

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 26 February 2018 Accepted 1 March 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; macrocycle; synchrotron radiation; silver(II) complex; nitrate ion; *trans*-III conformation; hydrogen bonding.

CCDC reference: 1826672

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [2,13-bis(acetamido)-5,16dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane- $\kappa^4 N$]silver(II) dinitrate from synchrotron X-ray data

Dohyun Moon^a and Jong-Ha Choi^{b*}

^aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The asymmetric unit of the title compound, $[Ag(C_{24}H_{46}N_6O_2)](NO_3)_2$ $[C_{24}H_{46}N_6O_2$ is (5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane-2,13-diyl)diacetamide, *L*], consists of one independent half of the $[Ag(C_{24}H_{46}N_6O_2)]^{2+}$ cation and one nitrate anion. The Ag atom, lying on an inversion centre, has a square-planar geometry and the complex adopts a stable *trans*-III conformation. Interestingly, the two O atoms of the pendant acetamide groups are not coordinated to the Ag^{II} ion. The longer distance of 2.227 (2) Å for Ag–N(tertiary) compared to 2.134 (2) Å for Ag–N(secondary) may be due to the effects of the attached acetamide group on the tertiary N atom. Two nitrate anions are very weakly bound to the Ag^{II} ion in the axial sites and are further connected to the ligand of the cation by N–H···O hydrogen bonds. The crystal packing is stabilized by hydrogen-bonding interactions among the N–H donor groups of the macrocycle and its actetamide substituents, and the O atoms of the nitrate anions and of an acetamide group as the acceptor atoms.

1. Chemical context

Macrocycles with N-substituted groups on the polyaza macrocyclic ring and their transition metal complexes have attracted considerable attention because of their structural and chemical properties, which are different from those of the corresponding unsubstituted macrocyclic systems. Recently, it has been shown that the cyclam (1,4,8,11-tetraazacyclotetradecane) derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). These cyclam-based macrocyclic ligands have a moderately flexible structure, and can adopt both planar (trans) and folded (cis) configurations. There are five conformational trans isomers for the cyclam moiety, which differ in the chirality of the sec-NH centers (Choi, 2009). The trans-I, trans-II and trans-V configurations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011). The conformation of the macrocyclic ligand and the orientations of the N-H bonds are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and crystal packing of transition metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specially target alternative events in the HIV replicative cycle (De Clercq, 2010). Partially N-substituted tetraazamacrocycles and their complexes have been much less widely studied. This may be

research communications

due to the difficulty encountered in the attachment of only one or two pendant arms to the tetraaza macrocycle by several steps and in low yields. The presence of two methyl substituents on the macrocyclic ring carbon atoms next to the secondary amine groups facilitates syntheses, as *N*-substitution takes place only on the less sterically hindered nitrogen atoms.

The syntheses and crystal structures of transition metal complexes with the constrained cyclam ligand containing two acetamide groups on the nitrogen atoms have received much attention because of the effects of the functional groups on their chemical properties and coordination geometry (Choi *et al.*, 2001*a,b,c*; Choi & Lee, 2007). The nitrate ion can also coordinate to the transition metal ions in a monodentate, chelating bidentate or bridging bidentate fashion. The oxidation state of the metal, the nature of other ligands and steric factors influence the mode of coordination.

In this communication, we report the synthesis and structural characterization a new silver(II) complex, $[Ag(C_{24}H_{46}-N_6O_2)](NO_3)_2$, (I) to confirm the conformation and bonding modes of the macrocyclic ligand and the nitrate anions.

2. Structural commentary

The structural analysis showed the space group to be $P\overline{1}$ with Z = 1. The asymmetric unit contains one independent half of the $[Ag(C_{24}H_{46}N_6O_2)]^{2+}$ cation and one nitrate anion. The silver(II) cation is situated on a center of inversion in the small triclinic cell, which contains a single silver(II) complex. An ellipsoid plot of the title compound is shown in Fig. 1 along with the atomic numbering scheme. The two methyl groups on the six-membered chelate rings and the two $-(CH_2)_4$ - parts of the cyclohexane backbones are anti with respect to the macrocyclic plane. Two pendant acetamide groups in the Ag^{II} complex molecule are also trans to each other, and thus the macrocyclic skeleton adopts the most stable trans-III (RRSS) conformation. The five-membered chelate rings adopt a gauche, and the six-membered rings are in chair conformations. The Ag^{II} cation is surrounded by a square-planar array of four nitrogen atoms from the secondary and tertiary amines in the macrocycle. Interestingly, the oxygen atoms of the acetamide substituents are not coordinated to the metal center. It is noteworthy that the Zn^{II}, Ni^{II} and Cu^{II} complexes of the same ligand have a tetragonally distorted octahedral environment with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of the pendant acetamide groups in axial positions (Choi et al., 2001a,b,c; Choi & Lee, 2007). The Ag-N bond lengths of 2.134(2) and 2.227(2) Å from the donor atoms of the macrocycle can be compared to those determined in $[Ag(cyclam)](ClO_4)_2$ [2.158 (2)-2.192 (2) Å; Ito et al., 1981], $[\text{Ag}(\text{tmc})](\text{ClO}_4)_2$ [2.194 (2)-2.196 (2) Å; tmc = 1,4,8,11-tetramethyl-1,4,8,11tetraazacyclotetradecane; Po et al., 1991], [Ag(tet a)](NO₃)₂ [2.159(3)-2.162(3) Å; tet a = C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; Mertes, 1978] and [Ag(3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane)](NO₃)₂·4H₂O [2.140 (2)–2.150 (3) Å; Moon et al., 2010]. The longer Ag-N(tertiary) bond distance, compared to the length of the Ag-N(secondary) bond may be due to the steric and inductive effects of the pendant acetamide group on the tertiary N atom. The Ag–O distance of 3.109 (2) Å is longer than the corresponding distances in $[Ag(cyclam)](ClO_4)_2$ [2.788 (2) Å; Ito et al., 1981], [Ag(tmc)](ClO₄)₂ [2.889 (4) Å; Po et al., 1991], [Ag(tet a)](NO₃)₂ [2.807 (4) Å; Mertes, 1978] and [Ag(3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane)](NO₃)₂·4H₂O [2.923 (2) Å; Moon et al., 2010]. The longest N1-C4 bond distance is also probably due to the effect of the acetamide group and the cyclohexane ring. The nitrate anion has a slightly distorted trigonal-planar geometry because of the hydrogen bonding interactions and the very weak interaction with the silver(II) ion. Two nitrate ions are located above and below the coordination planes, and each are linked to the cation via $N-H \cdots O$ hydrogen bonds.

Figure 1

A perspective view (50% probability) of complex (I). The primed atoms are related by the symmetry operation (-x + 1, -y + 1, -z + 1). Hydrogen bonds are drawn as dashed lines.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2\cdots O1N$	1.00	2.59	3.214 (4)	121
$N2-H2\cdots O3N$	1.00	1.93	2.925 (4)	172
$N3-H3A\cdotsO1^{i}$	0.88	2.03	2.913 (4)	177
N3-H3 B ···O1 N ⁱⁱ	0.88	2.06	2.930 (4)	168
$N3-H3B\cdots O2N^{ii}$	0.88	2.59	3.281 (4)	136

Symmetry codes: (i) -x, -y + 1, -z; (ii) x - 1, y, z.

3. Supramolecular features

Extensive hydrogen-bonding interactions occur in the crystal structure (Table 1). The nitrate ions are connected to the ligand of the cation *via* $N-H\cdots O$ hydrogen bonds. The nitrate anions have slightly distorted trigonal-planar geometries because of these interactions and the very weak interaction with the silver(II) cation. The supramolecular architecture involves hydrogen bonds between the N-H groups of both the macrocycle and its pendant acetamide substituents as donors, and the O atoms of the nitrate anions and the acetamides as acceptors. An array of these contacts generate a two-dimensional sheet of molecules stacked along the *b*-axis direction (Fig. 2). This hydrogen-bonded network helps to stabilize the crystal structure.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, May 2017 with three updates; Groom *et al.*, 2016) gave four

hits for the macrocycle $(C_{24}H_{46}N_6O_2)$ unit. The crystal structures of $[Cu(C_{24}H_{46}N_6O_2)]Cl_2\cdot8H_2O$ (Choi *et al.*, 2001*a*), $[Zn(C_{24}H_{46}N_6O_2)]Cl_2\cdot3H_2O$ (Choi *et al.*, 2001*b*), $[Ni(C_{24}H_{46}N_6O_2)](ClO_4)_2$ (Choi *et al.*, 2001*c*) and $[Cu(C_{24}H_{46}N_6O_2)](ClO_4)_2$ (Choi *et al.*, 2001*c*) have been reported previously. In all of these structures, two O atoms of the acetamide substituents occupy the axial positions, giving rise to a tetragonally distorted octahedral geometry. This is quite unlike the square-planar geometry of the title compound as the two O atoms of the acetamide substituents are not bound to the silver(II) cation in this case. Until now, no structure of the complex ion $[Ag(C_{24}H_{46}N_6O_2)]^{2+}$ with any anion has been reported.

5. Synthesis and crystallization

As a starting material, 3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane was prepared according to a published procedure (Kang *et al.*, 1991). All other chemicals were purchased from commercial sources and used without further purification. The macrocyclic ligand 2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane (*L*) was prepared by a previously reported method (Maumela *et al.*, 1995). AgNO₃ (0.34 g, 2 mmol) dissolved in water (10 mL) was mixed with a suspension of the ligand *L* (0.45 g, 1 mmol) in methanol (20 mL). The resulting mixture was heated at 313 K for 30 min and then filtered to remove metallic silver. The orange filtrate was left in an open beaker, protected from the light, at ambient temperature. After several days block-like dark-orange crystals of (I) suitable only for synchrotron X-ray analysis were formed.

Figure 2

The crystal packing in complex (I), viewed along the *b*-axis direction. Dashed lines represent $N-H \cdots O$ hydrogen-bonding interactions.

research communications

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[Ag(C_{24}H_{46}N_6O_2)](NO_3)_2$
M _r	682.56
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.3460 (17), 9.2874 (19), 10.171 (2)
α, β, γ (°)	104.32 (3), 90.28 (3), 109.60 (3)
$V(\dot{A}^3)$	716.3 (3)
Ζ	1
Radiation type	Synchrotron, $\lambda = 0.610$ Å
$\mu \text{ (mm}^{-1})$	0.51
Crystal size (mm)	$0.02 \times 0.02 \times 0.01$
Data collection	
Diffractometer	ADSC Q210 CCD area detector
Absorption correction	Empirical (using intensity measurements) (<i>HKL3000sm</i> <i>SCALEPACK</i> ; Otwinowski & Minor, 1997)
T_{\min}, T_{\max}	0.937, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7431, 3750, 3418
R _{int}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.693
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.115, 1.05
No. of reflections	3750
No. of parameters	189
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.71, -2.17

Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND 4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

In the synthesis of the title complex, two pertinent features are found. One is that the complex contains the silver in the unusually high oxidation state, Ag^{II} . This is stabilized by the macrocycle *L*. The complex is the product of the disproportionation of the Ag^{I} complex according to the following equation:

 $2Ag^{I} + L \rightarrow Ag^{II}L + Ag(s) \downarrow$

It is generally understood that macrocyclic ligands possess a suitable cavity size and hard nitrogen donor atoms that can form stable Ag^{II} complexes in aqueous solution (Ali *et al.*, 2004).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.98–1.00 Å and an N–H distance of 0.88–1.0 Å. All displacement parameters of H atoms $U_{\rm iso}({\rm H})$ were set to 1.2 or $1.5U_{\rm eq}$ of their respective parent atoms.

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

- Ali, M., Shames, A. I., Gangopadhyay, S., Saha, B. & Meyerstein, D. (2004). *Transition Met. Chem.* 29, 463–470.
- Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.
- Choi, K.-Y., Kim, Y.-S., Choo, G.-H., Kim, J.-G. & Suh, I.-H. (2001*a*). *Acta Cryst.* C57, 1014–1015.
- Choi, K.-Y., Kim, H.-H. & Suh, I.-H. (2001b). J. Korean Chem. Soc. 45, 189–193.
- Choi, K.-Y. & Lee, H.-K. (2007). J. Chem. Crystallogr. 37, 669-673.
- Choi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). *Polyhedron*, **20**, 2003– 2009.
- De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ito, T., Ito, H. & Toriumi, K. (1981). Chem. Lett. 10, 1101-1104.
- Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.
- Maumela, H., Hancock, R. D., Carlton, L., Reibenspies, J. H. & Wainwright, K. P. (1995). J. Am. Chem. Soc. 117, 6698–6707.
- Mertes, K. B. (1978). Inorg. Chem. 17, 49-52.
- Moon, J. R., Lough, A. J., Yoon, Y. T., Kim, Y. I. & Kim, J. C. (2010). *Inorg. Chim. Acta*, 363, 2682–2685.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310–2312.
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.
- Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). *Dalton Trans.* 41, 6408–6418.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.
- Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 461-464 [https://doi.org/10.1107/S2056989018003560]

Crystal structure of [2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane- $\kappa^4 N$]silver(II) dinitrate from synchrotron X-ray data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: *PAL BL2D-SMDC Program* (Shin *et al.*, 2016); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXT2014* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *DIAMOND 4* (Putz & Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

[(5,16-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane-2,13-diyl)diacetamide- $\kappa^4 N^2$, N^6 , N^{13} , N^{17}]silver(II) dinitrate

Crystal data

 $[Ag(C_{24}H_{46}N_6O_2)](NO_3)_2$ $M_r = 682.56$ Triclinic, $P\overline{1}$ a = 8.3460 (17) Å b = 9.2874 (19) Å c = 10.171 (2) Å $a = 104.32 (3)^{\circ}$ $\beta = 90.28 (3)^{\circ}$ $\gamma = 109.60 (3)^{\circ}$ $V = 716.3 (3) \text{ Å}^3$

Data collection

ADSC Q210 CCD area detector diffractometer Radiation source: PLSII 2D bending magnet ω scan Absorption correction: empirical (using intensity measurements) (*HKL3000sm SCALEPACK*; Otwinowski & Minor, 1997) $T_{\min} = 0.937, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ S = 1.053750 reflections 189 parameters Z = 1 F(000) = 357 $D_x = 1.582 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.610 \text{ Å}$ Cell parameters from 46429 reflections $\theta = 0.4-33.7^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 173 KBlock, dark orange $0.02 \times 0.02 \times 0.01 \text{ mm}$

7431 measured reflections 3750 independent reflections 3418 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0747P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\text{max}} = 0.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.17 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.065 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Agl	0.500000	0.500000	0.500000	0.01559 (13)
01	0.2273 (3)	0.5401 (3)	0.0700 (3)	0.0332 (6)
N1	0.3945 (3)	0.4502 (3)	0.2855 (2)	0.0138 (4)
N2	0.3842 (3)	0.2496 (3)	0.4657 (2)	0.0141 (4)
H2	0.480698	0.207953	0.460293	0.017*
N3	-0.0231 (4)	0.4445 (4)	0.1558 (3)	0.0287 (6)
H3A	-0.082643	0.448023	0.085766	0.034*
H3B	-0.075649	0.410273	0.222782	0.034*
C1	0.5320 (4)	0.5522 (4)	0.2206 (3)	0.0190 (6)
H1A	0.491733	0.531956	0.123804	0.023*
H1AB	0.633336	0.519689	0.222357	0.023*
C2	0.2334 (4)	0.4871 (4)	0.2920 (3)	0.0200 (6)
H2A	0.258145	0.591883	0.357970	0.024*
H2AB	0.149558	0.408176	0.330418	0.024*
C3	0.1459 (4)	0.4909 (4)	0.1604 (3)	0.0223 (6)
C4	0.3680 (4)	0.2774 (3)	0.2288 (3)	0.0167 (5)
H4	0.483624	0.268837	0.217142	0.020*
C5	0.2651 (4)	0.2038 (4)	0.0888 (3)	0.0218 (6)
H5A	0.148066	0.206799	0.096639	0.026*
H5B	0.319617	0.266303	0.024804	0.026*
C6	0.2561 (5)	0.0326 (4)	0.0329 (3)	0.0296 (7)
H6A	0.186557	-0.013650	-0.056301	0.035*
H6B	0.372603	0.030416	0.018612	0.035*
C7	0.1776 (5)	-0.0665 (4)	0.1307 (3)	0.0318 (8)
H7A	0.179869	-0.175056	0.095173	0.038*
H7B	0.056864	-0.074055	0.137454	0.038*
C8	0.2763 (5)	0.0082 (4)	0.2717 (3)	0.0249 (6)
H8A	0.393756	0.005616	0.265973	0.030*
H8B	0.220186	-0.054797	0.334862	0.030*
С9	0.2852 (4)	0.1794 (3)	0.3284 (3)	0.0148 (5)
Н9	0.166364	0.180502	0.337656	0.018*
C10	0.2906 (4)	0.2024 (3)	0.5819 (3)	0.0182 (5)
H10	0.252172	0.084275	0.560973	0.022*
C11	0.4128 (4)	0.2696 (4)	0.7127 (3)	0.0207 (6)
H11A	0.357944	0.213455	0.780635	0.025*

supporting information

H11B	0.517100	0.243381	0.692138	0.025*
C12	0.1312 (4)	0.2481 (4)	0.5968 (3)	0.0269 (7)
H12A	0.159371	0.357672	0.591454	0.040*
H12B	0.088753	0.238874	0.685098	0.040*
H12C	0.042823	0.177157	0.523376	0.040*
O1N	0.7629 (4)	0.3507 (3)	0.3690 (3)	0.0343 (6)
O2N	0.8673 (3)	0.1611 (3)	0.3122 (3)	0.0338 (6)
O3N	0.6869 (3)	0.1576 (3)	0.4643 (3)	0.0328 (6)
N1N	0.7737 (3)	0.2225 (3)	0.3815 (3)	0.0237 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.01841 (18)	0.01836 (19)	0.00929 (16)	0.00500 (12)	-0.00143 (10)	0.00443 (10)
01	0.0323 (13)	0.0502 (16)	0.0254 (12)	0.0174 (12)	0.0029 (10)	0.0203 (11)
N1	0.0189 (11)	0.0161 (11)	0.0080 (9)	0.0073 (9)	-0.0004 (8)	0.0043 (8)
N2	0.0177 (11)	0.0149 (11)	0.0100 (10)	0.0054 (9)	0.0004 (8)	0.0042 (8)
N3	0.0271 (14)	0.0434 (18)	0.0213 (13)	0.0161 (13)	0.0001 (11)	0.0132 (12)
C1	0.0216 (14)	0.0232 (14)	0.0102 (11)	0.0044 (11)	0.0030 (10)	0.0058 (10)
C2	0.0248 (15)	0.0243 (15)	0.0128 (12)	0.0118 (12)	-0.0022 (10)	0.0038 (10)
C3	0.0306 (16)	0.0216 (15)	0.0172 (13)	0.0127 (13)	-0.0030 (11)	0.0045 (11)
C4	0.0200 (13)	0.0201 (14)	0.0084 (11)	0.0068 (11)	-0.0012 (9)	0.0013 (9)
C5	0.0291 (16)	0.0251 (15)	0.0103 (12)	0.0110 (13)	-0.0036 (10)	0.0007 (10)
C6	0.0408 (19)	0.0286 (17)	0.0162 (14)	0.0164 (15)	-0.0059 (13)	-0.0056 (12)
C7	0.044 (2)	0.0203 (16)	0.0237 (16)	0.0103 (15)	-0.0127 (14)	-0.0049 (12)
C8	0.0338 (17)	0.0178 (14)	0.0194 (14)	0.0074 (13)	-0.0060 (12)	0.0006 (11)
C9	0.0177 (13)	0.0165 (13)	0.0112 (11)	0.0079 (10)	-0.0011 (9)	0.0028 (9)
C10	0.0211 (14)	0.0175 (13)	0.0153 (12)	0.0036 (11)	0.0023 (10)	0.0073 (10)
C11	0.0275 (15)	0.0233 (15)	0.0136 (12)	0.0078 (12)	0.0017 (11)	0.0106 (11)
C12	0.0206 (15)	0.0370 (19)	0.0193 (14)	0.0072 (13)	0.0040 (11)	0.0046 (13)
O1N	0.0386 (15)	0.0353 (14)	0.0385 (14)	0.0187 (12)	0.0114 (11)	0.0183 (11)
O2N	0.0326 (14)	0.0448 (16)	0.0263 (12)	0.0211 (12)	0.0051 (10)	0.0027 (11)
O3N	0.0376 (14)	0.0359 (14)	0.0388 (14)	0.0232 (12)	0.0152 (11)	0.0195 (11)
N1N	0.0222 (13)	0.0297 (15)	0.0203 (12)	0.0137 (11)	-0.0037 (10)	0.0021 (10)

Geometric parameters (Å, °)

Ag1—N2 ⁱ	2.134 (2)	C5—H5A	0.9900	_
Ag1—N2	2.134 (2)	C5—H5B	0.9900	
Ag1—N1	2.227 (2)	C6—C7	1.523 (5)	
Ag1—N1 ⁱ	2.227 (2)	C6—H6A	0.9900	
O1—C3	1.234 (4)	C6—H6B	0.9900	
N1-C2	1.493 (4)	C7—C8	1.527 (4)	
N1-C1	1.496 (4)	C7—H7A	0.9900	
N1-C4	1.504 (4)	C7—H7B	0.9900	
N2-C9	1.494 (3)	C8—C9	1.527 (4)	
N2-C10	1.495 (3)	C8—H8A	0.9900	
N2—H2	1.0000	C8—H8B	0.9900	

supporting information

N3—C3	1.326 (4)	С9—Н9	1.0000
N3—H3A	0.8800	C10—C12	1.524 (4)
N3—H3B	0.8800	C10—C11	1.532 (4)
C1-C11 ⁱ	1.530 (4)	C10—H10	1.0000
C1—H1A	0.9900	C11—H11A	0.9900
C1—H1AB	0.9900	C11—H11B	0.9900
C2—C3	1.535 (4)	C12—H12A	0.9800
C2—H2A	0.9900	C12—H12B	0.9800
C2—H2AB	0.9900	C12—H12C	0.9800
C4—C5	1.531 (4)	O1N—N1N	1.261 (4)
C4-C9	1 540 (4)	02N—N1N	1 240 (4)
C4—H4	1.0000	O3N—N1N	1 249 (4)
C5C6	1.526 (5)		1.215(1)
05-00	1.526 (5)		
N2 ⁱ —Ag1—N2	180.0	H5A—C5—H5B	108.1
N2 ⁱ —Ag1—N1	96.57 (9)	C7—C6—C5	111.1 (3)
N2—Ag1—N1	83.43 (9)	С7—С6—Н6А	109.4
$N2^{i}$ Ag1 $N1^{i}$	83.43 (9)	С5—С6—Н6А	109.4
N2—Ag1—N1 ⁱ	96.57 (9)	C7—C6—H6B	109.4
N1—Ag1—N1 ⁱ	180.0 (2)	С5—С6—Н6В	109.4
C2—N1—C1	114.7 (2)	H6A—C6—H6B	108.0
C2—N1—C4	114.1 (2)	C6—C7—C8	110.4 (3)
C1—N1—C4	111.6 (2)	С6—С7—Н7А	109.6
C2—N1—Ag1	106.66 (16)	С8—С7—Н7А	109.6
C1 - N1 - Ag1	105 59 (17)	C6—C7—H7B	109.6
C4—N1—Ag1	102.92 (15)	C8—C7—H7B	109.6
C9 - N2 - C10	102.92(10) 115.8(2)	H7A - C7 - H7B	108.1
C9 - N2 - Ag1	109 76 (16)	C7 - C8 - C9	111.9(3)
C_{10} N2 Ag1	113 18 (17)	C7 - C8 - H8A	109.2
C9 N2 H2	105 7	C9 - C8 - H8A	109.2
C_{10} N2 H2	105.7	C7-C8-H8B	109.2
$\Delta g1 - N2 - H2$	105.7	C_{0} C_{0} H_{8B}	109.2
$\begin{array}{c} \text{Ag1} \\ \text{C3} \\ \text{N3} \\ \text{H3} $	105.7		107.2
$C_3 N_3 H_{3B}$	120.0	$N^2 C Q C R$	107.9
H_{3A} N3 H_{3B}	120.0	$N_2 = C_2 = C_3$	110.5(2)
$\frac{113}{113} \frac{113}{113} 11$	120.0 115.2(2)	$C_{1}^{2} = C_{2}^{2} = C_{4}^{2}$	110.5(2) 109.6(2)
$N_1 = C_1 = C_1 T_1$	113.2 (2)	$N^2 C^0 H^0$	109.0 (2)
$N_{1} = C_{1} = M_{1}$	108.5	$1\sqrt{2}$	108.7
$M_{1} = C_{1} = M_{1}$	108.5	$C_{0} = C_{0} = H_{0}$	108.7
$NI - CI - \Pi AB$	108.5	C4 - C9 - H9	100.7
	108.5	N2-C10-C12	111.9 (2)
HIA—CI—HIAB	107.5	$N_2 = C_{10} = C_{11}$	109.9 (2)
NI = C2 = C3	119.0 (2)		113.0 (2)
H_{L2} H2A	107.6	N2 - C10 - H10	107.3
$U_3 - U_2 - H_2 A$	107.0	C12 - C10 - H10	107.3
N1 - C2 - H2AB	107.6	C11 - C10 - H10	107.3
US-UZ-HZAB	107.6		117.6 (2)
H2A—C2—H2AB	107.0	CI ^L —CII—HIIA	107.9
01—C3—N3	123.2 (3)	C10—C11—H11A	107.9

O1—C3—C2	122.4 (3)	C1 ⁱ —C11—H11B	107.9
N3—C3—C2	114.3 (3)	C10-C11-H11B	107.9
N1—C4—C5	113.8 (2)	H11A—C11—H11B	107.2
N1—C4—C9	111.8 (2)	C10-C12-H12A	109.5
C5—C4—C9	109.8 (2)	C10-C12-H12B	109.5
N1—C4—H4	107.0	H12A—C12—H12B	109.5
C5—C4—H4	107.0	C10-C12-H12C	109.5
С9—С4—Н4	107.0	H12A—C12—H12C	109.5
C6—C5—C4	110.7 (3)	H12B—C12—H12C	109.5
С6—С5—Н5А	109.5	O2N—N1N—O3N	120.6 (3)
С4—С5—Н5А	109.5	O2N—N1N—O1N	120.7 (3)
С6—С5—Н5В	109.5	O3N—N1N—O1N	118.6 (3)
C4—C5—H5B	109.5		
C2-N1-C1-C11 ⁱ	57.5 (3)	C6—C7—C8—C9	56.2 (4)
$C4-N1-C1-C11^{i}$	-170.8 (2)	C10—N2—C9—C8	-78.2 (3)
Ag1—N1—C1—C11 ⁱ	-59.7 (3)	Ag1—N2—C9—C8	152.1 (2)
C1—N1—C2—C3	53.5 (3)	C10—N2—C9—C4	160.3 (2)
C4—N1—C2—C3	-77.0 (3)	Ag1—N2—C9—C4	30.6 (3)
Ag1—N1—C2—C3	170.0 (2)	C7—C8—C9—N2	-179.4 (3)
N1-C2-C3-O1	-35.8 (4)	C7—C8—C9—C4	-57.4 (4)
N1-C2-C3-N3	147.4 (3)	N1-C4-C9-N2	-52.8 (3)
C2—N1—C4—C5	54.2 (3)	C5—C4—C9—N2	179.9 (2)
C1—N1—C4—C5	-77.8 (3)	N1—C4—C9—C8	-174.8 (2)
Ag1—N1—C4—C5	169.4 (2)	C5—C4—C9—C8	57.9 (3)
C2—N1—C4—C9	-70.9 (3)	C9—N2—C10—C12	-59.3 (3)
C1—N1—C4—C9	157.1 (2)	Ag1-N2-C10-C12	68.7 (3)
Ag1—N1—C4—C9	44.3 (2)	C9—N2—C10—C11	174.3 (2)
N1-C4-C5-C6	175.4 (3)	Ag1-N2-C10-C11	-57.7 (3)
C9—C4—C5—C6	-58.5 (3)	N2-C10-C11-C1 ⁱ	73.2 (3)
C4—C5—C6—C7	57.5 (4)	C12-C10-C11-C1 ⁱ	-52.5 (3)
C5—C6—C7—C8	-55.6 (4)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2···O1N	1.00	2.59	3.214 (4)	121
N2—H2···O3 <i>N</i>	1.00	1.93	2.925 (4)	172
N3—H3A···O1 ⁱⁱ	0.88	2.03	2.913 (4)	177
N3—H3 <i>B</i> ···O1 <i>N</i> ⁱⁱⁱ	0.88	2.06	2.930 (4)	168
N3—H3 <i>B</i> ····O2 <i>N</i> ⁱⁱⁱ	0.88	2.59	3.281 (4)	136

Symmetry codes: (ii) -*x*, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*.