

Received 30 January 2018 Accepted 27 February 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; nitro group; 1,3-thiazin-4-one; spontaneous resolution.

CCDC references: 1826377; 1826376

Supporting information: this article has supporting information at journals.iucr.org/e

Spontaneous resolution and crystal structure of (2S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one; crystal structure of *rac*-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one

Hemant P. Yennawar,^a Heather G. Bradley,^b Kristen C. Perhonitch,^b Haley E. Reppert^b and Lee J. Silverberg^b*

^aThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, Pa 16802, USA, and ^bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

The crystal structures of isomeric rac-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one ($C_{16}H_{14}N_2O_3S$) (1) and (2S)-2-(3-nitrophenyl)-3phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (C₁₆H₁₄N₂O₃S) (2) are reported here. While 1 crystallizes in a centrosymmetric space group, the crystal of 2 chosen for data collection has molecules only with (2S) chirality. This is the result of spontaneous resolution during crystallization, as the synthesis produces a racemic mixture. A crystal with (2R) molecules was also found in the same crystallization vial (structure factors available). The six-membered thiazine ring in both 1 and 2 displays an envelope conformation with the S atom forming the flap. The aryl rings in both structures adopt an approximate V shape with angles between their planes of 46.97 (14)° in **1** and 58.37 (10)° in **2**. In both structures, the molecules form layers in the *ab* plane. Within such a layer in 1, one of the O atoms of the nitrophenyl group accepts a $C-H \cdots O$ hydrogen bond from the CH group at position 5 of the thiazine ring of a molecule of opposite chirality, forming chains along the a-axis direction. Each of the thiazine rings also participate in $C-H \cdots O$ bonds with the same carbon atom as above, resulting in chains along the *b*-axis direction, albeit of monochiral type. Adjacent layers are consolidated along the *c*-axis direction by pairs of parallel hydrogen bonds (C- $H \cdots O$ type) between the nitrophenyl groups of enantiomers. In 2, the two C- $H \cdot \cdot O$ hydrogen bonds contribute to chain formation along the *b*-axis direction. Weak edge-to-face interactions between the aryl groups of neighbouring molecules in 1, and $C-H \cdots \pi$ interactions between a thiazine ring CH group and a phenyl group of a neighboring molecule in 2 are also observed.

1. Chemical context

Compounds with an *N*-aryl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one scaffold have been shown to have a wide variety of bioactivities, including antifungal (Qu *et al.*, 2013; Dandia *et al.*, 2004; Krumkains, 1984), antitubercular (Dandia *et al.*, 2004), antitumor (Chen *et al.*, 2012), antidiabetic (Arya *et al.*, 2012), regulation of plant growth (Krumkains, 1984), cleavage of DNA (possible antitumor) (Dandia *et al.*, 2013), inhibition of cannabinoid receptor 1 (CB1) (Choi *et al.*, 2008), and inhibition of angiogenesis (possible treatment of eye disease, neoplasm, arteriosclerosis, arthritis, psoriasis, diabetes, and mellitus) (Chen *et al.*, 2012). The spontaneous resolution of a racemic solution by direct crystallization to form a conglomerate, a mechanical mixture of separate homochiral crystals, is an uncommon but well-known phenomenon, recognized first by Pasteur in 1848 (Pasteur, 1848; Jacques *et al.*, 1981; Eliel & Wilen, 1994; Pérez-Garcia & Amabilino, 2007). It has even been used in the production of chiral active pharmaceutical ingredients (Bredikhin & Bredikhina, 2017). However, the reasons why this occurs with a minority of molecules are not well understood (Pérez-Garcia & Amabilino, 2007) and have not yet yielded to attempts to predict occurrence (D'Oria, Karanertzanis & Price, 2010; Pérez-Garcia & Amabilino, 2007).

In this work, we report the spontaneous resolution and crystal structure of (2S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one, **2**. We later collected another crystal from the vial and confirmed that it had the (2R) configuration (identical packing, structure factors available upon request). We also report the racemic (centrosymmetric) structure of the isomeric 2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one, **1**. We have previously reported the crystal structure of *rac*-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one (Yennawar & Silverberg, 2014).

2. Structural commentary

Both structures **1** and **2** (Figs. 1 and 2) exhibit an envelope pucker conformation of the thiazine ring with the sulfur atom forming the flap. The Cremer & Pople (1975) puckering parameters in **1** are: Q = 0.638 (3) Å, $\theta = 47.0$ (3)°, $\varphi =$ 339.8 (4)° and in **2**: Q = 0.6654 (16) Å, $\theta = 44.20$ (17)°, $\varphi =$ 353.8 (3)°. The aryl rings in both structures form an approximate V shape with inter-centroid distances of 3.964 (2) and 4.160 (2) Å, and interplanar angles of 46.97 (14) and 58.37 (10)°, in **1** and **2**, respectively.

3. Supramolecular features

In both structures, $C-H\cdots O$ interactions are observed (Tables 1 and 2, Figs. 3 and 4), resulting in layering of molecules in planes parallel to (001). In each layer of structure **1**, one of the oxygen atoms of the nitrophenyl group accepts a $C-H\cdots O$ hydrogen bond from the CH group at position 5 of the thiazine ring of a molecule of opposite chirality. This results in infinite chains of mixed chirality along the *a*-axis direction. The second oxygen atom of the nitrophenyl group also accepts a hydrogen bond from the thiazine 5-carbon atom, resulting this time in monochiral chains along the *b*-axis direction. Further, the stacking of layers along the *c*-axis direction is consolidated by pairs of parallel hydrogen bonds between the nitrophenyl groups of enantiomers. In **2**, a monochiral structure, the $C-H\cdots O$ hydrogen bonds between the chiral carbon atom and the 4-oxygen atom on the neigh-

Figure 1

The molecular structure of **1**, with displacement ellipsoids drawn at the 50% probability level.

Figure 2 The molecular structure of 2, with displacement ellipsoids drawn at the 50% probability level.

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for 1 .	

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3A\cdots O2^{i}$ $C3-H3B\cdots O3^{ii}$ $C7-H7\cdots O2^{iii}$	0.97	2.62	3.405 (4)	139
	0.97	2.57	3.253 (5)	128
	0.93	2.50	3.417 (4)	170

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1.

boring thiazine ring results in a chain along the *b*-axis direction. The second hydrogen bond loops back to the second molecule in the reverse direction of the same chain. While weak edge-to-face interactions $[Cg\cdots Cg$ distance of 5.340 (3) Å and an interplanar angle of 84.99 (2)°] between the aryl groups of neighboring molecules is observed in **1**, in **2**, the 6-carbon atom of the thiazine ring interacts with the phenyl group in a C-H··· π type interaction $[C4 \cdots Cg = 3.581$ (2) Å].

4. Database survey

No substantially similar crystal structures were found other than certain ones we have published, including 2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one (Yennawar & Silverberg, 2014, 2015), 2-(3-nitrophenyl)-3-phenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one (Yennawar *et al.*, 2013), and 2-(4nitrophenyl)-3-phenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4one (Yennawar *et al.*, 2015).

5. Synthesis and crystallization

General: A two-necked 25 ml round-bottom flask was ovendried, cooled under N_2 , and charged with a stir bar and the imine (6 mmol). 3-Mercaptopropionic acid (0.52 ml, 6 mmol) and then 2-methyltetrahydrofuran (2.3 ml) were added and

,		,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1 \cdots O1^{i}$ $C15 - H15 \cdots O3^{ii}$	0.98 0.93	2.19 2.58	3.158 (2) 3.501 (3)	170 174

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y - 1, z.

the solution was stirred. Pyridine (1.95 ml, 24 mmol) and finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) in 2-methyltetrahydrofuran (50 weight percent; 7.3 ml, 12 mmol) were added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with dichloromethane and distilled water. The layers were separated and the aqueous was then extracted twice with dichloromethane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic was dried over sodium sulfate and concentrated under vacuum to give crude product.

2-(4-Nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (1): the crude product was recrystallized from 2-propanol to give a white powder. Yield: 1.397 g (74%). m.p. 410–412 K. Colorless blocks for data collection were grown by slow evaporation from 2-propanol solution.

2-(3-Nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one (**2**): The crude product was recrystallized from 2-propanol to give a yellow powder. Yield: 1.121 g (59%). m.p. 415 K. Colorless blocks were grown by slow evaporation from ethanol solution; the (2*S*) and (2*R*) crystals had identical morphology. The stereochemical configuration of individual crystals was identified by solving the crystal structure. After several were found to be (2*S*), a crystal was found that was (2*R*).

Figure 3

Packing diagram for 1, showing the layering of molecules in the ab plane. Red dotted lines show hydrogen bonds between enantiomers and blue dotted lines show interactions between molecules of same chirality.

Packing diagram for 2, showing the layering of molecules in the ab plane. Blue dotted lines show hydrogen bonds between molecules forming a chain in the *b*-axis direction and red dotted lines show a loop-back interaction within each chain.

Table 3Experimental details.

	1	2
Crystal data		
Chemical formula	$C_{16}H_{14}N_2O_3S$	$C_{16}H_{14}N_2O_3S$
M_r	314.35	314.35
Crystal system, space group	Orthorhombic, Pbca	Orthorhombic, $P2_12_12_1$
Temperature (K)	298	298
a, b, c (Å)	15.801 (6), 10.280 (4), 18.460 (7)	8.6877 (17), 9.6547 (19), 18.137 (4)
$V(A^3)$	2998.4 (19)	1521.3 (5)
Z	8	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.23	0.23
Crystal size (mm)	$0.2 \times 0.16 \times 0.09$	$0.21\times0.19\times0.18$
Data collection		
Diffractometer	Bruker SMART CCD area detector	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2001)	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, T_{\max}	0.154, 0.9	0.341, 0.9
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26571, 3769, 2297	14176, 3775, 3144
R _{int}	0.057	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.670	0.667
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.078, 0.216, 1.19	0.045, 0.121, 1.01
No. of reflections	3769	3775
No. of parameters	199	199
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.48	0.32, -0.16
Absolute structure	_	Flack (1983), 4055 Friedel pairs
Absolute structure parameter	-	0.09 (7)

Computer programs: SMART and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

6. Refinement

Crystal data, data collection and structure refinement details for both structures **1** and **2** are summarized in Table 3. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C–H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 (methyl) and with $U_{iso}(H) = 1.2U_{eq}(aromatic \text{ or methylene C})$ or $1.5U_{eq}(methyl \text{ C})$. In structure **2**, the absolute configuration for the chiral centres in the molecule was determined as (2*S*) with a Flack absolute structure parameter of 0.09 (7) for 4055 Friedel pairs.

Acknowledgements

The authors thank Euticals Inc. for the gift of T3P.

References

- Arya, K., Rawat, D. S., Dandia, A. & Sasai, H. M. (2012). J. Fluor. Chem. 137, 117–122.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bredikhin, A. A. & Bredikhina, Z. A. (2017). *Chem. Eng. Technol.* **40**, 1211–1220.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, Y., Wu, J. Yu. L., Zhai, D., Yi, Z., Luo, J. N. & Liu, M. (2012). Patent CN102653526A.
- Choi, H., Wang, Z., Zhu, X., He, X., Yang, K. & Liu, H. (2008). Patent WO2008112674, A1.
- Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon, 179, 551–564.
- Dandia, A., Singh, R. & Saini, D. (2013). J. Chem. Sci. 125, 1045-1053.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- D'Oria, E., Karamertzanis, P. G. & Price, S. L. (2010). Cryst. Growth Des. 10, 1749–1756.
- Eliel, E. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jacques, J., Collet, A. & Wilen, S. H. (1981). *Enantiomers, Racemates, and Resolutions*. New York: John Wiley & Sons.
- Krumkains, E. V. (1984). EP, 10420, B1.
- Pasteur, L. (1848). Ann. Chim. Phys. 22, 442-459.
- Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941– 967.
- Qu, H., Zhang, R., Hu, Y., Ke, Y., Gao, Z. & Xu, H. (2013). J. Biosci. 68, 77–81.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417.
- Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. Corrigendum: (2015), E71, e5.
- Yennawar, H. P. & Silverberg, L. J. (2015), E71, e5.
- Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, 01679.

supporting information

Acta Cryst. (2018). E74, 454-457 [https://doi.org/10.1107/S2056989018003444]

Spontaneous resolution and crystal structure of (2*S*)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one; crystal structure of *rac*-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one

Hemant P. Yennawar, Heather G. Bradley, Kristen C. Perhonitch, Haley E. Reppert and Lee J. Silverberg

Computing details

For both structures, data collection: *SMART* (Bruker, 2001). Cell refinement: *SAINT* (Bruker, 2016) for (1); *SAINT* (Bruker, 2001) for (2). Data reduction: *SAINT* (Bruker, 2016) for (1); *SAINT* (Bruker, 2001) for (2). Program(s) used to solve structure: *olex2.solve* (Bourhis *et al.*, 2015) for (1); *SHELXS97* (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(2S)-2-(3-Nitrophenyl)-3-phenyl-3,4,5,6-tetrahydro-2H-1,3-thiazin-4-one (1)

Crystal data

C₁₆H₁₄N₂O₃S $M_r = 314.35$ Orthorhombic, *Pbca* a = 15.801 (6) Å b = 10.280 (4) Å c = 18.460 (7) Å V = 2998.4 (19) Å³ Z = 8F(000) = 1312

Data collection

Bruker SMART CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.154, T_{\max} = 0.9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.216$ S = 1.19 $D_x = 1.393 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3516 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.2 \times 0.16 \times 0.09 \text{ mm}$

26571 measured reflections 3769 independent reflections 2297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 28.5^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -20 \rightarrow 21$ $k = -13 \rightarrow 13$ $l = -24 \rightarrow 23$

3769 reflections199 parameters0 restraintsPrimary atom site location: iterative

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_o^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \sigma = 0.24 \text{ a } \text{Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
C1	0.38874 (16)	0.8032 (2)	0.80475 (15)	0.0493 (7)	
H1	0.3458	0.8713	0.7995	0.059*	
C2	0.32207 (18)	0.6103 (3)	0.86948 (17)	0.0613 (8)	
C3	0.3466 (2)	0.6614 (3)	0.94234 (17)	0.0744 (10)	
H3A	0.3941	0.6104	0.9597	0.089*	
H3B	0.2998	0.6462	0.9752	0.089*	
C4	0.3704 (2)	0.8027 (4)	0.94716 (18)	0.0746 (10)	
H4A	0.3901	0.8224	0.9957	0.090*	
H4B	0.3212	0.8562	0.9373	0.090*	
C5	0.44572 (15)	0.8058 (2)	0.73915 (15)	0.0446 (6)	
C6	0.42995 (16)	0.8917 (2)	0.68348 (15)	0.0482 (7)	
H6	0.3860	0.9513	0.6880	0.058*	
C7	0.47813 (18)	0.8909 (3)	0.62117 (15)	0.0551 (7)	
H7	0.4674	0.9495	0.5839	0.066*	
C8	0.54241 (16)	0.8013 (3)	0.61555 (15)	0.0525 (7)	
C9	0.56167 (17)	0.7155 (3)	0.67046 (18)	0.0584 (8)	
H9	0.6058	0.6563	0.6658	0.070*	
C10	0.51327 (17)	0.7203 (3)	0.73259 (16)	0.0546 (7)	
H10	0.5262	0.6650	0.7709	0.066*	
C11	0.31097 (16)	0.6326 (2)	0.73959 (15)	0.0488 (7)	
C12	0.24278 (18)	0.6965 (3)	0.71096 (17)	0.0572 (7)	
H12	0.2159	0.7612	0.7375	0.069*	
C13	0.2139 (2)	0.6647 (3)	0.64262 (19)	0.0679 (9)	
H13	0.1672	0.7078	0.6235	0.082*	
C14	0.2530 (2)	0.5712 (3)	0.6032 (2)	0.0747 (10)	
H14	0.2336	0.5511	0.5569	0.090*	
C15	0.3214 (2)	0.5062 (3)	0.6317 (2)	0.0770 (10)	
H15	0.3484	0.4423	0.6045	0.092*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C16	0.3502 (2)	0.5354 (3)	0.70058 (19)	0.0660 (8)
H16	0.3955	0.4899	0.7204	0.079*
N1	0.34542 (14)	0.6745 (2)	0.80829 (12)	0.0514 (6)
N2	0.59028 (18)	0.7939 (3)	0.54789 (16)	0.0700 (7)
01	0.28131 (16)	0.5087 (2)	0.86495 (14)	0.0905 (8)
O2	0.57444 (17)	0.8711 (3)	0.49997 (13)	0.0870 (8)
03	0.6441 (2)	0.7111 (3)	0.54203 (18)	0.1312 (13)
S1	0.45206 (5)	0.83866 (9)	0.88301 (4)	0.0706 (3)

Atomic displacement parameters (\AA^2))
--	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0452 (15)	0.0467 (14)	0.0561 (17)	0.0018 (11)	0.0019 (12)	0.0096 (11)
C2	0.0498 (16)	0.0657 (18)	0.068 (2)	0.0000 (14)	0.0077 (14)	0.0223 (16)
C3	0.065 (2)	0.099 (3)	0.060(2)	0.0073 (18)	0.0096 (16)	0.0301 (18)
C4	0.072 (2)	0.100 (3)	0.0521 (19)	0.0153 (19)	0.0029 (16)	0.0062 (17)
C5	0.0395 (13)	0.0399 (12)	0.0543 (16)	-0.0048 (10)	-0.0009 (11)	0.0045 (11)
C6	0.0439 (14)	0.0458 (13)	0.0550 (17)	0.0024 (11)	-0.0026 (12)	0.0079 (12)
C7	0.0550 (16)	0.0586 (16)	0.0517 (17)	-0.0010 (14)	-0.0036 (13)	0.0106 (13)
C8	0.0445 (15)	0.0585 (16)	0.0545 (17)	-0.0061 (12)	0.0055 (13)	0.0029 (13)
C9	0.0436 (15)	0.0584 (16)	0.073 (2)	0.0060 (12)	0.0027 (14)	0.0090 (15)
C10	0.0481 (15)	0.0545 (15)	0.0613 (18)	0.0053 (13)	0.0041 (13)	0.0188 (13)
C11	0.0438 (14)	0.0466 (14)	0.0559 (17)	-0.0038 (11)	0.0047 (13)	0.0097 (12)
C12	0.0496 (16)	0.0574 (16)	0.065 (2)	0.0008 (13)	-0.0008 (14)	-0.0009 (14)
C13	0.0625 (19)	0.0674 (19)	0.074 (2)	-0.0120 (16)	-0.0130 (17)	0.0057 (17)
C14	0.083 (2)	0.073 (2)	0.069 (2)	-0.0263 (19)	-0.0012 (19)	-0.0034 (18)
C15	0.086 (3)	0.063 (2)	0.083 (3)	-0.0113 (18)	0.012 (2)	-0.0183 (18)
C16	0.0600 (18)	0.0513 (16)	0.087 (2)	0.0032 (14)	0.0041 (17)	0.0009 (15)
N1	0.0475 (13)	0.0509 (12)	0.0558 (15)	-0.0010 (10)	0.0032 (11)	0.0165 (10)
N2	0.0613 (16)	0.0829 (19)	0.0657 (19)	-0.0036 (15)	0.0121 (14)	0.0036 (15)
01	0.0943 (18)	0.0839 (17)	0.0934 (19)	-0.0271 (14)	0.0132 (14)	0.0336 (14)
O2	0.0969 (18)	0.1087 (19)	0.0554 (15)	-0.0039 (15)	0.0103 (13)	0.0133 (14)
O3	0.124 (3)	0.155 (3)	0.115 (3)	0.062 (2)	0.061 (2)	0.030 (2)
S1	0.0682 (6)	0.0868 (6)	0.0569 (6)	-0.0123 (4)	-0.0040 (4)	0.0004 (4)

Geometric parameters (Å, °)

C1—H1	0.9800	C8—C9	1.378 (4)
C1—C5	1.509 (4)	C8—N2	1.462 (4)
C1—N1	1.491 (3)	С9—Н9	0.9300
C1—S1	1.795 (3)	C9—C10	1.379 (4)
С2—С3	1.495 (5)	C10—H10	0.9300
C2—N1	1.359 (3)	C11—C12	1.368 (4)
C2—O1	1.230 (4)	C11—C16	1.379 (4)
С3—НЗА	0.9700	C11—N1	1.446 (4)
С3—Н3В	0.9700	C12—H12	0.9300
C3—C4	1.503 (5)	C12—C13	1.381 (4)
C4—H4A	0.9700	C13—H13	0.9300

supporting information

C4—H4B	0.9700	C13—C14	1.355 (5)
C4—S1	1.790 (3)	C14—H14	0.9300
C5—C6	1.378 (4)	C14—C15	1.375 (5)
C5—C10	1.388 (4)	C15—H15	0.9300
С6—Н6	0.9300	C15—C16	1.384 (4)
C6C7	1 379 (4)	C16—H16	0.9300
C7 H7	0.0300	$N_2 O_2$	1.215(3)
$C7 C^{\circ}$	0.9500	N2 O2	1.215(3)
C/C8	1.575 (4)	N203	1.208 (4)
C5 C1 U1	100 7		110.7(2)
C5—CI—HI	108.7	C9—C8—N2	118.7 (3)
C5—C1—S1	108.04 (18)	С8—С9—Н9	121.1
N1—C1—H1	108.7	C8—C9—C10	117.8 (3)
N1—C1—C5	109.0 (2)	С10—С9—Н9	121.1
N1-C1-S1	113.65 (17)	C5—C10—H10	119.3
S1—C1—H1	108.7	C9—C10—C5	121.4 (3)
N1—C2—C3	120.4 (3)	C9—C10—H10	119.3
O1—C2—C3	119.7 (3)	C12—C11—C16	120.0 (3)
01—C2—N1	1199(3)	C12—C11—N1	119 5 (2)
$C_2 = C_3 = H_3 A$	108.0	C16-C11-N1	120.3(3)
$C_2 C_3 H_{2}^{2}$	108.0	C_{11} C_{12} H_{12}	120.5 (5)
$C_2 = C_3 = C_4$	108.0	$C_{11} = C_{12} = C_{12}$	120.0
	117.2 (2)	C12 - C12 - C13	120.0 (3)
H3A - C3 - H3B	107.2	C13—C12—H12	120.0
С4—С3—Н3А	108.0	C12—C13—H13	119.7
C4—C3—H3B	108.0	C14—C13—C12	120.5 (3)
C3—C4—H4A	109.7	C14—C13—H13	119.7
C3—C4—H4B	109.7	C13—C14—H14	120.1
C3—C4—S1	109.9 (2)	C13—C14—C15	119.8 (3)
H4A—C4—H4B	108.2	C15—C14—H14	120.1
S1—C4—H4A	109.7	C14—C15—H15	119.8
S1—C4—H4B	109.7	C14—C15—C16	120.3 (3)
C6-C5-C1	1201(2)	C16—C15—H15	119.8
C6-C5-C10	1187(2)	$C_{11} - C_{16} - C_{15}$	119.3 (3)
C_{10} C_{5} C_{10}	110.7(2) 121.2(2)	C11_C16_H16	120.3
C_{5} C_{6} H_{6}	121.2(2)	$C_{11} = C_{10} = H_{10}$	120.3
$C_{5} = C_{6} = C_{7}$	119.4	$C_1 = C_1 = C_1$	120.3 126.2(2)
C_{3}	121.2 (2)	$C_2 = N_1 = C_1$	120.3 (3)
С/—Сб—Нб	119.4	C_2 —NI—CII	118.8 (2)
С6—С/—Н/	120.8	CII—NI—CI	113.49 (19)
C8—C7—C6	118.3 (3)	O2—N2—C8	118.8 (3)
С8—С7—Н7	120.8	O3—N2—C8	118.5 (3)
C7—C8—C9	122.4 (3)	O3—N2—O2	122.7 (3)
C7—C8—N2	118.8 (3)	C4—S1—C1	95.08 (15)
C1—C5—C6—C7	-176.2 (2)	C12—C11—N1—C1	-69.7 (3)
C1—C5—C10—C9	175.0 (3)	C12—C11—N1—C2	97.7 (3)
C2—C3—C4—S1	-54.0 (4)	C12—C13—C14—C15	0.8 (5)
C3—C2—N1—C1	-5.9 (4)	C13—C14—C15—C16	0.3 (5)
C3—C2—N1—C11	-171.6 (3)	C14—C15—C16—C11	-1.7(5)
$C_{3}-C_{4}-S_{1}-C_{1}$	63 8 (2)	C_{16} C_{11} C_{12} C_{13}	-0.9(4)
		010 011 012 013	<u> </u>

C5-C1-N1-C2	147.8 (3)	C16—C11—N1—C1	105.6 (3)	
C5-C1-N1-C11	-45.9 (3)	C16—C11—N1—C2	-87.0 (3)	
C5-C1-S1-C4	-171.67 (19)	N1—C1—C5—C6	115.7 (3)	
C5—C6—C7—C8	0.4 (4)	N1-C1-C5-C10	-62.5 (3)	
C6—C5—C10—C9	-3.3 (4)	N1-C1-S1-C4	-50.6 (2)	
C6—C7—C8—C9	-1.9 (4)	N1-C2-C3-C4	20.1 (4)	
C6—C7—C8—N2	176.0 (3)	N1-C11-C12-C13	174.4 (2)	
C7—C8—C9—C10	0.7 (4)	N1-C11-C16-C15	-173.3 (3)	
C7—C8—N2—O2	3.4 (4)	N2-C8-C9-C10	-177.1 (3)	
C7—C8—N2—O3	-176.7 (3)	O1—C2—C3—C4	-160.7 (3)	
C8—C9—C10—C5	1.9 (4)	O1-C2-N1-C1	174.9 (3)	
C9—C8—N2—O2	-178.6 (3)	O1-C2-N1-C11	9.3 (4)	
C9—C8—N2—O3	1.3 (4)	S1—C1—C5—C6	-120.4 (2)	
C10—C5—C6—C7	2.1 (4)	S1—C1—C5—C10	61.4 (3)	
C11—C12—C13—C14	-0.5 (5)	S1—C1—N1—C2	27.3 (3)	
C12—C11—C16—C15	1.9 (4)	S1—C1—N1—C11	-166.44 (18)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C3—H3 <i>A</i> ···O2 ⁱ	0.97	2.62	3.405 (4)	139	
C3—H3 <i>B</i> ···O3 ⁱⁱ	0.97	2.57	3.253 (5)	128	
C7—H7···O2 ⁱⁱⁱ	0.93	2.50	3.417 (4)	170	

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*-1/2, *y*, -*z*+3/2; (iii) -*x*+1, -*y*+2, -*z*+1.

rac-2-(4-Nitrophenyl)-3-phenyl-3,4,5,6-tetrahydro-2H-1,3-thiazin-4-one (2)

Crystal data

$C_{16}H_{14}N_{2}O_{3}S$ $M_{r} = 314.35$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 8.6877 (17) \text{ Å}$ $b = 9.6547 (19) \text{ Å}$ $c = 18.137 (4) \text{ Å}$ $V = 1521.3 (5) \text{ Å}^{3}$ $Z = 4$ $E(000) = 656$	$D_x = 1.373 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1695 reflections $\theta = 2.6-27.4^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.21 \times 0.19 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD area detector diffractometer	14176 measured reflections 3775 independent reflections 2144 \approx Gastiene (i) $1 \geq 2$ (b)
Radiation source: fine-focus sealed tube	3144 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
Detector resolution: 8.34 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
phi and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$

 $k = -12 \rightarrow 12$ $l = -24 \rightarrow 22$

(SADABS; Bruker, 2001)

 $T_{\rm min} = 0.341, T_{\rm max} = 0.9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0783P)^2]$
S = 1.01	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3775 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
199 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 4055 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.09 (7)
map	

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.26199 (19)	0.53305 (17)	0.75480 (10)	0.0468 (4)	
H1	0.1885	0.6066	0.7426	0.056*	
C2	0.0844 (3)	0.3448 (2)	0.79727 (12)	0.0640 (5)	
C3	0.0753 (3)	0.4045 (3)	0.87435 (13)	0.0688 (6)	
H3A	-0.0321	0.4053	0.8889	0.083*	
H3B	0.1283	0.3413	0.9073	0.083*	
C4	0.1385 (2)	0.5458 (2)	0.88739 (13)	0.0685 (6)	
H4A	0.1435	0.5638	0.9400	0.082*	
H4B	0.0710	0.6143	0.8653	0.082*	
C5	0.39844 (19)	0.54561 (17)	0.70401 (10)	0.0462 (4)	
C6	0.3973 (2)	0.64968 (18)	0.65124 (11)	0.0499 (4)	
H6	0.3133	0.7089	0.6470	0.060*	
C7	0.5226 (2)	0.6638 (2)	0.60521 (11)	0.0535 (5)	
C8	0.6496 (2)	0.5792 (2)	0.60899 (13)	0.0614 (5)	
H8	0.7326	0.5913	0.5773	0.074*	
C9	0.6499 (2)	0.4757 (2)	0.66142 (14)	0.0648 (6)	
H9	0.7343	0.4168	0.6653	0.078*	
C10	0.5258 (2)	0.45870 (19)	0.70826 (12)	0.0546 (5)	
H10	0.5274	0.3881	0.7431	0.066*	
C11	0.17339 (19)	0.34283 (18)	0.67247 (10)	0.0464 (4)	
C12	0.0949 (2)	0.4149 (2)	0.61946 (11)	0.0541 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	0.0456	0.4973	0.6315	0.065*
C13	0.0889 (3)	0.3649 (3)	0.54785 (13)	0.0697 (6)
H13	0.0360	0.4136	0.5116	0.084*
C14	0.1617 (3)	0.2433 (3)	0.53116 (13)	0.0784 (8)
H14	0.1574	0.2088	0.4833	0.094*
C15	0.2404 (3)	0.1724 (3)	0.58378 (16)	0.0748 (7)
H15	0.2902	0.0903	0.5715	0.090*
C16	0.2472 (2)	0.2211 (2)	0.65527 (13)	0.0601 (5)
H16	0.3009	0.1723	0.6912	0.072*
N1	0.18311 (17)	0.39713 (15)	0.74654 (8)	0.0473 (3)
N2	0.5185 (3)	0.7744 (2)	0.54921 (11)	0.0695 (5)
01	0.0060 (2)	0.2427 (2)	0.78250 (10)	0.1044 (8)
02	0.6279 (3)	0.7859 (2)	0.50693 (12)	0.1032 (7)
03	0.4078 (2)	0.8498 (2)	0.54701 (13)	0.0971 (7)
S1	0.32852 (6)	0.56010 (6)	0.84780 (3)	0.06274 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0395 (8)	0.0424 (9)	0.0586 (10)	0.0006 (7)	-0.0046 (8)	0.0003 (8)
C2	0.0585 (11)	0.0712 (13)	0.0624 (12)	-0.0210 (11)	0.0031 (10)	-0.0021 (10)
C3	0.0573 (11)	0.0877 (16)	0.0613 (12)	-0.0131 (12)	0.0106 (9)	-0.0027 (11)
C4	0.0561 (11)	0.0838 (15)	0.0655 (12)	-0.0010 (11)	0.0092 (10)	-0.0206 (12)
C5	0.0399 (8)	0.0400 (8)	0.0587 (10)	-0.0030 (7)	-0.0068 (7)	-0.0026 (8)
C6	0.0473 (8)	0.0417 (9)	0.0606 (11)	-0.0030 (7)	-0.0123 (9)	-0.0026 (8)
C7	0.0648 (11)	0.0428 (9)	0.0529 (11)	-0.0117 (9)	-0.0069 (9)	-0.0005 (8)
C8	0.0599 (11)	0.0527 (11)	0.0717 (13)	-0.0094 (10)	0.0122 (10)	-0.0040 (10)
C9	0.0482 (9)	0.0530 (11)	0.0932 (16)	0.0051 (8)	0.0087 (11)	0.0020 (11)
C10	0.0489 (9)	0.0449 (10)	0.0701 (12)	0.0015 (8)	-0.0016 (9)	0.0080 (9)
C11	0.0377 (7)	0.0471 (9)	0.0544 (9)	-0.0070 (7)	-0.0012 (8)	-0.0017 (7)
C12	0.0478 (9)	0.0525 (10)	0.0621 (11)	-0.0027 (8)	-0.0081 (9)	0.0016 (9)
C13	0.0786 (14)	0.0757 (15)	0.0547 (12)	-0.0185 (13)	-0.0091 (12)	0.0099 (11)
C14	0.0955 (18)	0.0839 (17)	0.0556 (12)	-0.0344 (16)	0.0165 (13)	-0.0110 (12)
C15	0.0721 (14)	0.0633 (13)	0.0891 (17)	-0.0018 (12)	0.0275 (13)	-0.0183 (13)
C16	0.0514 (10)	0.0550 (11)	0.0741 (13)	0.0058 (9)	-0.0007 (10)	0.0007 (11)
N1	0.0431 (7)	0.0500 (8)	0.0489 (8)	-0.0088 (6)	-0.0029 (6)	-0.0002 (7)
N2	0.0846 (14)	0.0604 (11)	0.0637 (11)	-0.0208 (11)	-0.0131 (10)	0.0075 (9)
01	0.1126 (16)	0.1198 (15)	0.0807 (11)	-0.0768 (14)	0.0227 (11)	-0.0220 (11)
O2	0.133 (2)	0.0990 (14)	0.0779 (11)	-0.0127 (13)	0.0272 (13)	0.0221 (11)
O3	0.0867 (12)	0.0827 (13)	0.1218 (16)	-0.0107 (11)	-0.0210 (12)	0.0455 (12)
S 1	0.0486 (2)	0.0780 (4)	0.0616 (3)	-0.0121 (2)	-0.0044 (2)	-0.0156 (3)

Geometric parameters (Å, °)

)
(3)
)
(3)

C2—C3	1.514 (3)	C10—H10	0.9300
C2—N1	1.356 (3)	C11—C12	1.369 (3)
C2—O1	1.228 (3)	C11—C16	1.375 (3)
С3—НЗА	0.9700	C11—N1	1.444 (2)
С3—Н3В	0.9700	C12—H12	0.9300
C3—C4	1.490 (3)	C12—C13	1.386 (3)
C4—H4A	0.9700	С13—Н13	0.9300
C4—H4B	0 9700	C13—C14	1 368 (4)
C4-S1	1 806 (2)	C14—H14	0.9300
C5-C6	1 388 (3)	C14— $C15$	1 359 (4)
C_{5} C_{10}	1.300(3)	C15 H15	0.0300
C6 H6	0.0300	C15_C16	1.380(4)
C6_C7	1,270 (2)	C16 H16	1.380(4)
$C_0 = C_1$	1.379(3) 1.275(2)	N2 02	0.9300
$C_{1} = C_{0}$	1.373(3)	N2-02	1.220 (3)
C7—N2	1.4/4 (3)	N203	1.207 (3)
C5_C1_H1	108.4	C9-C8-H8	121.1
$C_5 = C_1 = C_1$	107.06 (11)		121.1
N1 C1 H1	107.90 (11)	$C_{8} = C_{9} = C_{10}$	119.7
	100.4	$C_{0} = C_{0} = C_{10}$	120.31 (19)
NI = CI = CS	111.65 (14)	$C_{10} - C_{9} - H_{9}$	119.7
	111.70 (12)	C3-C10-H10	119.5
SI-CI-HI	108.4	C9-C10-C5	121.00 (18)
NI-C2-C3	121.17 (18)	С9—С10—Н10	119.5
O1—C2—C3	118.6 (2)	C12—C11—C16	120.49 (19)
01—C2—N1	120.1 (2)	C12—C11—N1	119.87 (16)
С2—С3—НЗА	107.7	C16—C11—N1	119.61 (18)
С2—С3—Н3В	107.7	C11—C12—H12	120.0
НЗА—СЗ—НЗВ	107.1	C11—C12—C13	120.0 (2)
C4—C3—C2	118.4 (2)	C13—C12—H12	120.0
С4—С3—НЗА	107.7	C12—C13—H13	120.4
С4—С3—Н3В	107.7	C14—C13—C12	119.2 (2)
C3—C4—H4A	109.6	C14—C13—H13	120.4
C3—C4—H4B	109.6	C13—C14—H14	119.7
C3—C4—S1	110.09 (15)	C15—C14—C13	120.6 (2)
H4A—C4—H4B	108.2	C15—C14—H14	119.7
S1—C4—H4A	109.6	C14—C15—H15	119.7
S1—C4—H4B	109.6	C14-C15-C16	120.6(2)
C6	118 31 (16)	C16-C15-H15	119 7
C6-C5-C10	118 75 (17)	C_{11} C_{16} C_{15}	119.7 119.0(2)
C_{10} C_{5} C_{1}	110.75(17) 122.03(16)	$C_{11} = C_{10} = C_{15}$	119.0 (2)
$C_{10} = C_{10} = C_{10}$	122.95 (10)	$C_{11} = C_{10} = H_{10}$	120.5
C_{3}	120.3	$C_{13} = C_{10} = H_{10}$	120.3
$C/-C_0$	118.90 (17)	C2—NI—CI	123.49 (16)
C = -H0	120.5	C2-NI-CI	117.31 (15)
$C_0 - C_1 - N_2$	118.02 (19)		116.14 (14)
C8—C7—C6	123.01 (18)	02—N2—C/	118.5 (2)
C8—C7—N2	119.0 (2)	03—N2—C7	118.6 (2)
С7—С8—Н8	121.1	O3—N2—O2	122.8 (2)
C7—C8—C9	117.81 (19)	C1—S1—C4	93.89 (9)

178.90 (16)	C12—C11—N1—C1	-61.8 (2)
-178.72 (19)	C12—C11—N1—C2	99.1 (2)
-48.3 (3)	C12—C13—C14—C15	-0.6 (4)
-14.7 (3)	C13-C14-C15-C16	0.6 (4)
-174.1 (2)	C14-C15-C16-C11	-0.2 (4)
63.17 (18)	C16—C11—C12—C13	0.3 (3)
162.42 (18)	C16—C11—N1—C1	116.17 (18)
-37.9 (2)	C16—C11—N1—C2	-82.9 (2)
177.36 (13)	N1-C1-C5-C6	118.45 (17)
0.1 (3)	N1-C1-C5-C10	-62.3 (2)
179.58 (16)	N1—C1—S1—C4	-59.28 (14)
0.5 (3)	N1—C2—C3—C4	18.6 (4)
0.1 (3)	N1-C11-C12-C13	178.24 (18)
-178.4 (2)	N1-C11-C16-C15	-178.26 (19)
1.7 (3)	N2—C7—C8—C9	-179.38 (18)
0.0 (3)	O1—C2—C3—C4	-165.2 (2)
1.1 (3)	O1—C2—N1—C1	169.2 (2)
-178.8 (2)	O1-C2-N1-C11	9.8 (3)
-0.4 (3)	S1—C1—C5—C6	-118.27 (14)
-0.4 (3)	S1-C1-C5-C10	61.0 (2)
0.2 (3)	S1—C1—N1—C2	41.3 (2)
-0.3 (3)	S1—C1—N1—C11	-159.05 (12)
	$\begin{array}{c} 178.90 \ (16) \\ -178.72 \ (19) \\ -48.3 \ (3) \\ -14.7 \ (3) \\ -174.1 \ (2) \\ 63.17 \ (18) \\ 162.42 \ (18) \\ -37.9 \ (2) \\ 177.36 \ (13) \\ 0.1 \ (3) \\ 179.58 \ (16) \\ 0.5 \ (3) \\ 0.1 \ (3) \\ -178.4 \ (2) \\ 1.7 \ (3) \\ 0.0 \ (3) \\ 1.1 \ (3) \\ -178.8 \ (2) \\ -0.4 \ (3) \\ -0.4 \ (3) \\ 0.2 \ (3) \\ -0.3 \ (3) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C1—H1···O1 ⁱ	0.98	2.19	3.158 (2)	170
С15—Н15…ОЗіі	0.93	2.58	3.501 (3)	174

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+3/2; (ii) *x*, *y*-1, *z*.