

Received 14 February 2018 Accepted 2 March 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; Schiff base; DPPH; CUPRAC; antioxidant capacity; charge-assisted hydrogen bonding; X—H··· π interactions.

CCDC references: 1827172; 1827171

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures and antioxidant capacity of (*E*)-5-benzyloxy-2-{[(4-chlorophenyl)imino]meth-yl}phenol and (*E*)-5-benzyloxy-2-({[2-(1*H*-indol-3-yl)ethyl]iminiumyl}methyl)phenolate

Nadir Ghichi,^a* Chawki Bensouici,^b Ali Benboudiaf,^a Yacine DJebli^c and Hocine Merazig^a

^aUnite of Research CHEMS, University of Constantine 1, Algeria, ^bThe Centre of Research in Biotechnology, Constantine, Algeria, and ^cLaboratory of Material Chemistry, University of Constantine 1, Algeria. *Correspondence e-mail: nadirgh82@hotmail.com

The title Schiff base compounds, C₂₀H₁₆ClNO₂ (I) and C₂₄H₂₂N₂O₂ (II), were synthesized via the condensation reaction of 2-amino-4-chlorophenol for (I), and 2-(2,3-dihydro-1H-indol-3-yl)ethan-1-amine for (II), with 4-benzyloxy-2hydroxybenzaldehyde. In both compounds, the configuration about the C=N imine bond is E. Neither molecule is planar. In (I), the central benzene ring makes dihedral angles of 49.91 (12) and 53.52 $(11)^{\circ}$ with the outer phenyl and chlorophenyl rings, respectively. In (II), the central benzene ring makes dihedral angles of 89.59 (9) and 72.27 (7)°, respectively, with the outer phenyl ring and the mean plane of the indole ring system (r.m.s. deviation = 0.011 Å). In both compounds there is an intramolecular hydrogen bond forming an S(6) ring motif; an O-H···O hydrogen bond in (I), but a charge-assisted N⁺-H···O⁻ hydrogen bond in (II). In the crystal of (I), molecules are linked by $C-H\cdots\pi$ interactions, forming slabs parallel to plane (001). In the crystal of (II), molecules are linked by pairs of $N-H \cdots O$ hydrogen bonds, forming inversion dimers. The dimers are linked by C-H···O hydrogen bonds, C-H·· π interactions and a weak N-H··· π interaction, forming columns propagating along the a-axis direction. The antioxidant capacity of the synthesized compounds was determined by cupric reducing antioxidant capacity (CUPRAC) for compound (I) and by 2,2-picrylhydrazyl hydrate (DPPH) for compound (II).

1. Chemical context

Schiff bases of the general type RR'C = NR'' exhibit a wide structural diversity and have found a wide range of applications (Jia & Li, 2015). Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu et al., 2015, 2016), anti-inflammatory (Alam et al., 2012), antianxiety, antidepressant (Jubie et al., 2011), anti-tumour, antibacterial, and fungicidal properties (Refat et al., 2008; Kannan & Ramesh, 2006). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007). Besides their biological applications, many Schiff bases also reversibly bind with oxygen, coordinate with and show fluorescent variability with metals, exhibiting photo-chromism and/or thermochromism, and have been used as catalysts, pigments and dyes, corrosion inhibitors, polymer stabilizers, or precursors in the formation of nanoparticles (Gupta & Sutar, 2008; Gupta et al., 2009; Mishra et al., 2012). The common structural feature of these compounds

is the presence of an azomethine group linked by an η -methylene bridge, which can act as hydrogen-bond acceptors. In view of this interest we have synthesized the title compounds, (I) and (II), and report herein on their crystal structures. The ¹H NMR spectra revealed the presence of an imino group (N=CH) in the range $\delta = 8.5$ –8.6 p.p.m. Cupric reducing antioxidant capacity (CUPRAC) of (I) was estimated, and the antioxidant capacity of compound (II) was determined by *in vitro* 2,2-diphenyl-1-picrylhydrazil hydrate (DPPH) radical scavenging.

1.1. Structural commentary

The molecular structures of compounds (I) and (II), illustrated in Figs. 1 and 2, respectively, may be influenced by intramolecular hydrogen bonds; $O-H\cdots N$ in (I) and $N^+-H\cdots O^-$ in (II) (see Tables 1 and 2). These hydrogen bonds form S(6) ring motifs as shown in Figs. 1 and 2. In compound (II), the N atom is protonated (see *Section 6, Refinement*) and the C1-O13 (C-O⁻) bond length is 1.281 (2) Å, compared to the C9-O1 (C-OH) bond length of 1.343 (3) Å in (I). The configuration of the C=N imine bond is *E* in both compounds and the C=N bond lengths are 1.286 (3) Å for C7=N1 in (I) and 1.297 (3) Å for C11=N1 in (II). Neither molecule is planar: in (I), the central benzene ring (C8-C13) is inclined to the two outer benzene rings (C1-C6 and C15-C20) by

Figure 1

View of the molecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $O-H\cdots N$ hydrogen bond (see Table 1) is shown as a dashed line.

53.52 (11) and 49.91 (12)°, respectively, while in (II) the central benzene ring (C12–C17) makes dihedral angles of 89.59 (9) and 72.27 (7)°, respectively, with outer benzene ring (C19–C24) and the mean plane of the indole ring system (N2/C1–C8; r.m.s. deviation = 0.011 Å).

2. Supramolecular features

In the crystal structures of both compounds $C-H\cdots\pi$ interactions predominate; see Table 1 for details concerning compound (I), and Table 2 for details concerning compound (II). In the crystal of (I), molecules are linked by $C-H\cdots\pi$

View of the molecular structure of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular charge-assisted $N^+-H\cdots O^-$ hydrogen bond (see Table 2) is shown as a dashed line.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg2 and Cg3 are the centroids of rings C8-C13 and C15-C20, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	D-H	···A
O1−H1 <i>O</i> ···N1	0.82	1.89	2.616 (3)	147	
$C3-H3\cdots Cg3^{i}$	0.93	2.85	3.593 (3)	138	
$C6-H6\cdots Cg3^{ii}$	0.93	2.82	3.520 (3)	133	
$C13-H13\cdots Cg2^{iii}$	0.93	2.79	3.419 (3)	126	
Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$	$-x + \frac{3}{2}, y -$	$-\frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + \frac{1}{2}, y + \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$	(iii)

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

Cg1,	Cg2 and Cg4 are the centroids of rings N2/C1/C2/C7/C8	3, C3-C8 and C19-
C24,	respectively.	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1N \cdots O1$	1.07 (3)	1.81 (3)	2.657 (2)	133 (2)
$N1 - H1N \cdots O1^{i}$	1.07 (3)	2.19 (3)	3.004 (2)	131 (2)
$C2-H2\cdots O1^{ii}$	0.93	2.55	3.467 (2)	167
$C23-H23\cdots Cg2^{i}$	0.93	2.95	3.716 (2)	141
$C24 - H24 \cdots Cg1^{i}$	0.93	2.70	3.465 (3)	140
N2-H2 $N \cdots Cg4^{ii}$	0.85 (2)	3.03 (2)	3.75 (3)	145 (2)

columns propagating along the *a*-axis direction. The different

hydrogen bonds and $X - H \cdots \pi$ (X = C, N) interactions are

illustrated in Fig. 4, and the overall crystal packing is illus-

trated in Fig. 5. There are no other significant intermolecular

The structures of Schiff bases derived from hydroxyaryl aldehydes have recently been the subject of a general survey, in which a number of structural errors, often involving misplaced H atoms, were pointed out (Blagus *et al.*, 2010). A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom *et al.*, 2016) for Schiff bases substituted by a phenol group gave over 900 hits. Of these only three compounds with a benzyloxyphenol group resemble the title compounds. They include, (Z)-3-benzyloxy-6-[(2-hy-

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 2, -y, -z.

contacts present in either crystal structure.

3. Database survey

interactions, forming slabs lying parallel to (001), as illustrated in Fig. 3. In the crystal of (II), molecules are linked by pairs of $N-H\cdots O$ hydrogen bonds, forming inversion dimers. The dimers are linked by $C-H\cdots O$ hydrogen bonds and C- $H\cdots \pi$ interactions, and a weak $N-H\cdots \pi$ interaction, forming

Figure 3

A view along the *a* axis of the crystal packing of compound (I). The intramolecular $O-H\cdots N$ hydrogen bond and the intermolecular $C-H\cdots \pi$ interactions are represented by dashed lines (see Table 1), and only the H atoms (grey balls) involved these interactions have been included.

A view of the hydrogen bonds (dashed lines) and $C-H\cdots\pi$ and weak $N-H\cdots\pi$ interactions (blue arrows) in the crystal structure of compound (II); centroid Cg1 is blue, centroid Cg2 is green and centroid Cg4 is red (see Table 2). Only the H atoms involved in these interactions have been included.

Figure 5

A view along the *a* axis of the crystal packing of compound (II). The hydrogen bonds and $C-H\cdots\pi$ interactions are shown as dashed lines (see Table 2) and only the H atoms involved in these interactions have been included.

 Table 3

 Cupric ion reducing antioxidant capacity of compound (I).

Absorbances								
Compound (I) BHT	12.5 μg 0.18±0.00 1.41±0.03	25 μg 0.23±0.01 2.22±0.05	50 μg 0.31±0.01 2.42±0.02	100 μg 0.47±0.01 2.50±0.01	200 μg 0.67±0.07 2.56±0.05	400 μg 1.14±0.14 2.86±0.07	800 μg 2.38±0.25 3.38±0.13	A0.50 (μg/ml) >100 8.97±3.94

yl}phenolate (WOJBEE; Ghichi *et al.*, 2014*b*). In RUTQOO there is an intramolecular $O-H \cdots O$ hydrogen bond, as in compound (I). In KOSCUS and WOJBEE there are intramolecular charge-assisted N⁺-H $\cdots O^-$ hydrogen bonds, as observed for compound (II).

4. Antioxidant activity

The antioxidant activity profile of the synthesized compound (I) was determined by utilizing the copper(II)–neocuprine (Cu^{II} –Nc) (CUPRAC) method (Apak *et al.*, 2004). The CUPRAC method (cupric ion reducing antioxidant capacity) is based on the follow-up of the decrease in the increased absorbance of the neocuproene (Nc), copper (Cu^{+2})Nc₂– Cu^{+2} complex. Indeed, in the presence of an antioxidant agent, the copper–neocuproene complex is reduced and this reaction is quantified spectrophotometrically at a wavelength of 450 nm.

The current results indicate that Schiff base compound (I) has a low cupric ion reducing antioxidant capacity, because the absorbance in the CUPRAC assay is large ($A_{0.50} > 100$) for a 4 mg dosage (see Table 3). The current results indicate that the

 Table 4

 Experimental details.

Schiff base compound (II), has a low free-radical scavenging activity (Blois, 1958), because the percentage inhibition in the DPPH assay is large (IC₅₀ > 100) for a 1 mg dosage, by comparison with buthylated toluene (BHT) IC₅₀ = 22.32 \pm 1.19, used as a positive control (see Table 3).

Note: Compound (I): the activity is cupric ion reducing antioxidant capacity (CUPRAC) with the BHT (positive control). Compound (II): the BHT positive control or standard reference is different for each antioxidant activity test (percentage inhibition).

5. Synthesis and crystallization

Compound (I):

2-Amino-4-chlorophenol (1 equiv.) and 4-benzyloxy-2-hydroxybenzaldehyde (1 equiv.) in ethanol (15 ml) were refluxed for 1 h. On completion of the reaction (monitored by thin layer chromatography), the solvent was evaporated *in vacuo*. The residue was recrystallized from methanol, yielding green block-like crystals of (I) on slow evaporation of the solvent. The purity of the compound was characterized by its NMR

	(I)	(II)
Crystal data		
Chemical formula	$C_{20}H_{16}CINO_2$	$C_{24}H_{22}N_2O_2$
$M_{\rm r}$	337.79	370.43
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$
Temperature (K)	293	293
a, b, c (Å)	6.056 (2), 7.363 (3), 36.761 (12)	5.5265 (6), 20.1714 (19), 17.027 (2)
β (°)	91.30 (2)	97.216 (5)
$V(\dot{A}^3)$	1638.6 (10)	1883.1 (4)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.25	0.08
Crystal size (mm)	$0.03 \times 0.02 \times 0.01$	$0.03 \times 0.02 \times 0.01$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13108, 3161, 2066	17491, 4255, 2304
R _{int}	0.053	0.053
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617	0.650
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.153, 1.05	0.047, 0.124, 1.00
No. of reflections	3161	4255
No. of parameters	221	265
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-})$	0.35, -0.22	0.14, -0.16

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2017 and, SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

spectrum (250 MHz, CDCl₃). In the ¹H NMR spectrum, the azomethine proton appears in the 8.5–8.6 p.p.m. range, while the imine bond is characterized in the ¹³C MNR spectrum with the imine C signal in the 158–162 p.p.m. range. ¹H NMR: δ 6.5–7.6 (*m*, 12H; *H-ar*), 13.8–14.0 (*s*, 1H; *OH*). ¹³C NMR: 70.22, 127.6, 128.8, 129.5 133.8, 136.2, 147.1.

Compound (II):

2-(2,3-Dihydro-1*H*-indol-3-yl)ethan-1-amine (1 equiv.) and 4-benzyloxy-2-hydroxybenzaldehyde (1 equiv.) in methanol (15 ml) were refluxed for 1 h. On completion of the reaction (monitored by thin layer chromatography), the solvent was evaporated *in vacuo* and the residue recrystallized from methanol, yielding orange block-like crystals of (II) on slow evaporation of the solvent. In the ¹H NMR spectrum, the azomethine proton appears in the 8.5–8.6 p.p.m. range, while the imine bond is characterized in the ¹³C NMR spectrum with the imine C signal in the 163.3–168.4 p.p.m. range. ¹H NMR: δ 6.5–7.7 (*m*, 14H; *H-ar*), 13.8–14.0 (*s*, 1H; *OH*). ¹³C NMR: 56.9, 128.2, 128.7, 132.9, 136.4, 163.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. In compound (I), the hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinement it was positioned geometrically (O–H = 0.82 Å) and refined with $U_{iso}(H)=1.5U_{eq}(O)$. In compound (II), an H atom was located in a difference-Fourier map close to atom N1 of the C11=N1 bond, and was freely refined, as was the indole NH H atom. For both compounds, the C-bound H atoms were positioned geometrically (C–H = 0.93–0.97Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Funding information

We are grateful to the Department of Higher Scientific Research and CHEMS Research Unit, University of Constantine 1, Algeria, for funding this research project.

References

- Alam, M. S., Choi, J.-H. & Lee, D.-U. (2012). *Bioorg. Med. Chem.* 20, 4103–4108.
- Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. **52**, 7970–7981.
- Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Meced. J. Chem. Chem. Eng. 29, 117–138.
- Blois, M. S. (1958). Nature, 181, 1199-1200.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.
- Ghichi, N., Benaouida, M. A., Benboudiaf, A. & Merazig, H. (2015). *Acta Cryst.* E**71**, o1000–o1001.
- Ghichi, N., Benboudiaf, A. & Merazig, H. (2014a). Acta Cryst. E70, o1292.
- Ghichi, N., Benosmane, A., Benboudiaf, A. & Merazig, H. (2014b). Acta Cryst. E70, 0957–0958.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, K. C., Kumar Sutar, A. & Lin, C.-C. (2009). Coord. Chem. Rev. 253, 1926–1946.
- Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420– 1450.
- Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.
- Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). *J. Mol. Struct.* **1110**, 185–195.
- Jia, Y. & Li, J. (2015). Chem. Rev. 115, 1597–1621.
- Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). *Pak. J. Pharm. Sci.* 24, 109– 112.
- Kannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095-3103.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mishra, A. P., Tiwari, A. & Jain, R. K. (2012). Adv. Mat. Lett. 3, 213–219.
- Refat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). *Spectrochim. Acta Part A*, **70**, 898–906.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120–1125.

Acta Cryst. (2018). E74, 478-482 [https://doi.org/10.1107/S2056989018003687]

Crystal structures and antioxidant capacity of (*E*)-5-benzyloxy-2-{[(4-chloro-phenyl)imino]methyl}phenol and (*E*)-5-benzyloxy-2-({[2-(1*H*-indol-3-yl)ethyl]-iminiumyl}methyl)phenolate

Nadir Ghichi, Chawki Bensouici, Ali Benboudiaf, Yacine DJebli and Hocine Merazig

Computing details

For both structures, data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008). Program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015) for (I); *SHELXL2014* (Sheldrick, 2015) for (II). For both structures, molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(E)-5-Benzyloxy-2-{[(4-chlorophenyl)imino]methyl}phenol (I)

Crystal data

C₂₀H₁₆ClNO₂ $M_r = 337.79$ Monoclinic, P2₁/n a = 6.056 (2) Å b = 7.363 (3) Å c = 36.761 (12) Å $\beta = 91.30$ (2)° V = 1638.6 (10) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Detector resolution: 18.4 pixels mm⁻¹ φ and ω scans 13108 measured reflections 3161 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.153$ S = 1.053161 reflections 221 parameters 0 restraints F(000) = 704 $D_x = 1.369 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2596 reflections $\theta = 3.0-22.7^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 293 KBlock, green $0.03 \times 0.02 \times 0.01 \text{ mm}$

2066 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -7 \rightarrow 6$ $k = -9 \rightarrow 9$ $l = -45 \rightarrow 45$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.6069P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.35~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.22~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.14818 (15)	0.25490 (13)	0.48315 (2)	0.0818 (3)	
01	0.2926 (3)	0.2500 (3)	0.30360 (5)	0.0557 (7)	
O2	0.3778 (3)	0.3501 (2)	0.17647 (4)	0.0492 (6)	
N1	0.6324 (3)	0.3275 (3)	0.34598 (5)	0.0424 (7)	
C1	0.7583 (4)	0.3110 (3)	0.37880 (6)	0.0397 (8)	
C2	0.9632 (4)	0.2267 (3)	0.37907 (7)	0.0436 (8)	
C3	1.0823 (4)	0.2078 (3)	0.41147 (7)	0.0480 (8)	
C4	0.9972 (5)	0.2739 (4)	0.44320 (7)	0.0504 (9)	
C5	0.7914 (4)	0.3564 (4)	0.44332 (7)	0.0514 (9)	
C6	0.6721 (4)	0.3727 (3)	0.41101 (6)	0.0464 (8)	
C7	0.7282 (4)	0.3864 (3)	0.31744 (6)	0.0411 (8)	
C8	0.6226 (4)	0.3874 (3)	0.28193 (6)	0.0367 (7)	
C9	0.4121 (4)	0.3121 (3)	0.27590 (6)	0.0389 (7)	
C10	0.3232 (4)	0.2973 (3)	0.24089 (6)	0.0402 (8)	
C11	0.4436 (4)	0.3603 (3)	0.21186 (6)	0.0393 (8)	
C12	0.6490 (4)	0.4408 (3)	0.21739 (6)	0.0435 (8)	
C13	0.7361 (4)	0.4520 (3)	0.25213 (6)	0.0445 (8)	
C14	0.1774 (4)	0.2582 (4)	0.16730 (7)	0.0530 (9)	
C15	0.1428 (4)	0.2742 (3)	0.12690 (6)	0.0440 (8)	
C16	-0.0498 (4)	0.3482 (4)	0.11281 (7)	0.0538 (9)	
C17	-0.0834 (5)	0.3639 (4)	0.07556 (8)	0.0638 (11)	
C18	0.0762 (5)	0.3076 (4)	0.05245 (7)	0.0613 (10)	
C19	0.2689 (5)	0.2336 (4)	0.06624 (8)	0.0597 (10)	
C20	0.3032 (4)	0.2173 (4)	0.10328 (7)	0.0517 (9)	
H10	0.36110	0.26625	0.32283	0.0830*	
H2	1.02053	0.18292	0.35751	0.0520*	
Н3	1.21931	0.15070	0.41176	0.0580*	
H5	0.73435	0.40013	0.46490	0.0620*	
H6	0.53266	0.42571	0.41093	0.0560*	
H7	0.889 (4)	0.431 (3)	0.3166 (6)	0.055 (7)*	
H10	0.18449	0.24578	0.23697	0.0480*	
H12	0.72641	0.48643	0.19784	0.0520*	
H13	0.87466	0.50422	0.25581	0.0530*	
H14A	0.05497	0.31303	0.17984	0.0640*	
H14B	0.18748	0.13143	0.17434	0.0640*	
H16	-0.15821	0.38799	0.12846	0.0650*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H17	-0.21464	0.41268	0.06628	0.0760*
H18	0.05454	0.31939	0.02744	0.0730*
H19	0.37694	0.19433	0.05046	0.0720*
H20	0.43446	0.16793	0.11241	0.0620*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0886 (6)	0.1109 (7)	0.0449 (5)	0.0212 (5)	-0.0232 (4)	-0.0042 (4)
01	0.0456 (10)	0.0844 (14)	0.0369 (10)	-0.0174 (9)	-0.0005 (7)	0.0024 (9)
O2	0.0542 (10)	0.0571 (11)	0.0359 (10)	-0.0125 (9)	-0.0058 (8)	0.0028 (8)
N1	0.0414 (11)	0.0466 (12)	0.0390 (12)	-0.0013 (9)	-0.0041 (9)	-0.0028 (9)
C1	0.0422 (13)	0.0400 (13)	0.0367 (13)	-0.0024 (10)	-0.0045 (10)	0.0001 (10)
C2	0.0442 (13)	0.0491 (15)	0.0374 (13)	0.0005 (11)	-0.0001 (10)	-0.0041 (11)
C3	0.0438 (13)	0.0526 (16)	0.0474 (15)	0.0030 (12)	-0.0018 (11)	-0.0024 (12)
C4	0.0576 (16)	0.0536 (16)	0.0396 (14)	0.0001 (13)	-0.0095 (12)	0.0003 (12)
C5	0.0613 (16)	0.0562 (17)	0.0368 (14)	0.0057 (13)	0.0048 (12)	-0.0068 (12)
C6	0.0484 (14)	0.0505 (15)	0.0402 (14)	0.0064 (12)	0.0016 (11)	-0.0051 (11)
C7	0.0430 (13)	0.0366 (13)	0.0437 (14)	-0.0017 (11)	-0.0018 (11)	-0.0021 (11)
C8	0.0380 (12)	0.0356 (12)	0.0364 (13)	0.0008 (10)	-0.0034 (10)	-0.0024 (10)
C9	0.0382 (12)	0.0406 (13)	0.0379 (13)	0.0004 (10)	0.0032 (10)	0.0003 (10)
C10	0.0373 (12)	0.0433 (14)	0.0398 (13)	-0.0020 (10)	-0.0051 (10)	-0.0016 (11)
C11	0.0465 (13)	0.0358 (13)	0.0354 (13)	0.0021 (11)	-0.0036 (10)	0.0010 (10)
C12	0.0463 (13)	0.0440 (14)	0.0403 (14)	-0.0076 (11)	0.0013 (11)	0.0038 (11)
C13	0.0423 (13)	0.0447 (14)	0.0464 (15)	-0.0094 (11)	-0.0026 (11)	0.0024 (11)
C14	0.0505 (15)	0.0669 (18)	0.0413 (14)	-0.0079 (13)	-0.0051 (11)	0.0009 (12)
C15	0.0474 (14)	0.0449 (14)	0.0392 (14)	-0.0025 (11)	-0.0070 (11)	0.0000 (11)
C16	0.0528 (15)	0.0557 (17)	0.0527 (17)	0.0055 (13)	-0.0036 (12)	-0.0050 (13)
C17	0.0638 (18)	0.0645 (19)	0.062 (2)	0.0034 (15)	-0.0239 (15)	0.0037 (15)
C18	0.077 (2)	0.0672 (19)	0.0389 (15)	-0.0091 (16)	-0.0153 (14)	0.0024 (14)
C19	0.0669 (18)	0.0667 (19)	0.0459 (16)	-0.0072 (15)	0.0083 (13)	-0.0092 (14)
C20	0.0486 (14)	0.0564 (17)	0.0497 (16)	0.0035 (12)	-0.0049 (12)	0.0003 (13)

Geometric parameters (Å, °)

Cl1—C4	1.718 (3)	C15—C20	1.383 (3)
O1—C9	1.343 (3)	C15—C16	1.378 (4)
O2—C11	1.354 (3)	C16—C17	1.385 (4)
O2—C14	1.423 (3)	C17—C18	1.366 (4)
N1-C1	1.418 (3)	C18—C19	1.374 (4)
N1—C7	1.286 (3)	C19—C20	1.378 (4)
01—H10	0.8200	C2—H2	0.9300
C1—C2	1.387 (3)	С3—Н3	0.9300
C1—C6	1.382 (3)	C5—H5	0.9300
C2—C3	1.385 (4)	C6—H6	0.9300
C3—C4	1.375 (4)	C7—H7	1.03 (2)
C4—C5	1.387 (4)	C10—H10	0.9300
C5—C6	1.381 (3)	C12—H12	0.9300

C7—C8	1441(3)	C13—H13	0.9300
C_{8} - C_{13}	1 390 (3)	C14—H14A	0.9500
$C_8 - C_9$	1.390(3) 1.403(3)	C14—H14B	0.9700
C_{0} C_{10}	1 388 (3)	C16H16	0.9700
C_{10} C_{11}	1.386 (3)	C17 H17	0.9300
C_{11} C_{12}	1.380(3)		0.9300
$C_{11} = C_{12}$	1.367(3) 1.372(2)	C10 H10	0.9300
C12 - C15	1.575(3) 1.500(2)	C19—H19	0.9300
014-013	1.300 (3)	С20—н20	0.9300
C11—O2—C14	118.99 (18)	C18—C19—C20	120.5 (3)
C1—N1—C7	118.7 (2)	C15—C20—C19	120.1 (2)
C9-01-H10	109.00	C1C2H2	120.00
N1-C1-C2	120 5 (2)	C3—C2—H2	120.00
C_{2} C_{1} C_{6}	119.8 (2)	C2-C3-H3	120.00
N1 - C1 - C6	119.7 (2)	C4-C3-H3	120.00
C1 - C2 - C3	1200(2)	C4-C5-H5	120.00
$C_2 - C_3 - C_4$	1197(2)	С6—С5—Н5	120.00
C11 - C4 - C3	119.7(2) 119.6(2)	C1_C6_H6	120.00
$C_{11} - C_{4} - C_{5}$	119.6(2)	C5-C6-H6	120.00
$C_1 - C_2 - C_3$	119.0(2) 120.8(2)	N1 C7 H7	120.00 125.2(12)
$C_3 = C_4 = C_5$	120.8(2) 110.2(2)	$\frac{1}{1} \frac{1}{1} \frac{1}$	123.3(12) 111.0(12)
$C_{1} = C_{0} = C_{0}$	119.2(2) 120.5(2)	$C_{0} = C_{10} = H_{10}$	111.9(12) 120.00
C1 = C0 = C3	120.3(2) 122.8(2)	$C_{11} = C_{10} = H_{10}$	120.00
$N1 - C / - C \delta$	122.0(2)	$C_{11} = C_{10} = H_{10}$	120.00
$C^{-}_{-}C^{-}_{0}C^{+}_{12}$	119.9 (2)	С12—С12—Н12	120.00
$C_{2} = C_{3} = C_{13}$	118.3(2)	Cl3—Cl2—Hl2	120.00
C/-C8-C9	121.6 (2)	C8-C13-H13	119.00
01 - 09 - 010	118.2 (2)	C12—C13—H13	119.00
	120.6 (2)	02—C14—H14A	110.00
01-09-08	121.2 (2)	02—C14—H14B	110.00
C9—C10—C11	119.2 (2)	C15—C14—H14A	110.00
02	114.0 (2)	С15—С14—Н14В	110.00
C10—C11—C12	121.0 (2)	HI4A—CI4—HI4B	109.00
02-011-010	124.9 (2)	С15—С16—Н16	120.00
C11—C12—C13	119.1 (2)	С17—С16—Н16	120.00
C8—C13—C12	121.7 (2)	С16—С17—Н17	120.00
O2—C14—C15	107.2 (2)	С18—С17—Н17	120.00
C14—C15—C16	120.1 (2)	C17—C18—H18	120.00
C16—C15—C20	119.0 (2)	C19—C18—H18	120.00
C14—C15—C20	120.9 (2)	C18—C19—H19	120.00
C15—C16—C17	120.6 (2)	С20—С19—Н19	120.00
C16—C17—C18	120.0 (3)	C15—C20—H20	120.00
C17—C18—C19	119.9 (3)	C19—C20—H20	120.00
C14 O2 C11 C10	-42(3)	C12 C8 C0 C10	21(2)
$C_{14} = 02 = C_{11} = C_{10}$	т.э (<i>э)</i> 175 4 (2)	$C_{13} = C_{0} = C_{12} = C_{10}$	2.1(3)
$C_{14} = 0_2 = C_{11} = C_{12}$	1/3.4(2) 178.00(10)	$C_1 = C_0 = C_{12} = C_{12}$	1/4.2(2)
$C_{11} - C_{2} - C_{14} - C_{13}$	1/0.00 (19)	C_{2} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1}	-1.1(3)
C = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-4/.9(3)		-1/9.9(2)
U = NI = U = Ub	134.8 (2)	C8-C9-C10-C11	-0.9 (3)

C1—N1—C7—C8	172.3 (2)	C9—C10—C11—O2	178.4 (2)
N1—C1—C2—C3	-178.5 (2)	C9-C10-C11-C12	-1.3 (3)
C6—C1—C2—C3	-1.2 (3)	O2—C11—C12—C13	-177.5 (2)
N1-C1-C6-C5	179.4 (2)	C10-C11-C12-C13	2.2 (3)
C2-C1-C6-C5	2.1 (4)	C11—C12—C13—C8	-1.0 (3)
C1—C2—C3—C4	-0.4 (4)	O2-C14-C15-C16	-124.0 (2)
C2—C3—C4—Cl1	-178.50 (19)	O2-C14-C15-C20	55.3 (3)
C2—C3—C4—C5	1.2 (4)	C14—C15—C16—C17	179.9 (3)
Cl1—C4—C5—C6	179.4 (2)	C20-C15-C16-C17	0.6 (4)
C3—C4—C5—C6	-0.4 (4)	C14—C15—C20—C19	-179.8 (3)
C4—C5—C6—C1	-1.3 (4)	C16-C15-C20-C19	-0.5 (4)
N1—C7—C8—C9	-4.4 (4)	C15—C16—C17—C18	-0.7 (4)
N1-C7-C8-C13	-179.6 (2)	C16—C17—C18—C19	0.7 (4)
C7—C8—C9—O1	5.8 (3)	C17—C18—C19—C20	-0.6 (5)
C7—C8—C9—C10	-173.2 (2)	C18—C19—C20—C15	0.5 (4)
C13—C8—C9—O1	-178.9 (2)		

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings C8-C13 and C15-C20, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A	
01—H1 <i>O</i> …N1	0.82	1.89	2.616 (3)	147	
C3—H3… <i>Cg</i> 3 ⁱ	0.93	2.85	3.593 (3)	138	
С6—Н6…Сд3іі	0.93	2.82	3.520(3)	133	
C13—H13…Cg2 ⁱⁱⁱ	0.93	2.79	3.419 (3)	126	

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2.

(E)-5-Benzyloxy-2-({[2-(1H-indol-3-yl)ethyl]iminiumyl}methyl)phenolate (II)

Crystal data

$C_{24}H_{22}N_2O_2$	F(000) = 784
$M_r = 370.43$	$D_{\rm x} = 1.307 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.5265 (6) Å	Cell parameters from 2857 reflections
b = 20.1714 (19) Å	$\theta = 3.2 - 23.1^{\circ}$
c = 17.027 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 97.216(5)^{\circ}$	T = 293 K
V = 1883.1 (4) Å ³	Block, orange
Z = 4	$0.03 \times 0.02 \times 0.01 \text{ mm}$
Data collection	
Bruker APEXII CCD	2304 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.053$
Detector resolution: 18.4 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
φ and ω scans	$h = -6 \rightarrow 7$
17491 measured reflections	$k = -20 \rightarrow 26$
4255 independent reflections	$l = -22 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: mixed
$wR(F^2) = 0.124$	H atoms treated by a mixture of independent
S = 1.00	and constrained refinement
4255 reflections	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$
265 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \text{ e } {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.4706 (2)	-0.02601 (6)	0.07995 (7)	0.0650 (5)
O2	0.2598 (2)	-0.07547 (6)	0.33695 (7)	0.0583 (4)
N1	0.8488 (3)	0.05404 (7)	0.07254 (10)	0.0556 (6)
N2	1.3886 (3)	0.23680 (8)	-0.09864 (10)	0.0562 (6)
C1	1.0855 (3)	0.20232 (8)	-0.03230 (10)	0.0472 (6)
C2	1.2742 (3)	0.18243 (9)	-0.07135 (11)	0.0541 (6)
C3	1.3252 (3)	0.35979 (9)	-0.08998 (10)	0.0553 (6)
C4	1.1802 (4)	0.40612 (10)	-0.06064 (11)	0.0599 (7)
C5	0.9873 (4)	0.38760 (9)	-0.02008 (10)	0.0598 (7)
C6	0.9357 (3)	0.32199 (9)	-0.00793 (10)	0.0529 (6)
C7	1.0829 (3)	0.27313 (8)	-0.03608 (9)	0.0436 (5)
C8	1.2754 (3)	0.29322 (9)	-0.07754 (10)	0.0456 (6)
C9	0.9184 (3)	0.16023 (9)	0.00909 (12)	0.0554 (6)
C10	1.0162 (3)	0.09284 (9)	0.03068 (12)	0.0614 (7)
C11	0.8718 (4)	0.04992 (9)	0.14913 (13)	0.0550 (7)
C12	0.7144 (3)	0.01537 (8)	0.19354 (10)	0.0479 (6)
C13	0.5134 (3)	-0.02203 (8)	0.15551 (10)	0.0488 (6)
C14	0.3631 (3)	-0.05484 (9)	0.20536 (10)	0.0514 (6)
C15	0.4034 (3)	-0.04853 (8)	0.28556 (10)	0.0482 (6)
C16	0.6007 (4)	-0.01132 (9)	0.32228 (11)	0.0553 (6)
C17	0.7519 (4)	0.01853 (9)	0.27684 (11)	0.0557 (7)
C18	0.0976 (3)	-0.12825 (9)	0.30843 (11)	0.0555 (6)
C19	0.2329 (3)	-0.19171 (9)	0.29849 (10)	0.0468 (6)
C20	0.4546 (3)	-0.20537 (10)	0.34351 (10)	0.0551 (7)
C21	0.5697 (3)	-0.26495 (10)	0.33539 (12)	0.0633 (7)
C22	0.4657 (4)	-0.31237 (10)	0.28371 (12)	0.0650 (7)
C23	0.2467 (4)	-0.29912 (10)	0.23859 (12)	0.0639 (8)
C24	0.1331 (3)	-0.23922 (10)	0.24611 (11)	0.0562 (7)
H2N	1.506 (4)	0.2359 (10)	-0.1260 (11)	0.069 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2	1.31882	0.13859	-0.07844	0.0650*	
H1N	0.692 (5)	0.0289 (12)	0.0442 (16)	0.124 (9)*	
H3	1.45310	0.37232	-0.11740	0.0660*	
H4	1.21088	0.45089	-0.06789	0.0720*	
H5	0.89146	0.42023	-0.00084	0.0720*	
H6	0.80493	0.31023	0.01861	0.0630*	
H9A	0.88553	0.18281	0.05692	0.0670*	
H9B	0.76469	0.15557	-0.02483	0.0670*	
H10A	1.04499	0.06948	-0.01707	0.0740*	
H10B	1.17118	0.09713	0.06398	0.0740*	
H11	1.010 (3)	0.0728 (8)	0.1783 (9)	0.050 (5)*	
H14	0.23468	-0.08114	0.18269	0.0620*	
H16	0.62682	-0.00730	0.37710	0.0660*	
H17	0.88535	0.04199	0.30136	0.0670*	
H18A	0.00844	-0.11556	0.25795	0.0670*	
H18B	-0.01974	-0.13537	0.34543	0.0670*	
H20	0.52553	-0.17406	0.37934	0.0660*	
H21	0.71946	-0.27329	0.36514	0.0760*	
H22	0.54258	-0.35297	0.27933	0.0780*	
H23	0.17556	-0.33064	0.20306	0.0770*	
H24	-0.01436	-0.23062	0.21512	0.0670*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0792 (9)	0.0719 (9)	0.0439 (8)	-0.0150 (7)	0.0081 (7)	0.0055 (6)
O2	0.0718 (8)	0.0555 (8)	0.0511 (7)	-0.0016 (7)	0.0216 (6)	-0.0004 (6)
N1	0.0630 (10)	0.0418 (9)	0.0651 (11)	-0.0024 (8)	0.0200 (8)	0.0074 (8)
N2	0.0456 (9)	0.0539 (10)	0.0714 (10)	0.0000 (8)	0.0165 (8)	0.0095 (8)
C1	0.0403 (9)	0.0470 (11)	0.0526 (10)	-0.0021 (8)	-0.0007 (8)	0.0092 (8)
C2	0.0458 (10)	0.0463 (11)	0.0696 (12)	0.0011 (9)	0.0047 (9)	0.0089 (9)
C3	0.0506 (10)	0.0559 (12)	0.0593 (11)	-0.0095 (9)	0.0069 (9)	0.0097 (9)
C4	0.0704 (12)	0.0451 (11)	0.0626 (12)	-0.0082 (10)	0.0016 (10)	0.0040 (9)
C5	0.0717 (13)	0.0520 (12)	0.0561 (11)	0.0035 (10)	0.0093 (10)	-0.0014 (9)
C6	0.0526 (10)	0.0593 (12)	0.0466 (10)	-0.0031 (9)	0.0058 (8)	0.0031 (9)
C7	0.0415 (9)	0.0470 (10)	0.0407 (9)	-0.0025 (8)	-0.0010(7)	0.0053 (8)
C8	0.0394 (9)	0.0485 (11)	0.0479 (10)	-0.0015 (8)	0.0017 (8)	0.0055 (8)
C9	0.0445 (10)	0.0519 (11)	0.0695 (12)	-0.0050 (8)	0.0058 (9)	0.0122 (9)
C10	0.0643 (12)	0.0468 (11)	0.0775 (13)	0.0016 (10)	0.0257 (10)	0.0093 (10)
C11	0.0576 (12)	0.0395 (11)	0.0685 (13)	0.0035 (9)	0.0105 (10)	0.0014 (9)
C12	0.0552 (10)	0.0349 (9)	0.0546 (11)	0.0021 (8)	0.0107 (9)	0.0049 (8)
C13	0.0584 (11)	0.0403 (10)	0.0485 (11)	0.0053 (8)	0.0101 (9)	0.0025 (8)
C14	0.0555 (10)	0.0516 (11)	0.0469 (11)	-0.0051 (9)	0.0054 (8)	0.0002 (8)
C15	0.0571 (11)	0.0409 (10)	0.0486 (10)	0.0050 (9)	0.0147 (9)	0.0008 (8)
C16	0.0718 (12)	0.0478 (11)	0.0463 (10)	0.0030 (10)	0.0075 (10)	-0.0037 (8)
C17	0.0617 (11)	0.0449 (11)	0.0588 (12)	-0.0043 (9)	0.0013 (10)	-0.0025 (9)
C18	0.0518 (10)	0.0597 (12)	0.0575 (11)	-0.0010 (9)	0.0162 (9)	0.0061 (9)
C19	0.0458 (9)	0.0527 (11)	0.0434 (10)	-0.0029 (8)	0.0111 (8)	0.0072 (8)

C20	0.0528 (11)	0.0596 (12)	0.0524 (11)	-0.0043 (9)	0.0047 (9)	0.0010 (9)
C21	0.0525 (11)	0.0713 (14)	0.0644 (12)	0.0054 (11)	0.0003 (10)	0.0095 (11)
C22	0.0689 (13)	0.0560 (12)	0.0708 (13)	0.0090 (11)	0.0114 (11)	0.0046 (11)
C23	0.0703 (13)	0.0573 (13)	0.0636 (13)	-0.0063 (11)	0.0060 (11)	-0.0024 (10)
C24	0.0507 (10)	0.0630 (13)	0.0537 (11)	-0.0023 (10)	0.0023 (9)	0.0067 (9)

Geometric parameters (Å, °)

01—C13	1.281 (2)	C19—C24	1.376 (3)	
O2—C15	1.366 (2)	C19—C20	1.389 (2)	
O2—C18	1.437 (2)	C20—C21	1.375 (3)	
N1-C10	1.464 (2)	C21—C22	1.376 (3)	
N1-C11	1.297 (3)	C22—C23	1.376 (3)	
N2-C2	1.376 (2)	C23—C24	1.375 (3)	
N2-C8	1.368 (2)	С2—Н2	0.9300	
C1—C2	1.366 (2)	С3—Н3	0.9300	
C1—C7	1.430 (2)	C4—H4	0.9300	
C1—C9	1.495 (2)	С5—Н5	0.9300	
N1—H1N	1.07 (3)	С6—Н6	0.9300	
N2—H2N	0.85 (2)	С9—Н9А	0.9700	
C3—C8	1.392 (3)	С9—Н9В	0.9700	
C3—C4	1.366 (3)	C10—H10A	0.9700	
C4—C5	1.392 (3)	C10—H10B	0.9700	
C5—C6	1.375 (3)	C11—H11	0.974 (16)	
С6—С7	1.400 (2)	C14—H14	0.9300	
С7—С8	1.408 (2)	C16—H16	0.9300	
C9—C10	1.492 (3)	C17—H17	0.9300	
C11—C12	1.407 (3)	C18—H18A	0.9700	
C12—C17	1.409 (3)	C18—H18B	0.9700	
C12—C13	1.429 (2)	C20—H20	0.9300	
C13—C14	1.423 (2)	C21—H21	0.9300	
C14—C15	1.362 (2)	C22—H22	0.9300	
C15—C16	1.404 (3)	С23—Н23	0.9300	
C16—C17	1.350 (3)	C24—H24	0.9300	
C18—C19	1.503 (3)			
C15—O2—C18	117.81 (13)	C19—C24—C23	121.45 (17)	
C10-N1-C11	122.40 (17)	N2—C2—H2	125.00	
C2—N2—C8	109.25 (15)	C1—C2—H2	125.00	
C2—C1—C7	106.00 (15)	С4—С3—Н3	121.00	
C2—C1—C9	128.14 (16)	С8—С3—Н3	121.00	
C7—C1—C9	125.83 (15)	C3—C4—H4	119.00	
C10—N1—H1N	124.2 (15)	C5—C4—H4	119.00	
C11—N1—H1N	113.3 (15)	C4—C5—H5	119.00	
N2-C2-C1	109.98 (16)	C6—C5—H5	119.00	
C2—N2—H2N	125.9 (14)	С5—С6—Н6	120.00	
C8—N2—H2N	124.8 (14)	С7—С6—Н6	120.00	
C4—C3—C8	117.90 (16)	С1—С9—Н9А	109.00	

C3—C4—C5	121.26 (18)	С1—С9—Н9В	109.00
C4—C5—C6	121.28 (18)	С10—С9—Н9А	109.00
C5—C6—C7	119.05 (16)	С10—С9—Н9В	109.00
C6—C7—C8	118.49 (15)	H9A—C9—H9B	108.00
C1—C7—C8	107.82 (15)	N1—C10—H10A	109.00
C1—C7—C6	133.69 (16)	N1—C10—H10B	109.00
N2—C8—C7	106.94 (15)	C9—C10—H10A	109.00
C3—C8—C7	122.01 (16)	C9-C10-H10B	109.00
N2-C8-C3	131.04 (16)	H10A—C10—H10B	108.00
C1-C9-C10	114.06 (14)	N1—C11—H11	117.0 (9)
N1-C10-C9	112.07 (14)	C12—C11—H11	117 3 (9)
N1-C11-C12	125.67 (19)	C13—C14—H14	119.00
$C_{11} - C_{12} - C_{13}$	121.06 (16)	C15 - C14 - H14	119.00
$C_{11} - C_{12} - C_{17}$	119 73 (17)	C15—C16—H16	120.00
C13 - C12 - C17	119.70 (16)	C17—C16—H16	120.00
01-C13-C14	121 46 (15)	C12-C17-H17	119.00
C_{12} C_{13} C_{14}	117.00(15)	C_{16} C_{17} H_{17}	119.00
$01 - C_{13} - C_{12}$	121 55 (15)	$0^{2}-0^{18}-118^{4}$	109.00
C_{13} C_{14} C_{15}	121.35 (15)	O^2 C_{18} H_{18B}	109.00
$C_{13}^{} C_{14}^{} C_{15}^{} C_{16}^{}$	121.30(10) 121.10(16)	C_{10} C_{18} H_{18A}	109.00
0^{2} C_{15} C_{14}	121.10(10) 124.77(15)	$C_{19} = C_{18} = H_{18R}$	109.00
02 - 015 - 016	124.77(15) 114.12(15)	H18A C18 H18B	109.00
$C_{15} = C_{16} = C_{17}$	114.12(13) 110.03(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.00
$C_{12} = C_{13} = C_{14} = C_{14}$	119.03(17) 122.24(18)	$C_{1}^{2} = C_{2}^{2} = C_{12}^{2} = C_{2}^{2} = C_{$	120.00
$C_{12} = C_{13} = C_{10}$	122.24(18) 111.70(12)	$C_{21} = C_{20} = H_{21}$	120.00
02-018-019	111.79 (13)	$C_{20} = C_{21} = H_{21}$	120.00
$C_{10} = C_{10} = C_{20}$	121.39(10) 120.10(15)	C_{22} C_{21} C_{22} H_{22}	120.00
$C_{10} = C_{19} = C_{24}$	120.10(13) 118.26(17)	$C_{21} = C_{22} = H_{22}$	120.00
$C_{20} = C_{19} = C_{24}$	110.20(17) 120.24(17)	$C_{23} = C_{22} = H_{22}$	120.00
C19 - C20 - C21	120.34(17) 120.71(17)	$C_{22} = C_{23} = H_{23}$	120.00
$C_{20} = C_{21} = C_{22}$	120.71(17) 110.22(10)	$C_{24} = C_{23} = H_{23}$	120.00
$C_{21} = C_{22} = C_{23}$	119.52 (19)	C19 - C24 - H24	119.00
C22—C23—C24	119.91 (19)	C23—C24—H24	119.00
C18—O2—C15—C14	18.0 (2)	C1—C9—C10—N1	178.76 (15)
C18—O2—C15—C16	-163.17 (15)	N1—C11—C12—C13	2.9 (3)
C15—O2—C18—C19	72.73 (18)	N1—C11—C12—C17	-175.88 (18)
C11—N1—C10—C9	-96.7 (2)	C11—C12—C13—O1	0.7 (3)
C10—N1—C11—C12	177.96 (17)	C11—C12—C13—C14	-179.48 (16)
C8—N2—C2—C1	0.1 (2)	C17—C12—C13—O1	179.48 (16)
C2—N2—C8—C3	178.73 (18)	C17—C12—C13—C14	-0.7 (2)
C2—N2—C8—C7	-0.4 (2)	C11—C12—C17—C16	177.17 (18)
C7—C1—C2—N2	0.3 (2)	C13—C12—C17—C16	-1.6 (3)
C9—C1—C2—N2	-177.68 (17)	O1—C13—C14—C15	-177.50 (16)
C2—C1—C7—C6	179.80 (18)	C12—C13—C14—C15	2.7 (2)
C2—C1—C7—C8	-0.48 (19)	C13—C14—C15—O2	176.31 (15)
C9—C1—C7—C6	-2.2 (3)	C13—C14—C15—C16	-2.4 (3)
C9—C1—C7—C8	177.52 (16)	O2—C15—C16—C17	-178.82 (17)
C2-C1-C9-C10	20.0 (3)	C14—C15—C16—C17	0.0 (3)
· · · · ·	× /		<.,,

C7—C1—C9—C10	-157.53 (17)	C15—C16—C17—C12	2.0 (3)
C8—C3—C4—C5	-0.5 (3)	O2—C18—C19—C20	27.2 (2)
C4—C3—C8—N2	-179.09 (19)	O2—C18—C19—C24	-155.53 (16)
C4—C3—C8—C7	-0.1 (3)	C18—C19—C20—C21	177.42 (17)
C3—C4—C5—C6	0.1 (3)	C24—C19—C20—C21	0.1 (3)
C4—C5—C6—C7	0.9 (3)	C18—C19—C24—C23	-176.71 (17)
C5—C6—C7—C1	178.23 (18)	C20-C19-C24-C23	0.7 (3)
C5—C6—C7—C8	-1.5 (2)	C19—C20—C21—C22	-1.1 (3)
C1—C7—C8—N2	0.52 (19)	C20—C21—C22—C23	1.4 (3)
C1—C7—C8—C3	-178.67 (16)	C21—C22—C23—C24	-0.7 (3)
C6—C7—C8—N2	-179.71 (15)	C22—C23—C24—C19	-0.4 (3)
C6—C7—C8—C3	1.1 (2)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of rings N2/C1/C2/C7/C8, C3–C8 and C19–C24, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> …O1	1.07 (3)	1.81 (3)	2.657 (2)	133 (2)
N1—H1 <i>N</i> ···O1 ⁱ	1.07 (3)	2.19 (3)	3.004 (2)	131 (2)
C2—H2···O1 ⁱⁱ	0.93	2.55	3.467 (2)	167
C23—H23···Cg2 ⁱ	0.93	2.95	3.716 (2)	141
C24—H24···Cg1 ⁱ	0.93	2.70	3.465 (3)	140
N2—H2 N ··· $Cg4^{ii}$	0.85 (2)	3.03 (2)	3.75 (3)	145 (2)

Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z.