

Received 6 February 2018 Accepted 4 March 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; bifurcated bond; weak intermolecular hydrogen bonds.

CCDC references: 1827383; 1827382

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two new 3-(2-chloroethyl)r(2),c(6)-diarylpiperidin-4-ones

K. Rajkumar,^a S. Sivakumar,^{a,b}* R. Arulraj,^a Manpreet Kaur,^c Jerry P. Jasinski,^c* A. Manimekalai^d and A. Thiruvalluvar^e

^aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, ^bDepartment of Chemistry, Thiruvalluvar Arts and Science College, Kurinjipadi 607 302, Tamilnadu, India, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH, 03435-2001, USA, ^dDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^ePrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India. *Correspondence e-mail: sivakumar.phd2015@gmail.com , jjasinski@keene.edu

The syntheses and crystal structures of 3-(2-chloroethyl)-*r*-2,*c*-6-diphenylpiperidin-4-one, $C_{19}H_{20}$ ClNO, (I), and 3-(2-chloroethyl)-*r*-2,*c*-6-bis(4-fluorophenyl)piperidin-4-one, $C_{19}H_{18}$ ClF₂NO, (II), are described. The piperidone ring adopts a chair conformation in (I), whereas a slightly distorted chair conformation is formed in (II). The dihedral angle between the mean plane of the phenyl rings is 59.1 (1)° in (I) and 76.1 (1)° in (II). The crystal packing features weak intermolecular N-H···O hydrogen bonds in each structure.

1. Chemical context

Piperidone molecules exhibit a wide spectrum of biological activities ranging from anti-bacterial to anti-cancer (Parthiban et al., 2005, 2009, 2011). Most of the 2,6-diaryl-substituted piperidones and their derivatives are of significant pharmacological importance (Aridoss et al., 2007). Some novel 3,5dichloro-2,6-diarylpiperidin-4-ones are also reported to possess antimicrobial activity (Bhakiaraj et al., 2014). Piperidones also display analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al., 2001). In view of the relevance of piperidone derivatives to a variety of ongoing health and pharmalogical issues, we have synthesized the title compounds and report their crystal structures here. Arulraj et al. (2017) has reported the crystal structure of three related 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones. In each of these structures, the piperidine rings adopt chair conformations similar to what we have observed in the title compounds.

'n

(I)

H

(II)

research communications

2. Structural commentary

Two 3-(2-chloroethyl)-r-2,c-6-diarylpiperidin-4-one new compounds, C₁₉H₂₀ClNO (I) and C₁₉H₁₈ClF₂NO (II), each crystallize in the $P2_1/c$ space group with one independent molecule in the asymmetric unit. The piperidone ring adopts a chair conformation in (I), (Fig. 1), whereas it forms a slightly distorted chair conformation in (II), (Fig. 2), with puckering parameters Q = 0.576 (2) Å, $\theta = 164.2$ (2)°, $\varphi = 179.4$ (8)° in (I) and Q = 0.601 (2) Å, $\theta = 4.93$ (19)°, $\varphi = 356$ (2)° in (II). The dihedral angle between the mean planes of the phenyl rings is 59.1 (1)° in (I) and 76.1 (1)° in (II). The increase in this dihedral angle in (II) could be attributed to steric repulsion from the substituent fluorine atoms. The sum of the bond angles around N1 in each structure [332.5° in (I) and 331.9° in (II)] is consistent with sp³ hybridization (Beddoes *et al.*, 1986).

The substituents on the piperidine ring in both (I) and (II) adopt equatorial orientations with the keto oxygen atom being

Figure 1

A view of the molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

A view of the molecular structure of (II), showing displacement ellipsoids drawn at the 30% probability level.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg3 is the centroid of the C12–C17 ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1 ⁱ	0.86 (2)	2.52 (2)	3.335 (2)	158 (2)
C4-H4 A ··· $Cg3^{ii}$	0.97	2.79	3.665 (2)	150

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$

anti-clinal $[O1-C3-C4-C5 = 136.1 (2)^{\circ}]$ in (I) and antiperiplanar $[O1-C1-C5-C4 = -120.4 (2)^{\circ}]$ in (II). The 2chloroethyl group lies in a syn-clinal orientation in both (I) $[C3-C2-C18-C19 = 75.6 (3)^{\circ}]$ and (II) [C1-C5-C6-C7 $= 76.4 (2)^{\circ}]$. The two diaryl groups are both anti-clinal $[N1-C5-C6-C11 = 54.5 (3)^{\circ}]$ and $N1-C1-C12-C13 = 123.97 (18)^{\circ}]$ in (I) whereas in (II) they are both syn-clinal $[N1-C4-C14-C15 = -78.4 (2)^{\circ}]$ and $N1-C3-C8-C13 = 35.4 (2)^{\circ}]$.

3. Supramolecular features

The crystal packing features very weak N1–H1···O1 hydrogen bonds in (I), forming infinite C(6) chains along the *b*-axis direction, with the molecules rotating in a 180° spiral motif along the axis (Table 1, Fig. 3). In addition, a weak C–H··· π interaction between the piperdine ring and a diaryl group in (I) also occurs.

In (II), weak N-H···O hydrogen bonds (Fig. 4, Table 2) are again observed, also forming infinite C(6) chains but along the *c* axis in this case. Weak C-H···O and C-H···F interactions (Table 2) are also observed and contribute to the packing stability. In (II), the keto oxygen, O1, acts as the

Figure 3

A partial view along the *a* axis of the crystal packing for (I), showing infinite chains formed along [010] by weak $N1-H1\cdots O1$ hydrogen bonds with the molecules rotating in a 180° spiral motif along the axis. H atoms not involved in this interaction have been omitted for clarity.

Table 2 Hydrogen-bond geometry (Å, $^\circ)$ for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline & \\ N1-H1\cdotsO1^{i} \\ C9-H9\cdotsF2^{ii} \\ C10-H10\cdotsF2^{iii} \\ C12-H12\cdotsO1^{iv} \\ C16-H16\cdotsF1^{v} \\ \end{array}$	0.89 (2) 0.93 0.93 0.93 0.93 0.93	2.32 (2) 2.61 2.58 2.57 2.62	3.189 (2) 3.378 (2) 3.343 (2) 3.412 (3) 3.379 (2)	165 (2) 140 139 150 139

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

acceptor of weak hydrogen bonds involving atom N1 from a piperdine ring in the same plane and with atom C12 from one of the diaryl groups of a molecule in an adjacent plane along the *a* axis. An unusual weak $C1-O1\cdots\pi$ [$O1\cdots\pi$ = 3.8263 (19) Å, $C1\cdots\pi$ = 4.377 (2) Å, $C1-O1\cdots\pi$ = 109°; *x*, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; centroid of the C8–C13 ring] interaction also between the piperidine ring and a diaryl group is observed.

4. Database survey

A search in the Cambridge Crystallographic Database (CSD version 5.38 of Nov, 2016, updates May, 2017; Groom *et al.*, 2016) for the 2,6-diphenylpiperidin-4-one skeleton resulted in 229 hits, which was further refined to 50 hits by removing those structures in which the title skeleton substructure was combined with larger molecules. The two most closely related remaining structures based on the pendant arms of the 2,6-diphenylpiperidin-4-one central substructure, *viz.* 2,6-diphenyl-3-isopropylpiperidin-4-one (ACEZUD; Nilofar Nissa *et al.*, 2001) and *t*-3-pentyl-r-2,c-6-diphenylpiperidin-4-one (RUGLOV; Gayathri *et al.*, 2009) were then compared with the two reported here. The piperidone ring in compounds

Figure 4

A partial view along the *a* axis of the crystal packing for (II), showing infinite chains formed along [001] by weak N1-H1···O1 and C12-H12···O1 hydrogen-bonding interactions. The keto oxygen, O1, forms a weak hydrogen bond with N1 from a piperdine ring in the same plane and with C12 from one of the diaryl groups of a molecule in an adjacent plane along the *a* axis. H atoms not involved in these interactions have been omitted for clarity.

(I) and (II) reported here adopt chair or distorted chair conformations, unlike in ACEZUD and RUGLOV. The crystal packing is stabilized by $N-H\cdots O$ intermolecular hydrogen bonds in both (I) and (II), as well as in ACEZUD. In contrast, the crystal packing in RUGLOV is influenced only by weak $C-H\cdots O$ and $C-H\cdots \pi$ intermolecular interactions.

5. Synthesis and crystallization

A mixture of ammonium acetate (0.1 mol, 7.71 g), the aldehyde (0.2 mol), benzaldehvde/p-fluororespective benzaldehyde (20.4 ml/21.0 ml) and 5-chloro-2-pentanone (0.1 mol, 11.4 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in diethyl ether (200 ml) and shaken with 100 ml of concentrated hydrochloric acid. The precipitated hydrochlorides of the 3-(2-chloroethyl)-r-2,c-6-diarylpiperidin-4ones were removed by filtration and washed first with a 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. Each compound was recrystallized twice from a distilled ethanol solution: single crystals of (I) and (II) were obtained after two days. The yield of the isolated product was 3.0 g (I) and 2.5 g (II).

3-(2-Chloroethyl)-*r*-2,*c*-6-diphenylpiperidin-4-one, (C₁₉H₂₀-ClNO), (I):

IR (KBr): 3311.07 (ν N-H), 3067.56, 3033.34 (ν C-H), 1697.03 (ν C=O), 1605.39, 1493.90 (ν C=C), 769.33 (ν C-Cl) cm^{-1. 1}H NMR (400 MHz, CDCl₃): δ 7.42–7.19 (*m*, aromatic protons), 4.03 (*d*, H6 proton), 3.64 (*d*, H2 proton), 3.36–3.33 (m, H5a proton), 2.61 (*dd*, H5e proton), 2.18–2.09 (*m*, H3 proton, 1.99 (*s*, NH proton), 2.94 (*s*, CH₂Cl proton), 2.75 (*t*, CH₂ proton). ¹³C NMR (CDCl₃, 400 MHz): δ 208.60 (C=O), 140.67 (aromatic *ipso* carbon atoms), 128.81–126.63 (aromatic carbon atoms), 67.27 (C-3 carbon), 61.92 (C-2 carbon), 53.76 (C-6 carbon), 51.27 (C-5 carbon), 28.18 (methylene carbon), 43.49 (CH₂Cl Carbon). Melting point: 371 K.

3-(2-Chloroethyl)-*r*-2,*c*-6-bis(p-fluorophenyl)piperidin-4one, (C₁₉H₁₈ClF₂NO), (II):

IR (KBr): 3292.53 (ν N-H), 3078.27, 3077.86 (ν C-H), 1702.32 (ν C=O), 1605.79, 1511.47 (ν C=C), 760.50 (ν C-Cl) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.02 (*m*, aromatic protons), 3.99 (*dd*, H6 proton), 3.61 (*d*, H2 proton), 3.36 (*dd*, H5a proton), 2.52 (*dd*, H5e proton), 2.16–2.08 (*m*, H3 proton), 1.99 (*s*, NH proton), 2.84 (*t*, CH₂Cl proton), 2.67 (*t*, CH₂ proton). ¹³C NMR (CDCl₃, 400 MHz): δ 208.09 (C=O), (aromatic *ipso* carbon atoms), 115.84–115.51 (aromatic carbon atoms), 55.77 (C-3 carbon), 66.34 (C-2 carbon), 61.09 (C-6 carbon), 51.41 (C-5 carbon), 28.06 (methylene carbon), 43.45 (CH₂Cl Carbon). Melting point: 375 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N1-bound H atoms in both

research communications

Table	3	
Experi	mental	details

	(I)	(II)
Crystal data		
Chemical formula	CueHaeCINO	CtoHttpCIE2NO
M	313.81	349.79
Crystal system, space group	Monoclinic. $P2_1/c$	Monoclinic. $P2_1/c$
Temperature (K)	293	293
a, b, c (Å)	11.3306(3), 13.3638(4), 10.9821(3)	5.5105 (2), 24.2612 (6), 12.8622 (3)
$\beta(^{\circ})$	91.996 (2)	93.809 (3)
$V(A^3)$	1661.90 (8)	1715.77 (9)
Z	4	4
Radiation type	Cu Κα	Cu Κα
$\mu (\mathrm{mm}^{-1})$	2.03	2.20
Crystal size (mm)	$0.42 \times 0.38 \times 0.14$	$0.34 \times 0.16 \times 0.14$
Data collection		
Diffractometer	Rigaku Oxford Diffraction	Rigaku Oxford Diffraction
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
$T_{\min}, \tilde{T}_{\max}$	0.535, 1.000	0.524, 1.000
No. of measured, independent and	6237, 3168, 2545	6548, 3267, 2702
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.028	0.020
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615	0.614
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055, 0.158, 1.05	0.046, 0.131, 1.04
No. of reflections	3168	3267
No. of parameters	204	222
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.56, -0.44	0.34, -0.38

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

molecules were located in a difference-Fourier map and their coordinates and displacement parameters freely refined. All C-bound H atoms were refined using a riding model with d(C-H) = 0.93 Å for aromatic, 0.97 Å for methylene and 0.98 Å for methine H atoms, all with $U_{iso} = 1.2U_{eq}$ (C)

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. The authors would like to acknowledge Annamalai University for recording the NMR spectra and extend their thanks to the Principal, Dr P. Kathirvel, Chairman, Mr R. Sattanathan, and Treasurer, Mr T. Ramalingam, of Thiruvalluvar Arts and Science College for giving permission to carry out research work in the Chemistry Laboratory.

References

- Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153–1163.
- Arulraj, R., Sivakumar, S., Kaur, M., Thiruvalluvar, A. & Jasinski, J. P. (2017). Acta Cryst. E73, 107–111.

- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bhakiaraj, D., Elavarasan, T. & Gopalakrishnan, M. (2014). Pharma Chemica, 6(5), 243–250.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gayathri, P., Jayabharathi, J., Rajarajan, G., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o3083.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Nilofar Nissa, M., Velmurugan, D., Narasimhan, S., Rajagopal, V. & Kim, M.-J. (2001). Acta Cryst. E57, 0996–0998.
- Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.
- Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.
- Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.
- Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). *Indian Drugs*, 38, 156–159.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Acta Cryst. (2018). E74, 483-486 [https://doi.org/10.1107/S2056989018003766]

Crystal structures of two new 3-(2-chloroethyl)-r(2),c(6)-diarylpiperidin-4-ones

K. Rajkumar, S. Sivakumar, R. Arulraj, Manpreet Kaur, Jerry P. Jasinski, A. Manimekalai and A. Thiruvalluvar

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

3-(2-Chloroethyl)-r-2,c-6-diphenylpiperidin-4-one (I)

Crystal data

C₁₉H₂₀ClNO $M_r = 313.81$ Monoclinic, $P2_1/c$ a = 11.3306 (3) Å b = 13.3638 (4) Å c = 10.9821 (3) Å $\beta = 91.996$ (2)° V = 1661.90 (8) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.158$ S = 1.053168 reflections 204 parameters 0 restraints Primary atom site location: dual F(000) = 664 $D_x = 1.254 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2185 reflections $\theta = 5.1-71.2^{\circ}$ $\mu = 2.03 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.42 \times 0.38 \times 0.14 \text{ mm}$

 $T_{\min} = 0.535$, $T_{\max} = 1.000$ 6237 measured reflections 3168 independent reflections 2545 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{\max} = 71.4^{\circ}$, $\theta_{\min} = 3.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 16$ $l = -13 \rightarrow 8$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.075P)^2 + 0.5181P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.56 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0026 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.08089 (8)	0.50912 (12)	0.17386 (10)	0.1402 (6)	
01	0.44751 (18)	0.41543 (13)	0.1217 (2)	0.0771 (6)	
N1	0.48661 (13)	0.69143 (12)	0.26049 (15)	0.0370 (4)	
H1	0.511 (2)	0.7523 (19)	0.270 (2)	0.045 (6)*	
C1	0.41112 (15)	0.67867 (13)	0.15013 (17)	0.0356 (4)	
H1A	0.460437	0.682251	0.078697	0.043*	
C2	0.35356 (16)	0.57351 (14)	0.15481 (18)	0.0393 (4)	
H2	0.303654	0.572734	0.225915	0.047*	
C3	0.44765 (19)	0.49404 (15)	0.1762 (2)	0.0479 (5)	
C4	0.5424 (2)	0.51707 (15)	0.2711 (2)	0.0509 (5)	
H4A	0.607257	0.470401	0.262937	0.061*	
H4B	0.511036	0.508140	0.351412	0.061*	
C5	0.58905 (17)	0.62451 (15)	0.25931 (18)	0.0410 (4)	
Н5	0.627033	0.631318	0.180923	0.049*	
C6	0.67816 (17)	0.64909 (15)	0.3605 (2)	0.0447 (5)	
C7	0.79567 (19)	0.66364 (18)	0.3344 (2)	0.0557 (6)	
H7	0.819078	0.661112	0.254103	0.067*	
C8	0.8789 (2)	0.6821 (2)	0.4283 (3)	0.0711 (8)	
H8	0.957634	0.691906	0.410133	0.085*	
C9	0.8460 (2)	0.6858 (2)	0.5464 (3)	0.0744 (8)	
Н9	0.902038	0.697968	0.608508	0.089*	
C10	0.7293 (3)	0.6715 (2)	0.5735 (3)	0.0688 (7)	
H10	0.706558	0.673952	0.654000	0.083*	
C11	0.6462 (2)	0.65346 (19)	0.4813 (2)	0.0575 (6)	
H11	0.567619	0.644106	0.500381	0.069*	
C12	0.31935 (15)	0.76066 (14)	0.14123 (16)	0.0361 (4)	
C13	0.30967 (17)	0.82110 (15)	0.03920 (18)	0.0420 (4)	
H13	0.362040	0.812853	-0.023373	0.050*	
C14	0.2224 (2)	0.89410 (17)	0.0292 (2)	0.0514 (5)	
H14	0.216607	0.933973	-0.040138	0.062*	
C15	0.14510 (19)	0.90767 (17)	0.1206 (2)	0.0544 (6)	
H15	0.086504	0.956250	0.113438	0.065*	
C16	0.1547 (2)	0.84889 (19)	0.2234 (2)	0.0574 (6)	
H16	0.102923	0.858368	0.286259	0.069*	
C17	0.24084 (19)	0.77582 (18)	0.23368 (19)	0.0488 (5)	

H17	0.246249	0.736357	0.303402	0.059*	
C18	0.2733 (2)	0.55077 (18)	0.0436 (2)	0.0510 (5)	
H18A	0.232158	0.611677	0.019567	0.061*	
H18B	0.322225	0.531314	-0.023166	0.061*	
C19	0.1841 (3)	0.4707 (3)	0.0620 (4)	0.0939 (11)	
H19A	0.223702	0.409828	0.088879	0.113*	
H19B	0.142107	0.456775	-0.014624	0.113*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0686 (5)	0.2364 (16)	0.1155 (8)	-0.0747 (8)	-0.0010 (5)	0.0298 (8)
01	0.0723 (12)	0.0455 (10)	0.1114 (15)	0.0094 (8)	-0.0271 (11)	-0.0258 (10)
N1	0.0310(7)	0.0311 (8)	0.0486 (9)	0.0021 (6)	-0.0054 (6)	-0.0010 (6)
C1	0.0295 (8)	0.0354 (9)	0.0419 (9)	0.0005 (7)	0.0004 (7)	0.0006 (7)
C2	0.0343 (9)	0.0368 (10)	0.0466 (10)	-0.0024 (7)	-0.0015 (7)	-0.0015 (8)
C3	0.0436 (11)	0.0344 (10)	0.0654 (13)	-0.0010 (8)	-0.0037 (9)	-0.0017 (9)
C4	0.0487 (11)	0.0348 (10)	0.0681 (14)	0.0067 (9)	-0.0141 (10)	0.0006 (9)
C5	0.0335 (9)	0.0378 (10)	0.0514 (11)	0.0043 (8)	-0.0042 (8)	-0.0003 (8)
C6	0.0351 (9)	0.0359 (10)	0.0625 (12)	0.0061 (8)	-0.0092 (8)	-0.0008 (8)
C7	0.0397 (11)	0.0521 (13)	0.0747 (15)	0.0006 (9)	-0.0069 (10)	0.0069 (11)
C8	0.0377 (12)	0.0649 (16)	0.109 (2)	-0.0009 (11)	-0.0211 (13)	0.0024 (15)
C9	0.0599 (15)	0.0682 (17)	0.092 (2)	0.0121 (13)	-0.0366 (14)	-0.0202 (14)
C10	0.0685 (16)	0.0701 (17)	0.0666 (15)	0.0199 (13)	-0.0167 (12)	-0.0181 (12)
C11	0.0458 (11)	0.0591 (14)	0.0669 (14)	0.0107 (10)	-0.0083 (10)	-0.0125 (11)
C12	0.0297 (8)	0.0354 (9)	0.0428 (9)	-0.0003 (7)	-0.0044 (7)	-0.0007 (7)
C13	0.0375 (9)	0.0446 (11)	0.0435 (10)	-0.0029 (8)	-0.0051 (7)	0.0024 (8)
C14	0.0498 (12)	0.0439 (11)	0.0592 (12)	0.0003 (9)	-0.0152 (10)	0.0090 (9)
C15	0.0416 (11)	0.0439 (12)	0.0766 (15)	0.0103 (9)	-0.0150 (10)	-0.0058 (10)
C16	0.0446 (11)	0.0635 (14)	0.0643 (14)	0.0154 (11)	0.0036 (10)	-0.0086 (11)
C17	0.0438 (11)	0.0553 (12)	0.0474 (11)	0.0104 (9)	0.0026 (8)	0.0054 (9)
C18	0.0450 (11)	0.0517 (12)	0.0556 (12)	-0.0056 (9)	-0.0084 (9)	-0.0063 (10)
C19	0.082 (2)	0.078 (2)	0.119 (3)	-0.0299 (17)	-0.0414 (19)	0.0050 (19)

Geometric parameters (Å, °)

Cl1—C19	1.801 (4)	С8—С9	1.363 (4)
O1—C3	1.209 (3)	С9—Н9	0.9300
N1—H1	0.86 (2)	C9—C10	1.379 (4)
N1-C1	1.469 (2)	C10—H10	0.9300
N1	1.466 (2)	C10—C11	1.379 (3)
C1—H1A	0.9800	C11—H11	0.9300
C1—C2	1.551 (2)	C12—C13	1.382 (3)
C1-C12	1.511 (2)	C12—C17	1.388 (3)
C2—H2	0.9800	C13—H13	0.9300
C2—C3	1.517 (3)	C13—C14	1.391 (3)
C2-C18	1.528 (3)	C14—H14	0.9300
C3—C4	1.502 (3)	C14—C15	1.367 (3)

C4—H4A	0.9700	С15—Н15	0.9300
C4—H4B	0.9700	C15—C16	1.376 (3)
C4—C5	1.537 (3)	C16—H16	0.9300
C5—H5	0.9800	C_{16} $-C_{17}$	1 383 (3)
C5-C6	1 512 (3)	C17H17	0.9300
Cf C7	1.312(3)	$C_{12} = H_{12}$	0.9300
	1.360 (3)		0.9700
	1.389 (3)	CI8—HI8B	0.9700
С/—Н/	0.9300	C18—C19	1.490 (4)
С7—С8	1.395 (4)	С19—Н19А	0.9700
С8—Н8	0.9300	C19—H19B	0.9700
C1 N1 H1	112 3 (15)	C8 C0 H0	120.1
CI-NI-III	112.3(13)	$C_{0} = C_{0} = C_{10}$	120.1
C5—NI—HI	109.1 (10)		119.8 (2)
C5—NI—CI	111.13 (15)	С10—С9—Н9	120.1
N1—C1—H1A	108.8	C9—C10—H10	120.0
N1—C1—C2	108.14 (15)	C9—C10—C11	120.1 (3)
N1—C1—C12	110.41 (15)	C11—C10—H10	120.0
C2—C1—H1A	108.8	C6—C11—H11	119.5
C12—C1—H1A	108.8	C10-C11-C6	121.0 (2)
C12—C1—C2	111.71 (15)	C10-C11-H11	119.5
C1—C2—H2	106.9	C13—C12—C1	120.73 (17)
$C_{3}-C_{2}-C_{1}$	110 20 (15)	C_{13} C_{12} C_{17}	118 22 (18)
C_{3} C_{2} H_{2}	106.9	C17 - C12 - C1	121.04(17)
$C_3 C_2 C_{18}$	112.34(17)	C_{12} C_{12} C_{13} H_{13}	110 7
$C_{3} = C_{2} = C_{18}$	112.34(17)	C_{12} C_{13} C_{14}	119.7
C18 - C2 - C1	113.15 (17)	C12-C13-C14	120.00 (19)
C18—C2—H2	106.9	C14—C13—H13	119.7
01—C3—C2	122.9 (2)	C13—C14—H14	119.8
O1—C3—C4	120.7 (2)	C15—C14—C13	120.5 (2)
C4—C3—C2	116.46 (17)	C15—C14—H14	119.8
C3—C4—H4A	109.2	C14—C15—H15	120.3
C3—C4—H4B	109.2	C14—C15—C16	119.5 (2)
C3—C4—C5	111.87 (17)	C16—C15—H15	120.3
H4A—C4—H4B	107.9	C15—C16—H16	119.8
C5—C4—H4A	109.2	C15—C16—C17	120.4 (2)
C5—C4—H4B	109.2	C17—C16—H16	119.8
N1	107 14 (16)	C_{12} C_{17} H_{17}	119.6
N1_C5_H5	108.9	C_{16} C_{17} C_{12}	120.8(2)
N1 C5 C6	111 71 (16)	C_{16} C_{17} H_{17}	110.6
$M = C_3 = C_0$	102.0	$C_{10} = C_{10} = H_{10}$	119.0
	100.9	C_2 C_{10} H_{10}	108.5
C6-C5-C4	111.33 (17)	C2C18H18B	108.5
С6—С5—Н5	108.9	H18A—C18—H18B	107.5
C7—C6—C5	120.0 (2)	C19—C18—C2	115.0 (2)
C7—C6—C11	118.5 (2)	C19—C18—H18A	108.5
C11—C6—C5	121.46 (19)	C19—C18—H18B	108.5
С6—С7—Н7	120.0	Cl1—C19—H19A	109.6
C6—C7—C8	120.1 (3)	Cl1—C19—H19B	109.6
С8—С7—Н7	120.0	C18—C19—C11	110.3 (2)
С7—С8—Н8	119.7	C18—C19—H19A	109.6

C9—C8—C7 C9—C8—H8	120.6 (2) 119.7	C18—C19—H19B H19A—C19—H19B	109.6 108.1
C9 - C8 - C7 $C9 - C8 - H8$ $01 - C3 - C4 - C5$ $N1 - C1 - C2 - C3$ $N1 - C1 - C2 - C18$ $N1 - C1 - C12 - C13$ $N1 - C1 - C12 - C17$ $N1 - C5 - C6 - C7$ $N1 - C5 - C6 - C11$ $C1 - N1 - C5 - C4$ $C1 - N1 - C5 - C4$ $C1 - N1 - C5 - C6$ $C1 - C2 - C3 - O1$ $C1 - C2 - C3 - O1$ $C1 - C2 - C18 - C19$ $C1 - C12 - C13 - C14$ $C1 - C12 - C13 - C14$ $C1 - C12 - C17 - C16$ $C2 - C1 - C12 - C13$ $C2 - C1 - C12 - C17$ $C2 - C3 - C4 - C5$ $C2 - C18 - C19$ $C1 - C12 - C18 - C19$ $C3 - C4 - C5 - N1$	120.6 (2) 119.7 136.1 (2) -52.8 (2) -179.46 (16) 123.97 (18) -57.6 (2) -128.3 (2) 54.5 (3) -67.8 (2) 170.05 (16) -137.1 (2) 43.6 (2) -158.8 (2) 177.64 (18) -178.0 (2) -115.65 (19) 62.8 (2) -44.6 (3) 64.5 (3) 75.6 (3) 53.6 (2)	C18 - C19 - H19B $H19A - C19 - H19B$ $C4 - C5 - C6 - C11$ $C5 - N1 - C1 - C2$ $C5 - N1 - C1 - C12$ $C5 - C6 - C7 - C8$ $C5 - C6 - C11 - C10$ $C6 - C7 - C8 - C9$ $C7 - C6 - C11 - C10$ $C7 - C8 - C9 - C10$ $C8 - C9 - C10 - C11$ $C9 - C10 - C11 - C6$ $C11 - C6 - C7 - C8$ $C12 - C1 - C2 - C3$ $C12 - C1 - C2 - C18$ $C12 - C1 - C2 - C18$ $C12 - C13 - C14 - C15$ $C13 - C14 - C15 - C16$ $C14 - C15 - C16 - C17$ $C15 - C16 - C17 - C12$ $C17 - C12 - C13 - C14$ $C18 - C2 - C3 - O1$	$\begin{array}{c} -65.2 \ (3) \\ 68.10 \ (18) \\ -169.41 \ (15) \\ -177.2 \ (2) \\ 177.0 \ (2) \\ 0.1 \ (4) \\ -0.2 \ (4) \\ 0.2 \ (4) \\ 0.2 \ (4) \\ 0.2 \ (4) \\ 0.1 \ (3) \\ -174.45 \ (16) \\ 58.8 \ (2) \\ 0.4 \ (3) \\ 0.5 \ (3) \\ 0.4 \ (3) \\ -0.8 \ (4) \\ 0.3 \ (4) \\ -0.9 \ (3) \\ -9.9 \ (3) \end{array}$
C3—C4—C5—C6 C4—C5—C6—C7	176.03 (18) 112.0 (2)	C18—C2—C3—C4	170.81 (19)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H···A	D—H	H…A	D····A	D—H···A
N1—H1···O1 ⁱ	0.86 (2)	2.52 (2)	3.335 (2)	158 (2)
C4—H4 A ···Cg3 ⁱⁱ	0.97	2.79	3.665 (2)	150

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2.

3-(2-chloroethyl)-r-2,c-6-bis(4-fluorophenyl)piperidin-4-one (II)

Crystal data

$C_{19}H_{18}ClF_2NO$	F(000) = 728
$M_r = 349.79$	$D_{\rm x} = 1.354 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 5.5105 (2) Å	Cell parameters from 2364 reflections
b = 24.2612 (6) Å	$\theta = 3.4 - 71.3^{\circ}$
c = 12.8622 (3) Å	$\mu = 2.20 \text{ mm}^{-1}$
$\beta = 93.809 \ (3)^{\circ}$	T = 293 K
V = 1715.77 (9) Å ³	Prism, colourless
Z = 4	$0.34 \times 0.16 \times 0.14 \text{ mm}$

Data collection

Rigaku Oxford Diffraction diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015)	$T_{\min} = 0.524, T_{\max} = 1.000$ 6548 measured reflections 3267 independent reflections 2702 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$ $\theta_{\text{max}} = 71.3^{\circ}, \theta_{\text{min}} = 3.6^{\circ}$ $h = -6 \rightarrow 6$ $k = -29 \rightarrow 16$ $l = -14 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.131$ S = 1.04 3267 reflections 222 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0592P)^2 + 0.5453P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0058 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	v	Z	U_{iso}^*/U_{eq}
Cl1	0.15647 (18)	0.46455 (3)	0.38176 (8)	0.1057 (3)
F1	-0.2069(3)	0.04268 (6)	0.63058 (13)	0.0854 (5)
F2	0.6123 (3)	0.45967 (6)	0.88365 (11)	0.0747 (4)
01	0.4499 (4)	0.29713 (7)	0.28005 (11)	0.0702 (5)
N1	0.3190 (3)	0.27067 (6)	0.57146 (11)	0.0396 (4)
H1	0.366 (4)	0.2579 (9)	0.6346 (17)	0.043 (5)*
C1	0.3477 (4)	0.29649 (8)	0.36027 (14)	0.0489 (5)
C2	0.1985 (4)	0.24790 (9)	0.39147 (14)	0.0528 (5)
H2A	0.199144	0.219410	0.338582	0.063*
H2B	0.031521	0.259163	0.398695	0.063*
C3	0.3112 (4)	0.22560 (7)	0.49651 (14)	0.0414 (4)
Н3	0.478176	0.213743	0.486823	0.050*
C4	0.4808 (3)	0.31538 (7)	0.54325 (13)	0.0384 (4)
H4	0.639887	0.299519	0.530846	0.046*
C5	0.3752 (4)	0.34225 (7)	0.44054 (13)	0.0431 (4)
Н5	0.212671	0.356346	0.452333	0.052*
C6	0.5288 (4)	0.39034 (8)	0.40516 (16)	0.0530 (5)
H6A	0.582661	0.412091	0.465641	0.064*
H6B	0.672413	0.375749	0.375148	0.064*

C7	0.3962 (5)	0.42751 (11)	0.3263 (2)	0.0737 (7)
H7A	0.329082	0.405487	0.268405	0.088*
H7B	0.510404	0.453477	0.299551	0.088*
C8	0.1707 (3)	0.17694 (7)	0.53451 (13)	0.0389 (4)
C9	0.2447 (4)	0.12399 (8)	0.51246 (15)	0.0462 (4)
H9	0.382523	0.118931	0.475566	0.055*
C10	0.1180 (4)	0.07832 (8)	0.54414 (17)	0.0548 (5)
H10	0.166749	0.042824	0.527870	0.066*
C11	-0.0797 (4)	0.08699 (8)	0.59972 (16)	0.0534 (5)
C12	-0.1588 (4)	0.13849 (9)	0.62493 (17)	0.0552 (5)
H12	-0.294820	0.142967	0.663223	0.066*
C13	-0.0313 (4)	0.18376 (8)	0.59200 (16)	0.0480 (5)
H13	-0.081684	0.219075	0.608620	0.058*
C14	0.5130 (3)	0.35521 (7)	0.63374 (13)	0.0378 (4)
C15	0.3388 (4)	0.39397 (8)	0.65460 (15)	0.0488 (5)
H15	0.197012	0.396256	0.611350	0.059*
C16	0.3714 (4)	0.42936 (8)	0.73856 (16)	0.0534 (5)
H16	0.254041	0.455500	0.751883	0.064*
C17	0.5796 (4)	0.42507 (8)	0.80138 (15)	0.0513 (5)
C18	0.7540 (4)	0.38685 (10)	0.78520 (18)	0.0628 (6)
H18	0.892640	0.384155	0.830246	0.075*
C19	0.7201 (4)	0.35205 (9)	0.70008 (17)	0.0544 (5)
H19	0.838816	0.326106	0.687407	0.065*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.1146 (7)	0.0738 (5)	0.1305 (7)	0.0231 (4)	0.0211 (5)	0.0356 (5)
0.1086 (12)	0.0563 (8)	0.0919 (11)	-0.0353 (8)	0.0103 (9)	0.0197 (7)
0.1015 (11)	0.0585 (8)	0.0632 (8)	-0.0144 (7)	-0.0006 (7)	-0.0275 (6)
0.1093 (14)	0.0624 (9)	0.0408 (8)	-0.0254 (9)	0.0187 (8)	-0.0040 (7)
0.0553 (9)	0.0310 (7)	0.0325 (7)	-0.0058 (6)	0.0018 (6)	0.0019 (6)
0.0664 (12)	0.0454 (10)	0.0342 (9)	-0.0112 (9)	-0.0015 (8)	0.0048 (7)
0.0737 (13)	0.0469 (10)	0.0371 (9)	-0.0191 (10)	-0.0017 (9)	-0.0026 (8)
0.0506 (10)	0.0337 (8)	0.0401 (9)	-0.0062 (7)	0.0046 (7)	-0.0015 (7)
0.0453 (9)	0.0328 (8)	0.0370 (8)	-0.0033 (7)	0.0019 (7)	-0.0006 (7)
0.0549 (10)	0.0373 (9)	0.0369 (9)	-0.0093 (8)	0.0023 (7)	0.0048 (7)
0.0693 (13)	0.0430 (10)	0.0472 (10)	-0.0153 (9)	0.0075 (9)	0.0045 (8)
0.101 (2)	0.0561 (13)	0.0645 (14)	-0.0090 (13)	0.0123 (13)	0.0215 (11)
0.0465 (9)	0.0325 (8)	0.0372 (8)	-0.0037 (7)	-0.0008 (7)	-0.0006 (6)
0.0523 (10)	0.0370 (9)	0.0494 (10)	-0.0009 (8)	0.0038 (8)	-0.0060 (8)
0.0726 (14)	0.0295 (9)	0.0611 (12)	-0.0003 (9)	-0.0048 (10)	-0.0018 (8)
0.0662 (12)	0.0415 (10)	0.0514 (11)	-0.0176 (9)	-0.0049 (9)	0.0103 (8)
0.0557 (12)	0.0545 (12)	0.0563 (11)	-0.0090 (9)	0.0105 (9)	0.0017 (9)
0.0539 (11)	0.0356 (9)	0.0552 (11)	0.0002 (8)	0.0083 (9)	-0.0019 (8)
0.0471 (9)	0.0305 (8)	0.0356 (8)	-0.0062 (7)	0.0024 (7)	0.0009 (6)
0.0505 (10)	0.0478 (10)	0.0475 (10)	0.0012 (8)	-0.0016 (8)	-0.0052 (8)
0.0641 (12)	0.0417 (10)	0.0550 (11)	0.0037 (9)	0.0085 (9)	-0.0073 (8)
	$\begin{array}{c} U^{11} \\ \hline 0.1146 (7) \\ 0.1086 (12) \\ 0.1015 (11) \\ 0.1093 (14) \\ 0.0553 (9) \\ 0.0664 (12) \\ 0.0737 (13) \\ 0.0506 (10) \\ 0.0453 (9) \\ 0.0549 (10) \\ 0.0693 (13) \\ 0.101 (2) \\ 0.0465 (9) \\ 0.0523 (10) \\ 0.0726 (14) \\ 0.0662 (12) \\ 0.0557 (12) \\ 0.0539 (11) \\ 0.0471 (9) \\ 0.0505 (10) \\ 0.0641 (12) \end{array}$	U^{11} U^{22} 0.1146 (7) 0.0738 (5) 0.1086 (12) 0.0563 (8) 0.1015 (11) 0.0585 (8) 0.1015 (11) 0.0624 (9) 0.0553 (9) 0.0310 (7) 0.0664 (12) 0.0454 (10) 0.0737 (13) 0.0469 (10) 0.0506 (10) 0.0337 (8) 0.0453 (9) 0.0328 (8) 0.0549 (10) 0.0373 (9) 0.0693 (13) 0.0430 (10) 0.101 (2) 0.0561 (13) 0.0465 (9) 0.0325 (8) 0.0523 (10) 0.0370 (9) 0.0726 (14) 0.0295 (9) 0.0662 (12) 0.0415 (10) 0.0557 (12) 0.0545 (12) 0.0505 (10) 0.0478 (10) 0.0505 (10) 0.0477 (10)	U^{11} U^{22} U^{33} 0.1146 (7) 0.0738 (5) 0.1305 (7) 0.1086 (12) 0.0563 (8) 0.0919 (11) 0.1015 (11) 0.0585 (8) 0.0632 (8) 0.1093 (14) 0.0624 (9) 0.0408 (8) 0.0553 (9) 0.0310 (7) 0.0325 (7) 0.0664 (12) 0.0454 (10) 0.0342 (9) 0.0737 (13) 0.0469 (10) 0.0371 (9) 0.0506 (10) 0.0337 (8) 0.0401 (9) 0.0453 (9) 0.0328 (8) 0.0370 (8) 0.0549 (10) 0.0373 (9) 0.0369 (9) 0.0693 (13) 0.0430 (10) 0.0472 (10) 0.101 (2) 0.0561 (13) 0.0645 (14) 0.0465 (9) 0.0325 (8) 0.0372 (8) 0.0523 (10) 0.0370 (9) 0.0494 (10) 0.0726 (14) 0.0295 (9) 0.0611 (12) 0.0662 (12) 0.0415 (10) 0.0563 (11) 0.0557 (12) 0.0545 (12) 0.0563 (11) 0.0505 (10) 0.0478 (10) 0.0475 (10) 0.0505 (10) 0.0478 (10) 0.0475 (10)	U^{11} U^{22} U^{33} U^{12} 0.1146 (7)0.0738 (5)0.1305 (7)0.0231 (4)0.1086 (12)0.0563 (8)0.0919 (11) $-0.0353 (8)$ 0.1015 (11)0.0585 (8)0.0632 (8) $-0.0144 (7)$ 0.1093 (14)0.0624 (9)0.0408 (8) $-0.0254 (9)$ 0.0553 (9)0.0310 (7)0.0325 (7) $-0.0058 (6)$ 0.0664 (12)0.0454 (10)0.0342 (9) $-0.0112 (9)$ 0.0737 (13)0.0469 (10)0.0371 (9) $-0.0191 (10)$ 0.0506 (10)0.0337 (8)0.0401 (9) $-0.0062 (7)$ 0.0453 (9)0.0328 (8)0.0370 (8) $-0.0033 (7)$ 0.0549 (10)0.0373 (9)0.0369 (9) $-0.0093 (8)$ 0.0693 (13)0.0430 (10)0.0472 (10) $-0.0153 (9)$ 0.101 (2)0.0561 (13)0.0645 (14) $-0.0090 (13)$ 0.0465 (9)0.0325 (8)0.0372 (8) $-0.0037 (7)$ 0.0523 (10)0.0370 (9)0.0494 (10) $-0.0090 (8)$ 0.0726 (14)0.0295 (9)0.0611 (12) $-0.0003 (9)$ 0.0557 (12)0.0545 (12)0.0563 (11) $-0.0090 (9)$ 0.0539 (11)0.0356 (9)0.0552 (11)0.0002 (8)0.0471 (9)0.0305 (8)0.0356 (8) $-0.0062 (7)$ 0.0505 (10)0.0478 (10)0.0475 (10)0.0012 (8)0.0641 (12)0.0417 (10)0.0550 (11)0.0037 (9)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.1146 (7)0.0738 (5)0.1305 (7)0.0231 (4)0.0211 (5)0.1086 (12)0.0563 (8)0.0919 (11) $-0.0353 (8)$ 0.0103 (9)0.1015 (11)0.0585 (8)0.0632 (8) $-0.0144 (7)$ $-0.0006 (7)$ 0.1093 (14)0.0624 (9)0.0408 (8) $-0.0254 (9)$ 0.0187 (8)0.0553 (9)0.0310 (7)0.0325 (7) $-0.0058 (6)$ 0.0018 (6)0.0664 (12)0.0454 (10)0.0342 (9) $-0.0112 (9)$ $-0.0017 (9)$ 0.0506 (10)0.0337 (8)0.0401 (9) $-0.0062 (7)$ $0.0046 (7)$ 0.0549 (10)0.0370 (8) $-0.0033 (7)$ $0.0019 (7)$ 0.0549 (10)0.0373 (9) $0.0369 (9)$ $-0.0033 (7)$ $0.0019 (7)$ 0.0549 (10)0.0373 (9) $0.0465 (14)$ $-0.0090 (13)$ $0.0123 (13)$ 0.0465 (9) $0.0325 (8)$ $0.0372 (8)$ $-0.0037 (7)$ $-0.0008 (7)$ 0.0523 (10) $0.0370 (9)$ $0.0494 (10)$ $-0.0090 (8)$ $0.0038 (8)$ 0.0726 (14) $0.0295 (9)$ $0.0611 (12)$ $-0.0003 (9)$ $-0.0048 (10)$ 0.0557 (12) $0.0455 (12)$ $0.0563 (11)$ $-0.0090 (9)$ $0.0105 (9)$ $0.0557 (12)$ $0.0456 (9)$ $0.0552 (11)$ $0.0002 (8)$ $0.0083 (9)$ $0.0471 (9)$ $0.0356 (8)$ $-0.0052 (7)$ $0.0024 (7)$ $0.0555 (10)$ $0.0478 (10)$ $0.0475 (10)$ $0.0012 (8)$ $-0.0016 (8)$

C17	0.0715 (13)	0.0382 (9)	0.0443 (10)	-0.0151 (9)	0.0043 (9)	-0.0097 (8)
C18	0.0622 (13)	0.0659 (14)	0.0577 (12)	-0.0028 (11)	-0.0159 (10)	-0.0153 (11)
C19	0.0557 (11)	0.0492 (11)	0.0566 (11)	0.0074 (9)	-0.0079 (9)	-0.0108 (9)

Geometric parameters (Å, °)

Cl1—C7	1.785 (3)	С7—Н7А	0.9700
F1—C11	1.357 (2)	С7—Н7В	0.9700
F2—C17	1.353 (2)	C8—C9	1.383 (3)
01—C1	1.208 (2)	C8—C13	1.386 (3)
N1—H1	0.89 (2)	С9—Н9	0.9300
N1—C3	1.457 (2)	C9—C10	1.385 (3)
N1—C4	1.465 (2)	C10—H10	0.9300
C1—C2	1.507 (3)	C10-C11	1.359 (3)
C1—C5	1.517 (3)	C11—C12	1.369 (3)
C2—H2A	0.9700	C12—H12	0.9300
C2—H2B	0.9700	C12—C13	1.385 (3)
С2—С3	1.547 (3)	C13—H13	0.9300
С3—Н3	0.9800	C14—C15	1.383 (3)
С3—С8	1.511 (2)	C14—C19	1.381 (3)
C4—H4	0.9800	C15—H15	0.9300
C4—C5	1.551 (2)	C15—C16	1.382 (3)
C4—C14	1.514 (2)	C16—H16	0.9300
С5—Н5	0.9800	C16—C17	1.363 (3)
C5—C6	1.528 (2)	C17—C18	1.361 (3)
С6—Н6А	0.9700	C18—H18	0.9300
С6—Н6В	0.9700	C18—C19	1.385 (3)
C6—C7	1.509 (3)	С19—Н19	0.9300
C3—N1—H1	109.6 (14)	С6—С7—Н7А	109.3
C3—N1—C4	112.57 (14)	C6—C7—H7B	109.3
C4—N1—H1	109.7 (14)	H7A—C7—H7B	107.9
01—C1—C2	122.08 (19)	C9—C8—C3	119.67 (17)
01—C1—C5	122.75 (18)	C9—C8—C13	118.58 (17)
C2—C1—C5	115.02 (16)	C13—C8—C3	121.75 (16)
C1—C2—H2A	110.1	С8—С9—Н9	119.3
C1—C2—H2B	110.1	C8—C9—C10	121.42 (18)
C1—C2—C3	108.16 (16)	С10—С9—Н9	119.3
H2A—C2—H2B	108.4	C9—C10—H10	121.0
С3—С2—Н2А	110.1	C11—C10—C9	117.93 (18)
С3—С2—Н2В	110.1	C11—C10—H10	121.0
N1—C3—C2	107.94 (15)	F1-C11-C10	118.6 (2)
N1—C3—H3	108.5	F1-C11-C12	118.4 (2)
N1—C3—C8	111.46 (14)	C10-C11-C12	123.02 (19)
С2—С3—Н3	108.5	C11—C12—H12	120.8
C8—C3—C2	111.80 (15)	C11—C12—C13	118.36 (19)
С8—С3—Н3	108.5	C13—C12—H12	120.8
N1-C4-H4	108.4	C8—C13—H13	119.7

N1-C4-C5	108.78 (14)	C12—C13—C8	120.67 (18)
N1-C4-C14	108.93 (13)	C12—C13—H13	119.7
C5—C4—H4	108.4	C15—C14—C4	122.38 (16)
C14—C4—H4	108.4	C19—C14—C4	119.30 (17)
C14—C4—C5	113.86 (14)	C19—C14—C15	118.29 (17)
C1—C5—C4	106.67 (15)	C14—C15—H15	119.4
С1—С5—Н5	108.0	C16—C15—C14	121.19 (19)
C1—C5—C6	112.85 (16)	C16—C15—H15	119.4
С4—С5—Н5	108.0	C15—C16—H16	120.8
C6—C5—C4	112.99 (16)	C17—C16—C15	118.48 (19)
С6—С5—Н5	108.0	C17—C16—H16	120.8
С5—С6—Н6А	108.8	F2—C17—C16	118.6 (2)
С5—С6—Н6В	108.8	F2—C17—C18	118.92 (19)
H6A—C6—H6B	107.7	C18—C17—C16	122.44 (18)
C7—C6—C5	113.76 (19)	C17—C18—H18	120.8
С7—С6—Н6А	108.8	C17—C18—C19	118.5 (2)
С7—С6—Н6В	108.8	С19—С18—Н18	120.8
Cl1—C7—H7A	109.3	C14—C19—C18	121.1 (2)
С11—С7—Н7В	109.3	С14—С19—Н19	119.4
C6-C7-C11	111 78 (17)	C18—C19—H19	119.4
	111.70 (17)		117.1
F1-C11-C12-C13	-178.99(19)	C4-C5-C6-C7	-16248(18)
F_{2} C_{17} C_{18} C_{19}	-1793(2)	C4-C14-C15-C16	179 14 (18)
01-C1-C2-C3	179.5(2)	C4-C14-C19-C18	-1785(2)
01 - C1 - C5 - C4	-120.0(2)	$C_{2} = C_{1} = C_{2} = C_{3}$	-556(2)
01 - C1 - C5 - C6	4 2 (3)	$C_{5} - C_{1} - C_{2} - C_{5}$	43.2(2)
N1 - C3 - C8 - C9	$-144\ 20\ (17)$	$C_{5} - C_{4} - C_{14} - C_{19}$	-13873(19)
N1 - C3 - C8 - C13	35.4(2)	C_{5} C_{6} C_{7} C_{11}	67.6 (2)
N1 C4 C5 C1	-56.49(10)	C_{3} C_{0} C_{10} C_{11}	-1.3(3)
N1 = C4 = C5 = C1	$178 \ 94 \ (15)$	$C_{0} = C_{0} = C_{10} = C_{11}$	-1.2(3)
N1 = C4 = C14 = C15	-78.4(2)	$C_{9} = C_{10} = C_{13} = C_{12}$	1.2(3)
N1 = C4 = C14 = C19	76.4(2)	$C_{9} = C_{10} = C_{11} = C_{12}$	1/9.40(19)
$N_1 = C_4 = C_1 = C_1 = C_1$	99.7 (2) 56.4 (2)	C_{9} C_{10} C_{11} C_{12} C_{12}	0.4(3)
$C_1 = C_2 = C_3 = C_8$	50.4(2)	$C_{11} = C_{12} = C_{13}$	0.1(3)
C1 = C2 = C3 = C8	1/9.57(10)	C12 - C12 - C13 - C8	0.3(3)
C1 - C3 - C0 - C7	70.4 (2) 55.1 (2)	C13 - C8 - C9 - C10	1.7(3)
$C_2 - C_1 - C_5 - C_4$	55.1(2)	C14 - C4 - C5 - C1	-1/8.1/(15)
$C_2 - C_1 - C_3 - C_6$	1/9./8 (18)	C14 - C4 - C5 - C6	57.5(2)
$C_2 = C_3 = C_8 = C_9$	94.9 (2)	C14-C15-C16-C17	-0.4(3)
$C_2 = C_3 = C_8 = C_{13}$	-85.5 (2)	C15 - C14 - C19 - C18	-0.3(3)
C3—N1—C4—C5	65.35 (19)	C15—C16—C17—F2	179.98 (18)
C3 - N1 - C4 - C14	-170.01(15)	C15—C16—C17—C18	-0.9 (3)
C3—C8—C9—C10	-1/8.71(18)	C16—C17—C18—C19	1.6 (4)
C3—C8—C13—C12	179.24 (18)	C17—C18—C19—C14	-1.0 (4)
C4—N1—C3—C2	-64.5 (2)	C19—C14—C15—C16	1.0 (3)
C4—N1—C3—C8	172.34 (15)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.89 (2)	2.32 (2)	3.189 (2)	165 (2)
C9—H9…F2 ⁱⁱ	0.93	2.61	3.378 (2)	140
C10—H10····F2 ⁱⁱⁱ	0.93	2.58	3.343 (2)	139
C12—H12···O1 ^{iv}	0.93	2.57	3.412 (3)	150
C16—H16…F1 ^v	0.93	2.62	3.379 (2)	139

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, y-1/2, -z+3/2; (iv) x-1, -y+1/2, z+1/2; (v) -x, y+1/2, -z+3/2.