6SA	0.75(3)
C18 - C23	1 392 (4)	O6—H6SB	0.77(4)
C18 - C19	1.392(4) 1 398(4)	07_H7S	0.00(4)
C19 - C20	1 390 (4)	08—H8S	0.77(4)
C19—H19	0.9500	00-1105	0.77(3)
	0.9500		
01—C1—N1	120.6 (3)	H24B—C24—H24C	109.5
O1—C1—C2	120.9 (3)	O7—C25—H25A	109.5
N1—C1—C2	118.4 (2)	O7—C25—H25B	109.5
C7—C2—C3	119.5 (3)	H25A—C25—H25B	109.5
C7—C2—C1	122.8 (3)	O7—C25—H25C	109.5
C3—C2—C1	117.5 (2)	H25A—C25—H25C	109.5
C4—C3—C2	120.0 (3)	H25B—C25—H25C	109.5
С4—С3—Н3	120.0	O8—C26—H26A	109.5
С2—С3—Н3	120.0	O8—C26—H26B	109.5
C5—C4—C3	119.7 (3)	H26A—C26—H26B	109.5
C5—C4—H4	120.1	O8—C26—H26C	109.5
C3—C4—H4	120.1	H26A—C26—H26C	109.5
C6—C5—C4	120.6 (3)	H26B—C26—H26C	109.5
С6—С5—Н5	119.7	O6—Dy1—O5	142.37 (9)
С4—С5—Н5	119.7	06—Dy1—O1	75.91 (8)
C5—C6—C7	119.9 (3)	O5—Dy1—O1	139.05 (8)
С5—С6—Н6	120.0	O6—Dy1—O2	76.31 (8)
С7—С6—Н6	120.0	O5—Dy1—O2	81.41 (8)

C6—C7—C2	120.2 (3)	O1—Dy1—O2	102.05 (7)
С6—С7—Н7	119.9	O6—Dy1—O4	143.55 (8)
С2—С7—Н7	119.9	O5—Dy1—O4	71.08 (8)
N2-C8-C10	113.6 (2)	O1—Dy1—O4	79.30 (8)
N2—C8—C9	125.8 (3)	O2—Dy1—O4	135.51 (8)
C10—C8—C9	120.5 (2)	O6—Dy1—O3	118.98 (8)
С8—С9—Н9А	109.5	O5—Dy1—O3	78.77 (8)
С8—С9—Н9В	109.5	01—Dy1—O3	65.49 (7)
H9A—C9—H9B	109.5	O2—Dy1—O3	68.35 (7)
С8—С9—Н9С	109.5	O4—Dy1—O3	72.39 (8)
Н9А—С9—Н9С	109.5	06—Dv1—N4	74.67 (8)
H9B-C9-H9C	109.5	O5-Dv1-N4	68.20 (8)
N3-C10-C11	122 3 (3)	O1 - Dy1 - N4	149.36(7)
N3-C10-C8	1162(2)	O2-Dy1-N4	62 61 (7)
$C_{11} - C_{10} - C_{8}$	121.3(2)	O4— $Dy1$ — $N4$	130.72(8)
C_{12} C_{11} C_{10} C_{10}	121.5(2) 119.0(3)	$O_3 = D_y 1 = N4$	130.72(0) 123.55(7)
$C_{12} = C_{11} = C_{10}$	120.5	O6 Dy1 N2	76 91 (8)
	120.5	O_{0} Dy1 N2	70.91(8)
	120.3	$O_3 = Dy_1 = N_2$	120.14(8)
C11 - C12 - C13	119.0 (5)	OI - DyI - N2	02.33(7)
C11—C12—H12	120.5	$O_2 = Dy_1 = N_2$	151.76(8)
C13—C12—H12	120.5	O4—Dy1—N2	68.03 (8)
C12—C13—C14	119.0 (3)	O3—Dy1—N2	118.59 (7)
С12—С13—Н13	120.5	N4—Dy1—N2	117.86 (7)
C14—C13—H13	120.5	O6—Dy1—N3	80.29 (8)
N3—C14—C13	122.5 (2)	O5—Dy1—N3	86.94 (8)
N3—C14—C15	116.2 (2)	O1—Dy1—N3	121.65 (7)
C13—C14—C15	121.3 (3)	O2—Dy1—N3	122.71 (7)
N4—C15—C14	114.3 (2)	O4—Dy1—N3	90.64 (8)
N4—C15—C16	124.5 (2)	O3—Dy1—N3	160.57 (7)
C14—C15—C16	121.1 (2)	N4—Dy1—N3	60.99 (7)
C15—C16—H16A	109.5	N2—Dy1—N3	60.48 (7)
C15—C16—H16B	109.5	C1—N1—N2	114.6 (2)
H16A—C16—H16B	109.5	C1—N1—H1A	122.7
C15—C16—H16C	109.5	N2—N1—H1A	122.7
H16A—C16—H16C	109.5	C8—N2—N1	119.1 (2)
H16B—C16—H16C	109.5	C8—N2—Dv1	122.84 (18)
O2—C17—N5	119.6 (2)	N1—N2—Dv1	114.88 (16)
Q2-C17-C18	121.6 (3)	C14—N3—C10	117.9 (2)
N5-C17-C18	118.8 (2)	C14—N3—Dv1	121.69 (17)
C_{23} C_{18} C_{19}	120.2(3)	C10-N3-Dv1	120 38 (18)
C_{23} C_{18} C_{17}	1174(3)	C15 N4 N5	120.90(10) 1179(2)
C19 - C18 - C17	1224(3)	C15 N4 $Dy1$	126.39(18)
C_{20} C_{19} C_{18}	122.1(3) 120.1(3)	N5-N4-Dy1	126.55(10) 115.65(17)
C_{20} C_{10} H_{10}	120.1 (5)	$C17$ _N5_N4	115.05(17) 116.2(2)
C18 - C19 - H10	120.0	C17 = N5 = H5A	121 0
$C_{10} = C_{10} = C_{10}$	120.0 110 4 (3)	$N4$ N5 H5 Δ	121.9
$C_{21} = C_{20} = C_{19}$	120.2	$C_1 = C_1 $	121.9
$C_{21} = C_{20} = H_{20}$	120.5	$C_1 = O_1 = D_{y_1}$	123.93(10)
U19-U20-H20	120.3	U1/	123.00 (18)

C22—C21—C20 C22—C21—H21	120.7 (3) 119 7	C24—O3—Dy1 C24—O3—H3S	128.33 (19) 107 (3)
C20—C21—H21	119.7	Dy1-03-H3S	115 (3)
C21—C22—C23	120.6 (3)	Dy1—O4—H4SA	122 (3)
C21—C22—H22	119.7	Dy1—O4—H4SB	122 (3)
С23—С22—Н22	119.7	H4SA—O4—H4SB	104 (4)
C18—C23—C22	119.0 (3)	Dy1—O5—H5SA	115 (3)
C18—C23—H23	120.5	Dy1—O5—H5SB	125 (4)
С22—С23—Н23	120.5	H5SA—O5—H5SB	116 (5)
O3—C24—H24A	109.5	Dy1—O6—H6SA	118 (3)
O3—C24—H24B	109.5	Dy1—O6—H6SB	126 (3)
H24A—C24—H24B	109.5	H6SA—O6—H6SB	116 (4)
O3—C24—H24C	109.5	C25—O7—H7S	114 (3)
H24A—C24—H24C	109.5	C26—O8—H8S	107 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
O4—H4 <i>SA</i> ···Cl3	0.77 (4)	2.45 (4)	3.211 (3)	170 (4)
N1—H1A····Cl2 ⁱ	0.88	2.53	3.298 (2)	147
O6—H6SA···Cl1 ⁱ	0.77 (4)	2.27 (4)	3.030 (3)	168 (4)
O3—H3 <i>S</i> ···Cl3 ⁱⁱ	0.79 (3)	2.60 (3)	3.329 (2)	156 (3)
O4—H4 <i>SB</i> ···Cl3 ⁱⁱⁱ	0.73 (5)	2.42 (4)	3.133 (3)	165 (4)
O6—H6SB···Cl1 ^{iv}	0.67 (3)	2.39 (3)	3.058 (3)	179 (5)
$O7-H7S\cdots Cl2^{v}$	0.78 (4)	2.29 (4)	3.049 (3)	165 (4)
O8—H8S····Cl3 ^{vi}	0.77 (5)	2.34 (5)	3.104 (3)	174 (6)
O5—H5 <i>SA</i> ···O8 ^{vi}	0.81 (4)	1.96 (4)	2.702 (4)	154 (4)
O5—H5 <i>SB</i> ⋯O7 ^v	0.72 (5)	1.95 (5)	2.659 (3)	167 (6)
C7—H7····Cl2 ⁱ	0.95	2.75	3.494 (3)	136
C11—H11···Cl1 ^{vii}	0.95	2.80	3.730(3)	167
C12—H12····Cl1 ^{viii}	0.95	2.79	3.734 (3)	172
C16—H16B····Cl2	0.98	2.66	3.620(3)	166
C16—H16C···Cl2 ^{viii}	0.98	2.77	3.618 (3)	145
C19—H19…Cl2	0.95	2.74	3.522 (3)	140
C26—H26A····Cl3 ^{ix}	0.98	2.79	3.761 (4)	171
C4—H4…O8 ^x	0.95	2.60	3.406 (4)	143

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1, *y*-1, *z*; (viii) -*x*, -*y*+1, -*z*; (ix) *x*, *y*+1, *z*; (x) *x*+1, *y*-1, *z*.