

Received 12 February 2018 Accepted 5 March 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; chalcone; absorption spectra; HOMO–LUMO; Hirshfeld surface.

CCDC reference: 1817217

Supporting information: this article has supporting information at journals.iucr.org/e



# (*E*)-1,3-Bis(anthracen-9-yl)prop-2-en-1-one: crystal structure and DFT study

#### Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad\*

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. \*Correspondence e-mail: suhanaarshad@usm.my

The title compound,  $C_{31}H_{20}O$ , was synthesized using a Claisen–Schmidt condensation. The enone group adopts an *s*-trans conformation and the anthracene ring systems are twisted at angles of 85.21 (19) and 83.98 (19)° from the enone plane. In the crystal, molecules are connected into chains along [100] *via* weak C–H··· $\pi$  interactions. The observed band gap of 3.03 eV is in excellent agreement with that (3.07 eV) calculated using density functional theory (DFT) at the B3LYP/6–311++G(d,p) level. The Hirshfeld surface analysis indicates a high percentage of C···H/H···C (41.2%) contacts in the crystal.

#### 1. Chemical context

Anthrancene and its derivatives constitute a very well-known class with interesting photophysical properties and they are used extensively in the design of luminescent chemosensors and switches (Montalti et al., 2000). A chalcone molecule with a  $\pi$ -conjugated system provides a large charge-transfer axis with appropriate substituent groups on the terminal aromatic rings. Strong intermolecular charge transfer (ICT) will give rise to second harmonic generation (SHG) efficiency and this may enhance the non-linear optical (NLO) properties (D'silva et al., 2011). Furthermore,  $\pi$ -conjugated molecular materials with fused rings are the focus of considerable interest in the emerging area of organic electronics, since the combination of good charge-carrier mobility and high stability may lead to potential optoelectronic applications (Wu et al., 2010). As part of our work in this area, we now report the synthesis and combined experimental and theoretical studies of the title compound, (I).



2. Structural commentary

The molecular structure of (I) is shown in Fig. 1 (for the optimized structure, see Fig. S1 in the Supporting information). The structure consists of two anthracene rings (Anth *A* and Anth *B*). Anth *A* is formed by the aromatic rings labeled as Cg1(C1-C6), Cg2(C1/C6-C8/C13/C14) and Cg3(C8-C13). Anth *B* consists of Cg4(C18/C19/C24-C26/C31, Cg5(C19-C24)) and Cg6(C26-C31).



OPEN d ACCESS

# Table 1Hydrogen-bond geometry (Å, °).

Cg4 and Cg6 are the centroids of the C18/C19/C24–C26/C31 and C26–C31 rings, respectively.

| $D - H \cdot \cdot \cdot A$                                                                                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------------------------------------------------------------------------------------------|------|-------------------------|--------------|------------------|
| $\begin{array}{c} \text{C5-H5} A \cdots Cg4^{\text{i}} \\ \text{C7-H7} A \cdots Cg6^{\text{i}} \end{array}$ | 0.93 | 2.75                    | 3.511 (2)    | 140              |
|                                                                                                             | 0.93 | 2.91                    | 3.672 (2)    | 140              |

Symmetry code: (i) x - 1, y, z.

The C-C distances in the central ring of the anthracene units show little variation compared to the other rings (Anth A: C20-C21, C22-C23, C27-C28 and C29-C30; Anth B: C2-C3, C4-C5, C9-C10 and C11-C12), which are much shorter. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984). Both theoretical and experimental structures exist in an *E* configuration with respect to the C16—C17 double bond [experimental = 1.291 (2) Å and DFT (see below) = 1.34 Å].

The enone moiety (O1/C15-C17) shows an s-trans configuration with the O1-C15-C16-C17 torsion angle being -179.19 (19) and  $179.64^{\circ}$  in the experimental and calculated structures, respectively. Additionally, the enone moiety [O1/ C15–C17, maximum deviation of 0.0039 (18) Å at C16] forms dihedral angles of 85.21 (19) and 83.98 (19)° with the Anth A [C1–C14, maximum deviation of 0.103 (2) Å at C11] and Anth B [C18–C31, maximum deviation of 0.016(3) Å at C27] groups, respectively. The large dihedral-angle deviation indicates that the possibility for electronic effects between the anthracene units through the enone moiety has decreased (Jung et al., 2008). This is in contrast with the molecular structure of (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one (Abdullah et al. 2016), which shows the enone moiety locked in an s-cis configuration because of the intramolecular hydrogen bond. Furthermore, the bulkiness of the anthracene ring gives rise to a highly twisted structure at



Figure 1 The molecular structure of (I) showing 50% displacement ellipsoids.

both terminal rings. Compound (I) is twisted at the C17–C18 and C14–C15 bonds with C16–C17–C18–C19 and C1– C14–C15–C16 torsion angles of 84.0 (2) and 93.65 (19)°, respectively (see Fig. S2 in the Supporting information). The corresponding torsion angles for the DFT study are 48.01 and 94.05°, respectively. We propose that the torsion-angle difference of about 35.9° between the experimental and DFT studies are the result of the formation of intermolecular C–  $H \cdots \pi$  interactions involving the anthracene units. The observed intermolecular interactions in the crystal packing are the main cause of the angle difference when this interaction is not taken into consideration during the optimization process.

#### 3. Supramolecular features

In the crystal of (I),  $C-H\cdots\pi$  interactions are mainly responsible for the packing. Two  $C-H\cdots\pi$  interactions (Fig. 2 and Table 1) occur between anthracene rings (Anth *A* and Anth *B*), connecting the molecules into infinite zigzag chains propagating along the [100] direction.



Figure 2 The weak  $C-H\cdots\pi$  interactions in the crystal of (I).

## research communications



UV–Vis absorption spectra of (I).

#### 4. Theoretical chemistry study

The optimization of the molecular geometries leading to energy minima was achieved using DFT [with Becke's nonlocal three parameter exchange and the Lee-Yang-Parr correlation functional (B3LYP)] with the 6-311++G (d,p) basis set as implemented in *Gaussian09* program package (Frisch *et al.*, 2009). The selected bond lengths and angles of the optimized structure in comparison to the experimental values are presented in Table S2 in the Supporting information and the optimized structure is presented in Figure S1. Agreement between experimental and calculated geometrical data is generally good and any deviations may be ascribed to the fact that the optimization is performed in an isolated condition, whereas the crystal environment affects the molecular geometry (Ramya *et al.*, 2015).

#### 5. Absorption spectrum and frontier molecular orbitals

The longest wavelength absorption maxima for (I) is observed in the UV region at 383 nm as shown in Fig. 3. The TD–DFT calculation at the B3LYP/6-311G++(d,p) level shows that this feature is due to an electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). In the ground state (HOMO), the charge densities are mainly delocalized over the anthracene rings and the enone moiety, while in the LUMO state, the charge densities are accumulated on the Anth A and enone moiety (see Fig. S3 in the Supporting information). The calculated  $\lambda_{max}$  of 390 nm is shifted from the experimental value, which may be attributed to solvent effects, compared to the gas-phase calculation.

The HOMO–LUMO energy gap (Fig. S3) relates to the chemical activity of the molecule (Kosar & Albayrak, 2011). The predicted energy gap of 3.07 eV shows excellent agreement with the estimated experimental energy gap of 3.03 eV. These optical band-gap values indicate the potential suitability of this compound for optoelectronic applications, as



View of the Hirshfeld surfaces mapped over  $d_{norm}$  for (I).

previously reported by Prabhu *et al.* (2016). Additionally, Nietfeld *et al.* (2011) compared the structural, electrochemical and optical properties of fused-ring and non-fused ring compounds, indicating that fused rings have lower band gaps than other structures.

#### 6. Hirshfeld Surface analysis

Fig. 4 shows the Hirshfeld surface mapped over  $d_{norm}$ . As expected, the  $d_{norm}$  surfaces reveal the C-H··· $\pi$  intermolecular interaction as a large depression (bright-red spot). The presence of this C-H··· $\pi$  interaction is also indicated through the combination of pale-orange and bright-red spots that are present on the Hirshfeld surfaces mapped over  $d_e$  (Fig. 5a) and shape-index (Fig. 5b).

The two-dimensional fingerprint plots shown in Fig. 6 illustrate the difference between the intermolecular interaction patterns and the major intermolecular contacts associated with the title compound. The  $H \cdot \cdot H$  contacts (Fig. 6b) appear to be the major contributor to the Hirshfeld surface and are seen as one distinct spike with a minimum value for  $d_e$ +  $d_i$  that is less than the sum of the van der Waals radii (2.4 Å). The intermolecular  $C-H \cdot \cdot \pi$  interactions are characterized by the short interatomic  $C \cdot \cdot H/H \cdot \cdot \cdot C$  (41.2%) contacts and



Figure 5

View of the Hirshfeld surfaces for (I) mapped over (a)  $d_e$  and (b) shapeindex with the pale-orange spot within the red circles showing the presence of the C-H··· $\pi$  interactions.



Figure 6

Fingerprint plots of interactions, listing the percentage of contacts (*a*) full two-dimensional fingerprint plots, and (*b*)  $H \cdots H$  and (*c*)  $C \cdots H/H \cdots C$  contributions to the total Hirshfeld surface. The outline of the full fingerprint plots is shown in grey.

their presence is indicated by the distribution of points around a pair of wings at  $d_e + d_i \sim 2.6 \text{ Å}$  (Fig. 6c).

#### 7. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.38, last update Nov 2016; Groom et al., 2016) revealed fused-ring substituted chalcones similar to the title compound. There are four compounds which have an anthracene-ketone subtituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis(styryl ketone) (Harlow et al., (2*E*)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]-1975). prop-2-en-1-one (Girisha et al., 2016) and (E)-1-(anthracen-9yl)-3-(2-chloro-6-fluorophenyl) prop-2-en-1-one (Abdullah et al., 2016). Jung et al. (2008) reported two ferrocenyl chalcones containing an anthracenyl subtituent, 9-(2-ferrocenylethenylcarbonyl)anthracene and 1-(9-anthracenyl)-3-ferrocenyl-2propen-1-one. Other related compounds include, 1-(anthracen-9-yl)-2-methylprop-2-en-1-one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).

#### 8. Synthesis and crystallization

A mixture of 9-acetylanthracene (0.5 mmol) and 9-anthracenecarboxaldehyde (0.5 mmol) was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5-6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone solution as yellow blocks. The single crystal (Fig. S4) used for data collection was obtained by the slowevaporation technique using acetone as the solvent.

#### 9. Refinement

Crystal data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C-H =0.93 Å) and refined using riding model with  $U_{iso}(H)=1.2U_{eq}(C)$ .

 Table 2

 Experimental details.

| Crystal data                                                               |                                              |
|----------------------------------------------------------------------------|----------------------------------------------|
| Chemical formula                                                           | $C_{31}H_{20}O$                              |
| M <sub>r</sub>                                                             | 408.47                                       |
| Crystal system, space group                                                | Triclinic, P1                                |
| Temperature (K)                                                            | 296                                          |
| <i>ı</i> , <i>b</i> , <i>c</i> (Å)                                         | 9.8310 (17), 10.7521 (18),<br>11.3029 (19)   |
| $\alpha, \beta, \gamma$ (°)                                                | 67.146 (2), 73.586 (2), 78.768 (2)           |
| $V(Å^3)$                                                                   | 1051.2 (3)                                   |
| Z                                                                          | 2                                            |
| Radiation type                                                             | Μο Κα                                        |
| $\mu (\text{mm}^{-1})$                                                     | 0.08                                         |
| Crystal size (mm)                                                          | $0.45 \times 0.38 \times 0.26$               |
|                                                                            |                                              |
| Data collection                                                            |                                              |
| Diffractometer                                                             | Bruker SMART APEXII DUO<br>CCD area-detector |
| Absorption correction                                                      | Multi-scan ( <i>SADABS</i> ; Bruker, 2009)   |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 42832, 6216, 2792                            |
| R <sub>int</sub>                                                           | 0.047                                        |
| $(\dot{A}^{-1})$                                                           | 0.709                                        |
|                                                                            |                                              |
| Refinement                                                                 |                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.057, 0.187, 1.00                           |
| No. of reflections                                                         | 6216                                         |
| No. of parameters                                                          | 289                                          |
| H-atom treatment                                                           | H-atom parameters constrained                |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e} {\rm ~\AA}^{-3})$ | 0.20, -0.15                                  |
|                                                                            |                                              |

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

#### **Funding information**

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/ PFIZIK/6711572 and for Short Term Grant Scheme (304/ PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

#### References

- Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). *Acta Cryst.* E**72**, 648–651.
- Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). *Tetrahedron*, **60**, 11959–11968.
- D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). *Cryst. Growth Des.* **11**, 5362–5369.
- Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA.
- Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). *Acta Cryst.* E72, 1153–1158.
- Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). *Acta Cryst.* B**31**, 1344–1350.

- Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.
- Kosar, B. & Albayrak, C. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 160–167.
- Montalti, M., Prodi, L. & Zaccheroni, N. (2000). J. Fluoresence, 10, 71–76.
- Nietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. **76**, 6383–6388.
- Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.
- Ramya, T., Gunasekaran, S. & Ramkumaar, G. R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 149, 132–142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489-1502.

# supporting information

Acta Cryst. (2018). E74, 492-496 [https://doi.org/10.1107/S2056989018003791]

### (E)-1,3-Bis(anthracen-9-yl)prop-2-en-1-one: crystal structure and DFT study

### Dian Alwani Zainuri, Ibrahim Abdul Razak and Suhana Arshad

#### **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(E)-1,3-Bis(anthracen-9-yl)prop-2-en-1-one

#### Crystal data

 $C_{31}H_{20}O$   $M_r = 408.47$ Triclinic, *P*1 a = 9.8310 (17) Å b = 10.7521 (18) Å c = 11.3029 (19) Å  $a = 67.146 (2)^{\circ}$   $\beta = 73.586 (2)^{\circ}$   $\gamma = 78.768 (2)^{\circ}$  $V = 1051.2 (3) \text{ Å}^{3}$ 

Data collection

| Bruker SMART APEXII DUO CCD area-        |
|------------------------------------------|
| detector                                 |
| diffractometer                           |
| Radiation source: fine-focus sealed tube |
| $\varphi$ and $\omega$ scans             |
| Absorption correction: multi-scan        |
| (SADABS; Bruker, 2009)                   |
|                                          |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.057$  $wR(F^2) = 0.187$ S = 1.006216 reflections 289 parameters 0 restraints Z = 2 F(000) = 428  $D_x = 1.290 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3766 reflections  $\theta = 2.3-22.1^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K Block, yellow  $0.45 \times 0.38 \times 0.26 \text{ mm}$ 

42832 measured reflections 6216 independent reflections 2792 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.047$  $\theta_{max} = 30.3^{\circ}, \theta_{min} = 2.0^{\circ}$  $h = -13 \rightarrow 13$  $k = -15 \rightarrow 15$  $l = -15 \rightarrow 15$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0746P)^2 + 0.1037P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x             | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|---------------|--------------|--------------|-----------------------------|
| 01   | 0.44003 (14)  | 0.39564 (13) | 0.83904 (17) | 0.0974 (5)                  |
| C1   | 0.18125 (17)  | 0.58896 (16) | 0.72383 (17) | 0.0557 (4)                  |
| C2   | 0.2456 (2)    | 0.55577 (19) | 0.6096 (2)   | 0.0745 (5)                  |
| H2A  | 0.3398        | 0.5184       | 0.5977       | 0.089*                      |
| C3   | 0.1725 (3)    | 0.5774 (2)   | 0.5176 (2)   | 0.0895 (6)                  |
| H3A  | 0.2174        | 0.5560       | 0.4428       | 0.107*                      |
| C4   | 0.0287 (3)    | 0.6321 (2)   | 0.5335 (2)   | 0.0848 (6)                  |
| H4A  | -0.0202       | 0.6472       | 0.4690       | 0.102*                      |
| C5   | -0.0372 (2)   | 0.66204 (17) | 0.6411 (2)   | 0.0702 (5)                  |
| H5A  | -0.1325       | 0.6962       | 0.6513       | 0.084*                      |
| C6   | 0.03472 (17)  | 0.64307 (16) | 0.74020 (18) | 0.0564 (4)                  |
| C7   | -0.03088 (16) | 0.67773 (16) | 0.84986 (18) | 0.0589 (4)                  |
| H7A  | -0.1270       | 0.7093       | 0.8621       | 0.071*                      |
| C8   | 0.04251 (16)  | 0.66686 (15) | 0.94246 (17) | 0.0551 (4)                  |
| C9   | -0.0227 (2)   | 0.70868 (18) | 1.05166 (19) | 0.0707 (5)                  |
| H9A  | -0.1189       | 0.7397       | 1.0651       | 0.085*                      |
| C10  | 0.0525 (3)    | 0.7042 (2)   | 1.1362 (2)   | 0.0834 (6)                  |
| H10A | 0.0083        | 0.7335       | 1.2065       | 0.100*                      |
| C11  | 0.1973 (2)    | 0.6556 (2)   | 1.1191 (2)   | 0.0776 (5)                  |
| H11A | 0.2487        | 0.6544       | 1.1772       | 0.093*                      |
| C12  | 0.26246 (19)  | 0.61070 (18) | 1.01937 (18) | 0.0659 (5)                  |
| H12A | 0.3577        | 0.5762       | 1.0115       | 0.079*                      |
| C13  | 0.18947 (16)  | 0.61474 (15) | 0.92571 (16) | 0.0529 (4)                  |
| C14  | 0.25475 (16)  | 0.57424 (15) | 0.81840 (16) | 0.0528 (4)                  |
| C15  | 0.40796 (17)  | 0.51694 (18) | 0.80046 (18) | 0.0633 (5)                  |
| C16  | 0.51726 (17)  | 0.61184 (17) | 0.73382 (18) | 0.0666 (5)                  |
| H16A | 0.6119        | 0.5756       | 0.7213       | 0.080*                      |
| C17  | 0.49221 (16)  | 0.74227 (16) | 0.69108 (16) | 0.0564 (4)                  |
| H17A | 0.3972        | 0.7775       | 0.7032       | 0.068*                      |
| C18  | 0.59990 (15)  | 0.84051 (15) | 0.62495 (16) | 0.0510 (4)                  |
| C19  | 0.65765 (16)  | 0.87661 (16) | 0.48951 (17) | 0.0547 (4)                  |
| C20  | 0.6174 (2)    | 0.82323 (19) | 0.40902 (19) | 0.0701 (5)                  |
| H20A | 0.5499        | 0.7606       | 0.4473       | 0.084*                      |
| C21  | 0.6744 (2)    | 0.8611 (2)   | 0.2788 (2)   | 0.0881 (6)                  |
| H21A | 0.6459        | 0.8247       | 0.2282       | 0.106*                      |
| C22  | 0.7768 (3)    | 0.9552 (2)   | 0.2183 (2)   | 0.0955 (7)                  |
| H22A | 0.8155        | 0.9807       | 0.1280       | 0.115*                      |
| C23  | 0.8190 (2)    | 1.0082 (2)   | 0.2896 (2)   | 0.0830 (6)                  |
| H23A | 0.8875        | 1.0697       | 0.2480       | 0.100*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C24  | 0.76171 (18) | 0.97267 (17) | 0.42761 (18) | 0.0634 (5) |
|------|--------------|--------------|--------------|------------|
| C25  | 0.80165 (19) | 1.02850 (18) | 0.5019 (2)   | 0.0720 (5) |
| H25A | 0.8687       | 1.0914       | 0.4605       | 0.086*     |
| C26  | 0.74538 (19) | 0.99421 (17) | 0.6362 (2)   | 0.0658 (5) |
| C27  | 0.7864 (3)   | 1.0506 (2)   | 0.7140 (3)   | 0.0899 (7) |
| H27A | 0.8524       | 1.1146       | 0.6740       | 0.108*     |
| C28  | 0.7316 (3)   | 1.0133 (2)   | 0.8443 (3)   | 0.0980 (7) |
| H28A | 0.7605       | 1.0513       | 0.8933       | 0.118*     |
| C29  | 0.6313 (2)   | 0.9178 (2)   | 0.9075 (2)   | 0.0841 (6) |
| H29A | 0.5946       | 0.8925       | 0.9981       | 0.101*     |
| C30  | 0.58805 (19) | 0.86234 (18) | 0.83782 (19) | 0.0676 (5) |
| H30A | 0.5211       | 0.7994       | 0.8812       | 0.081*     |
| C31  | 0.64201 (16) | 0.89751 (15) | 0.70003 (17) | 0.0555 (4) |
|      |              |              |              |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| 01  | 0.0731 (9)  | 0.0536 (8)  | 0.1465 (14) | -0.0020 (6)  | -0.0287 (9)  | -0.0149 (8)     |
| C1  | 0.0544 (9)  | 0.0476 (9)  | 0.0641 (11) | -0.0107 (7)  | -0.0152 (8)  | -0.0149 (8)     |
| C2  | 0.0757 (12) | 0.0749 (13) | 0.0775 (13) | -0.0077 (10) | -0.0177 (10) | -0.0317 (11)    |
| C3  | 0.1108 (18) | 0.0908 (16) | 0.0807 (15) | -0.0134 (13) | -0.0278 (13) | -0.0390 (12)    |
| C4  | 0.1070 (17) | 0.0767 (14) | 0.0872 (16) | -0.0140 (12) | -0.0502 (14) | -0.0245 (12)    |
| C5  | 0.0702 (11) | 0.0582 (11) | 0.0882 (14) | -0.0115 (8)  | -0.0370 (11) | -0.0167 (10)    |
| C6  | 0.0543 (9)  | 0.0445 (9)  | 0.0702 (11) | -0.0120 (7)  | -0.0225 (8)  | -0.0109 (8)     |
| C7  | 0.0435 (8)  | 0.0515 (9)  | 0.0758 (12) | -0.0082 (7)  | -0.0146 (8)  | -0.0140 (8)     |
| C8  | 0.0526 (9)  | 0.0454 (9)  | 0.0602 (10) | -0.0105 (7)  | -0.0106 (8)  | -0.0099 (7)     |
| C9  | 0.0670 (11) | 0.0653 (12) | 0.0684 (12) | -0.0033 (9)  | -0.0078 (10) | -0.0186 (9)     |
| C10 | 0.1013 (16) | 0.0763 (14) | 0.0656 (13) | -0.0026 (12) | -0.0139 (12) | -0.0242 (10)    |
| C11 | 0.0948 (15) | 0.0772 (13) | 0.0635 (12) | -0.0098 (11) | -0.0296 (11) | -0.0190 (10)    |
| C12 | 0.0628 (10) | 0.0655 (11) | 0.0650 (12) | -0.0092 (8)  | -0.0222 (9)  | -0.0118 (9)     |
| C13 | 0.0485 (8)  | 0.0464 (9)  | 0.0583 (10) | -0.0116 (7)  | -0.0135 (7)  | -0.0086 (7)     |
| C14 | 0.0454 (8)  | 0.0484 (9)  | 0.0593 (10) | -0.0095 (6)  | -0.0121 (7)  | -0.0111 (8)     |
| C15 | 0.0544 (9)  | 0.0546 (10) | 0.0756 (12) | -0.0044 (8)  | -0.0167 (8)  | -0.0166 (9)     |
| C16 | 0.0412 (8)  | 0.0584 (11) | 0.0867 (13) | 0.0004 (7)   | -0.0092 (8)  | -0.0175 (9)     |
| C17 | 0.0419 (8)  | 0.0567 (10) | 0.0652 (11) | -0.0010 (7)  | -0.0133 (7)  | -0.0171 (8)     |
| C18 | 0.0399 (7)  | 0.0478 (9)  | 0.0582 (10) | 0.0023 (6)   | -0.0125 (7)  | -0.0134 (7)     |
| C19 | 0.0481 (8)  | 0.0498 (9)  | 0.0575 (10) | 0.0041 (7)   | -0.0113 (7)  | -0.0144 (8)     |
| C20 | 0.0672 (11) | 0.0724 (12) | 0.0659 (12) | 0.0017 (9)   | -0.0162 (9)  | -0.0228 (10)    |
| C21 | 0.0967 (16) | 0.0941 (16) | 0.0701 (14) | 0.0103 (13)  | -0.0219 (12) | -0.0325 (12)    |
| C22 | 0.1056 (18) | 0.0903 (16) | 0.0582 (13) | 0.0117 (13)  | -0.0007 (12) | -0.0146 (12)    |
| C23 | 0.0759 (13) | 0.0669 (13) | 0.0733 (14) | -0.0007 (10) | 0.0034 (11)  | -0.0072 (11)    |
| C24 | 0.0568 (10) | 0.0500 (10) | 0.0634 (11) | 0.0030 (8)   | -0.0074 (8)  | -0.0071 (8)     |
| C25 | 0.0629 (11) | 0.0528 (10) | 0.0829 (14) | -0.0129 (8)  | -0.0105 (10) | -0.0064 (10)    |
| C26 | 0.0638 (10) | 0.0507 (10) | 0.0796 (13) | -0.0066 (8)  | -0.0209 (10) | -0.0160 (9)     |
| C27 | 0.1027 (16) | 0.0627 (13) | 0.1131 (19) | -0.0197 (11) | -0.0405 (15) | -0.0240 (13)    |
| C28 | 0.126 (2)   | 0.0814 (15) | 0.109 (2)   | -0.0107 (14) | -0.0510 (17) | -0.0402 (14)    |
| C29 | 0.0993 (16) | 0.0847 (15) | 0.0747 (14) | 0.0017 (12)  | -0.0278 (12) | -0.0343 (12)    |
| C30 | 0.0658 (11) | 0.0691 (12) | 0.0658 (12) | -0.0019 (9)  | -0.0154 (9)  | -0.0235 (9)     |

# supporting information

| Geometric parameters (Å, ?)           01—C15         1.2109 (19)         C16—H16A         0.9300           C1—C14         1.397 (2)         C17—C18         1.473 (2)           C1—C2         1.416 (3)         C17—H17A         0.9300           C1—C6         1.433 (2)         C18—C19         1.396 (2)           C2—C3         1.349 (3)         C18—C13         1.403 (2)           C2—H2A         0.9300         C19—C20         1.418 (3)           C3—H3A         0.9300         C20—C21         1.343 (3)           C4—C5         1.333 (3)         C20—H20A         0.9300           C4—C5         1.333 (3)         C20—H20A         0.9300           C5—C6         1.414 (2)         C21—C22         1.406 (3)           C5—C5         1.338 (2)         C22—C23         1.335 (3)           C6—C7         1.380 (2)         C23—C24         1.422 (3)           C7—C8         1.389 (2)         C23—C24         1.422 (3)           C7—H7A         0.9300         C25—H25A         0.9300           C8=C13         1.432 (2)         C25—C26         1.388 (3)           C9—C10         1.346 (3)         C25—H25A         0.9300           C10—C111                                                    | <u>C31</u> | 0.0509 (9)         | 0.0493 (9) | 0.0624 (11) | 0.0010 (7)   | -0.0161 (8) | -0.0162 (8) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|------------|-------------|--------------|-------------|-------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geome      | tric parameters (2 | Å, °)      |             |              |             |             |
| C1-C14 $1.397 (2)$ C17-C18 $1.473 (2)$ C1-C2 $1.416 (3)$ C17-H17A $0.9300$ C1-C6 $1.433 (2)$ C18-C19 $1.396 (2)$ C2-C3 $1.349 (3)$ C18-C31 $1.403 (2)$ C2-H2A $0.9300$ C19-C20 $1.418 (3)$ C3-C4 $1.411 (3)$ C19-C24 $1.431 (2)$ C3-H3A $0.9300$ C20-C21 $1.343 (3)$ C4-C5 $1.333 (3)$ C20-H20A $0.9300$ C5-C6 $1.418 (2)$ C21-H21A $0.9300$ C5-C5 $0.9300$ C22-C23 $1.335 (3)$ C6-C7 $1.380 (2)$ C23-H22A $0.9300$ C7-C8 $1.389 (2)$ C23-H23A $0.9300$ C7-C7 $1.380 (2)$ C25-C26 $1.385 (3)$ C9-C10 $1.346 (3)$ C25-H25A $0.9300$ C8-C9 $1.417 (2)$ C24-C25 $1.374 (3)$ C9-C10 $1.346 (3)$ C25-H25A $0.9300$ C9-H9A $0.9300$ C27-C28 $1.419 (3)$ C10-C11 $1.404 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01—C       | 15                 | 1.2109     | 9 (19)      | C16—H16A     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1—C       | 14                 | 1.397      | (2)         | C17—C18      |             | 1.473 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1—C       | 2                  | 1.416      | (3)         | C17—H17A     |             | 0.9300      |
| C2-C3 $1.349 (3)$ $C18-C31$ $1.403 (2)$ $C2-H2A$ $0.9300$ $C19-C20$ $1.418 (3)$ $C3-C4$ $1.411 (3)$ $C19-C20$ $1.418 (3)$ $C3-H3A$ $0.9300$ $C20-C21$ $1.343 (3)$ $C4-C5$ $1.333 (3)$ $C20-H20A$ $0.9300$ $C4-H4A$ $0.9300$ $C21-C22$ $1.406 (3)$ $C5-C6$ $1.418 (2)$ $C21-H21A$ $0.9300$ $C5-H5A$ $0.9300$ $C22-C23$ $1.335 (3)$ $C6-C7$ $1.380 (2)$ $C22-H22A$ $0.9300$ $C7-C8$ $1.389 (2)$ $C23-H23A$ $0.9300$ $C8-C9$ $1.417 (2)$ $C24-C25$ $1.374 (3)$ $C8-C9$ $1.417 (2)$ $C24-C25$ $1.374 (3)$ $C9-H9A$ $0.9300$ $C26-C27$ $1.419 (3)$ $C10-C11$ $1.404 (3)$ $C26-C27$ $1.419 (3)$ $C10-H10A$ $0.9300$ $C28-C29$ $1.401 (3)$ $C1-C12$ $1.344 (3)$ $C27-C28$ $1.340 (3)$ $C1-H11A$ $0.9300$ $C28-C29$ $1.401 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1—C       | 6                  | 1.433      | (2)         | C18—C19      |             | 1.396 (2)   |
| C2-H2A         0.9300         C19-C20         1.418 (3)           C3-C4         1.411 (3)         C19-C24         1.431 (2)           C3-H3A         0.9300         C20-C21         1.343 (3)           C4-C5         1.333 (3)         C20-H20A         0.9300           C4-H4A         0.9300         C21-C22         1.406 (3)           C5-C6         1.418 (2)         C21-H21A         0.9300           C5-H5A         0.9300         C22-C23         1.335 (3)           C6-C7         1.380 (2)         C23-C24         1.422 (3)           C7-C8         1.389 (2)         C23-H23A         0.9300           C8-C9         1.417 (2)         C24-C25         1.374 (3)           C8-C13         1.432 (2)         C25-C26         1.385 (3)           C9-H9A         0.9300         C26-C27         1.419 (3)           C10-H10A         0.9300         C26-C29         1.401 (3)           C10-H10A         0.9300         C28-C29         1.401 (3)           C11-H11A         0.9300         C28-C29         1.401 (3)           C12-H12A         0.9300         C28-C29         1.401 (3)           C12-H12A         0.9300         C28-H28A         0.9300                                              | С2—С       | 3                  | 1.349      | (3)         | C18—C31      |             | 1.403 (2)   |
| C3-C4       1.411 (3)       C19-C24       1.431 (2)         C3-H3A       0.9300       C20-C21       1.343 (3)         C4-C5       1.333 (3)       C20-H20A       0.9300         C4-H4A       0.9300       C21-C22       1.406 (3)         C5-C6       1.418 (2)       C21-H21A       0.9300         C5-H5A       0.9300       C22-C23       1.335 (3)         C6-C7       1.380 (2)       C23-C24       1.422 (3)         C7-C8       1.389 (2)       C23-C24       1.422 (3)         C7-C7       1.380 (2)       C24-C25       1.374 (3)         C8-C9       1.417 (2)       C24-C25       1.374 (3)         C8-C13       1.432 (2)       C25-C26       1.385 (3)         C9-C10       1.346 (3)       C26-C31       1.419 (3)         C10-C11       1.404 (3)       C26-C31       1.431 (2)         C10-H10A       0.9300       C27-H27A       0.9300         C11-H11A       0.9300       C28-C29       1.401 (3)         C12-C13       1.421 (2)       C28-H28A       0.9300         C12-H12A       0.9300       C29-C30       1.345 (3)         C13-C14       1.391 (2)       C29-H29A       0.9300 <tr< td=""><td>С2—Н</td><td>2A</td><td>0.9300</td><td>)</td><td>C19—C20</td><td></td><td>1.418 (3)</td></tr<> | С2—Н       | 2A                 | 0.9300     | )           | C19—C20      |             | 1.418 (3)   |
| C3—H3A       0.9300       C20—C21       1.343 (3)         C4—C5       1.333 (3)       C20—H20A       0.9300         C4—H4A       0.9300       C21—C22       1.406 (3)         C5—C6       1.418 (2)       C21—H21A       0.9300         C5—C6       1.418 (2)       C21—H21A       0.9300         C5—C7       1.380 (2)       C22—H2A       0.9300         C7—H7A       0.9300       C23—H23A       0.9300         C7—H7A       0.9300       C23—H23A       0.9300         C8—C9       1.417 (2)       C24—C25       1.374 (3)         C8—C9       1.417 (2)       C24—C25       1.374 (3)         C9—C10       1.346 (3)       C25—H25A       0.9300         C9—C10       1.346 (3)       C25—H25A       0.9300         C10—C11       1.404 (3)       C26—C31       1.431 (2)         C10—C11       1.404 (3)       C26—C31       1.431 (2)         C10—H10A       0.9300       C27—C28       1.340 (3)         C11—C12       1.344 (3)       C27—H27A       0.9300         C12—H12A       0.9300       C28—C29       1.401 (3)         C12—C13       1.421 (2)       C28—H28A       0.9300 <td< td=""><td>С3—С</td><td>4</td><td>1.411</td><td>(3)</td><td>C19—C24</td><td></td><td>1.431 (2)</td></td<>            | С3—С       | 4                  | 1.411      | (3)         | C19—C24      |             | 1.431 (2)   |
| C4-C5       1.333 (3)       C20-H20A       0.9300         C4-H4A       0.9300       C21-C22       1.406 (3)         C5-C6       1.418 (2)       C21-H21A       0.9300         C5-H5A       0.9300       C22-C23       1.335 (3)         C6-C7       1.380 (2)       C22-H22A       0.9300         C7-K8       1.389 (2)       C23-C24       1.422 (3)         C7-H7A       0.9300       C23-H23A       0.9300         C8-C9       1.417 (2)       C24-C25       1.385 (3)         C9-C10       1.346 (3)       C25-H25A       0.9300         C9-H9A       0.9300       C26-C27       1.419 (3)         C10-C11       1.404 (3)       C26-C27       1.419 (3)         C10-H10A       0.9300       C27-C28       1.340 (3)         C11-C12       1.344 (3)       C27-H27A       0.9300         C12-H12A       0.9300       C28-C29       1.401 (3)         C12-C13       1.421 (2)       C28-H28A       0.9300         C12-H12A       0.9300       C29-C30       1.345 (3)         C12-H12A       0.9300       C29-C30       1.345 (3)         C12-H12A       0.9300       C29-H29A       0.9300         <                                                                                                              | С3—Н       | 3A                 | 0.9300     | )           | C20—C21      |             | 1.343 (3)   |
| C4—H4A       0.9300       C21—C22       1.406 (3)         C5—C6       1.418 (2)       C21—H21A       0.9300         C5—H5A       0.9300       C22—C23       1.335 (3)         C6—C7       1.380 (2)       C22—H22A       0.9300         C7—C8       1.389 (2)       C23—C24       1.422 (3)         C7—H7A       0.9300       C23—H23A       0.9300         C8—C9       1.417 (2)       C24—C25       1.374 (3)         C8—C9       1.417 (2)       C25—C26       1.385 (3)         C9—C10       1.346 (3)       C25—H25A       0.9300         C9—C10       1.346 (3)       C26—C27       1.419 (3)         C10—C11       1.404 (3)       C26—C27       1.419 (3)         C10—C11       1.404 (3)       C26—C27       1.419 (3)         C10—C11       1.404 (3)       C26—C27       1.419 (3)         C10—H10A       0.9300       C28—C29       1.401 (3)         C12—C13       1.421 (2)       C28—H28A       0.9300         C12—H12A       0.9300       C29—C30       1.345 (3)         C13—C14       1.391 (2)       C29—H29A       0.9300         C14—C15       1.501 (2)       C30—C31       1.416 (2)                                                                                                           | C4—C       | 5                  | 1.333      | (3)         | C20—H20A     |             | 0.9300      |
| C5-C61.418 (2)C21-H21A0.9300C5-H5A0.9300C22-C231.335 (3)C6-C71.380 (2)C22-H22A0.9300C7-C81.389 (2)C23-C241.422 (3)C7-H7A0.9300C23-H23A0.9300C8-C91.417 (2)C24-C251.374 (3)C8-C131.432 (2)C25-C261.385 (3)C9-C101.346 (3)C25-H25A0.9300C9-H9A0.9300C26-C271.419 (3)C10-C111.404 (3)C26-C311.431 (2)C10-C111.404 (3)C27-H27A0.9300C11-C121.344 (3)C27-H27A0.9300C12-C131.421 (2)C28-H28A0.9300C12-C131.421 (2)C29-C301.345 (3)C12-C141.391 (2)C29-H29A0.9300C14-C151.501 (2)C30-C311.416 (2)C14-C1-C2123.06 (16)C15-C16-H16A117.6C14-C1-C6119.19 (16)C16-C17-C18126.16 (14)C2-C1-C6117.74 (16)C16-C17-H17A116.9C3-C2-C1121.13 (19)C18-C17-H17A116.9C3-C2-H2A119.4C19-C18-C31120.92 (15)C1-C2-H2A19.4C19-C18-C17120.16 (15)C2-C1-C6117.74 (16)C16-C17-H17A116.9C3-C2-H2A19.4C19-C18-C17120.16 (15)C2-C2-C2-C2-C1121.13 (19)C18-C17-H17A116.9C3-C2-H2A19.4C19-C18-C17120.16 (15)C2-C3-C4 <t< td=""><td>С4—Н</td><td>4A</td><td>0.9300</td><td>)</td><td>C21—C22</td><td></td><td>1.406 (3)</td></t<>                                                                                                                                                                                                                      | С4—Н       | 4A                 | 0.9300     | )           | C21—C22      |             | 1.406 (3)   |
| C5-H5A0.9300C22-C231.335 (3)C6-C71.380 (2)C22-H22A0.9300C7-C81.389 (2)C23-C241.422 (3)C7-H7A0.9300C23-H23A0.9300C8-C91.417 (2)C24-C251.374 (3)C8-C131.432 (2)C25-C261.385 (3)C9-C101.346 (3)C25-H25A0.9300C9-H9A0.9300C26-C271.419 (3)C10-C111.404 (3)C26-C311.431 (2)C10-C111.404 (3)C27-H27A0.9300C11-C121.344 (3)C27-H27A0.9300C11-C121.344 (3)C27-H27A0.9300C12-C131.421 (2)C28-H28A0.9300C12-C131.421 (2)C29-H29A0.9300C12-C141.391 (2)C29-C301.345 (3)C14-C151.501 (2)C30-C311.416 (2)C14-C171.291 (2)C30-H30A0.9300C14-C1-C2123.06 (16)C15-C16-H16A117.6C14-C1-C6119.19 (16)C16-C17-C18126.16 (14)C2-C1-C6117.74 (16)C16-C17-H17A116.9C3-C2-H2A119.4C19-C18-C31120.92 (15)C1-C2-H2A19.4C19-C18-C17120.16 (15)C2-C2-C2-C4120.9 (2)C31-C18-C17118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С5—С       | 6                  | 1.418      | (2)         | C21—H21A     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С5—Н       | 5A                 | 0.9300     | )           | C22—C23      |             | 1.335 (3)   |
| C7C8 $1.389(2)$ C23C24 $1.422(3)$ C7H7A $0.9300$ C23H23A $0.9300$ C8C9 $1.417(2)$ C24C25 $1.374(3)$ C8C13 $1.432(2)$ C25C26 $1.385(3)$ C9C10 $1.346(3)$ C25H25A $0.9300$ C9H9A $0.9300$ C26C27 $1.419(3)$ C10C11 $1.404(3)$ C26C27 $1.419(3)$ C10C12 $1.344(3)$ C27H27A $0.9300$ C11C12 $1.344(3)$ C27H27A $0.9300$ C12C13 $1.421(2)$ C28H28A $0.9300$ C12H12A $0.9300$ C29C30 $1.345(3)$ C13C14 $1.391(2)$ C29H29A $0.9300$ C14C15 $1.501(2)$ C30C31 $1.416(2)$ C14C1-C2 $123.06(16)$ C15C16H16A $117.6$ C14C1-C6 $119.19(16)$ C16C17C18 $126.16(14)$ C2C1-C6 $117.74(16)$ C16C17H17A $116.9$ C3C2H2A $119.4$ C19C18C31 $120.92(15)$ C1C2H2A $119.4$ C19C18C17 $120.92(15)$ C1C2H2A $119.4$ C19C18C17 $120.92(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С6—С       | 7                  | 1.380      | (2)         | C22—H22A     |             | 0.9300      |
| C7-H7A0.9300C23-H23A0.9300C8-C91.417 (2)C24-C251.374 (3)C8-C131.432 (2)C25-C261.385 (3)C9-C101.346 (3)C25-H25A0.9300C9-H9A0.9300C26-C271.419 (3)C10-C111.404 (3)C26-C311.431 (2)C10-H10A0.9300C27-C281.340 (3)C11-C121.344 (3)C27-H27A0.9300C12-C131.421 (2)C28-H28A0.9300C12-C131.421 (2)C28-H28A0.9300C12-H12A0.9300C29-C301.345 (3)C13-C141.391 (2)C29-H29A0.9300C14-C151.501 (2)C30-C311.416 (2)C15-C161.461 (2)C30-H30A0.9300C14-C1-C2123.06 (16)C15-C16-H16A117.6C14-C1-C4119.19 (16)C16-C17-C18126.16 (14)C2-C1-C6117.74 (16)C16-C17-H17A116.9C3-C2-C1121.13 (19)C18-C17-H17A116.9C3-C2-H2A119.4C19-C18-C31120.92 (15)C1-C2-H2A119.4C19-C18-C17120.16 (15)C2-C3-C4120.9 (2)C31-C18-C17118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С7—С       | 8                  | 1.389      | (2)         | C23—C24      |             | 1.422 (3)   |
| C8-C9 $1.417(2)$ C24-C25 $1.374(3)$ C8-C13 $1.432(2)$ C25-C26 $1.385(3)$ C9-C10 $1.346(3)$ C25-H25A $0.9300$ C9-H9A $0.9300$ C26-C27 $1.419(3)$ C10-C11 $1.404(3)$ C26-C31 $1.431(2)$ C10-H10A $0.9300$ C27-C28 $1.340(3)$ C11-C12 $1.344(3)$ C27-H27A $0.9300$ C11-C12 $1.344(3)$ C27-H27A $0.9300$ C12-C13 $1.421(2)$ C28-H28A $0.9300$ C12-H12A $0.9300$ C29-C30 $1.345(3)$ C13-C14 $1.391(2)$ C29-H29A $0.9300$ C14-C15 $1.501(2)$ C30-C31 $1.416(2)$ C15-C16 $1.461(2)$ C30-H30A $0.9300$ C14-C1-C2 $123.06(16)$ C15-C16-H16A $117.6$ C14-C1-C6 $119.19(16)$ C16-C17-C18 $126.16(14)$ C2-C1-C6 $117.74(16)$ C16-C17-H17A $116.9$ C3-C2-C1 $121.13(19)$ C18-C17-H17A $116.9$ C3-C2-H2A $119.4$ C19-C18-C31 $120.92(15)$ C1-C2-H2A $119.4$ C19-C18-C17 $120.16(15)$ C2-C3-C4 $120.9(2)$ C31-C18-C17 $118.92(15)$                                                                                                                                                                                                                                                                                                                                                                                                   | С7—Н       | 7A                 | 0.9300     | )           | С23—Н23А     |             | 0.9300      |
| C8—C13 $1.432(2)$ C25—C26 $1.385(3)$ C9—C10 $1.346(3)$ C25—H25A $0.9300$ C9—H9A $0.9300$ C26—C27 $1.419(3)$ C10—C11 $1.404(3)$ C26—C31 $1.431(2)$ C10—H10A $0.9300$ C27—C28 $1.340(3)$ C11—C12 $1.344(3)$ C27—H27A $0.9300$ C11—H11A $0.9300$ C28—C29 $1.401(3)$ C12—C13 $1.421(2)$ C28—H28A $0.9300$ C14—C13 $1.421(2)$ C29—H29A $0.9300$ C14—C14 $1.391(2)$ C29—H29A $0.9300$ C14—C15 $1.501(2)$ C30—C31 $1.416(2)$ C15—C16 $1.461(2)$ C30—H30A $0.9300$ C14—C1—C2       123.06(16)       C15—C16—H16A       117.6         C14—C1—C2       123.06(16)       C16—C17—C18       126.16(14)         C2—C1—C6       117.74(16)       C16—C17—H17A       116.9         C3—C2—C1       121.13(19)       C18—C17—H17A       116.9         C3—C2—H2A       119.4       C19—C18—C31       120.92(15)         C1—C2—H2A       11                                                                                                                                                                                                                                                                                                                                                                                              | C8—C       | 9                  | 1.417      | (2)         | C24—C25      |             | 1.374 (3)   |
| C9-C10 $1.346(3)$ C25-H25A $0.9300$ C9-H9A $0.9300$ C26-C27 $1.419(3)$ C10-C11 $1.404(3)$ C26-C31 $1.431(2)$ C10-H10A $0.9300$ C27-C28 $1.340(3)$ C11-C12 $1.344(3)$ C27-H27A $0.9300$ C11-H11A $0.9300$ C28-C29 $1.401(3)$ C12-C13 $1.421(2)$ C28-H28A $0.9300$ C12-H12A $0.9300$ C29-C30 $1.345(3)$ C13-C14 $1.391(2)$ C29-H29A $0.9300$ C14-C15 $1.501(2)$ C30-C31 $1.416(2)$ C15-C16 $1.461(2)$ C30-H30A $0.9300$ C16-C17 $1.291(2)$ C30-H30A $0.9300$ C14-C1-C6 $119.19(16)$ C16-C17-C18 $126.16(14)$ C2-C1-C6 $117.74(16)$ C16-C17-H17A $116.9$ C3-C2-C1 $121.13(19)$ C18-C17-H17A $116.9$ C3-C2-H2A $119.4$ C19-C18-C31 $120.92(15)$ C1-C2-H2A $119.4$ C19-C18-C17 $120.16(15)$ C2-C3-C4 $120.9(2)$ C31-C18-C17 $118.92(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8—C       | 13                 | 1.432      | (2)         | C25—C26      |             | 1.385 (3)   |
| C9-H9A $0.930$ $C26-C27$ $1.419(3)$ C10-C11 $1.404(3)$ $C26-C31$ $1.431(2)$ C10-H10A $0.9300$ $C27-C28$ $1.340(3)$ C11-C12 $1.344(3)$ $C27-H27A$ $0.9300$ C11-H11A $0.9300$ $C28-C29$ $1.401(3)$ C12-C13 $1.421(2)$ $C28-H28A$ $0.9300$ C12-H12A $0.9300$ $C29-C30$ $1.345(3)$ C13-C14 $1.391(2)$ $C29-H29A$ $0.9300$ C14-C15 $1.501(2)$ $C30-C31$ $1.416(2)$ C15-C16 $1.461(2)$ $C30-H30A$ $0.9300$ C16-C17 $1.291(2)$ $C29-H12A$ $0.9300$ C14-C1-C2 $123.06(16)$ $C15-C16-H16A$ $117.6$ C14-C1-C4 $1.919(16)$ $C16-C17-C18$ $126.16(14)$ C2-C1-C6 $117.74(16)$ $C16-C17-H17A$ $116.9$ C3-C2-C1 $121.13(19)$ $C18-C17-H17A$ $116.9$ C3-C2-H2A $119.4$ $C19-C18-C31$ $120.92(15)$ C1-C2-H2A $119.4$ $C19-C18-C17$ $120.16(15)$ C2-C3-C4 $120.9(2)$ $C31-C18-C17$ $118.92(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                         | С9—С       | 10                 | 1.346      | (3)         | C25—H25A     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С9—Н       | 9A                 | 0.9300     | )           | C26—C27      |             | 1.419 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C10—0      | C11                | 1.404      | (3)         | C26—C31      |             | 1.431 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C10—I      | H10A               | 0.9300     | )           | C27—C28      |             | 1.340 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C11—0      | C12                | 1.344      | (3)         | С27—Н27А     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C11—I      | H11A               | 0.9300     | )           | C28—C29      |             | 1.401 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12—0      | C13                | 1.421      | (2)         | C28—H28A     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12—I      | H12A               | 0.9300     | )           | C29—C30      |             | 1.345 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C13—0      | C14                | 1.391      | (2)         | C29—H29A     |             | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C14—0      | C15                | 1.501      | (2)         | C30—C31      |             | 1.416 (2)   |
| C16—C17 $1.291(2)$ C14—C1—C2 $123.06(16)$ C15—C16—H16A $117.6$ C14—C1—C6 $119.19(16)$ C16—C17—C18 $126.16(14)$ C2—C1—C6 $117.74(16)$ C16—C17—H17A $116.9$ C3—C2—C1 $121.13(19)$ C18—C17—H17A $116.9$ C3—C2—H2A $119.4$ C19—C18—C31 $120.92(15)$ C1—C2—H2A $119.4$ C19—C18—C17 $120.16(15)$ C2—C3—C4 $120.9(2)$ C31—C18—C17 $118.92(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C15—0      | C16                | 1.461      | (2)         | C30—H30A     |             | 0.9300      |
| C14—C1—C2       123.06 (16)       C15—C16—H16A       117.6         C14—C1—C6       119.19 (16)       C16—C17—C18       126.16 (14)         C2—C1—C6       117.74 (16)       C16—C17—H17A       116.9         C3—C2—C1       121.13 (19)       C18—C17—H17A       116.9         C3—C2—H2A       119.4       C19—C18—C31       120.92 (15)         C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C16—0      | C17                | 1.291      | (2)         |              |             |             |
| C14—C1—C6       119.19 (16)       C16—C17—C18       126.16 (14)         C2—C1—C6       117.74 (16)       C16—C17—H17A       116.9         C3—C2—C1       121.13 (19)       C18—C17—H17A       116.9         C3—C2—H2A       119.4       C19—C18—C31       120.92 (15)         C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C14—0      | C1—C2              | 123.06     | 5 (16)      | C15—C16—H16A | A           | 117.6       |
| C2—C1—C6       117.74 (16)       C16—C17—H17A       116.9         C3—C2—C1       121.13 (19)       C18—C17—H17A       116.9         C3—C2—H2A       119.4       C19—C18—C31       120.92 (15)         C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C14—0      | C1—C6              | 119.19     | 0 (16)      | C16—C17—C18  |             | 126.16 (14) |
| C3—C2—C1       121.13 (19)       C18—C17—H17A       116.9         C3—C2—H2A       119.4       C19—C18—C31       120.92 (15)         C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С2—С       | 1—C6               | 117.74     | (16)        | С16—С17—Н17А | A           | 116.9       |
| C3—C2—H2A       119.4       C19—C18—C31       120.92 (15)         C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)         C19—C18—C17       118.92 (15)       119.4       C19—C18—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С3—С       | 2—C1               | 121.13     | 3 (19)      | C18—C17—H17A | A           | 116.9       |
| C1—C2—H2A       119.4       C19—C18—C17       120.16 (15)         C2—C3—C4       120.9 (2)       C31—C18—C17       118.92 (15)         C2       C2       H2A       110 (       C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С3—С       | 2—H2A              | 119.4      |             | C19—C18—C31  |             | 120.92 (15) |
| C2-C3-C4 120.9 (2) C31-C18-C17 118.92 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1—C       | 2—H2A              | 119.4      |             | C19—C18—C17  |             | 120.16 (15) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С2—С       | 3—C4               | 120.9      | (2)         | C31—C18—C17  |             | 118.92 (15) |
| $C_2 - C_3 - H_3 A$ 119.6 $C_1 - C_2 0$ 123.09 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С2—С       | 3—НЗА              | 119.6      |             | C18—C19—C20  |             | 123.09 (16) |
| C4—C3—H3A 119.6 C18—C19—C24 119.04 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С4—С       | 3—НЗА              | 119.6      |             | C18—C19—C24  |             | 119.04 (16) |
| C5—C4—C3 120.04 (19) C20—C19—C24 117.87 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С5—С       | 4—C3               | 120.04     | (19)        | C20—C19—C24  |             | 117.87 (16) |
| C5—C4—H4A 120.0 C21—C20—C19 121.5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С5—С       | 4—H4A              | 120.0      | -           | C21—C20—C19  |             | 121.5 (2)   |
| C3—C4—H4A 120.0 C21—C20—H20A 119.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С3—С       | 4—H4A              | 120.0      |             | C21—C20—H20A | 4           | 119.3       |
| C4—C5—C6 121.60 (19) C19—C20—H20A 119.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C4—C       | 5—C6               | 121.60     | ) (19)      | C19—C20—H20A | 4           | 119.3       |
| C4—C5—H5A 119.2 C20—C21—C22 120.5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С4—С       | 5—H5A              | 119.2      | -           | C20—C21—C22  |             | 120.5 (2)   |

| C6—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.2                    | C20—C21—H21A                                 | 119.7             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|-------------------|
| C7—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.16 (16)              | C22—C21—H21A                                 | 119.7             |
| C7—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.23 (15)              | C23—C22—C21                                  | 120.5 (2)         |
| C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.59 (18)              | C23—C22—H22A                                 | 119.8             |
| C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.90 (15)              | C21—C22—H22A                                 | 119.8             |
| С6—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.0                    | C22—C23—C24                                  | 121.5 (2)         |
| С8—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.0                    | С22—С23—Н23А                                 | 119.2             |
| C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.02 (16)              | C24—C23—H23A                                 | 119.2             |
| C7—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.12 (16)              | C25—C24—C23                                  | 122.26 (19)       |
| C9—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.85 (16)              | C25—C24—C19                                  | 119.60 (17)       |
| C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.02 (18)              | C23—C24—C19                                  | 118.14 (19)       |
| С10—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                    | C24—C25—C26                                  | 122.21 (17)       |
| С8—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.5                    | С24—С25—Н25А                                 | 118.9             |
| C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5 (2)                | С26—С25—Н25А                                 | 118.9             |
| C9-C10-H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.8                    | C25—C26—C27                                  | 122.71 (19)       |
| C11—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8                    | $C_{25}$ — $C_{26}$ — $C_{31}$               | 118.98 (17)       |
| C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.56 (19)              | $C_{27}$ $C_{26}$ $C_{31}$                   | 118.31 (19)       |
| C12—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7                    | $C_{28}$ $C_{27}$ $C_{26}$ $C_{27}$ $C_{26}$ | 1211(2)           |
| C10—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7                    | $C_{28} = C_{27} = H_{27A}$                  | 119.4             |
| $C_{11}$ $C_{12}$ $C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121 64 (18)              | $C_{26} = C_{27} = H_{27A}$                  | 119.1             |
| $C_{11} = C_{12} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.2                    | $C_{20} = C_{27} = H_{27} H_{27}$            | 119.4<br>120.8(2) |
| $C_{12} = C_{12} = H_{12A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2                    | $C_{27} = C_{28} = C_{29}$                   | 120.0 (2)         |
| $C_{13} = C_{12} = M_{12} + M$ | 119.2                    | $C_{20}$ $C_{20}$ $C_{20}$ $H_{20}$ $H_{20}$ | 119.0             |
| C14 - C13 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.23(13)<br>110.21(15) | $C_{29} = C_{20} = C_{20} = C_{20}$          | 119.0             |
| $C_{14} = C_{13} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.31(13)<br>117.42(16) | $C_{20}$ $C_{29}$ $C_{28}$                   | 120.3 (2)         |
| C12 - C13 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.42(10)               | $C_{20} = C_{20} = H_{20A}$                  | 119.9             |
| C13 - C14 - C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.16 (15)              | C28—C29—H29A                                 | 119.9             |
| C13 - C14 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.13 (15)              | $C_{29} = C_{30} = C_{31}$                   | 121.57 (19)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.69 (15)              | C29—C30—H30A                                 | 119.2             |
| 01-015-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.98 (16)              | C31—C30—H30A                                 | 119.2             |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.98 (15)              | C18—C31—C30                                  | 122.86 (15)       |
| C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.03 (14)              | C18—C31—C26                                  | 119.26 (16)       |
| C17—C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.87 (15)              | C30—C31—C26                                  | 117.88 (16)       |
| C17—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.6                    |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                              |                   |
| C14—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -176.92 (17)             | C14—C15—C16—C17                              | 1.4 (3)           |
| C6—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6 (3)                  | C15—C16—C17—C18                              | 179.28 (17)       |
| C1—C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.9 (3)                 | C16—C17—C18—C19                              | 84.0 (2)          |
| C2—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.6 (3)                 | C16—C17—C18—C31                              | -96.6 (2)         |
| C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4 (3)                  | C31—C18—C19—C20                              | -179.19 (14)      |
| C4—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.88 (16)              | C17—C18—C19—C20                              | 0.3 (2)           |
| C4—C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7 (3)                 | C31—C18—C19—C24                              | 0.3 (2)           |
| C14—C1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.8 (2)                 | C17—C18—C19—C24                              | 179.77 (14)       |
| C2-C1-C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -179.38 (14)             | C18—C19—C20—C21                              | 179.48 (16)       |
| C14—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177.76 (14)              | C24—C19—C20—C21                              | 0.0 (3)           |
| C2-C1-C6-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.8 (2)                 | C19—C20—C21—C22                              | 0.2 (3)           |
| C5—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -175.90 (14)             | C20—C21—C22—C23                              | 0.1 (3)           |
| C1—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6 (2)                  | C21—C22—C23—C24                              | -0.5 (3)          |
| C6—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.81 (14)              | C22—C23—C24—C25                              | -178.53 (18)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × /                      |                                              | × /               |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                             | -1.7 (2)<br>-176.32 (16)<br>2.2 (3)<br>-1.1 (3)<br>-1.1 (3)<br>2.1 (3)<br>177.40 (16)<br>-0.9 (2)<br>-1.0 (2)<br>-179.59 (14)<br>177.34 (14)<br>-1.2 (2)<br>-175.44 (14)<br>2.8 (2) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.7 (3) \\ -0.7 (2) \\ 178.85 (15) \\ -179.92 (15) \\ -0.4 (2) \\ 179.77 (16) \\ 0.6 (3) \\ 179.65 (17) \\ -0.1 (3) \\ -178.81 (19) \\ 0.9 (3) \\ -0.3 (4) \\ -0.3 (3) \\ 0.4 (3) \end{array}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} C12 - C13 - C14 - C13 \\ C8 - C13 - C14 - C15 \\ C2 - C1 - C14 - C13 \\ C6 - C1 - C14 - C13 \\ C2 - C1 - C14 - C15 \\ C6 - C1 - C14 - C15 \\ C13 - C14 - C15 - O1 \\ C1 - C14 - C15 - O1 \\ C13 - C14 - C15 - C16 \\ C1 - C14 - C15 - C16 \\ O1 - C15 - C16 - C17 \end{array}$ | $\begin{array}{c} 2.9 (2) \\ -178.87 (14) \\ 176.59 (14) \\ -1.9 (2) \\ -1.8 (2) \\ 179.75 (14) \\ 95.9 (2) \\ -85.7 (2) \\ -84.7 (2) \\ 93.65 (19) \\ -179.19 (19) \end{array}$    | $\begin{array}{c} C19 - C18 - C31 - C30 \\ C17 - C18 - C31 - C30 \\ C19 - C18 - C31 - C26 \\ C17 - C18 - C31 - C26 \\ C29 - C30 - C31 - C18 \\ C29 - C30 - C31 - C18 \\ C25 - C26 - C31 - C18 \\ C27 - C26 - C31 - C18 \\ C25 - C26 - C31 - C18 \\ C27 - C26 - C31 - C30 \\ C27 - C26 - C31 - C30 \\ \end{array}$ | $\begin{array}{c} -178.97 (14) \\ 1.6 (2) \\ 0.2 (2) \\ -179.29 (14) \\ 179.39 (16) \\ 0.2 (3) \\ -0.3 (2) \\ 179.96 (15) \\ 178.88 (15) \\ -0.9 (2) \end{array}$                                                |

### Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the C18/C19/C24-C26/C31 and C26-C31 rings, respectively.

| D—H···A                     | D—H  | H···A | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|------|-------|--------------|------------|
| $C5$ — $H5A$ ···· $Cg4^{i}$ | 0.93 | 2.75  | 3.511 (2)    | 140        |
| C7—H7A···Cg6 <sup>i</sup>   | 0.93 | 2.91  | 3.672 (2)    | 140        |

Symmetry code: (i) x-1, y, z.

| Parameters | Exp       | DFT  |  |
|------------|-----------|------|--|
| C15—O1     | 1.21 (19) | 1.22 |  |
| C1-C14     | 1.40 (2)  | 1.40 |  |
| C1—C2      | 1.42 (3)  | 1.42 |  |
| C2—C3      | 1.35 (3)  | 1.35 |  |
| C3—C4      | 1.41 (3)  | 1.41 |  |
| C4—C5      | 1.33 (3)  | 1.33 |  |
| С5—С6      | 1.42 (2)  | 1.42 |  |
| C6—C7      | 1.380 (2) | 1.38 |  |
| С7—С8      | 1.39 (2)  | 1.39 |  |
| С8—С9      | 1.42 (2)  | 1.42 |  |
| C9—C10     | 1.35 (3)  | 1.35 |  |
|            |           |      |  |

Comparison of experimental and calculated molecular geometry parameters (Å, °)

| C10—C11     | 1.40 (3)    | 1.40   |
|-------------|-------------|--------|
| C11—C12     | 1.34 (3)    | 1.34   |
| C12—C13     | 1.42 (2)    | 1.42   |
| C13—C14     | 1.39 (2)    | 1.39   |
| C14—C15     | 1.50 (2)    | 1.52   |
| C15—C16     | 1.46 (2)    | 1.48   |
| C16—C17     | 1.29 (2)    | 1.35   |
| C17—C18     | 1.47 (2)    | 1.47   |
| C18—C19     | 1.40 (2)    | 1.40   |
| C19—C20     | 1.42 (3)    | 1.42   |
| C20—C21     | 1.34 (3)    | 1.34   |
| C21—C22     | 1.41 (3)    | 1.41   |
| C22—C23     | 1.34 (3)    | 1.34   |
| C23—C24     | 1.42 (3)    | 1.42   |
| C24—C25     | 1.37 (3)    | 1.37   |
| C25—C26     | 1.39 (3)    | 1.38   |
| C26—C27     | 1.42 (3)    | 1.42   |
| C27—C28     | 1.34 (3)    | 1.34   |
| C28—C29     | 1.40 (3)    | 1.40   |
| C29—C30     | 1.35 (3)    | 1.35   |
| C30—C31     | 1.42 (2)    | 1.42   |
| C31—C18     | 1.40 (2)    | 1.40   |
| C14—C15—C16 | 118.03 (14) | 119.35 |
| O1—C15—C14  | 120.98 (15) | 120.25 |
| O1—C15—C16  | 120.98 (16) | 120.40 |
| C15—C16—C17 | 124.87 (15) | 123.93 |
| C16—C17—C18 | 126.16 (14) | 127.15 |
|             |             |        |