

Received 21 February 2018 Accepted 3 March 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

On leave from the Biotechnology and Innovation in Health Postgraduate Program, Anhanguera University of São Paulo, 05145-200, São Paulo, Brazil.

Keywords: crystal structure; neolignan; eugenol.

CCDC reference: 1827281

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of Dehydrodieugenol B methyl ether, a neolignan from *Nectandra leucantha* Nees and Mart (Lauraceae)

Simone S. Grecco,^a[‡] Gerold Jerz,^a Joao Henrique G. Lago^b and Peter G. Jones^{c*}

^aInstitute of Food Chemistry, Technical University of Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany, ^bCenter of Natural Sciences and Humanities, Federal University of ABC, 09210-580, Santo André, Brazil, and ^cInstitute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-bs.de

In the title compound, $C_{21}H_{24}O_4$ (systematic name: 4,5'-diallyl-2,2',3'-trimethoxydiphenyl ether), the aromatic rings lie almost perpendicular to each other [dihedral angle = 85.96 (2)°]. The allyl side chains show similar configurations, with $C_{ar}-C-C=C$ (ar = aromatic) torsion angles of -123.62 (12) and -115.54 (12)°. A possible weak intramolecular $C-H\cdots O$ interaction is observed. In the crystal, molecules are connected by two $C-H\cdots O$ hydrogen bonds, forming undulating layers lying parallel to the *bc* plane. Weak $C-H\cdots \pi$ and $\pi-\pi$ stacking interactions also occur.

1. Chemical context

Nectandra leucantha belongs to the Lauraceae family, which has a worldwide economic importance (Marques, 2001). Gottlieb (1972) described the chemosystematics of the Lauraceae family, highlighting the occurrence of alkaloids, arylpropanoids, benzoic esthers, flavonoids, benzophenones, fatty acids, mono and sesquiterpenes. The Nectandra genus accumulates alkaloids and lignoids as major secondary metabolites (Grecco et al., 2016). Recent studies from our group describe the antiparasitical (against Leishmania donovani and Trypanosoma cruzi) and cytotoxic activities of N. leucantha and its isolated metabolites. In terms of chemical composition, neolignans and sesquiterpenes were the major compounds from extracts and essential oils, respectively (da Costa-Silva et al., 2015; Grecco et al., 2015, 2017; de Sousa et al., 2017). These studies allowed the isolation of C-C- and C-O-C-linked neolignans, including the known isomers dehydrodieugenol and dehydrodieugenol B, and of the novel compound dehydrodieugenol B methyl ether, the object of the present study. In order to confirm the constitution of the title compound, its crystal structure was determined and is reported here.

I able 1Selected bond and tor	sion angles (°).		
C6-O1-C11	118.29 (7)	C2-O3-C21	116.94 (7)
C1-O2-C20	113.39 (7)	C12-O4-C22	116.91 (7)
C4-C7-C8-C9	-123.62(12)	C1-C6-O1-C11	-176.28(8)
C14-C17-C18-C19	-115.54(12)	C12-C11-O1-C6	94.29(10

2. Structural commentary

The molecule of the title compound is shown in Fig. 1 and selected geometrical data are given in Table 1. The aromatic rings subtend an interplanar angle of $85.96(2)^{\circ}$; the corresponding torsion angles are C1 - C6 - O1 - C11 = -176.28 (8) and $C6-O1-C11-C12 = 94.29 (10)^{\circ}$. The allyl side chains show similar configurations, with C4-C7-C8-C9 =-123.62 (12) and C14-C17-C18-C19 = -115.54 (12)°. For the disubstituted (C1-C6) ring, one of the C atoms of the methoxy groups (C21) almost lies in the plane of the ring [deviation = 0.064(1) Å] whereas the other (C20) is significantly displaced [-1.185 (1)Å]. In the other (C11-C16) ring, the methoxy carbon atom (C22) lies close to the plane of the ring [deviation = -0.075(1) Å]. The intramolecular C20-H20A···O3 contact with H···O = 2.66 Å and an angle of 111° , seems to be at best a borderline interaction, but it may influence the angle C1-O2-C20, which at 113.39 (7) $^{\circ}$ is significantly narrower that the other C–O–C angles.

3. Supramolecular features

The two weak C-H···O hydrogen bonds (Table 2) link the molecules to form undulating layers parallel to the *bc* plane (Fig. 2). Additionally, the contacts C19-H19A···Cg(C1-C6) = 2.84 and C17-H17A···Cg(C11-C16) = 2.78 Å (*Cg* =

Figure 1

Structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels. One hydrogen atom is obscured at each of the atoms C17 and C19.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C20-H20A···O3	0.98	2.66	3.1461 (13)	111
$C21 - H21B \cdots O2^{i}$	0.98	2.54	3.4292 (12)	151
$C22-H22A\cdots O2^{ii}$	0.98	2.50	3.2885 (12)	138

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

centroid) may represent significant C-H··· π interactions, and the contact of 3.85 Å between centroids of adjacent rings C1-C6 (related by 1 - x, 1 - y, 1 - z) may be a borderline aromatic π - π stacking interaction.

4. Database survey

The Cambridge Database (Version 5.38; Groom *et al.*, 2016) contains no examples of 3,4'-diallyldiphenyl ethers. Neolignans and related natural products are often isolated as oils, so that crystal structure analyses are rare. In the field of neolignans, lignans, phenylpropanoids and eugenyl derivatives the following structures are relevant: Apiculin A and B (BATKAL, BATKEP; Fernandes *et al.*, 2017); various asarones (AZIQUX01, JAHMUD, JAHNAK, JAHNEO; Qin *et al.*, 2017); schibitubin A (QANNOL; Liu *et al.*, 2017); a natural phenylpropanoid (MIJCAL; Yu *et al.*, 2013); and several related synthetic compounds (WALSUX, WALTAE, WALTEI, WALTIM; Stomberg *et al.*, 1993).

5. Isolation and crystallization

Nectandra leucantha (Nees & Mart) (Lauraceae) leaves were collected in March 2014, at the Parque Ecologico do Pereque, situated at Cubatão City, State of São Paulo, Brazil. A voucher

Packing diagram of the title compound viewed perpendicular to the bc plane. For clarity, the allyl side chains and all hydrogen atoms not involved in hydrogen bonding (dashed lines, see Table 2) have been omitted.

research communications

specimen (EM357) was deposited at the herbarium of the Institute of Biosciences, University of São Paulo, SP, Brazil.

2.5 kg of dried and milled leaves were exhaustively extracted with *n*-hexane, affording 55 g of lipophilic extract after vacuum evaporation of the solvent. In order to increase the content of the neolignan target compounds, the *n*-hexane extract was subjected to a liquid-liquid partition process, using equal parts of *n*-hexane and acetonitrile. The neolignanenriched fraction (NEF - 31.6 g) was obtained from the acetonitrile phase after evaporation. A representative amount of 500 mg NEF was subjected to high-performance countercurrent chromatography (HPCCC) fractionation (Ito, 2005) using a semi-preparative instrument (Spectrum, Dynamic Extractions Ltd, Gwent, UK), a J-type centrifuge equipped with two coil bobbins (PTFE tubing, ID 1.6 mm, column volume 125 ml) operated with the biphasic solvent system n-hexane-ethyl acetate-methanol-water (HEMWat 7:3:7:3, v/v/v/v) as described by Grecco *et al.* (2017). The evaluation of biphasic solvent systems was guided by LC-ESI-MS analysis of the respective phase layers to detect a suitable distribution of neolignans. The rotation velocity of the HPCCC centrifuge was set to 1600 rpm (240 G field), and the flow rate of the aqueous mobile phase $(5.0 \text{ ml min}^{-1})$, and reversed phase operation mode (head-to-tail) resulted in a stationary phase retention of 82.0% after system equilibration. For metabolite profiling and target isolation of neolignans, aliquots of the recovered HPCCC fractions were injected in sequence into an ESI-ion trap MS/MS (HCT Ultra ETD II, Bruker Daltonics, Bremen, Germany) in a standard protocol described by Jerz et al. (2014). This procedure afforded C-C- and C-O-Clinked neolignans, including dehydrodieugenol B methyl ether, which was detected in the ESI-MS positive ionization mode with quasimolecular ion signals $[M + H]^+ m/z$ 341, $[M + Na]^+ m/z$ 363, and $[2M + Na]^+$ at m/z 703 in fractions 51– 59 (extrusion mode - volume: 255-295 mL; distribution ratio K_D : 2.04–2.36). The ESI–MS/MS of m/z 341 resulted in fragment ions at m/z and ion intensity [%]: 325.9 (2.3), 299.0 (31.7), 270.9 (34.3), 192.8 (100), 164.8 (52.0), 162.9 (86.9), 149.9 (19.6), 133.0 (47.7) (ESI-MS-parameter: HV capillary -3500 V, HV end plate offset – 500, dry gas N_2 10.0 l min⁻¹, nebulizer 60 psi, trap drive 55.6, target mass 500, compound stability 80%, ICC target 100000, ICC on). One-dimensional and two-dimensional NMR data were recorded and compared with those reported previously (Costa-Silva et al., 2015), confirming the structure as dehydrodieugenol B methyl ether. The use of semi-preparative HPCCC, as an all-liquid chromatography technique resulted in a single process step to pure dehydrodieugenol B methyl ether. The compound crystallized from the immiscible solvent system by slow evaporation to yield 89 mg. An appropriate colourless block was chosen for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid

Table	3	
Experi	mental	details

Crystal data	
Chemical formula	$C_{21}H_{24}O_4$
M _r	340.40
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	12.4644 (4), 18.1145 (4), 8.2720 (3)
β (°)	105.835 (3)
$V(Å^3)$	1796.82 (10)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.40\times0.40\times0.25$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Eos
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	46861, 5394, 4749
R _{int}	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.724
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.102, 1.04
No. of reflections	5394
No. of parameters	229
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.41, -0.24

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015) and XP (Siemens, 1994).

groups with C–H 0.98 Å, H–C–H 109.5° (AFIX 137 command). Other hydrogen atoms were included using a riding model starting from calculated positions (C–H_{aromatic} and C–H_{vinyl} = 0.95, C–H_{methylene} = 0.99, C–H_{methine} = 1.00 Å) with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Funding information

The authors are grateful for the financial support of Coordination for the Improvement of Higher Education Personnel (CAPES) through a PDSE grant for SSG (99999.003062/2014–07). JHGL is thankful for financial support and fellowships provided by the National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP – 2015/11193–2). This study is an activity within the Research Network Natural Products against Neglected Diseases (ResNetNPND: http://www.resnetnpnd. org/).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Costa-Silva, T. A. da, Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R. & Tempone, A. G. (2015). *J. Nat. Prod.* 78, 653–657.
- Fernandes, T. S., Copetti, D., do Carmo, G., Neto, A. T., Pedroso, M., Silva, U. F., Mostardeiro, M. A., Burrow, R., Dalcol, I. I. & Morel, A. F. (2017). *Phytochemistry*, **141**, 131–139.
- Gottlieb, O. R. (1972). Phytochemistry, 11, 1537–1570.
- Grecco, S. S., Costa-Silva, T. A., Jerz, G., de Sousa, F. S., Alves Conserva, G. A., Mesquita, J. T., Galuppo, M. K., Tempone, A. G., Neves, B. J., Andrade, C. H., Cunha, R. O. L., Uemi, M., Sartorelli, P. & Lago, J. H. G. (2017). *Phytomedicine*, 24, 62–67.

- Grecco, S. S., Lorenzi, H., Tempone, A. G. & Lago, J. H. G. (2016). *Tetrahedron Asymmetry*, 27, 793–810.
- Grecco, S. dos S., Martins, E. G. A., Girola, N., de Figueiredo, C. R., Matsuo, A. L., Soares, M. G., Bertoldo, B. de C., Sartorelli, P. & Lago, J. H. G. (2015). *Pharm. Biol.* 53, 133–137.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ito, Y. (2005). J. Chromatogr. A, 1065, 145-168.
- Jerz, G., Elnakady, Y. A., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17–29.
- Liu, Y., Yu, H.-Y., Wang, Y.-M., Tian, T., Wu, W.-M., Zhou, M., Meng, X.-G. & Ruan, H.-L. (2017). J. Nat. Prod. 80, 1117–1124.

- Marques, C. A. (2001). Floresta e Ambiente, 8, 195-206.
- Qin, D.-P., Feng, X.-L., Zhang, W.-Y., Gao, H., Cheng, X.-R., Zhou, W.-X., Yu, Y. & Yao, X.-S. (2017). RSC Adv. 7, 8512–8520.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
- Sousa, F. S. de, Grecco, S. S., Girola, N., Azevedo, R. A., Figueiredo, C. R. & Lago, J. H. G. (2017). *Phytochemistry*, **140**, 108–117.
- Stomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317–331.
- Yu, Y., Lu, X., Wu, W., Wu, Y. & Liu, B. (2013). Chin. J. Chem. 31, 1336–1340.

supporting information

Acta Cryst. (2018). E74, 518-521 [https://doi.org/10.1107/S2056989018003717]

Crystal structure of Dehydrodieugenol B methyl ether, a neolignan from *Nectandra leucantha* Nees and Mart (Lauraceae)

Simone S. Grecco, Gerold Jerz, Joao Henrique G. Lago and Peter G. Jones

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

1,2-Dimethoxy-3-[3-methoxy-5-(prop-2-en-1-yl)phenoxy]-5-(prop-2-en-1-yl)benzene

Crystal data	
$C_{21}H_{24}O_4$ $M_r = 340.40$ Monoclinic, $P2_1/c$ $a = 12.4644$ (4) Å b = 18.1145 (4) Å c = 8.2720 (3) Å $\beta = 105.835$ (3)° V = 1796.82 (10) Å ³ Z = 4	F(000) = 728 $D_x = 1.258 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13140 reflections $\theta = 2.8-30.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.40 \times 0.40 \times 0.25 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm ⁻¹ ω scan 46861 measured reflections 5394 independent reflections	4749 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 31.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 17$ $k = -25 \rightarrow 25$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.102$ S = 1.04 5394 reflections 229 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.6675P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.41$ e Å ⁻³ $\Delta\rho_{min} = -0.24$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.31969 (7)	0.48305 (5)	0.61877 (11)	0.01242 (16)
C2	0.39767 (7)	0.54031 (5)	0.66026 (11)	0.01353 (17)
C3	0.42548 (8)	0.58054 (5)	0.53374 (11)	0.01474 (17)
H3	0.477724	0.619848	0.562029	0.018*
C4	0.37653 (8)	0.56300 (5)	0.36575 (11)	0.01354 (17)
C5	0.29811 (7)	0.50652 (5)	0.32350 (11)	0.01337 (17)
Н5	0.263797	0.495178	0.208904	0.016*
C6	0.27031 (7)	0.46674 (5)	0.45055 (11)	0.01225 (16)
C7	0.40926 (8)	0.60579 (5)	0.22916 (12)	0.01611 (18)
H7A	0.490201	0.616399	0.266379	0.019*
H7B	0.394974	0.574881	0.126786	0.019*
C8	0.34694 (10)	0.67679 (6)	0.18696 (15)	0.0254 (2)
H8	0.351201	0.710939	0.275650	0.031*
C9	0.28622 (12)	0.69551 (9)	0.03483 (19)	0.0417 (3)
H9A	0.280058	0.662727	-0.056904	0.050*
H9B	0.248804	0.741721	0.017374	0.050*
C11	0.14573 (8)	0.38762 (5)	0.25820 (11)	0.01383 (17)
C12	0.19333 (7)	0.32850 (5)	0.19326 (11)	0.01273 (17)
C13	0.13745 (8)	0.29999 (5)	0.03591 (11)	0.01344 (17)
H13	0.168944	0.259885	-0.009373	0.016*
C14	0.03563 (8)	0.32995 (5)	-0.05550 (11)	0.01455 (17)
C15	-0.00827 (8)	0.39029 (5)	0.00937 (12)	0.01768 (18)
H15	-0.076237	0.411947	-0.053674	0.021*
C16	0.04695 (8)	0.41898 (5)	0.16599 (12)	0.01738 (18)
H16	0.016701	0.460156	0.209547	0.021*
C17	-0.02679 (8)	0.29803 (5)	-0.22437 (12)	0.01738 (18)
H17A	0.000598	0.247391	-0.234350	0.021*
H17B	-0.107102	0.294761	-0.230608	0.021*
C18	-0.01256 (9)	0.34388 (6)	-0.36835 (12)	0.01971 (19)
H18	0.060227	0.347660	-0.383003	0.024*
C19	-0.09401 (11)	0.37929 (7)	-0.47598 (15)	0.0310 (3)
H19A	-0.167876	0.376757	-0.465183	0.037*
H19B	-0.078789	0.407319	-0.564243	0.037*
C20	0.21477 (9)	0.47287 (6)	0.81429 (13)	0.0207 (2)
H20A	0.240600	0.521609	0.860138	0.031*
H20B	0.203875	0.441120	0.904430	0.031*
H20C	0.144028	0.478054	0.726983	0.031*
C21	0.52459 (8)	0.60736 (6)	0.87749 (12)	0.01920 (19)
H21A	0.583203	0.600002	0.820618	0.029*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21B	0.557367	0.605531	0.999413	0.029*	
H21C	0.489348	0.655567	0.846148	0.029*	
C22	0.33781 (9)	0.23855 (6)	0.23543 (13)	0.0216 (2)	
H22A	0.286150	0.196974	0.225908	0.032*	
H22B	0.409272	0.226083	0.315373	0.032*	
H22C	0.349503	0.248886	0.125186	0.032*	
01	0.19375 (6)	0.41001 (4)	0.42283 (8)	0.01578 (14)	
O2	0.29616 (6)	0.44052 (4)	0.74330 (8)	0.01493 (14)	
O3	0.44286 (6)	0.55060 (4)	0.82841 (8)	0.01778 (15)	
O4	0.29183 (6)	0.30235 (4)	0.29352 (8)	0.01611 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
C1	0.0147 (4)	0.0123 (4)	0.0112 (4)	0.0010 (3)	0.0052 (3)	0.0016 (3)
C2	0.0140 (4)	0.0152 (4)	0.0111 (4)	0.0007 (3)	0.0031 (3)	-0.0005 (3)
C3	0.0159 (4)	0.0144 (4)	0.0142 (4)	-0.0019 (3)	0.0046 (3)	0.0003 (3)
C4	0.0148 (4)	0.0140 (4)	0.0130 (4)	0.0015 (3)	0.0059 (3)	0.0018 (3)
C5	0.0152 (4)	0.0148 (4)	0.0106 (4)	0.0008 (3)	0.0044 (3)	-0.0003 (3)
C6	0.0132 (4)	0.0108 (4)	0.0134 (4)	-0.0001 (3)	0.0048 (3)	-0.0011 (3)
C7	0.0185 (4)	0.0170 (4)	0.0148 (4)	-0.0007 (3)	0.0078 (3)	0.0023 (3)
C8	0.0328 (6)	0.0199 (5)	0.0300 (5)	0.0048 (4)	0.0193 (5)	0.0087 (4)
C9	0.0348 (7)	0.0478 (8)	0.0461 (8)	0.0139 (6)	0.0169 (6)	0.0296 (6)
C11	0.0170 (4)	0.0135 (4)	0.0117 (4)	-0.0037 (3)	0.0053 (3)	-0.0020 (3)
C12	0.0136 (4)	0.0122 (4)	0.0128 (4)	-0.0012 (3)	0.0042 (3)	0.0017 (3)
C13	0.0160 (4)	0.0122 (4)	0.0133 (4)	-0.0012 (3)	0.0060 (3)	-0.0004 (3)
C14	0.0157 (4)	0.0150 (4)	0.0131 (4)	-0.0024 (3)	0.0042 (3)	0.0000 (3)
C15	0.0158 (4)	0.0184 (4)	0.0180 (4)	0.0014 (3)	0.0032 (3)	0.0000 (3)
C16	0.0186 (4)	0.0154 (4)	0.0192 (4)	0.0012 (3)	0.0069 (4)	-0.0027 (3)
C17	0.0183 (4)	0.0190 (4)	0.0138 (4)	-0.0020 (3)	0.0027 (3)	-0.0019 (3)
C18	0.0239 (5)	0.0202 (5)	0.0162 (4)	0.0025 (4)	0.0074 (4)	-0.0011 (3)
C19	0.0387 (7)	0.0305 (6)	0.0229 (5)	0.0107 (5)	0.0069 (5)	0.0061 (4)
C20	0.0256 (5)	0.0204 (5)	0.0212 (5)	-0.0012 (4)	0.0149 (4)	0.0001 (4)
C21	0.0182 (4)	0.0236 (5)	0.0157 (4)	-0.0072 (4)	0.0046 (3)	-0.0041 (4)
C22	0.0222 (5)	0.0168 (4)	0.0241 (5)	0.0055 (4)	0.0034 (4)	-0.0007 (4)
01	0.0210 (3)	0.0155 (3)	0.0116 (3)	-0.0062 (2)	0.0057 (2)	-0.0028 (2)
O2	0.0198 (3)	0.0139 (3)	0.0127 (3)	0.0008 (2)	0.0072 (2)	0.0030 (2)
03	0.0199 (3)	0.0222 (3)	0.0105 (3)	-0.0071 (3)	0.0027 (3)	-0.0013 (2)
O4	0.0162 (3)	0.0158 (3)	0.0150 (3)	0.0026 (2)	0.0020 (2)	-0.0002 (2)

Geometric parameters (Å, °)

C1—O2	1.3804 (10)	С13—Н13	0.9500	
C1—C6	1.3911 (12)	C14—C15	1.3938 (13)	
C1—C2	1.3987 (12)	C14—C17	1.5158 (13)	
C2—O3	1.3635 (11)	C15—C16	1.3913 (13)	
C2—C3	1.3945 (12)	C15—H15	0.9500	
C3—C4	1.3934 (12)	C16—H16	0.9500	

С3—Н3	0.9500	C17—C18	1.5017 (14)
C4—C5	1.3919 (13)	C17—H17A	0.9900
C4—C7	1.5151 (12)	С17—Н17В	0.9900
C5—C6	1.3938 (12)	C18—C19	1.3197 (15)
С5—Н5	0.9500	С18—Н18	0.9500
C6—O1	1.3783 (11)	С19—Н19А	0.9500
C7—C8	1.4937 (14)	С19—Н19В	0.9500
C7—H7A	0.9900	C20—O2	1.4292 (12)
C7—H7B	0.9900	C20—H20A	0.9800
C8—C9	1 3235 (18)	C20—H20B	0.9800
C8—H8	0.9500	C_{20} H20C	0.9800
C9—H9A	0.9500	$C_{21} = 0_{3}$	1 4263 (11)
C9—H9B	0.9500	C_{21} H_{21}	0.9800
C_{11} C_{16}	1 3813 (13)	C_{21} H21R	0.9800
	1 3902 (11)	C_{21} H21C	0.9800
C_{11}	1.3902(11) 1.4005(13)	$C_{21} = 0_{121}$	1,4301,(12)
C12 O4	1 3652 (11)	$C_{22} = 0.4$	0.0800
$C_{12} = C_{13}$	1.3052(11) 1.3060(12)	C22—1122A C22 H22B	0.9800
$C_{12} = C_{13}$	1.3909(12) 1.3075(12)	C22—H22B	0.9800
013-014	1.3973 (13)	C22—H22C	0.9800
02-C1-C6	120 12 (8)	C13—C14—C17	120 83 (8)
02-C1-C2	120.38 (8)	C16—C15—C14	120.33 (9)
C6-C1-C2	119 41 (8)	C16—C15—H15	119.8
$03-C^2-C^3$	125 18 (8)	C14-C15-H15	119.8
03-02-01	114 68 (8)	$C_{11} - C_{16} - C_{15}$	120.04 (9)
C_{3} C_{2} C_{1}	120 12 (8)	$C_{11} - C_{16} - H_{16}$	120.01 ())
$C_4 - C_3 - C_2$	119 89 (8)	C_{15} C_{16} H_{16}	120.0
$C_4 - C_3 - H_3$	120.1	C18 - C17 - C14	112 21 (8)
C2_C3_H3	120.1	C18 - C17 - H17A	109.2
$C_2 - C_3 - H_3$	120.1	$C_{10} = C_{17} = H_{17A}$	109.2
$C_{5} = C_{4} = C_{5}$	120.30(8)	C18 C17 H17R	109.2
$C_3 = C_4 = C_7$	110 55 (8)	$C_{10} = C_{17} = H_{17}B$	109.2
$C_{3} - C_{4} - C_{7}$	119.55 (8)	14 - 17 - 17 - 17 B	109.2
C4 = C5 = U5	119.32 (6)	H1/A - C1/-H1/B	107.9
C4 - C5 - H5	120.2	C19 - C18 - C17	124.05 (10)
$C_0 = C_3 = H_3$	120.2	C17 C18 H18	117.7
01 - 0 - 01	114.97(8)	C17 - C10 - H10	11/./
01 - 00 - 03	124.29(6)	C18 - C19 - H19A	120.0
C1 = C0 = C3	120.75(8)	U104 С10 Ц10Р	120.0
$C_8 = C_7 = U_7$	112.72 (8)	HI9A—C19—H19B	120.0
$C_8 - C_7 - H_7 A$	109.0	$O_2 = C_2 O_2 = H_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	109.5
C4 - C / - H / A	109.0	$U_2 = C_2 U_2 = H_2 U_3 U_2 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3$	109.5
C8 - C / - H / B	109.0	H20A—C20—H20B	109.5
	109.0	U2-C20-H20C	109.5
H/A - C/ - H/B	107.8	$H_2UA - C_2U - H_2UC$	109.5
C9—C8—C7	124.67 (12)	H20B—C20—H20C	109.5
C9—C8—H8	117.7	03—C21—H21A	109.5
С/—С8—Н8	117.7	O3—C21—H21B	109.5
С8—С9—Н9А	120.0	H21A—C21—H21B	109.5

С8—С9—Н9В	120.0	O3—C21—H21C	109.5
H9A—C9—H9B	120.0	H21A—C21—H21C	109.5
C16—C11—O1	120.11 (8)	H21B—C21—H21C	109.5
C16—C11—C12	120.65 (8)	O4—C22—H22A	109.5
O1—C11—C12	118.99 (8)	O4—C22—H22B	109.5
O4—C12—C13	125.09 (8)	H22A—C22—H22B	109.5
O4—C12—C11	115.92 (8)	O4—C22—H22C	109.5
C13—C12—C11	118.97 (8)	H22A—C22—H22C	109.5
C12—C13—C14	120.59 (8)	H22B—C22—H22C	109.5
C12—C13—H13	119.7	C6—O1—C11	118.29 (7)
C14—C13—H13	119.7	C1—O2—C20	113.39 (7)
C15—C14—C13	119.35 (8)	C2—O3—C21	116.94 (7)
C15—C14—C17	119.82 (8)	C12—O4—C22	116.91 (7)
O2—C1—C2—O3	-1.95 (12)	O4—C12—C13—C14	178.72 (8)
C6—C1—C2—O3	-178.56 (8)	C11—C12—C13—C14	0.02 (13)
O2—C1—C2—C3	176.58 (8)	C12—C13—C14—C15	2.04 (14)
C6-C1-C2-C3	-0.03 (13)	C12—C13—C14—C17	-178.48 (8)
O3—C2—C3—C4	177.54 (9)	C13-C14-C15-C16	-2.02 (14)
C1—C2—C3—C4	-0.83 (14)	C17—C14—C15—C16	178.49 (9)
C2—C3—C4—C5	1.41 (14)	O1—C11—C16—C15	-171.93 (9)
C2—C3—C4—C7	-178.55 (8)	C12-C11-C16-C15	2.18 (14)
C3—C4—C5—C6	-1.12 (13)	C14—C15—C16—C11	-0.08 (15)
C7—C4—C5—C6	178.84 (8)	C15—C14—C17—C18	77.59 (11)
O2-C1-C6-O1	4.08 (12)	C13—C14—C17—C18	-101.89 (10)
C2-C1-C6-O1	-179.29 (8)	C14—C17—C18—C19	-115.54 (12)
O2—C1—C6—C5	-176.30 (8)	C1-C6-O1-C11	-176.28 (8)
C2-C1-C6-C5	0.32 (13)	C5-C6-O1-C11	4.12 (13)
C4—C5—C6—O1	179.83 (8)	C16—C11—O1—C6	-91.49 (11)
C4—C5—C6—C1	0.25 (13)	C12-C11-O1-C6	94.29 (10)
C5—C4—C7—C8	96.87 (11)	C6-C1-O2-C20	-99.35 (10)
C3—C4—C7—C8	-83.17 (11)	C2-C1-O2-C20	84.06 (10)
C4—C7—C8—C9	-123.62 (12)	C3—C2—O3—C21	0.31 (14)
C16—C11—C12—O4	179.03 (8)	C1—C2—O3—C21	178.76 (8)
O1—C11—C12—O4	-6.79 (12)	C13—C12—O4—C22	-3.25 (13)
C16-C11-C12-C13	-2.15 (13)	C11—C12—O4—C22	175.49 (8)
O1—C11—C12—C13	172.03 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	<i>D</i> —H··· <i>A</i>
С20—Н20А…О3	0.98	2.66	3.1461 (13)	111
C21—H21 <i>B</i> ····O2 ⁱ	0.98	2.54	3.4292 (12)	151
C22—H22 <i>A</i> ···O2 ⁱⁱ	0.98	2.50	3.2885 (12)	138

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*, -*y*+1/2, *z*-1/2.